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A Theoretical Foundation for Count 

Data Models 

Daniel Hellerstein and Robert Mendelsohn 

The paper develops a theoretical foundation for using count data models in travel cost 

analysis. Two micro models are developed: a restricted choice model and a repeated 
discrete choice model. We show that both models lead to identical welfare measures. 
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For several decades, economists have used the 
annual demand for trips in order to measure the 
nonmarket value of recreation sites. Two fea- 
tures of trip demand functions complicate their 
estimation: trip demand is nonnegative and oc- 
curs in integer quantities. The fact that trip de- 
mand cannot be negative results in a censored 

(at zero) data set; failure to account for censor- 

ing leads to biased estimation. The integer na- 
ture of trip demand, when continuous models 
are estimated, can also lead to biased results. 

A variety of techniques have been developed 
to deal with these problems, including models 

incorporating truncated error distributions, ran- 
dom utility models, discrete/continuous models, 
and repeated discrete choice models.' In this pa- 
per we explore the use of count data estimators, 
such as the Poisson model, to embody the rec- 
reational demand for trips. Poisson models are 

becoming increasingly common (Hellerstein, 
Creel, and Loomis; Smith, Shaw, Terza, and 

Wilson). In addition, a variety of count model 
extensions to the Poisson have been recently de- 

veloped, providing analysts with a menu of ro- 

bust and flexible estimators (see Hausman, Hall, 
and Griliches, or Cameron and Trivedi). 

Although the attractive econometric proper- 
ties of count estimators are well understood, a 
theoretical foundation for their use in welfare 

analysis has not yet been presented. In partic- 
ular, the link between an individual consumer's 

optimization problem and a count estimator has 
not been drawn. Without a theoretical founda- 

tion, it is not clear how to interpret count models. 
More importantly, it remains ambiguous how to 

apply the results of count estimators of demand 
to welfare analysis. For example, it is unclear 
how to value recreation sites on the basis of a 
count demand model for trips. 

Our paper addresses this shortcoming by de- 

veloping two theoretical frameworks for count 
demand models. The first model modifies a 

standard, continuous demand model to account 
for a constrained integer choice set. The second 

approach is based on a discrete choice model 
which is then repeated over time. Welfare mea- 
sures based on both these underlying models are 

derived, and are shown to yield the same for- 
mula for measuring consumer surplus. 

The Restricted Choice Model 

We begin with the standard assumption that each 
individual maximizes utility subject to an in- 

come constraint. We add an additional con- 

straint, however, that the choice of trips, X1, must 
be a nonnegative integer. In addition, we as- 
sume that at the beginning of the season each 
individual chooses X, (the number of trips) as 
well as the quantity of a vector of other goods 
(X2) ing Pudney (p. 94), utility maximiza- 

Following Pudney (p. 94), utility maximiza- 
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tion can be expressed as a function of X, and 

X2, where X2 is a vector of all other goods as- 
sumed to be available in any quantity. For- 

mally, each individual solves 

(1) 
max [U(X, X2, ; 3)P * X = pixi + P2X2 = Y] 

XIEl, X2 

where P (the vector of prices) is divided into P1 

(the price of the indivisible good) and P2 (a vec- 
tor of prices of other goods), E are unobservable 
factors specific to an individual, and Y is in- 
come.2 Since X, is restricted to I (I = 0, .. .), 
this can be rewritten as 

(2) 
max{max U[(XI, X2, E; 3)1P2X2 = Y- PIX1]} 
XIEI X2 

Taking the dual of (2), the expenditure function 
can be written as 

(3) 
E[P,, P2, ; Uo] = minX{PX* 

+ [min(P2X2)] 
X1 X2 

s.t. U(X *, X2, ; /3) = U0, X*= X1} 

where Uo is a reference level of utility. 
Equation (3) highlights the two components 

of the decision making process: how much of 

X, to consume and how much of X2 to buy. Since 

X, can only be changed in infra-marginal 
amounts, the compensated demand for X1, H(P,, 
P2, E, U0) 

= 
aE/aPI, 

will be constant over dis- 
crete ranges of the expenditure function, with 
discrete jumps at prices that define the end- 

points of these ranges. As illustrated in figure 
1, the expenditure function will be piecewise 
linear, and the compensated demand will be a 

step function. 
If repeated observations on a single individual 

could be obtained, each observation differing only 
in price, it would be possible to determine the 

step-function comprising the compensated de- 
mand curve for an indivisible good. In actual 

circumstances, such a highly controlled sample 
is rarely available. Instead, price variation oc- 
curs across individuals, where each individual 
in the sample possesses a unique set of unob- 
servable (E) factors. At any price, these factors 

(ceteris paribus) determine the quantity each in- 
dividual consumes. 

Estimating demand relationships with such 

data, the analyst can at best determine proba- 
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Figure 1. Expenditure function, with non- 
divisible good. Hicksian demand for non-div- 
isible good 

bilities of observing a level of demand, given 
prices, income, and other observable variables. 
One means of summarizing these probabilities 
is through a probability density function. Viewed 
in this manner, estimation of a demand curve is 
an exercise in computing the parameters of a 

probability density function. These parameters 
will vary as prices vary; hence, the probability 
of observing a particular level of demand will 

change as prices vary. 
It is interesting to consider the estimation of 

continuous demand curves. The random com- 

ponent (E) is often included as a demand shifter; 
for example, in the linear model of demand for 
a good Q, Q = Xp + E. Alternatively, one can 
assume that, conditional on observed prices, de- 
mand will be distributed according to some con- 
tinuous probability distribution. For example, 
demand can be postulated to follow a normal 

2 For expositional simplicity, observable individual specific fac- 
tors (such as age and education) are not explicitly shown in this 

paper 
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distribution: Q - N(XP, 
0-2); 

with the XP of the 
linear model now interpreted as the location pa- 
rameter of a normal distribution, and 

0-2 
de- 

scribing the variance of e across the population. 
This interpretation of continuous demand is es- 

sentially the same as the interpretation of the de- 
mand for indivisible goods offered above. 

For indivisible goods, a probability distribu- 
tion defined only over the nonnegative integers 
is required. One such candidate for this distri- 
bution is the Poisson. The Poisson probability 
distribution is a single parameter distribution (A), 
with probability density function (PDF) defined 
as 

e-A"A 
(4) prob(Q = n)= ; n = 0, 1, .. ., 

n! 

where Q is a potential integer outcome. The A 

parameter of the Poisson is equal to the mean, 

E[Q], and the variance, o-2[Q], of Q. Typically, 
the A parameter is modeled as a function of prices 
and income, such as A(P, Y; P). For applied 
work, an exponential form for A is usually em- 

ployed: for example, A = exp(/30 + OPP + WY), 
where 0 is a vector of coefficients to be esti- 
mated. 

Estimation of a Poisson model,3 using data on 
demand for an indivisible good (such as trips to 
a recreational site), yields coefficient estimates 
which can be used to compute values of A(P, Y; 

0). As a continuous quantity, A(P, Y; P) does 
not represent an obtainable level of demand. 

Rather, A(P, Y; 0) parameterizes the distribution 
of demand (over the nonnegative integers) for 
individuals facing prices P and income Y. 

Welfare analysis is often conducted by com- 

puting a consumer surplus (as an approximation 
to a compensating variation) by integrating un- 
der a demand curve. With count models, the es- 
timated function is a probability distribution of 

trips. Taking the expectation of this distribution 

yields an expected response (number of trips) at 

every price. By integrating underneath this ex- 

pected response, a measure of the expected value 
of consumer surplus is obtained. 

Formally, the expected value of the consumer 

surplus (E[CS]), given a price change in good 
1 from Pi, to P~b, is 

(5) lb 

E[CS] = 
[f(s) T(p, P2, Y, E; 3)] de dp 

JPa E 

where T( ) is an individual's demand curve for 
the indivisible good (e.g.; trips), which will be 
a step function with exact shape dependent on 
E. The E argument in T, which has a range of 

support of E and a PDF equal to f(e), is meant 
to capture the influence that unobservable fac- 
tors have on trip taking decisions.4 Rearranging 
(5) yields 

Plb 

(6) AI, (p, P2, Y; P)dp = E[CS] 

in which we use the assumption that trip de- 
mand is, ceteris paribus, Poisson distributed, and 
the mean of the Poisson equals A(P,, P2, Y; 1). 
Note that if one estimates A = eXt (X = P, Y) 
and Plb equals infinity, equation (6) yields the 
standard result of E[CS]= -A/Pp. 

Summarizing this section, we show that when 

using count models to estimate trip demand, 

computation of the expectation of consumer sur- 

plus is obtained by integrating under the ex- 

pected value of demand. If one assumes that de- 

mand, at any given price, follows a Poisson 

distribution, then the expected value of demand 
will equal A. This result holds even though the 

expected value of demand may not be an integer 
and thus cannot be obtained by a single indi- 

vidual. 
It is interesting to contrast this to continuous 

models, where consumer surplus measurement 

techniques dictate use of observed demand 

(Bockstael et al.) to estimate consumer surplus 
for individuals in a sample. A common pre- 
sumption is that random and unobservable fac- 

tors (e) effect demand in an additive (or multi- 

plicative) fashion. The count model, in contrast, 
estimates the distribution of trips from which any 
individual draws; with random factors incorpo- 
rated in a parametric fashion rather than as a 

residual. 

The Repeated Discrete Choice Model 

As an alternative to the restricted choice frame- 
work presented above, count models can also be 

derived from repeated discrete choices. At each 

choice interval, the consumer can make a bi- 

nomial (zero/one) choice to consume or not. For 

example, each day, the recreator can choose 
whether to take a trip to a site or to engage in 

some other activity. The count model can then 

3 Estimation of a Poisson, and other count models, is usually 

accomplished with maximum likelihood techniques. A growing 
number of econometric packages directly support count model es- 

tilnation; such as LIMDEP, SHAZAM, and GRBL. 

4 Note that no parametric assumptions are made about how E di- 

rectly influences choices. 
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be derived from a repeated application of these 

discrete choices. 
A simple conditional utility model is adopted 

to reflect the discrete choice of consuming or 

not: 

(7) V* = max(Vj(Pj, Y, Ej); J = {0, 1} 
JEJ 

where V* is realized utility and Vj(Pj, Y, Ey) is 

the utility associated with the choice of good j, 

given the price of obtaining activity j (Py), the 

individual's income (Y), and a random shock 

term unique to good j (Ey). Good one (j = 1, 

e.g. the site is visited) is selected when the choice 

of good one yields greater utility than realized 

when good zero (j = 0, e.g. not visiting the 

site) is chosen. 
When the random shocks, E = {Eo, 

El}, 
change 

over time, equation 1 becomes 

V* = max(Vj(Pj, Y, Ej,) J = {0, 1}. 

Hence the consumer's choice will depend on the 

realization of E, = {Eo,, El,}.5 
Furthermore, if we 

assume (without loss of generality) that Po equals 
zero, on a given day t there is a probability irt(P,, 
Y) that the good one will be chosen (the site will 

be visited), and a probability 1 - ir,(P1, Y) that 

it will not.6 If chosen, a quantity of one is de- 

manded, otherwise the quantity demanded is zero. 

If P, is constant across time, and the distri- 

bution of E is independent and identically dis- 

tributed (iid) across time, ir, will be constant over 

time. Therefore, the outcome of the repeat dis- 

crete choices faced by the consumer can be 

modeled as a series of iid draws. Total number 

of draws over the course of the season will have 

a binomial distribution. As the number of draws 

increases, and the probability of choice de- 

creases proportionally, this binomial distribu- 

tion will asymptotically converge to a Poisson 

distribution (Mood, Graybill, and Boes). In other 

words, the count of the number of days (within 
a year) that good one is chosen will be asymp- 

totically distributed as a Poisson random vari- 

able. 
It is important to note that the Poisson distri- 

bution of outcomes is not dependent on the ex- 

act distribution of 
ir. 

However, the functional 

form of the Poisson parameter, A(P, Y; P), does 

depend on ir. For example, it can be shown that 

if each discrete choice yields a logit distribution 

for ir, and the choice probability is small and 

constant across time, the functional form for A 

will asymptotically equal exp(f30 + 
IpP 

+ p y).7 
To analyze welfare calculations in the repeat 

discrete choice context, the results of Hanemann 

1984 (b) are adapted. We first focus on a single 
choice opportunity (say, a single day), and de- 

fine a measure of the value of the good (say, a 

recreational site). For a given day t, site value 

is based on a compensating variation (CV,), de- 

fined as 

(8a) CV, = min s.t. V,(PO, P, + CV, Y, El,) 
cv 

-- 
Vo(Po, P,, Y, E0rt) 

Because E is stochastic, CVt is also stochastic. 

Thus, it is of interest to examine the expected 
value of CV,, 

(8b) E[CV,] = 
. CVft(CV)dCV 

-= (1 - Ft(CV))dCV 

where f,(CV) and F,(CV) are the probability 

density function and cumulative distribution 

function of CV, (respectively).8 
When Vo(Po, P1, Y, Eot) 

? 
VI(P0, P1, Y, 

Elt), 

good one is not chosen and CV, equals zero. 

Therefore 

F(0O) 
= prob(Good 1 not chosen on day t) 
= 1 - prob(Good 1 chosen on day t) 
= 1 - ir,(P1, Y), (by assumption). 

Similarly, for any nonnegative quantity A, Ft(A) 
will equal the probability of good one not being 
chosen when its price equals P, + A, which 

equals 1 - 
'i,(P1 + A, Y). Substituting these 

results for F(0O) and F,(A) into (8b) yields 

(8c) 
E[CVt] 

= f ,t(pl 
+ A, Y)dA 

= f r(p, Y)dp. 

5 For example, if Vj( ) ; V0( ) and P1 = Po, and if on day t = 

T, e1, is very large and E, is very small, then good one will be 

chosen. Alternatively, if on day t = y, e~, is very small and coy is 

very large, then good zero will be chosen. 
6 For example, if utility is of the form V + e, good one (j = 1) 

is chosen when co < el + V, - Vo. Given that V, and Vo are non- 

stochastic, different choices occur as el and co vary. The classic 

case of logit probabilities occurs when the elements of e1 and Co are 

independently drawn from a type I extreme value distribution 

(Maddala, ch. 3). 

7 The logit assumes that Vi 
= XfI + ei, where X is a vector of 

prices, etc., and ei follows a type I extreme value distribution. See 

the appendix for a further discussion of these results. 

8 See Hanemann (1984b), equation 26, or Mood, Graybill, and 

Boes ch 4.1; where the assumption that F(CV) = 0 for CV < 0 is 

used. Note that f, and F,, which are strictly conditional on E, may 
be specific to "day" t. 
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Lastly, it is readily shown that the E[CV,] equiv- 
alent to the change in the price of good one from 

Pa to Pb equals 

(9) E[CV,] = J 
'n ,(p, Y)dp. 

Given that ir, is constant over time, the ex- 

pected value of the total compensating variation 

(CV) over an entire period (say, over a year 
consisting of T days) will be 

(10) E[CV] = E ZICV =E[CVj] 

= r,(p, Y)dp = Z t(p, Y)dp 
t P P 

Because the Poisson process defines A as the re- 
sult of many small probability events, it im- 

mediately follows that9 

(11) pb Tb 

E[CV] = 
E (p, Y)dp A(p, Y)dp. 

Therefore, the price integral over the Poisson 

parameter, A(P, Y), is a legitimate approxima- 
tion to the compensating variation. Further- 

more, as with the restricted choice model, if A 
= exp(XP) is used and Pb = 00, E[CV] will equal 

Extensions 

The assumption that the resulting distribution of 

trips is Poisson need not always hold. In partic- 
ular, the assumption of equality between the ex- 

pected value, E[Q], and the variance of the dis- 

tribution, &o2[Q], is stringent. The Poisson 

relationship, A = A(P, Y; P), also does not con- 
tain an error component." 

To relax these assumptions, a variety of ex- 
tensions to the Poisson are available. An espe- 
cially appealing alternative is the Negative Bi- 

nomial count model. Formally (following 
Cameron and Trivedi), if Q is a Poisson random 
variable with parameter A, and A is distributed 
as a gamma random variable y(A; g, V), then Q 
is distributed as Negative Binomial random 
variable with E[Q] = u and var[Q] = g + gt2/v. 

The relaxation of statistical restrictions of- 
fered by the Negative Binomial can be further 
extended. Specifically, the Poisson (and Nega- 
tive Binomial) are examples of the class of lin- 
ear exponential functions, and it can be shown 
that as long as the specification of the mean is 

correct, linear exponential functions will be ro- 
bust to misspecification (Gourieroux, Montfort, 
and Trognon). For example, as long as E[Q] = 

A, one can consistently estimate /3 using a pseudo- 
maximum likelihood (PML) estimator in con- 

junction with the Poisson distribution (Cameron 
and Trivedi). 

Both the restricted choice and the repeated 
discrete choice models are easily extended to 
these general count models. The restricted choice 
model can be described as a reduced form in- 

corporating information on utility maximization 
and on unobservable factors. Therefore, use of 
a more sophisticated model (such as the Nega- 
tive Binomial) is straightforward, and need only 
be justified on econometric grounds of effi- 

ciency and consistency. Earlier results on wel- 
fare calculations are also readily extended, so 

long as a consistent estimate of the expected value 
of demand is available. 

For the repeat discrete choice model, it is in- 

structive to examine the process by which a non- 
Poisson distribution might arise. First, consider 
the Negative Binomial. A gamma distribution of 
A could arise due to variation in the underlying 
probability (T,(P, Y)) of choosing to consume 
the discrete good (such as a trip to recreational 

site), with this probability constant across time, 
but varying across individuals who are other- 

wise similar. Knowledge of the exact distribu- 
tion of the daily probability across individuals 

(iT,) is unnecessary, all that is assumed is that 
the process gives rise to a gamma distribution 
of A. 

Considering the PML estimators, it is not 

necessary to assume that A has a gamma distri- 

bution, all that is required is that one's model 
of E[Q] is correct. In the context of repeated 
discrete choice, this implies that the mix of daily 
probabilities across individuals (1ri,) that give rise 
to E[Q] need not be known. It is conceivable 

9 The Poisson parameter A parameterizes the distribution of the 
sum of random events II ... I,: A = E[XI,], where I1, takes on values 
of 1 or 0, with probability 7r and 1 - 7r respectively. Given that 

ri is constant and I, is independently distributed, it is readily shown 
that A = Xi ri. 

10 Note that we are approximating the CV with a Marshallian 

consumer surplus measure. If desired, a compensated demand curve 

could be estimated yielding an exact compensated Poisson welfare 

measure . 
" Note that the lack of an error component in the estimator of A 

implies that there are no omitted variables. In the context of the 

repeated discrete choice model, this implies that the daily proba- 

bility of visitation can be predicted without error; it does not imply 
that the actual number of visits observed can be estimated exactly. 
The actual number of trips will be drawn from a Poisson distri- 
bution. 
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that the ajit, the probability of visiting a site ran- 

domly, fluctuates over time. 12 

For the more general count models, the ar- 

gument supporting the use of consumer surplus 
estimates as approximations to the compensat- 

ing variation in the Poisson case can be readily 
extended. Consider the Negative Binomial. For 
each individual, A is determined by exogenous 
variables and a random factor. This random fac- 
tor (v), which is constant over time but varies 

across individuals, influences the constant prob- 
ability 

(ri,) 
within each time segment. Substi- 

tuting i,1(Pl, Y, v) into the right hand side of 

equation (11), the conditional expectation of CV 

(given individual specific factors determined by 

v), is computed as 

(12) E[CV]Iv = f(A(P, Y)lv)dp. 

The unconditional expected value of CV is then 

(13) E[CV]v = f(f(A(Pjv)dp)dv = fkp(P)dp 

where ((P, Y) is the expected value of A, by 
assumption. In other words, a consumer surplus 
value obtained by integrating under g will ap- 
proximate the CV. 

Now consider the general case, where the 

probability of choice is not necessarily constant 
over time. A factor vi,,, representing stochastic 
and systematic influences on the probability of 
choice at time t, is now included in T,. When 
this probability, Ti1(Pi, Y, vit), is inserted into 
the right hand side of equation (11), A does not 

result, since the Poisson assumption of iid events 
is no longer valid. However, if one can assume 
that a function, m(P,, Y), provides a consistent 
estimate of the (compensated) expected number 
of visits demanded, E[Q], it immediately fol- 
lows that •,v,(P,, Y, vP,) will equal m(P,, Y). 
Hence, we can substitute m( ) for A( ) in the 

right hand side of (11). 

Summarizing these results, if the probability 
of choice is independent and identically distrib- 
uted across time and across individuals, then 

compensating variation is computed by inte- 

grating under the Poisson (A) parameter. If this 

independence does not hold across individuals, 
but the variation across individuals yields a 

gamma distribution of A, then compensating 
variation is computed by integrating under the 

Negative Binomial mean 
(/,t). 

Lastly, if all that 
is known is that the fluctuations in probability, 
both across time and across individual, yields an 

E[Y] that follows a known function, then com- 

pensating variation is computed by integrating 
under this known function (m). Note that the lat- 

ter case implies that when the Poisson model is 

adopted, integration under A will be correct even 
if vi, is not iid, provided that E[Y] still equals 
A. The key point is that one's estimator for E[Y] 
be correct. 

Conclusion 

Count data models are an appealing tool for es- 
timation of individual demand. This paper pre- 
sents two foundations for count models: a re- 
stricted choice set and a repeat discrete choice 
model. All of these models generate count dis- 
tributions of outcomes. The restricted choice set 
model presumes that the interaction between ob- 
servable influences (such as price and income) 
and unobservable factors yields a distribution of 
demand that can be modeled using a count prob- 
ability density function, such as the Poisson. 

Computing the expected value of consumer sur- 

plus is readily accomplished, assuming that one's 
estimate of the expected value of demand is un- 
biased across the relevant price range. 

The repeat discrete choice model presumes that 
in each of many time periods an individual 
chooses whether or not to take a trip. If the un- 

derlying probability to take a trip is constant, 
the observed trip demand over a season will 

asymptotically follow a Poisson distribution. 
Other count models, such as the Negative Bi- 

nomial, can be derived which permit the un- 

derlying probability (of taking a trip) to vary 
across otherwise similar individuals, or over the 
season. Welfare measures from the discrete 
choice model can be extended to count models. 

Although the presentation of the repeat dis- 
crete choice in this paper covers several cases, 
a number of questions remain for future study. 
For example, if the proper income variable in 
the underlying repeat choice model is not yearly 
income, what value should be used? In addition, 
if multiple day trips and time constraints reduce 
the number of trips possible in a season, will 
the asymptotic results developed here be con- 

sistent? Lastly, how should cases be modeled 
when the probability of visitation later in the 
season depends on the realized choices made 
earlier? 

One interesting result obtained under both 
models is the formula used to compute con- 
sumer surplus. This formula, which in the Pois- 

son case equals -A/P, = -exp(XP)/jp, is the 

12 In such cases, the conditions for a Poisson process do not hold, 
since wit is not iid. 
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same as the standard formula used in the con- 
tinuous semi-log model. Therefore, the existing 
count literature which has used this formula is 
on solid ground. 

In summary, count models appear to be highly 
flexible tools for analyzing individual recreation 
data. Given their strong econometric properties 
and sound theoretical foundation, in many cir- 
cumstances count models should become the 
model of choice.13 

[Received December 1991; final revision 
received November 1992.] 
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Appendix 

Derivation of A from a Logit Model of Discrete 
Choice 

To illustrate the equivalence of count models and the repeat 
discrete choice model, a Monte Carlo analysis of a repeated 
discrete choice model is performed. We start with a known 

random utility model, defined over the decision of whether 

or not to visit a site. The repeated discrete choice model is 

formed by generating T choices from the known random 

utility model, with each choice dependent on the realization 

of a random shock. The total number of visits, in this T 

day "season," is simply the number of times that the de- 

cision is made to visit the site. In addition, given knowl- 

edge of the random utility model, the welfare implied by 
these decisions is easily computed, and can be expressed 
as a compensating variation. 

To start, we assume that the random utility model has 

the following form: 

v = w- + 
ej; 

with W, = 
Ba, + B,(Y - 

Pj), 
E, an independently and iden- 

3 Furthermore, extension of these results to include site attri- 
butes and multiple sites is straightforward (an appendix discussing 
such extensions is available from the authors). 
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Figure 2. Logit, AggCVr/AggCSr. Logit, 
Average (CVj/CSi) 

tically distributed Type I Extreme Value random variable, 

j = I for visit and j = 0 for not visit. The individual chooses 

to visit the site when the utility from visiting the site (V,) 
exceeds the utility from not visiting (Vo). The price of the 

activity reduces residual income (Y - Pi), for which con- 

stant marginal utility (B,) is assumed. Given the assumption 
on the error distribution, it is well known that the proba- 

bility of visiting (choosing j = 1) follows the logit form, 
with 

exp(W,) 
(i) prob(Visit) 

= 
ex 

exp(W,) + exp(Wo) 

exp(B,, - By(Y - P,)) 

exp(Ba, - By(Y - P,)) + K 

where K = exp(B,o + 
By(Y 

- Po) 

If the probability of choosing to visit the site is small, then 

exp(W,) will be much smaller then K. Thus, the denomi- 

nator of (i), exp(W,) + K, can be approximated by K, so 

that prob(Visit) = exp(Wq)/K. Assuming (without loss of 

generality) that P0 equals zero, under the Poisson model 

with A = 
exp(30 + PP + /3yY), the repeat discrete choice 

story requires that 7r, = E[Y]/T = A/T. Equating these two 

probabilities, 7r, = A/T and prob(Visit) = exp(W,)/K, yields 

eO+3yr+3PPP eBal+n +By(Y-PI) 

In other words, the net result of the repeated discrete 

choice process (in terms of total visits made) can approx- 
imated as Poisson with A = exp(XP) = exp(00 + ByY + 

0,P).'4 Moreover, the price coefficient from the count model 

(p,,) approximates the price responsiveness coefficient in W, 

(BY), and the constant term from the count model, f0, is a 

reduced form incorporating Bai, T and K. Lastly, the con- 

sumer surplus generated by estimating a Poisson model and 

using the resulting coefficients to compute the CS will be 

an accurate measure of the true CV. 

The accuracy of the Poisson model, when a logit repeat 
discrete choice process is generating the data, is examined 

using a Monte Carlo analysis (the details of the Monte-Carlo 

analysis are available from the authors upon request). Briefly, 
a large number of individuals are created, and for each in- 

dividual a long (large T) repeated discrete choice process 
is generated. CV measures are computed, as well as the 

number of visits per individual. The number of visits are 

used in a Poisson model, and the results of the Poisson 

model are used to form consumer surplus estimates. 

This process is repeated 50 times, with the results dis- 

played in figure 2. For each model, the frequencies of two 

ratios are displayed: aggregate CS over aggregate CV, and 

average CS over average CV.'5 The results clearly show that 

CS measures from the count model closely approximate the 

underlying CV (from the repeat discrete choices), with the 

average ratio of CV/CS quite close to 1.0.16 

14 Note that the approximation becomes more exact as exp(W,) 
+ K approaches K. 

"5 Aggregate CS is computed as WCSn, with the sum over all n 
= 1, ..., N individuals and with CSn computed at individual n's 
own price. Aggregate CV is computed as XCVn. Averages of an 

individual's CS and CV are taken over the 50 iterations. 

16 Averaging over all 50 replications: E[Aggregate CV/Aggre- 
gate(CS)] = 1.012 (the 90% empirical confidence interval is be- 
tween 0.847 and '.21). Averaging over 250 individuals: E[Average 
CV/Average CS)] = 1.002 (the 90% empirical confidence interval 
is between 0.662 and 1.29). 
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