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Abstract. 
While being a powerful paradigm for solving Constraint 

Satisfaction Problems (CSPs), Consistency Techniques (CTs) 
have never been taken into account during the design of 
declarative programming languages. This paper defines a 
theoretical framework for using CTs inside logic programming. 
Three inference rules are introduced and their formal 
properties are investigated. Also, computation rules are defined 
which are worth considering wrt the inference rules. As 
practical results, the programmer can write " generate & test" 
programs while the interpreter/compiler will use CTs for 
solving them (e.g forward checking or arc consistency). This 
makes logic programming not only a good language for stating 
CSPs but also an efficient tool for solving them as confirmed 
by our first experiences. 

1. Motivation 
Our work aims at the integration of CTs inside a declarative 

programming language in order to solve Constraint Satisfaction 
Problems (CSPs). 

The class of CSPs is of great importance in AI as, for 
instance, graph colouring, graph isomorphisms and 
homomorphisms, boolean satisfiability, scene and edge labeling 
and logical pussies can be seen as particular cases of it. A 
CSP can be defined in the following way. Assume the 
existence of a finite set 1 of variables which take respectively 
their values from finite domains and a set of constraints. A 
constraint between k variables from 1 is a subset of the 
cartesian product of the respective variable domains which 
specifies which values of the variables are compatible with 
each other. A solution to a CSP is an assignment of values 
to all variables which satisfies all the constraints and the task 
is to find one or all the solutions. 

CTs are a powerful paradigm for solving CSPs. They should 
be contrasted to "generate & test", standard backtracking 
(depth-first search with chronological backtracking) and 
dependency-directed backtracking. Clearly, "generate & test" 
is an unfeasible search procedure as soon as the sise of a 
problem makes it- interesting to consider. "Generate & test" 
corresponds to the naive way of writing logic programs for 
CSPs. For instance, a "generate & test" for the 8-queens 
problems generates a possible configuration for the queens and 
then test the constraints. Standard backtracking (ST), while 
being a substantial improvement over "generate & test", leads 
to a pathological behaviour known as thrashing. In logic 
programming, ST corresponds generally to a "generate & test" 
program with coroutining informations or to a program written 
for testing the constraints as soon as possible. Dependency-
directed backtracking [14] has been introduced in order to 
avoid one of the thrashing symptoms but it is more a remedy 
to a symptom of the malady and not to the malady itself. 
Indeed, It is better to prevent failures than to react 
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intelligently to them. More generally, the drawback of standard 
and dependency-directed backtracking lies in the way they reduce 
the search space, only in an "a posteriori' way after having 
discovered a failure. Contrarily, CTs [4, 11, 13] prevent JaUuret 
and reduce the search space in an "a prion' way before discovering 
a failure by removing combinations of values which cannot 
appear together in a solution. This leads to an early detection 
of failures and reduces both the amount of backtracking and 
the number of constraint checks. 

The paradigm behind CTs has been the basis for some 
problem-solvers like HEF-ARF |3j and ALICE [9| but it has 
never been taken into account in the design of (high-level) 
programming languages although its importance in this context 
has been stressed elsewhere | l l j . However, they are some inherent 
interest for using CTs m the design of declarative languages and not to 
restrict our attention to problem solvers. Programming languages, 
contrary to problem-solvers, should lead to a greater flexibility 
with respect to the set of constraints (used to define a CSP) 
and the strategy (used to solve it). Among declarative 
programming languages, logic programming is very appropriate 
for integrating CTs due to its relational form which makes it an 
adequate tool for expressing CSPs and its freedom of control 
which makes it adequate for integrating different paradigms. 

Our work atrm at a declarative logic programming language integrating 
CTs. The objective is to preserve the expressiveness of logic 
programming while using the efficiency of CTs. This allows the 
programmer to write a "generate & test" program for stating 
his problem while the interpreter/compiler will use CTs for 
solving it. For this purpose, three new inference rules are 
introduced, say the forward checking inference rule (the 
FCIR), the lookahead inference rule (the LAIR) and the 
partial lookahead inference rule (the PLA1R), which are 
general mechanisms for using CTs in logic programming. 
Examples of their uses have been described in |16, 17]. In the 
second paper, performance measures on several problems have 
been given which show the feasibility and the importance of 
the approach. Its main advantage lies in the duality 
generality/specialization and the total freedom wrt the strategy. The 
duality generality/specialization comes from the fact that, on one 
hand, the inference rules are not restricted to a particular set 
of predefined constraints but can be used for logic programs 
and, on the other hand, they can be specialised (i.e. built-in) 
for some constraints by taking into account their particular 
properties leading to a very efficient handling of these 
constraints. The freedom wrt the strategy comes from the fact 
that these inference rules can be combined inside the same 
program (i.e different strategies can be used for different kinds 
of constraints) This is important as some constraints are more 
appropriate for a forward-checking use while others are best-
suited for a lookahead use. Also, they can be combined either 
with domain-splitting or instantiation. 

The present paper describes the theoretical framework for our 
approach. We show how SLD-resolution can be extended in 
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order to use CTs in logic programming. For this purpose, the 
next section introduces the domain concept and the unification 
algorithm is extended to handle it. Next, the inference rules 
are defined and their formal properties are investigated. 

Our approach should be related in philosophy to the works 
on constraints in logic programming (e.g |7, 2]). It differs 
from them as we are not restricted to a set of built-in 
constraints. Genera) mechanisms are provided which can be 
used for any constraint to solve problems in a well-defined 
class. 

2 . D o m a i n s i n log ic p r o g r a m m i n g . 

2 . 1 . T h e d o m a i n concep t . 
Domains provides the basis for using CTs in logic 

programming. It is often the case that variables range over a 
finite domain but this information cannot be expressed clearly 
in logic programming languages. Domain declarations have been 
introduced for taking this fact into account (16). 

Definition 1: A domain declaration for predicate symbol p 
of arity n is an expression of the following form. 

domain p(a1.,...,a ) where a. is either h or d.. 
When a. is equal to h, this means that the i argument 
of p ranges over the Herbrand universe. Otherwise, it 
means that the i argument is a list of variables which 
ranges over d1 In the following, the domains di are finite 
and explicit sets of values (i.e constants). 

Definition 2: Let dl,...,dn the domains appearing in the 
domain declarations of a logic program PR and different 
from the Herbrand universe. We note D(PR) the set { d 

We call it the domain 
set of the logic program. The domain set of a logic 
program contains all domains we possibly need during the 
computations. 

The resulting language is a first-order language with 
aggregate variables (6). This means that the domains must be 
seen as unary relations and an aggregate variable as a variable 
which ranges over this unary relation. In the following, we 
refer aggregate variables as d-variables (domain variables), we 
note x a variable x ranging over d and we use a d to 
denote d(a) where a is a constant. Also, we use and VP to 
denote the existential and universal closures of P. Two rules 
are added to the usual first-order validity rules. We assume an 
interpretation 1 and a variable assignment A. A(x/y) is A with 
x assigned to y and |d| is the unary relation d defines in 
I. The terms are constructed as usual except that variables 
can now be usual variables and d-variables. 

1. If the formula has the form then the truth 
value of the formula is true if there exists 
such that F has truth value true wrt 1 and 
A(x |d); otherwise its truth value is false. 

2. If the formula has the form then the truth 
value of the formula is true if for all we 
have that F has truth value true wrt I and 
A(x |d); otherwise its truth value is false. 

The unification algorithm must be extended to take the 
domains into account. Informally, a d-variable and a constant 
can only been unified if the constant is in the domain of the 
d-variable. Also, when unifying a variable and a d-variable, 
the variable is bound to the d-variable. Finally, two d-
variables can only be unified if the intersection of their 
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finitely many variables and each application of steps 3,..,6 
decreases by one the number of variables. We now prove that 
the unification algorithm does indeed find a tngu of a unifiable 
set of terms or predicates. It is a generalisation of the usual 
unification theorem (see for instance (10)). 

Theorem S: (Unification theorem). 

Let S a finite set of terms or predicates. If 8 is unifiable, 
then the unification algorithm terminates and gives an 
mgu for S. If S is not unifiable, then the unification 
algorithm terminates and reports this fact. 

Proof We have already noted that the algorithm always 
terminates. It suffices to show that if S is unifiable, then 
the algorithm finds an mgu. In fact, if S is not unifiable, 
then the algorithm cannot terminate at step 2 and, since 
It does terminate, it must terminate at step 7. Thus it 
reports the fact that S is not unifiable. 

Assume then that S is unifiable and let 9 be any unifier 
for S. We prove first that, for the 
substitution given at the kth iteration of the algorithm, 
then there exists a substitution such that 

Suppose first that Then wt can put since 
Next, suppose for some there exists such 

that is a singleton, then the 
algorithm terminates at step 2. Hence we can confine 
attention to the case when is not a singleton. We 
want to show that the algorithm will produce a further 
substitution and that there exists a substitution 

such that |vars(S)|. Since is 
not a singleton, the algorithm will determine the 
disagreement set ~ of Sff. and go to Step 3. Since 

and 6 unifies S, it follows that 
unifies . T h u s m u s t contain either a variable or a 
d-variab)e. 

Suppose first that contains a variable v and let t 
another term of Then v cannot occur In t because 

We can suppose that is indeed the 
substitution chosen at step 3. Thus We 
now d e f i n e h a s a binding for 
v, then 

(by definition of composition) 
does not have a binding for v, than 

each element of is a variable and 
Thus 

(vari(S)) , as required. 

Now, if docs not contain a variable, it contains a d-
variable. The steps 4 and 5 can be handled in the same 
way as the step 3. 

JQ 
vars(S)] since s does not occur in and S. 

We finally define 
follows that 

Now we can complete the proof. If S is unifiable, then we 
have shown that the algorithm must terminate at step 2 
and, if It terminates at the kth iteration, then = 

|vars(S)|. Since ak is a unifier of S, this equality 
shows that it is Indeed an mgu for S. 
We refer SLD-resolution with this extended unification 
algorithm as SLDD-resolution. The notions of SLDD-refutatlon 
and SLDD-answer substitutions are defined by analogy to the 
SLD case. The reader can verify easily that the mgu and 
lifting lemmas as well as theorems 7.1 and 8.4 in |10] hold for 
SLDD-resolution. Thus, SLDD-resolution is both sound and 
complete for definite clauses. This result corresponds to the 
one of [6] which has shown that resolution is sound and 
complete when extended for handling d-varlablee Also, the 
same result can be proved if we switch to a many-sorted logic 
since the domain set augmented by the herbrand universe and 
the empty set can be organised as a meet-semilattice [18]. The 
domain concept Is a necessary extension for consistency 
techniques to be applied but it not in it-self as interesting as 
other extensions like, for instance, LOGIN [1]. Before 
presenting the inference rules, we define the constraints we 
considered. 

Definition 9s Let p be a n-ary predicate symbol, p Is a 
conttraint iff for any ground t e r m s e i t h e r 

has a successful refutation or ) has 
only finitely failed derivations. 
S . F o r w a r d c h e c k i n g i n log ic p r o g r a m ­

m i n g . 
Forward checking is often considered as one of the most 

efficient procedures for solving CSPs. Intuitively, a constraint 
can be used in forward checking as soon as at most one 
variable occurs In it. In this case, the set of possible values 
for the variable Is reduced to the set of values which satisfy 
the constraint. Thus, a program based on forward checking 
gives a value to a variable, uses all constraints which contains 
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at moat one variable, chooses a value for Che next variable, 
uses the constraint! and to on until all variables have received 
valuet. If, during the search, a constraint cannot be satisfied 
(it reduces the set of possible values for a variable to the 
empty set), the search procedure gives another value to the 
previously assigned variable. This section defines the FCIR 
and its use for a general control mechanism, forward 
declarations, and for the implementation of some built-in 
predicates. They enable programs previously based on a ST 
or "generate & test" search to use a forward checking 
strategy. 

3 . l . T h e i n f e rence r u l e . 

Since a ground instance of a constraint either succeeds or 
finitely fails, the set dnew in point 3 of the definition can be 
computed easily (for instance by using SLDD-resolution) . The 
PCIR can be seen as a general mechanism for enforcing node-
consistency [11]. 

The FCIR provides a theoretical foundation (1) for a general 
control mechanism, forward declarations, that can be used 
whatever the kind of constraints to be satisfied and (2) for 
the implementation of some built-in constraints. 

Forward declarations [17] provide a general method for using 
forward checking inside logic programming. A forward 
declaration for a predicate symbol p of arity n is an 
expression of the following form. 

Forward declarations are best combined with a special-
purpose computation rule. 

Definition 13s A computation rule is efficient wrt the 
forward declarations, if it selects only a predicate 
submitted to forward declaration when it is ground or 
forward checkable and if, whenever the resolvent contains 
literals submitted to a forward declaration which are 
either forward-checkable or ground, it selects one of them. 

The main interests of a efficient computation rule wrt the 
forward declarations are for expressiveness and efficiency. 
Constraints can be stated before the generators and the 
interpreter/compiler is responsible to select them at an 
appropriate computation step. Thus, forward declarations will 
act as preconditions to the selection of a predicate and can be 
selected as soon as possible for reducing the search space. 
This Introduces a 'dolo drteen' computation as, for instance, In 
the constraint language of (15) and a generalised form of 
forward checking. 

Example i Consider the problem of colouring a map in 
four colors. A logic program for solving this problem will 
include a constraint different(X,Y) which holds if X and Y are 
different colors. It can be defined as a finite set of assertions 
of the form 

The FCIR provides also a theoretical foundation for the 
implementation of built-in constraints which are the primitives 
of the logic language (e.g arithmetic constraints). In usual 
logic languages, these constraints can only be used for testing 
values and thus only reduce the search space in an "a 
posteriori way". However, the FCIR can be specialised for 
these constraints which now can not only test values but can 
also prune the search space when only one d-variable is left 
uninstantiated. Consider a non-equality constraint between 
integers which holds If x and y are different 
integers). In usual logic languages, the non-equality predicate 
is implemented by mean of the "negation as failure" rule and 
thus can only be selected when both arguments are ground. 
By redefining this constraint as specialisation of the FCIR, the 
same pruning as the above different predicate is achieved but 
In a more efficient way. 

3.2. P r o p e r t i e s o f t h e F C I R . 
We now prove the soundness and completeness of the FCIR. 

The first two lemmas allow us to "remove" a value from the 
domain of a d-variable if this value does not satisfy a 
constraint. 
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We now turn to the completeness of the FCIR. We first 
define an SLDFC-resolution as a proof procedure which uses 
the FCIR for forward checkable predicates and SLDD-
resolution otherwise. We also speak about SLDFC-refutation 
and SLDFC-aniwer substitution. 

Proof We prove it by induction on the length of the 
SLDD-refutation. 

Suppose 1 = 1 and G is forward-checkable. Then, let x be 
the forward checkable variable and O the substitution 
resulting from the application of the FCIR. Then, given 
any SLDD-answer substitution 0, by definition of the 
FCIR, there exists a SLDFC-refutation with SLDFC-answer 
substitution O such that a 

4 . L o o k a h e a d i n log ic p r o g r a m m i n g . 
There exists other CTs which use constraints even when 

several variables appear in them. Typical examples are 
lookahead [5] and the arc and path-consistency algorithms 
[11,13,19]. For instance, given a constraint a 

lookahead use of it consists in eliminating from the domain of 
all the values which are not consistent with any value of 

the domain of y and vice-versa for y. The reduction of the 
search space is done earlier than in forward checking but its 
computation tost is higher. Also, the constraint is not 
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necessary solved by this treatment and mutt be reconsidered 
later on. The LAIR and tookahead declarations are introduced in 
logic programming in order to use lookahead whatever the 
kind of constraints used in the program. Therefore, programs 
previously based on a ST or "generate & test" search now use 
Walts filtering-like algorithm or lookahead. This is especially 
important in areas like vision and qualitative reasoning (8|. 

4 . 1 . T h e i n fe rence pu le . 

The LAIR can be seen as a general mechanism for enforcing 
a k-consistency between the k lookahead variables. The LAIR 
reduces the search space in 'a priori way* and earlier than a 
forward checking use of the constraint. However, it takes also 
more computation time to produce this reduction. Note also, 
that when only one variable occurs in P, the LAIR reduces to 
the FCIR. 

The LAIR is the theoretical foundation for a control 
mechanism called lookahead declarations. A lookahead 
declaration for a predicate symbol p of arity n is an 
expression of the following form. 

lookahead where a. is either g either d. 
This declaration, which is unique for a particular predicate 
symbol, specifies that a l i t e r a l i n the resolvent can 
be selected only when all its arguments corresponding to a 'g' 
in the declaration are ground and when it is either ground or 
lookahead checkable. When it is lookahead checkable, the 
LAIR must be used to resolve it; otherwise, normal derivation 
is applied. 

The computation rule is even more important for the LAIR 
than for the FCIR. We first define a efficient computation 
rule wrt lookahead declarations. 

Definition 20: A computation rule is efficient wrt the 
lookahead declarations, if a l i t e r a l i n the 
resolvent submitted to a lookahead declaration is only 
selected if either it is lookahead checkable or all its 
arguments are ground. 
A efficient computation rule wrt lookahead declarations gives 
UB few informations about when to select a lookahead 
constraint. It is clear that selecting it too early can induce 
some unproductive work (no new informations are inferred) 
and that a late selection reduces the pruning of the search 
space. It is not difficult to define efficient computation rules 
which select only lookahead constraints which are likely to 
produce new informations. The definition of the LAIR should 
not be seen as suggesting a particular implementation. Actual 
implementations should be based, for instance, on 
generalisation* of AC-3 |ll) or AC-4 |12). 

Example: Consider a vision problem in a three-faced vertex 
world. is the set of possible labels for the 
vertex. Constraints in the problem are given by the "so-called" 
fork, L, T and arrow junctions. For instance, the fork junction 
can be defined as follows. 

Finally, the LAIR can be specialised for some constraints (e.g 
an inequality constraint between two integers). This will 
achieve the pruning defined by the LAIR in a very efficient 
way. 
4 .2 . P r o p e r t i e s o f t h e L A I R . 

Theorem 21: Soundness of the LAIR. 
The proof of this theorem is a simple generalisation of the 

soundness proof of the FCIR. 
There is no equivalent for the LAIR to theorem 16. Thus, a 

proof procedure using the LAIR for lookahead checkable 
predicates and SLDD-resolution otherwise will not be complete. 
The reason is that the LAIR is used only to remove 
inconsistent values and not for making choices. A sufficient 
condition to ensure completeness is to provide generators of 
values for the variables occurring in predicates submitted to 
lookahead declarations. This result was expected as the LAIR 
can be seen as a general mechanism for enforcing a k-
conttistency between the k lookahead variables and it is well-
known that enforcing a k-consistency throughout a network of 
constraints is not generally sufficient for solving arbitrary 
problems. 

5 . P a r t i a l l o o k a h e a d i n log ic p r o g r a m ­
m i n g . 

This section provides a theoretical basis for building-in some 
constraints in such a way that there are neither a 
specialisation of the FCIR or a specialisation of the LAIR. It 
is motivated by the existence of some constraints for which, 
on one hand, forward checking is not appropriate (the 
reduction of the search space occurs too late in the 
computation) and lookahead use is too costly (in computation 
time) while, on the other hand, it is possible to use this 
constraint for reducing drastically the search space with a 
small amount of computation. Examples of such constraints 
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are linear equation! and inequations on natural numbers which 
can be handled by a reasoning about variation intervals |9). 
For instance, given 

since it reduces drastically the search space while inducing 
almost no overhead. Since it can happen that not all the 
inconsistent values are removed, they are a special case of the 
PLAIR. These constraints have been applied successfully in 
areas ranging from crypt-arithmetic to integer linear 
programming. We now define an inference rule we call the 
partial lookahead inference rule which is of no use per se but 
provides a theoretical basis for building in some particular 
class of constraints. The LAIR can be seen as a particular 
case of It. It consists in replacing the point 3 and S in the 
LAIR definition by the following two points. 

The set dzj is not defined in this inference rule and is 
dependent of each particular constraint. What we have defined 
Is a theoretical framework for justifying certain kinds of 
specialisation. The soundness of the PLAIR can easily be 
proved from the soundness of LAIR. 
6 . C o n c l u s i o n . 

CTs are a powerful paradigm for solving CSPs. While being 
the basis for some successful problem-solvers, this paradigm 
has not been taken into account during the design of 
programming languages. However, there exists a inherent 
Interest to build a declarative language based on this paradigm 
as it increases both flexibility for stating and solving the 
problem. 

This paper has presented a theoretical framework for 
integrating CTs inside logic programming. Several new 
inference rules have been defined and their formal properties 
have been proved. Also, the interest of some classes of 
computation rules wrt the expressiveness and the efficiency 
have been stressed in this context. 

This makes logic programming not only a good language for 
slating CSPs but also an efficient tool for solving them as 
confirmed by our first experiments. 
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