2

A Theoretical Framework for Consistency Techniques in Logic Programming.

Fascal VAN HENTENRYCK

ECRC, Arabellastr. 17. 8000 Muenchen 81, West Germany

Abstract.

While being a powerful paradigm for solving Constraint
Satisfaction Problems (CSPs), Consistency Techniques (CTs)
have never been taken into account during the design of
declarative programming languages. This paper defines a

theoretical framework for using CTs inside logic programming.
Three inference rules are introduced and their formal
properties are investigated. Also, computation rules are defined
which are worth considering wrt the inference rules. As
practical results, the programmer can write "generate & test"
programs while the interpreter/compiler will use CTs for
solving them (e.g forward checking or arc consistency). This
makes logic programming not only a good language for stating
CSPs but also an efficient tool for solving them as confirmed
by our first experiences.

1. Motivation

Our work aims at the integration of CTs inside a declarative
programming language in order to solve Constraint Satisfaction
Problems (CSPs).

The class of CSPs is of great importance in Al as, for
instance, graph colouring, graph isomorphisms and
homomorphisms, boolean satisfiability, scene and edge labeling
and logical pussies can be seen as particular cases of it. A
CSP can be defined in the following way. Assume the
existence of a finite set 1 of variables which take respectively
their values from finite domains and a set of constraints. A
constraint between k variables from 1 is a subset of the
cartesian product of the respective variable domains which
specifies which values of the variables are compatible with
each other. A solution to a CSP is an assignment of values
to all variables which satisfies all the constraints and the task
is to find one or all the solutions.

CTs are a powerful paradigm for solving CSPs. They should
be contrasted to "generate & test", standard backtracking
(depth-first search with chronological backtracking) and
dependency-directed backtracking. Clearly, "generate & test"
is an unfeasible search procedure as soon as the sise of a
problem makes it- interesting to consider. "Generate & test"
corresponds to the naive way of writing logic programs for
CSPs. For instance, a "generate & test" for the 8-queens
problems generates a possible configuration for the queens and
then test the constraints. Standard backtracking (ST), while
being a substantial improvement over "generate & test", leads
to a pathological behaviour known as thrashing. In logic
programming, ST corresponds generally to a "generate & test"
program with coroutining informations or to a program written
for testing the constraints as soon as possible. Dependency-
directed backtracking [14] has been introduced in order to
avoid one of the thrashing symptoms but it is more a remedy
to a symptom of the malady and not to the malady itself.
Indeed, It is better to prevent failures than to react

ARCHITECTURES AND LANGUAGES

intelligently to them. More generally, the drawback of standard
and dependency-directed backtracking lies in the way they reduce
the search space, only in an "a posteriori' way after having
discovered a failure. Contrarily, CTs [4, 11, 13] prevent JaUuret
and reduce the search space in an "a prion' way before discovering
a failure by removing combinations of values which cannot
appear together in a solution. This leads to an early detection
of failures and reduces both the amount of backtracking and
the number of constraint checks.

The paradigm behind CTs has been the basis for some
problem-solvers like HEF-ARF |3j and ALICE [9] but it has
never been taken into account in the design of (high-level)
programming languages although its importance in this context
has been stressed elsewhere |Ilj. However, they are some inherent
interest for using CTs m the design of declarative languages and not to
restrict our attention to problem solvers. Programming languages,
contrary to problem-solvers, should lead to a greater flexibility
with respect to the set of constraints (used to define a CSP)
and the strategy (used to solve it). Among declarative
programming languages, logic programming is very appropriate
for integrating CTs due to its relational form which makes it an
adequate tool for expressing CSPs and its freedom of control
which makes it adequate for integrating different paradigms.

Our work atrm at a declarative logic programming language integrating
CTs. The objective is to preserve the expressiveness of logic
programming while using the efficiency of CTs. This allows the
programmer to write a "generate & test" program for stating
his problem while the interpreter/compiler will use CTs for

solving it. For this purpose, three new inference rules are
introduced, say the forward checking inference rule (the
FCIR), the lookahead inference rule (the LAIR) and the
partial lookahead inference rule (the PLA1R), which are
general mechanisms for wusing CTs in logic programming.

Examples of their uses have been described in |16, 17]. In the
second paper, performance measures on several problems have
been given which show the feasibility and the importance of
the approach. Its main advantage lies in the duality
generality/specialization and the total freedom wrt the strategy. The
duality generality/specialization comes from the fact that, on one
hand, the inference rules are not restricted to a particular set
of predefined constraints but can be used for logic programs
and, on the other hand, they can be specialised (i.e. built-in)
for some constraints by taking into account their particular
properties leading to a very efficient handling of these
constraints. The freedom wrt the strategy comes from the fact
that these inference rules can be combined inside the same
program (i.e different strategies can be used for different kinds
of constraints) This is important as some constraints are more
appropriate for a forward-checking use while others are best-
suited for a lookahead use. Also, they can be combined either
with domain-splitting or instantiation.

The present paper describes the theoretical framework for our
approach. We show how SLD-resolution can be extended in

order to use CTs in logic programming. For this purpose, the
next section introduces the domain concept and the unification
algorithm is extended to handle it. Next, the inference rules
are defined and their formal properties are investigated.

Our approach should be related in phiosophy to the works
on constraints in logic programming (eg |7, 2]). It differs
from them as we are not resticted to a set of built-in
constraints. Genera) mechanisms are provided which can be
clL%ed for any constraint to sove problems in a wel-defined

SS.

2. Domains in logic programming.

2.1. The domain concept.

Domains provides the basis for using CTs in logic
programming. It is often the case that variables range over a
finite domain but this information cannot be expressed clearly

in logic programming languages. Domain dedarations have been
introduced for taking this fact into account (16).

Definition 1: A domain declaration for predicate symbol p
of arity n is an expression of the following form.

domain p(as.,...a) where a. is either h or d..

When a. is equal to h, this means that the i argument
of p ranges over the Herbrand universe. Otherwise, it
means that the i argument is a list of variables which
ranges over di In the following, the domains di are finite
and explicit sefs of values (i.e constants).

Definition 2: Let dl,....dn the domains appearing in the
domain declarations of a logic program PR and different
from the Herbrand universe. We note D(PR) the set { d
ld #0 and d € 2% (1 < i < n)}). We call it the domain
set of the logic program. The domain set of a logic
program contains all domains we possibly need during the
computations.

The resuling language is a firstorder language with
aggregate variables (6). This means that the domains must be
seen as unary relations and an aggregate variable as a variable
which ranges over this unary relation. In the following, we
refer aggregate variables as d-variables (domain variables), we
note X a variable x ranging over d and we ue a € d to
denote d(a) where a is a constant. Also, we use 3p and VP to
denote the existential and universal dosures of P. Two rules
are added to the usual first-order validity rules. We assume an
interpretation 1 and a variable assignment A. A(x/y) is A with
x assigned to y and |d| is the unary relation d defines in
. The tems are consfructed as usual except that variables
can now be usual variables and d-variables.

1. If the formula hes the form 3x9F, then the truth
value of the formula is true if there exists de|d|’
such that F has truth value true wrt 1 and
A(x [d); otherwise its truth value is false.

2. If the formula has the form wx9F, then the truth
value of the formula is true if for all aefq)’ we
heve that F hes truth value true wrt | and
A(x [d); otherwise its truth value is false.

The unification algorithm must be extended to take the
domains into account. Informally, a d-variable and a constant
can only been unified if the constant is in the domain of the
d-variable. Also, when unifying a variable and a d-variable,
the variable is bound to the d-variable. Finally, two d-
variables can only be unified if the intersection of their

domains is not empty, in which case they are bound Lo a new
variable whose domain is Lhis intersection.

2.2. Properties of the domain concept.
We now defline formally the algorithm end study b
properties. We flrsl need some notiona.

Definitlon 3 Wa say that the range of t 51 snciuded on o
domain 4, moted [t| € d, If L i» & constant € d or & d-

varisble x4 such that d1 C d.

Definition 4: Ap d-substitution @ is w finite set of the
form {vl’!tl"""n‘“n}' where

- sach v ia either a variable or & d-varlable.
. "i in & term distinet from vy

[~

C ¥ pemn¥y, ATE sll distinel.

o if v, o a dovariable v¥, i € a1

Definition 5: We say that two d-substitutions & and A
ogree on & set ¥V of variables and d-variables, denoted
=AWV itizf = zX for each x € V where = denotes the
syntactic egquality.

Definition & B is & d.instance of A in V, denotad A <
B, it 8 = & o AV] for some d-substitution 4. In the
foliowing, we use A5 instead of § o A,

Definition ¥T: A d-subatilution ¢ is an d-unifier of seme
non-empty and finite subset S:{tl....,tn} where ‘i [T

literal or & term ilf fe=.=t o we slio sy thao

unifies 5. UNI{S} in the aet of all d-unlfiers of 8. & b
called a most general dunificr or d mgu of § iff for each # €
UN1{(8), @ < o|vars{S}] implies ¢ < B|vara(S)] where
vare{5) ia the set of all variable or d-variable symbol In

5.

In the following, we use substitution and mgu instead of d.
aubstitution and d-mgu. We npow present the unification
algorithm. In this algorithm, S denotes & finlie sot of
predicates or terms, ¢ the empty substitution and the
disagreement set is defined an usual {for inatance [10]).

UNIFICATION ALGORITHM.

1. Put k= 0 and oa=¢

A] Sd‘k is & singleton, then siop; arh is the substituijon
relurned by the algorithm. Otherwise, find the
disagreement set of D of Sak‘

3. If there exist v and t in DI such that v in & varisble

that does nrol occur in L, then pul dh_rl=trh{\f}t].
increment k and go 1o 2.
4.) there exist v7 and u constant ¢ in D, such that ¢

¢ d, then pui vh+]—at{vd;‘:}, increment k and go to 2.

a1 d2

5. M there exisi v and w in Dh wich that dl O 42

then put LI 1=ﬂh{vdlfwd2], increment k and go to 2.

dl a2

6. If there exist v and w In Dk such that 43 = d1

n D2 £ @ then put ch+1=vk{\rdlhds.wnflds} where

lda is & new variable ranging over d3, increment k and
g0 to 2.
7. Otherwise, slop; 5 is nol unifiable.

Clearly, thin algorithm Lerminaies because S5 contains only

van Hentenryck 3

4

fintely many variables and each application of steps 3.6
decreases by ane the number of variables. We now prove that
the unification algorithm does indeed find a thgu of a unifiable
set of tems or predicates. It is a generalisation of the usual
unification theorem (see for instance (10)).

Theorem S: (Unification theorem).

Let S a finite set of terms or predicates. If 8 is unifiable,
then the unification algorithm terminates and gives an
mgu for S. If S is not unifiable, then the unification
algorithm terminates and reports this fact.

Proof We hawe already noted that the algorithm always
terminates. It suffices to show that if S is unifiable, then
the algorithm finds an mgu. In fact, if S is not unifiable,
then the algorithm cannot terminate at step 2 and, since
It does terminate, it must termminate at step 7. Thus it
reports the fact that S is not unifiable.

Assume then that S is unifiable and let 9 be any unifier
for S. We pove fist that, for k20, if o b the

substitution given at the kth iteration of the algorithm,
then there exists a substituton ¢4, such that

B = o), Ivami{s)}

Suppose first that k=@. Then wt can put 10--8. since
= ¢#. Next, suppose for some k26, there exists L such

that 8= e 7, [vers(S})]. U Se is a singleton, then the

algorithm temminates at step 2. Henoe we can confine
attention to the case when LLA is not a singleton. We

want to show that the algorithm will produce a further
substitution #, ., and that there exists a substitution

Tgq1 Swh that @ = Op 1 Tusq Vars@S)l. Since Se is
not a singleton, the algorithm will determine the
disagreement set B, of Sff. and go to Step 3. Since
0 =0 1, fvar{8)] and 6 unifies S, it follows that ("
unifies B,. Thub,iust contain either a variable or a
d-variab)e.

Suppose first that Dy contains a variable v and let t
another tem of . Then v cannot occur In t because
¥1, = ¢7,- We can supose that {vf1} is indeed the
substitution chosen at step 3. Thus i1 = O dv). We

now d e,y = By iy s a binding for
v, then

T = 'l"f"l'k} Y T+l

T = {"/"h} Y e

W= Uil v

1 = {¥/1f7,,, (by definition of composition)
If 7, does not have a binding for v, than Na1 = T
each element of D, is a variable and 4, = {v/i}qy, -
Thus & = o Tylvans(8)) = O v/ dry ylven(s) =
Oy +17h 43 (VaN(S)) , as required.
Now, if Dy docs not contain a variable, it contains a d-

variable. The steps 4 and 5 can be handed in the same
way as the step 3.

ARCHITECTURES AND LANGUAGES

We now consider step 6. Lt \rl‘" and v?dz be the two
d-variables in Dl and we suppose that the substitution

chosen In this step b {vldlflds.viuhda} where sda s a

new variable. We fimt note that v1°° and v!dz have
bindings in 7. Also, since [vi¥'y |€ a1, 1%)€ a2
and vldl‘;. = \rzn‘]'k. we bave that lvldl‘rhle d3 and

|ﬂ“1k$e d3. 11 follows ihat [l‘s}v!dlql} s a d-

substitution. We now defiee § = 7, U {sdafvldl'h}.

We have that
1. 293 = 1915 = 293
L

;. f=o *Jivars(S)] since s does not occur in ¢, and S.
We finaly define 1*+l=5\{vldllvldl‘.\m“}v!dzﬁ}. I
follows that

6 = 1 af1592 0202 G
= [vldlhda‘.ﬂ“f:dsﬁ U Teay

6= (W aBy By) oy,

6= gl edd g8y,
Thu, § = o8 pantsl] = o, 1PN BBy
(var{S)] = €)1 Tuqy [varsiS).

Now we can complete the proof. If S is unifiable, then we
have shown that the algorithm must terminate at step 2
and, if It terminates at the kth iteration, then # =

o, 9 Ivars(S)|. Since ac is a unifier of S, this equality
shows that it is Indeed an mgu for S. ¢

We refer SLD-esoluion with this extended unification
algorithm as SLDD-resolution. The notions of SLDD-refutation
and SLDD-answer substitutions are defined by analogy to the
SID case. The reader can verify easiy that the mgu and
lifting lemmas as well as theorems 7.1 and 84 in |10] hold for
SLDD-resolution. Thus, SLDD-resolution is both sound and
complete for definite dauses. This result comesponds to the
one of [6] which has shown that resoluion is sound and
complete when extended for handling d-varablee Also, the
same result can be proved if we switch to a many-sorted logic
since the domain set augmented by the herbrand universe and
the empty set can be organised as a meet-semilattice [18]. The
domain concept Is a extension for consistency
techniques to be applied but it not in it-self as interesting as
other extensions like, for instance, LOGIN [1]. Before
presenting the inference rules, we define the constraints we
considered.

Definition 9s Let p be a n-ary predicate symbol, p Is a
conttraint iff for any ground terity..ut, her
plty.nt,} has a successful refutation or p(tye.mty) hes
only finitely failed derivations.

S. Forward checking in
ming.

Forward checking is often considered as one of the most
efficient procedures for solving CSPs. Intuitively, a constraint
can be used in forward checking as soon as at most one
variable occurs In it. In this case, the set of possble values
for the variable Is reduced to the set of values which satisfy
the constraint. Thus, a program based on forward checking
gves a value to a variable, uses all constraints which contains

L)

logic program-

at moat one variable, chooses a value for e next variable,
uses the constraint! and to on until all variables have received
valuet. If, during the search, a constraint cannot be satisfied
(it reduces the set of possible values for a variable to the
empty set), the seach procedure gives another value to the
previously assigned variable. This section defines the FCIR
and its we for a general control mechanism, forward
declarations, and for the implementation of some built-in
predicates. They enable programs previously based on a ST
or "generate & ftest" seach to use a forward checking
strategy.

3.1. The inference rule.

Definitlon 1 A literal ptxl.....lu} tn the resolvent I

Jorward checkabls Il p In & constrainl and all lis arguments
are ground but one which is a d-variable. This d-varlable
Is called tbe forward-variable.

Definitlon 11) The forward checking Infersence rule
{FCIR).

Lt G' be the goal '+~ Al....,A
be & logle program. G

I'l!-I'P‘Am-H""’AI‘ and PR

41 is derlved from G1 using mgu

ﬂl +1 via PR if the [ollowing conditions hold

1. P I1s forward checkable snd x" s the forward-

variabla,
2. dnew = {s € d | PR = P{x/a)} snd dnew £ {}.
3.6,,u
o {x3/¢) if dnew = {e}.
. {xd;‘sd"“’} where 197 4 0 mew variable
otherwinse,

4. G, | i the goal ‘°_IA1""""m-I‘An+l"“"‘h)gi+l"

Since a ground instance of a constraint either suocoseds or
finitely fails, the set dnew in point 3 of the definiton can be
computed easily (for instance by using SLDD-resolution) . The
PCIR can be seen as a general mechanism for enforcing node-
consistency [11].

The FCIR provides a theoretical foundation (1) for a general
control mechanism, forward declarations, that can be used
whatever the kind of constraints to be satisfied and (2) for
the implementation of some built-in constraints.

Forward declarations [17] provide a general method for using

forward checking inside logic programming. A forward
declaration for a predicate symbol p of arity n is an
expression of the following form.

forward p(‘l"""n] where a, ln either g either &.

The main interests of a efficient computation rule wrt the
forward declarations are for expressiveness and efficiency.
Constraints can be stated before the generators and the
interpreter/compiler is responsble to select them at an
appropriate computation step. Thus, forward declarations will
act as preconditions to the selection of a predicate and can be
selected as soon as possble for reducing the search space.
This Infroduces a 'dolo drteen’ computation as, for instance, In
the constraint language of (15 and a generdised fom of
forward checking.

Example i Consider the problem of colouring a map in
four colors. A logic program for solving this problem will
include a constraint different(X,Y) which holds if X and Y are
different colors. It can be defined as a finte set of assertions
of the form

differsnt{celori,cclorl) ~

differant{colorl,colord) ~

different{coloz! colord) —~
where colorl, color, colord and colord are ths constania for
the posslble colors. Alse, the forward declaratlon ‘forward
different{d.d)’ specifies we want & forward checking use of thi
predicsts. Now, |If the resolvent coniains a [iters

'diﬂtunl.(colerl.xd}' with d = {colorl,...colord]}, the FCIR will

return & binding {xd,fsdl} where d1 = d \ {colozl}. Thi
prunes the search space Io a ‘'a priorl' way by reducing the

sot of pomsible valuss which can be amigned to xd.

The FCIR provides also a theoretical foundation for the
implementation of built-in constraints which are the primitives
of the logic language (eg arithmetic constraints). In usual
logic languages, these constraints can only be used for testing
vaues and thus only reduce the seach spece in an "a
posteriori way". However, the FCIR can be specidlised for
these constraints which now can not only test values but can
aso prune the search space when only one d-variable is left
uninstantiated. Consider a non-equality constraint between
integers {ke u # y which holds If x and y are different
integers). In usual logic languages, the non-equality predicate
is implemented by mean of the "negation as failure" rule and
thus can only be selected when both arguments are ground.
By redefining this constraint as specialisation of the FCIR, the
same pruning as the above different predicate is achieved but
In a more efficient way.

3.2. Properties of the FCIR.

We now prove the soundness and completeness of the FCIR.
The first two lemmas allow us to "remove” a value from the
domain of a d-variable if this value does not satisfy a
constraint.

L 181 Let F & conjunclion of predicates conlaining

This declaration, which s unique for a particular predicate
symbol, specifies that a iliteral pll].....ll.u] in the rasolveni can

be selected only when all ita arguments corresponding te a ‘g’
in the declaration are ground and when it is elther ground or
forward checkable. When it In forward checkable, the FCIR
mwust be umsed to resolve It; octherwise, normal decivation Is
applied.

Forward declaratons are best combined with a specia-
purpose computation rule.

Definition 13 A computation rule is efficient wrt the
forward declarations, if it selects only a predicate
submitted to forward declaraton when it is ground or
forward checkable and if, whenever the resolvent contains
literals submitted to a forward declaration which are
either forward-checkable or ground, it selects one of them.

AypeniXy 85 varlables. Lot PR w» logic program and Mpr
Then ”=Mpr 3F) — (PR |= 3F).
Proof: Let M be a model of PR. We show that 3F b
true in M. T M is & model, we can define & Herbrand
model Mh of PR us follows

its minimal maodel.

= {p[l.lr...tﬂ]]p[tv....tn} is Included In the
Herbrand Lane and is true in M}

Bince E=Mpr3F, then 6t §s true o sll Herbrand models
and Ith JF. It {ollows that there exist terin "l"""n in
the Herbrand umiverse auch that (=) Flagftnx ft).
By Jdefinitlen of Mh and aince F{xlfl].....xnhn} in 8
conjunctlon of ground predicates, F{x,/t;...x /t]} b true
in M. Thue, 3F b irue in M. ¥

A similar construct has been used in [19].

van Hentenryck 5

Lemma 14: Let PR be & Jogic program, d and daew be
pon-empty domains such that 4 = {n!....,a } and dnew =

d\(ll}| let P, P,....P_ be positive literals such that P

4 and {xd,xl.....nn} are the set

of free variables occurring in P, Pl""'Pn' We note G the

contains a fres varlable x

™It Py ALAP and F the wif 35%32,..32 (P A Q). Then

PR |f3,..32 _P(s*/a,} implies F= oo F{z%/29")
Proofi Since PR b & sat of deflnite clauses, it admits a

minimal medel, noled Mpr, which ks the Intersection of sl
models of PR Since ws know that PR

|f=3=l...3:BP{s‘,i’al}. It follows that

o PR |£3z,..3z (P{z%/a,} 7 @{s%/e,)
* lrgpr 3sy..32, (Ps%/a,} A @18, }) Demma 12)
agprFla%/a))
Hence, the folloewing are aquivalent.
* PR .|= F
- 1=Mpr F
Flad/a) v.v F{:d)‘ap}

1] I=Mpr

* I=npr Fise,} o . or = Mpe r{s‘;.p}
. |=Mer{s‘j’n2] or ... of |=MwF{=‘fn’})

1= s Pt /83) v.ov Flsfa))
- |=Mpr F{xdfx
s PR |= F{%/:%"°°} (by lemma 13) ¥

dnew}

MNote thai ihia lemma is no longer trus i PR i an arbitrary
set of clauses,

Lemms 15t {{~3{QAPYIAVP) = ([~3Q)AVF).
Theorem 16: Socundness of the FCIR.

Consider PR be a logic program, Gi a goal '~ -

AI,....A P.A 4\" where P is & forward checkable

[R5 Ml

MHteral and xd in the forward variable. We assume that 4
= {al,.... a, b bm} and dnew = {bl,.... bm} both

belng pot empty. We alse nssume that {xd.xl..,..xl} in the

set of all {ree variables of G;. We note Q w

Al A A Am-l AA A AL and resiste G, as

m-llA i

“3:‘311...321(0 AP We prove that Gi= L G,
Proof;

From polnt 3 of the definltion of the FCIR, we know

1. PR |¢ P{;a;.l} A PRIFP{)

2. PR |= v;‘"‘wp{xdfgd““'}_
Then, by (1] snd successive spplications of lemma 13,
ﬂB:“:Isl...EI:’IQ A F) is equivalent in PH to

~3a¥ %3 32 (Q{2%) A PLad100)),
and thus by {2} and lemma 14, it is equivaleni 1o

L]
3935 . 35 (P A QU4 IV Avadn e ppd p ine)

6 ARCHITECTURES AND LANGUAGES

. --3:""5:1...33'0{:‘} :d“'"}
e Qb
* G,V

We now tun to the completeness of the FCIR. We first
define an SLDFC-resolution as a proof procedure which uses
the FCIR for forward checkable predicates and SLDD-
resolution otherwise. We also spesk about SLDFC-refutation
and SLDFC-aniwer substitution.

Theorem 17: Completeness of the FCIR. Let PR »
logle program anmd G & gosl. If there exists & SLDD-
refutation of PRU{G]} with a SLDD-answer substitution §,
theh there exist a SLDFC.refutation of PRU{G} with »
SLDFC-anewer substitution ¢ such that o < §.

Proof We prove it by induction on the length of the
SLDD-refutation.

Suppose 1 = 1 and G is forward-checkable. Then, let x be
the forward checkable variable and O the substitution
resulting from the application of the FCIR. Then, given
any SlDD-answer substitution O, by definition of the
FCIR, there exists a SLDFC-refutation with SLDFC-answer
substitution O such that a < #§.

Suppose the resuit holds for 1 < | and we show that it
holds for | = i+1. Let G = ‘A A..AA _AF. Suppose P

is forward chechuble, x is the forward variable and {xfl.q}
is the substitution resulting from the applicaiion of ihe
FCIR. Consider a SLDD-refutation of PRU{G} with
SLDD-answer substitution & and suppose # have a binding
for x. Let & be {xlhl"“‘xn""n'xh}' Since, by definltion

of the FCIR, |t| € d, # can be restated ns & = §*4"
where §” = {xhd} and " = {xlfll,...,)tn/l“.n.dft}. 1t follows

that 0 = Sjvar{G)] and thus F can be viewed a5 a
restriction of 6 to the wvarlables of G. Ao,

.PRU{-—(AIJ\...AA“/\P]J} has a SLDD-refutation {the same

u:_-l.he__onc which reiurns # except for the unifiers and the
initia] goal) of the same length with SLDD-anawer
subatitution £. Now, we can construct a SLDD-refulation
of PRU{~-({4,A..AA)8} by removing the steps comcerning

the refutation of P&) with SLDD-answer substitution ¢. By
the Iifting lemma, PRU{{A‘J\A..AARIJ'} has & SLDD-

refutation with SLDT}-anawer substitution ¢ such that ¢
< #". By induction hypothesis, there exint a SLDFC-
refutation of PRu{. (4 A..AA)8} with SLDFC.anawer

substitution " such that o™ < . 1L follows that

ber < &y < 68 = BlvariG)]

Thus, it exist s SLDFC-refutation of PRU{GC} with s
SLDFC-answer substitulion ¢ which is a resiriction of
#0" 1o the varisbles of G such that ¢ < #. ©

4. Lookahead in logic programming.

There exists other CTs which use constraints even when
several variables appear in them. Typical examples are
lookahead [5] and the arc and path-consistency algorithms
[11,13,19]. For instance, gven a constraint "C{x,¥}*, a
lookahead use of it consists in eliminating from the domain of
u all the values which are not consistent with any value of
the domain of y and vice-versa for y. The reduction of the
search space is done earlier than in forward checking but its
computation tost is higher. Also, the constraint Cix,y) is not

necessay solved by this treatment and mutt be reconsidered
later on. The LAIR and tookahead dedarations are introduced in
logic programming in order to use lookahead whatever the
kind of constraints used in the program. Therefore, programs
previously based on a ST or "generate & test" search now use
Walts filtering-like algorithm or lookahead. This is especially
important in areas like vision and qualitative reasoning (8|.

4.1. The inference pule.

Definition 18: A literal pt"l"“"’u] in the tesclvent is

lovkahead checkable T p In & consiraint and there exists al
least ane L which j» & domain-variable snd ench of the

other arguments is either ground or & domain-variable.
The domain-variables in Lyt are called the lookchead

variabies.

Definltion 19: The lcokahead inference rule (LAIR).
Let Gl be the goal "~ Al,....d\ P'Am+l""‘Ak. and PR

be & logic program.

m-1"

Gi+l ia derived from Gi uting mzu ’m via PR if the
following conditions hold

I. P is lookahead checkable and XgyX, aTE the
lookahand varlables whose domains are dxi,...,.dxn.
2. For each xjd"", ey

s dif = { vy € dxj | 3 ¥, € dxt,..., 3 LY €
dxj-1, 3 Y41 € duj+l,.., 3 L € dxn such
that PR |= PH with § = O /¥ pex fy M

and dzj # {}.
b. l.j &

e & new variable of domain dej if drj =
{e‘....,el} P> 1

o the constant e If dxj = {e}.

3. aHl = {xlhl' ""xn/‘n)

4. GH-! Is the goal

* e Ml“"‘am-I'Am+l'“"AI:wI+i‘ W oAt most
one ¢, is & d-variable,

. e [Al,....Am_].P.Am+1.....Ak]3i+]' otherwiss.

The LAIR can be seen as a general mechanism for enforcing
a k-consistency between the k lookahead variables. The LAIR
reduces the search space in 'a priori way* and earlier than a
forward checking use of the constraint. However, it takes also
more computation time to produce this reduction. Note also,
mathvmnCIR only one variable ooccurs in P, the LAIR reduces to

e .

The LAIR is the theoretical foundation for a control
mechanism called lookahead declarations. A lookahead
declaration for a predicate symbol p of arty n is an
expression of the following form.

lookahead pla;..a } where a. is either g either d.

This declaration, which is unique for a particular predicate
symbol, specifies that a | it p(t;.t) N the resolvent can

be selected only when all its arguments comresponding to a 'g'
in the declaration are ground and when it is either ground or
lookahead checkable. When it is lookahead checkable, the
LAIR must be used to resolve it; otherwise, normal derivation
is applied.

The computation rule is even more important for the LAIR
than for the FCIR. We first define a efficient computation
rule wrt lookahead declarations.

Definition 20: A computation rule is efficient wrt the
lookahead declarations, if a |itp(nl.....lu] n the
resolvent submitted to a lookahead declaration is only
selected if either it is lookahead checkable or all its
arguments are ground.

A efficient computation rule wrt lookahead declarations gives
UB few infomations about when to select a lookahead
constraint. It is clear that selecing it too eardy can induce
some unproductive work (no new informations are inferred)
and that a late selection reduces the pruning of the search
space. It is not difficult to define efficient computation rules
which select only lookahead constraints which are likely to
produce new informations. The definition of the LAIR should
not be seen as suggesting a particular implementation. Actual
implementations should be based, for instance, on
generalisation* of AC-3 [II) or AC4 |12).

Example: Consider a vision problem in a three-faced vertex
world. 4 = {><,+,} is the set of possble labels for the
vertex. Constraints in the problem are given by the "so-called”
fork, L, T and amow junctions. For instance, the fork junction
can be defined as follows.

fork[+,4,+) +

fork(-,-,-) ~

fork(>,-,>) ~
Ao, s lookahead declaration 'lvokahead fork{d.d.d)' can be
specilied. I the resolvent containg s liieral

'lork{xld,!l?d.de]'. an application of the LAIR returnse the

substitution {x1d,’sldl,x'zd;nzdz.xad,fnsd‘} whare d1 =
{>+:} and d2 = {+,}

Finally, the LAIR can be specialised for some constraints (e.g
an inequality constraint between two integers). This will
achieve the pruning defined by the LAIR in a very efficient
way.

4.2. Properties of the LAIR.

Theorem 21: Soundness of the LAIR.

The proof of this theorem is a simple generalisation of the
soundness proof of the FCIR.

There is no equivalent for the LAIR to theorem 16. Thus, a
proof procedure using the LAIR for lookahead checkable
predicates and SLDD-resolution otherwise will not be complete.
The reason is that the LAIR is used only to remowe
inconsistent values and not for making choices. A sufficient
condition to ensure completeness is to provide generators of
values for the variables occuring in predicates submitted to
lookahead declarations. This result wes expected as the LAIR
can be seen as a general mechanism for enforcing a k-
conttistency between the k lookahead variables and it is well-
known that enforcing a k-consistency throughout a network of
constraints is not generaly sufficent for solving arbitrary
problems.

5. Partial lookahead in logic program-
ming.

This section provides a theoretical basis for building-in some
constraints in such a way that there are nether a
specialisation of the FCIR or a specialisation of the LAIR. It
is motivated by the existence of some constraints for which,
on one hand, forward checking is not appropriate (the
reduction of the seach space ocours too late in the
computation) and lookahead use is too costly (in computation
time) while, on the other hand, it is possble to use this
constraint for reducing drastically the search space with a
small amount of computation. Examples of such constraints

van Hentenryck 7

are linear equation! and inequations on natural numbers which
can be handled by a reasoning about variation intervals |9).
For instance, given

R+E+1=10+T

R € {0,1}

E. T € {0,3,3,4,56,759)}
wacen infer T =0 and E€ {89) since 1 € R + E +) £
11 and 10 < 10 + T <19 which implies 10 + T £ 1} and R
+ E + 1 > 10. Such kind of reascning i very Ipteresting
since it reduces drastically the search space while inducing
amost no overhead. Since it can happen that not all the
inconsistent values are removed, they are a special cae of the
PLAIR. These consfraints have been applied successfully in
aeas ranging from crypt-arithmetic to integer linear
programming. We now define an inference rule we call the
partial lookahead inference rule which is of no use per se but
provides a theoretical basis for building in some particular
dass of constraints. The LAIR can be seen as a particular
cae of It. It consists in replacing the point 3 and S in the
LAIR definition by the following two points.

1. For ench xj. let

s 21 Y € dx) | 3 ¥y € dx1, .y Iy, €
dle 3 Y4 € dxj+1l, .., 3 y € dxn wuch
that PR |= P with & = {xy/yys e Sy 1}
snd dsj £ {}.

b. dsj C dx).

2 Gi"'l is ' (*l‘...gAm_l|p|Am+l,...'At}aI+ln

The set dZ is not defined in this inference rule and is

of each particular constraint. What we have defined
Is a theoretical framework for justifying certain kinds of
specialisation. The soundness of the PLAIR can easily be
proved from the soundness of LAIR.

6. Conclusion.

CTs are a powerful paradigm for solving CSPs. While being

the basis for some successful problem-solvers, this paradigm
has not been taken into account during the design of
programming languages. However, there exists a inherent
Interest to build a declarative language based on this paradigm
as it inceases both flexibility for stating and solving the
problem.

This paper has presented a theoretical framework for
integrating CTs inside logic programming. Several new
inference rules have been defined and their formal properties
have been proved. Also, the interest of some dasses of
computation rules wrt the expressieness and the efficiency
have been stressed in this context.

This makes logic programming not only a good language for
slating CSPs but also an efficient tool for solving them as
confimed by our first experiments.

Acknowledgements.

1 gracefully helpful discussions conceming
this research with M. Dincbas, H. Gallaire and H. Simonis. In
addition, L. Vieille provided a careful criticism on a first
version of this paper.

8 ARCHITECTURES AND LANGUAGES

References

. Alt-kacl, H. and Nasr, R. "LOGIN: A Logic Programming
Language with built-in Inheritance". Joumal of Logc
Programming 5, 3 (October 1986), 185-215.

3. Colmerauer, A., Kanoui, H. and Van Caneghem, M
"Prolog, beses theonques et ments actuals.”. T.SJ.

developpe
(Tedhriques at Sdences /mormatiques). 2, 4 (1083), 271-311.

3. Flkes, RE. A heurstic progam for soving * stated a$
non deterministic procedures.. Ph.D. Th., Cam put. scl. dept.
Camegie-Mellon Univ. Pittsburgh, PA, 1968.

4. Freuder, EC. "Synthesising constraint expressions".
Commuricaions of the ACM 21 (November 1978), 058-066.

5. Haralick, RM. and Elliot, G.L. "Increasing tree search
efficiency for constraint satisfaction problems.". Artificial
inteligence 14 (1080), 263-313.

6. lIrani, KB. and Shin, D.G. A Many-Sorted Resolution
baged on an Extension of a First-Order language. 1JCA1-85,
Los Angeles, August, 1085.

7. Jaffar, J. and Lasses, J-L. Constraint Logic Programming.
Proceedings of the 14th ACM POPL Symposium, Munich,
Wast Germany, January, 1087.

8. Kulpers, B.J. "Qualitative simulation”.
29, 3 (September 1086), 280-338.

9. Lauriere, J-L. "A Language and a Program for Stating .
and Solving Combinatorial Problems". Artificial iheUgenee 10, 1
(1078), 20-127.

10. Lloyd, J. W.. Foundaions of Logc Programming. Springer-
Verlag, Berlin Heidelberg New York Tokyo, 1084.

11. Mackworth, AK. . "Consistency in network of relations".
Avrtificial Inteligence 8, 1 (1077), 90-116.

12. Mohr, R and Henderson, T.C. "Arc and Path
Consistency Revisited". Atrtificial Inteligence 28 (1086), 225-233.

13. Montanari, U. "Networks of constraints : fundamental
properties and applications to picture processing”. Information
Saence 7, 2 (1074), 05132

14. Stallman, RM. and Sussman, G.J. "Forward reasoning
and depency-directed backtracking In a system for computer-
aided circuit analysis". Artificial IneUgenee 0 (1077), 135106.

15. Sussman, GJ. and Steele, G.L. "CONSTRAINTS-A
Language for Expressing Almost-Hierarchical Descriptions”.
Artificial IneUgeree 14, 1 (1080), 1-30.

16. Van Hentenryck, P. and Dincbas, M. Domains in Logic
Programming. Proceedings of the National Conference on
Artificial Inteligence (AAA1-86), Philadelphia, USA, August,
1986, pp. 750-765.

17. Van Hentenryck, P. and Dincbas, M. Forward Checking
in Logic Programming. Fourth International Conference on
Logic Programming, Melboume, Australia, May, 1087.

Avrtificial IneUgenee

18. Walther, C. Unification in many-sorted theories.

Proceedings of the 6 European Conference on Atrtificial
Intelligence, Pisa (ltalia), September, 1084.

19. Walts, D. Generating semantic descriptions from
drawings of soenes with shadows. A1271, MIT, Massachusetts,
November, 1072.

