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ABSTRACT

One of the major goals of basic studies in psychiatry is to find etiological mechanisms or

biomarkers of mental disorders. A standard research strategy to pursue this goal is to

compare observations of potential factors from patients with those from healthy controls.

Classifications of individuals into patient and control groups are generally based on a

diagnostic system, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM)

or the International Classification of Diseases (ICD). Several flaws in these conventional

diagnostic-based approaches have been recognized. The flaws are primarily due to the

complexity in the relation between the pathogenetic factors (causes) and disorders: The

current diagnostic categories may not reflect the underlying etiological mechanisms. To

overcome this difficulty, the National Institute of Mental Health initiated a novel research

strategy called Research Domain Criteria (RDoC), which encourages studies to focus on the

neurobiological mechanisms and core aspects of behavior rather than to rely on traditional

diagnostic categories. However, how RDoC can improve research in psychiatry remains a

matter of debate. In this article, we propose a theoretical framework for evaluating

psychiatric research strategies, including the conventional diagnostic category-based

approaches and the RDoC approach. The proposed framework is based on the statistical

modeling of the processes of how the disorder arises from pathogenetic factors. This

framework provides the statistical power to quantify how likely relevant pathogenetic factors

are to be detected under various research strategies. On the basis of the proposed framework,

we can discuss which approach performs better in different types of situations. We present

several theoretical and numerical results that highlight the advantages and disadvantages of

the strategies. We also demonstrate how a computational model is incorporated into the

proposed framework as a generative model of behavioral observations. This demonstration

highlights how the computational models contribute to designing psychiatric studies.

INTRODUCTION

One of the major challenges of basic research in psychiatry is to find etiological mechanisms or

biomarkers that can be helpful for investigating the treatment or predicting the prognosis of a

mental disorder. A standard research strategy for achieving this goal is as follows. Researchers

first classify the individuals into a clinical population (patient group) and a nonclinical
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population (control group). This classification is generally based on the current diagnostic sys-

tems, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM; American Psy-

chiatric Association, 2013) or the International Classification of Diseases (ICD; World Health

Organization, 1993). Then, researchers attempt to determine the candidate pathogenetic fac-

tors (e.g., genetic variants, neural activity, or environmental and social milieu) that signifi-

cantly differ between groups. The current diagnostic systems are based on multiple criteria of

symptoms or signs. For example, for an individual to be classified into major depressive disor-

der (MDD), he or she should have several (at least five) symptoms, such as depressed mood,

anhedonia, fatigue, change in appetite, feelings of worthlessness, and suicidal thoughts.

Several methodological flaws have been recognized in the conventional category-based

approaches (e.g., Cuthbert & Kozak, 2013; Insel et al., 2010; Owen, 2014). One notable flaw is

the heterogeneity in the population assigned with the same diagnostic label. The heterogeneity

of the corresponding biological and social factors in a population may reduce the likelihood

of detecting such factors. This heterogeneity can arise from two sources. The first is the hetero-

geneity of symptoms in a population with the same diagnostic labels. For example, patients

diagnosed with schizophrenia can have only positive symptoms or also have negative symp-

toms. The second source of the heterogeneity is diversity in the cause of similar symptoms,

namely, multiple etiological causes can lead to similar observable outcomes, a property termed

equifinality (Flagel et al., 2016). Another flaw is that similar symptoms that may share similar

pathogenetic factors are included in different categories of mental disorders, which may lead

to comorbidity between disorders with different diagnostic labels. In addition, a single com-

mon genetic risk factor can be associated with multiple mental disorders (e.g., Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013). This property is termed multifinality;

that is, a single cause can have divergent outcomes (Flagel et al., 2016). These problems can

be summarized as the lack of a strict one-to-one mapping from pathogenetic factors to the

current category of the mental disorders, and there appear to be many-to-one or one-to-many

mappings between them. These issues can obscure the understanding of the etiological causes

of mental disorders.

To overcome the aforementioned problems, the U.S. National Institute of Mental Health

(NIMH) established the Research Domain Criteria (RDoC; Cuthbert, 2014; Insel, 2014; Insel

et al., 2010). RDoC recommend that researchers seek the relationships among the behavioral

measurements (included as “behavior” and “self-reports” in the unit of analysis) and biological

and social factors (included as “genes,” “molecules,” “cells,” “circuits,” and “physiology” in

the unit of analysis), focusing on a specific research domain and construct. The research do-

mains (e.g., “positive valence systems”) contain constructs (e.g., “reward learning”). The RDoC

approach is not supposed to use the conventional categories of the diagnostic systems. The

analysis method is dimensional rather than categorical, which means that the RDoC approach

deals with behavioral observations (including those regarded as “symptoms” in a traditional

view) with continuous measures without categorical boundaries between healthy individ-

uals and patients. In the RDoC approach, independent variables might be specified from any

level of the unit of analysis, with dependent variables chosen from one or more other levels

of analysis. If we assume linear relationships between measures in the units of analysis, a

typical statistical approach is regression or correlation analysis. The relationship, however, is

not necessarily linear and can be nonlinear (e.g., inverted U-shaped curve; Cuthbert, 2014).

Although we only focus on linear correlations in this article, our framework can be extended

to a nonlinear case.

In addition, the RDoC approach does not treat symptoms as a syndrome (a group of signs

and symptoms that occur together) as the category-based approach does. The RDoC approach
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encourages the investigation to focus on minimum behavioral elements and underlying mech-

anisms. In this regard, the spirit of RDoC includes that of cognitive neuropsychiatry, which is

the field that attempts to understand symptoms in mental disorders as aberrations of cognitive

functions (David & Halligan, 2000; Halligan & David, 2001).

However, how RDoC can improve research in psychiatry remains a matter of debate.

Although there are methodological flaws in the current diagnostic systems (DSM/ICD), as dis-

cussed above, the DSM/ICD systems also provide advantages. One advantage is that the relia-

bility of the diagnosis can be increased by using multiple criteria. This may lead to an increase

in the likelihood that a researcher finds the pathogenetic factors of the mental disorders, in con-

trast to the RDoC approach, which decomposes symptoms into distinct dimensions. Therefore

it is important to clarify under which conditions the RDoC approach outperforms the conven-

tional category-based approaches. For this purpose, mathematical and computational models

may provide a useful framework for quantitatively addressing such questions.

In this study, we propose a theoretical framework for examining how effective research

strategies, including those encouraged by RDoC, are in basic research in psychiatry. The pro-

posed framework evaluates how effectively each method finds a target pathogenetic factor

given some situational settings. In this framework, we first construct a formal, hypothetical

generative model of symptoms and their causes. From the generative model, synthesized sam-

ples are generated. Then, we evaluate how likely several research methodologies are to detect

the true cause of a symptom or pathological behavior from observed data based on standard

statistical methods, including t test, correlation analyses, and regression analyses. We partic-

ularly focus on the statistical power, which is the probability that the statistical hypothesis test

detects the effect of the pathogenetic factor if the effect actually exists. Note that the proposed

framework is not intended to be used as a data analysis tool; rather, the framework predicts

how a research strategy performs given a hypothetical generating process of a mental disorder.

In addition, note that the evaluation of the research strategy based on the proposed framework

depends on a generative model, which represents the hypothesis about the mechanisms of

disorders. We discuss this issue later.

One issue that our framework addresses is whether a mental disorder is best investi-

gated using categorical or dimensional approaches (First, 2016). The conventional diagnostic

approach (with DSM or ICD) is by definition categorical: It determines whether an in-

dividual has a disorder using diagnostic criteria. Although diagnostic categories are useful

for communication between clinicians, between researchers, and between a clinician and a

patient, dimensional approaches have been recognized to have advantages. One advantage

that is closely related to the present work regards statistical power. It has been reported that

categorical approaches in which the originally continuous data are converted into categori-

cal variables by splitting the sample at some point degrade the statistical power (Altman &

Royston, 2006, Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 2002). This issue has

also been discussed in the context of psychiatry (Kamphuis & Noordhof, 2009; Kraemer, 2007;

Kraemer, Noda, & O‘Hara, 2004). Our proposed framework is related to these previous works,

but it has an important difference. Our method focuses on the way in which the subjects are

sampled, not only on how the given samples are analyzed. We assume that the category-based

approach samples the subjects such that both the patient group and the control group have

sufficient numbers of subjects with predefined diagnostic criteria. In contrast, the dimensional

approach is assumed to sample subjects randomly from a population. Thus the samples to be

analyzed are different between these two approaches. We discuss how the difference in the

sampling methods affects the statistical power.

The remainder of this article is organized as follows. First, we formally explain the pro-

posed framework. Next, we provide some simulation results that highlight the properties of
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the proposed framework. Finally, we discuss the implications of the results and the limitations

of the proposed framework.

PROPOSED FRAMEWORK

Here we formally describe the proposed framework. We assume that there are N potential

pathogenetic factors that can be the causes or predictors of behavioral observations (includ-

ing symptoms). The jth pathogenetic factor is denoted as xj. All the pathogenetic factors are

summarized as a column vector: X = [x1, ..., xN ]
T, where ·T denotes the transpose. Here the

pathogenetic factors may include specific alleles or brain connectivity, which can be predictors

of risk. The factors may also include the dysregulation of a neuromodulator or neurotransmit-

ter, which can be a target of medical treatment, as well as environmental and social miliex.

The measurement of the value of variable X is often contaminated by noise that may be caused

by estimation error or measurement error. The measured or estimated value of xj is denoted as

x̂j. In reality, the pathogenetic factors themselves have interactions and constitute a causal net-

work. However, the first step of basic research may identify components of the network simply

by comparing each factor between the patient group and the control group. The following

cases intend to model this initial phase of psychiatric research.

We consider M behavioral observations, denoted as Y = [y1, ..., yM]T. Here the behav-

ioral observations include self-reported symptoms and signs that are used in DSM/ICD-based

classifications and the scores of some behavioral tests. In RDoC, such behavioral observations

are included in the units of analysis “behavior” or “self-reports.”

Mapping From Pathogenetic Factors to Behavioral Observations

The next step is to define the generative model, which represents how the pathogenetic factors

are translated to behavioral observations. We assume that the pathogenetic factors X are

translated to behavioral observations Y via some function f with some added noise ǫ. In

vector form, this can be written as

Y = f (X) + ǫ, (1)

where ǫ is an M-dimensional column vector and f (·) represents a map from an N-dimensional

column vector to an M-dimensional column vector. The noise may include the individual

difference in resilience, any other personality trait that affects how easily the individual expe-

riences the disorder, or the errors in the subjective report and behavioral observation.

In the following simulations and analyses (Cases 1–5), we consider a simple model with

linear mapping and Gaussian noise, called the linear Gaussian model. The mathematical

formulation of this model is presented in Katahira and Yamashita (2017, Appendix A). In the

linear Gaussian model, each pathogenetic factor is assumed to be independently drawn from a

Gaussian (normal) distribution. Each behavioral observation yi is the linear combination of X

and the Gaussian noise ǫi. From this assumption, each yi also obeys the Gaussian distribution,

which means that behavioral observations are continuous variables. Many inclusion criteria

in the current diagnostic systems (i.e., DSM and ICD) take on discrete values (e.g., existence

or absence of a symptom). For such cases, yi may be interpreted as a behavioral phenotype,

based on which a psychiatrist or a patient makes decisions regarding each symptom rather than

the symptom itself. In Case 6, rather than a linear Gaussian model, a reinforcement learning

model is used as a generative model for behavioral observations related to psychosis.

Category-Based Approach

In the proposed framework, the category-based approach first classifies the individuals into the

patient group or the control group, depending on the values of their behavioral observation Y .
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For example, if yi for all i exceeds the cutoff point hi (yi ≥ hi ∀i), the individual is classified

into the patient group (in Figure 1, the individuals indicated with red dots belong to the patient

group). Except for Case 2, wherewe examine the effect of themargin between the patient group

and control group, individuals who have any behavioral observation that does not satisfy the

criterion (yi < hi ∃i) are classified into the control group (the individuals indicated with gray

dots in Figure 1). Note that a subject is classified into a patient group only when all of the M

behavioral observations exceed the threshold. In this article, we do not consider a polythetic

criteria approach, in which the diagnosis is assigned when a patient exhibits a designated

Figure 1. Schematic of the proposed framework. Each dot represents an individual. Here the
samples were generated by the linear Gaussian model. First, the value of pathogenetic factors x1 and
x2 are generated from a Gaussian distribution independently. Then, these factors are transformed
into behavioral observations y1 and y2 with linear mapping Y = WX and adding some noise ǫ. The
individuals are classified as patients if both behavioral observations y1 and y2 have larger values
than h1 and h2, respectively (here we used the common cutoff point h1 = h2 = 0.5). The red dots
represent the individuals of the patient group, and the gray dots represent the individuals of the
control group. The conditional distributions of x1 and x2 given groups are plotted in the top left
panel (gray lines for the control group and red lines for the patient group). Note that the conditional
distributions no longer obey the Gaussian distribution. These pathogenetic factors are assumed
to be observed with adding some estimation error δ, which also obeys a Gaussian distribution.
The diagnostic category-based approach attempts to find a pathogenetic factor xj whose observed
value x̂j differs between the patient group and control group (bottom left panel). The dimensional
approach attempts to find a factor xj that correlates with a behavioral measure yi without using a
category label (bottom right panel).
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number from a list of symptoms provided for each disorder category (e.g., five of nine for

MDD). Such a polythetic criteria approach can be incorporated in the proposed framework.

For simplicity, however, we leave them as a future work. In the following simulations, we set

hi = h = 0.5 ∀i unless otherwise stated.

The category-based approach seeks the pathogenetic factors that significantly differ be-

tween the two groups. The estimated or measured value of xj, which is denoted by x̂j, is

assumed to contain a measurement error. This error is modeled by adding a Gaussian variable

δj to the true value xj (see Katahira & Yamashita, 2017, Appendix A). Note that we formally

and explicitly model the measurement or estimation error rather than incorporate a specific

estimation process.

In the simulation, the samples of subjects (n1 subjects from the control group and n2

subjects from the patient group, resulting in a total of n1 + n2 = n subjects) are randomly

selected from both groups, and their observed pathogenetic factors x̂ are subjected to an un-

paired t test with the equal variance assumption. The null hypothesis is that the population

means of x̂j for the patient group and that for the control group are the same. If the significance

of the difference is detected at the significance level α (α = 0.01 for Cases 1-5 and α = 0.05 for

Case 6), then the factor xj is considered to be a pathogenetic factor relevant to the mental dis-

order. When multiple candidate factors are submitted to statistical tests, a correction should be

made for multiple comparisons (e.g., Bonferroni correction) to suppress family-wise error rates.

However, for simplicity, we do not perform such a correction in this article. Incorporating a

correction is straightforward and does not influence the quantitative results reported herein.

When more than one pathogenetic factor can be observed at the same time, one may

use logistic regression, in which the objective variable is diagnostic category (0 control, 1

patient) and the regressors (predictors) are the observed values of potential pathogenetic factors

x̂. For this case, the hypothesis test can be performed for each pathogenetic factor with the

null hypothesis for which the regression coefficient for the factor is zero. In all the cases that

we considered, however, we found that logistic regression provided a lower statistical power

compared with an independent t test while showing a similar tendency with a t test. Thus we

do not present the logistic regression results.

Dimensional (RDoC) Approach

The dimensional approach addresses the behavioral observations, including symptoms and

pathogenetic factors, without categorical labels. This approach utilizes the natural variation

of the population. RDoC basically encourages the dimensional approach. In the proposed

framework, the dimensional approach is simulated by sampling n subjects from the popula-

tion irrespective of the behavioral phenotype (symptom). A statistical hypothesis test is then

conducted. When there is one measured potential pathogenetic factor, one simple approach

tests the null hypothesis that the correlation coefficient between yi and x̂j is zero. When the

correlation is significant (the null hypothesis is rejected), then the jth pathogenetic factor xj is

deemed to be a factor that is relevant to the behavioral observation yi.

Whenmore than one potential pathogenetic factor can be observed at the same time, one

may use multiple linear regression, in which the objective variable is each behavioral measure

yj and the regressors are potential pathogenetic factors x̂. For this case, the hypothesis test

can be performed for each pathogenetic factor with the null hypothesis that the regression

coefficient for the factor is zero. We will report the multiple linear regression results in Case 1

and Case 5. In reality, all of the true causes of the generative process of mental disorders that

may be included in the generative model are rarely observed in a single study: Researchers can

observe only part of them. Thus, in general, the statistical model in the analysis of the observed
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data would be simpler than the generative model: the number of pathogenetic factors that can

be included in the analysis is less than the number of those included in the generative model.

Case 5 also considers this situation.

RDoC is more than just a dimensional approach to mental disorders. It emphasizes the

consideration of constructs of the mental disorders based on neurobiological grounding. In

addition, RDoC encourages investigations that target multiple units of analysis. The targeted

units of analysis can all be biological ones (e.g., “cells” and “circuits”). However, to relate the

biological mechanisms to mental disorders, it at least requires knowledge that relates some

biological factors to some behavioral observations as a starting point. Additionally, RDoC is in-

tended to create a novel discrete category of mental disorder after sufficient research progress.

Thus the dimensional approach in the present framework models are intended to capture only

one aspect of the RDoC approach, particularly at the beginning phase.

RESULTS

Below, we provide the results of simulations based on our framework. The first simple cases

(Cases 1-1 and 1-2) demonstrate what types of suggestions the proposed framework can pro-

vide. The next four cases (Cases 2–5) highlight the basic theoretical properties of the proposed

models. Readers not interested in the theoretical details may wish to skip these four cases. The

model settings in Cases 1–5 are intended to illustrate the common structures of basic research

in psychiatry rather than to model a specific disorder. In the final case (Case 6), we present a

concrete example of considering a specific disorder (i.e., psychosis) by incorporating a com-

putational model into the proposed framework.

In general, the statistical power monotonically increases as the sample size (the number

of subjects) increases (e.g., see Figure 4C). The order of statistical powers of the methods that

we consider in this article does not depend on the sample size. However, the extreme value

of sample size makes the differences smaller. Thus we selected the total sample size as n = 40

(except for Case 2) such that the differences among methods manifest.

Case 1: Multiple Disorder Categories

The first two cases (Cases 1-1 and 1-2) consider the basic problem in psychiatric research. Con-

sider that there are two disorder categories, which we call Disorder A and Disorder B (e.g.,

depression and psychosis, respectively). For simplicity, we assume that each disorder has two

symptoms and that one of these symptoms is shared by both disorders (Figures 2A and 2C).

Behavioral observation y2 represents the common symptom between the two disorders (e.g.,

anhedonia), and y1 and y3 are specific symptoms for each disorder. Assume that the goal of

the researcher is to detect the pathogenetic factor of the common symptom y2. An individ-

ual is assumed to be diagnosed with Disorder A if y1 ≥ h and y2 ≥ h; here h is the common

cutoff point, and we set h = 0.5. He or she is also diagnosed with Disorder B if y2 ≥ h and

y3 ≥ h. Comorbidity (a single individual can be diagnosed with both Disorder A and Disorder

B) is allowed. We calculated the statistical powers of five methods (Methods 1–5) for detecting

the target factor. The category-based approaches (Methods 1–3) compare the observed patho-

genetic factor (x̂j) between the control group and the patient group. Methods 1–3 differed in

terms of the inclusion criteria for the two groups. We also consider the category-based analysis

using only a single criterion, which compares individuals with y2 ≥ h and those with y2 < h

(Method 1).

Here we consider two possible etiological mechanisms for this situation. Case 1-1 as-

sumes that there are two distinct pathogenetic factors for each disorder category (Figure 2A).

In this case, the common symptom arises from different pathogenetic factors, denoted as x1

Computational Psychiatry 190



Evaluating Psychiatric Research Strategies Katahira, Yamashita

Figure 2. Case 1-1 and Case 1-2: Two representative cases with two disorder categories.
A) Schematic of the generative model of Case 1-1. This case assumes that there are two distinct
pathogenetic factors corresponding to each disorder category. The common symptom y2 has differ-
ent pathogenetic factors x1 and x2. B) The statistical power of several approaches for detecting the
target factor x1 (Case 1-1). Method 1, Method 2, and Method 3 employ category-based approaches,
which sample individuals based on some criteria and perform the statistical test of the difference in
the means (t test). Method 1 uses the single behavioral observation y2. This samples 20 individuals
with y2 < h for the control group and 20 individuals with y2 ≥ h for the patient group. Method 2
uses the double criteria. The subjects in the patient group satisfy y1 ≥ h and y2 ≥ h. The subjects in
the control group do not satisfy either of these criteria. Method 3 uses both disorder criteria, and in-
dividuals who fall into Disorder A but not Disorder B are sampled for the patient group. The control
group has neither Disorder A nor Disorder B. Method 4 and Method 5 are dimensional approaches
that sample the individuals randomly and perform a correlation analysis (Method 4) or a multiple
regression (Method 5). The error bars indicating the 95% confidence intervals of the power estimate
are plotted, although they are almost invisible because their length is very short. C) Schematic of the
generative model of Case 1-2. This case assumes that there are three distinct pathogenetic factors,
where each affects a single symptom. The common symptom y2 has a single pathogenetic factor
x2. D) The statistical powers of several approaches for detecting the target factor x2 (Case 1-2). The
convention is identical with Case 1-1.

and x2. Figure 2B shows the statistical powers of several analyses for detecting the target factor

x1. In this case, the category-based analysis using only a single criterion (Method 1) did not

yield a good result: Half of the trials failed to obtain the significant difference in x̂1 (at the crit-

ical level, α = 0.01; top bar of Figure 2B).1 In contrast, the category-based approaches using

two symptoms as criteria (Methods 2 and 3) provided a better result. In Method 2, the patient

1 The Monte Carlo simulation to obtain the power was performed 100,000 times for each condition. We
confirmed that the confidence intervals of the power estimate were less than 0.01 (the confidence intervals are
drawn on the figure, although they are almost invisible). Thus the estimated powers are highly reliable.

Computational Psychiatry 191



Evaluating Psychiatric Research Strategies Katahira, Yamashita

group consists of individuals who satisfy the criteria of Disorder A, whereas the control group

consists of the other individuals. Method 2 yielded a significant difference with a probability

of greater than 60% (Figure 2B).

The reason for the difference between the statistical powers of Method 1 and Method 2

can be understood by checking the distributions of samples for each group in each method

(Figure 3A). Method 2 includes only individuals with y1 ≥ h and y2 ≥ h, which are indicated

with orange-filled circles in Figures 3A and 3B. In contrast, Method 1 also includes the indi-

viduals with y2 ≥ 1 but y1 < h, who are marked with blue triangles. As shown in Figure 3A,

the individuals marked with blue triangles tend to have smaller values of x1 compared to the

individuals marked with orange filled circles. Thus, Method 2, which employs only the individ-

uals indicated with orange filled circles, improves the discriminability compared to Method 1,

which includes the individuals marked with blue triangles (dashed lines in Figure 3A). The

discriminability is measured using Cohen’s d, which is defined as the difference between two

means divided by the pooled standard deviation (see Katahira & Yamashita, 2017, Appendix B).

Method 1 yielded d = 1.06 for x1 (d = 0.71 for x̂1), whereas Method 2 yielded d = 1.61 for

x1 (d = 1.02 for x̂1), which is a remarkable improvement in discriminability. This result is

Figure 3. Sample scatterplots that explain how category-based approaches perform differently
in Case 1-1 (A–B) and Case 1-2 (C–D). The orange-filled circles represent the individuals classified
as patient by both Method 1, which uses a single symptom, and Method 2, which uses double
symptoms. The blue triangles represent the individuals classified as patient only by Method 1 but
not by Method 2. Thus these individuals belong to the control group in Method 2. The individuals
marked with gray dots belong to the control group in both methods. The marginal distributions of
x1 and x2 for each group for each method (dashed line: Method 1; solid line: Method 2) are drawn
in (A) and (C).

Computational Psychiatry 192



Evaluating Psychiatric Research Strategies Katahira, Yamashita

directly related to the statistical power: The larger d is, the greater the power is (note that an

actual statistical test is performed for the measured/estimated value x̂1 rather than for the true

value x1).

Method 3 is a diagnostic category-based approach that utilizes the information about

both Disorder A and Disorder B: Individuals in the patient group are with Disorder A but with-

out Disorder B, whereas individuals in the control group are without both disorders. Method

3 provided slightly higher power than Method 2 (Figure 2B). This result is because the patients

with Disorder A but without Disorder B have more specificity of pathogenetic factor x1 com-

pared to those with both disorders. If the individuals have Disorder B, then they tend to have a

higher value of x2. Having a larger common symptom value y2 may be due to this higher value

of x2 and not due to x1. Excluding such individuals and choosing patients only with Disorder

A helps to illuminate the effect of x1.

Dimensional approaches, which test the correlation between x̂1 and y2 (Method 4),

yielded greater power than Method 1 but less power than the two category-based approaches

(Methods 2 and 3). Including both pathogenetic factors in the explanatory variables of mul-

tiple regression increased the power (Method 5), but it did not exceed the power of the two

category-based approaches.

Case 1-2, which assumes a one-to-one mapping from the pathogenetic factors to the

symptoms, produced quantitatively different results. In this case, there is one distinct patho-

genetic factor for each symptom. The use of the disorder categories with multiple criteria

did not increase the power. In contrast, the analyses using double criteria (Methods 2 and 3)

yielded lower power compared to the category-based analysis using only a single criterion

(y2 ≥ h; Method 1). The reason for the deterioration in the power of the double criteria meth-

ods can also be understood by examining the distributions of samples (Figure 3C). Method

2 includes the individuals with y2 ≥ h but y1 < h, who are marked with blue triangles, in

the control group, whereas Method 1 classified these individuals into the patient group. In this

case, the individuals indicated with blue triangles also have higher values of x2, which are com-

parable to those of individuals indicated with orange dots. Thus including the subjects marked

with blue triangles pulls the distribution of x2 of the control group (black solid line in Figure 3B)

toward that of the patient group (red solid line), which reduces the discriminability. Method 1

yielded d = 1.40 for x2 (d = 0.89 for x̂2), whereas Method 2 yielded d = 0.99 for x2 (d = 0.66

for x̂2). Moreover, in this case, dimensional approaches, which test the correlation between x̂2

and y2 (Method 4), yielded greater power than the category-based approaches. Here including

other variables in the multiple regression did not increase the power (Method 5).

The implications of the results are as follows. The diagnostic categories based on the

syndrome can be useful for detecting the pathogenetic factor if the factor is related to those

symptoms (as in Case 1-1). However, if there is no such one-to-many mapping, using multiple

criteria is not useful: Using a single observation is more efficient for detecting the underly-

ing factor (as in Case 1-2). Among the methods based on a single behavioral observation,

the dimensional (correlation) approach provides greater statistical power (compare Method 1

and Method 4 in Figures 2B and 2D). These properties are systematically investigated in the

following analyses (Cases 2 and 3).

Case 2: Category-Based Versus Dimensional Approaches

In Case 2, we compared the statistical powers of the category-based approach and the di-

mensional (correlation) approach for the simplest case in which there is a single pathogenetic

factor (M = 1) and a single behavioral observation (N = 1). This case is intended to examine

the result of Case 1, which shows that the dimensional (correlation) approach provides higher
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statistical power when one behavioral observation is used. The model structure is illustrated in

Figure 4A. Here we also examined the effect of the margin (denoted as m) between the patient

group and control group. Suppose that the individuals with y less than h−m are classified into

the control group and that the individuals with y larger than h are classified into the patient

group (Figure 4B). The individuals with y falling into the margin are not included in the study.

Actual samples in psychiatry studies may include such a margin: Researchers may exclude

individuals who are not classified into the clinical group but present behavioral phenotypes

that are close to the cutoff point.

Figure 4C shows the power with which the pathogenetic factor x1 is detected as a func-

tion of the total number of individuals. For this case, the statistical powers of both methods can

be analytically obtained (see Katahira & Yamashita, 2017, Appendix B; Figure 4C, solid lines

for the category-based approach and chain line for the dimensional approach). The symbols

(squares for the category-based approach and triangles for the dimensional approach)

Figure 4. Comparison of the statistical powers of the category-based and dimensional ap-
proaches in Case 2. A) The schematic of the generative model in Case 2. This case includes a
single pathogenetic factor (N = 1) and a single behavioral observation (M = 1). B) Illustration of
the category-based approach with a margin. C) The statistical power (with the significance level
α = 0.01) of both methods as a function of the total number of subjects, with a variable margin m
for the category-based approach. The lines represent the results obtained from analytical calcula-
tions (see Katahira & Yamashita, 2017, Appendix B). The symbols represent the results of the Monte
Carlo simulations (see Appendix A). D) The effect of cutoff point h. The results of the standard di-
mensional approach, which does not use the cutoff point, are indicated by the horizontal chain line.
The results of the dimensional (correlation) approach using the sample obtained from the category-
based method (given h) are plotted by the dashed lines with inverted triangles. E) The distribution
of the estimated pathogenetic factor x̂1 for three h cases (with m = 0). The sample means of each
group are indicated by the vertical dashed lines. d = Cohen’s d.
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represent the numerical results obtained from 100,000 runs of the Monte Carlo simulations.

The analytical results (lines) perfectly agree with those obtained from the simulations (sym-

bols), thereby validating the analytical calculations. The results indicate that if there is no

margin (m = 0), then the dimensional approach (using correlation coefficients) yields a higher

power compared to the category-based approach (using the unpaired t test). This result is be-

cause the correlation coefficients can utilize full information on the magnitude of x1, whereas

the category-based approach ignores the information of the distribution within the group. If

there is amargin, then the category-based approach can outperform the dimensional approach.

With a larger margin, the category-based approach can distinguish clusters in the distribution

x1 while suppressing the impact of the noise added to x1. However, note that with a larger

margin, it becomes more difficult to find samples for the control group.

In the preceding results, the cutoff point was fixed to h = 0.5. Next, we varied the cut-

off point h to examine how it affects the power. The results are shown in Figure 4D. As h

moved from zero, the power increased. The model yields minimum power when the distribu-

tion of the control group and patient group is symmetric (which occurs when h − m/2 = 0).

Figure 4E shows an example of the histogram of x̂1. As the cutoff point h became large, the

difference between the means of the two groups increased (from 1.12 to 1.27). Consequently,

as h moved away from the mean of the population, the effect size (Cohen’s d) and statistical

power increased.

Note that the samples to be analyzed are different between the two approaches. The

dimensional approaches randomly draw samples from the population without any inclusion

criteria. In Case 2, if the same sample (which is sampled by the category-based approach) was

used for both of the approaches, then the dimensional (correlation) approach always provided

superior power to the category-based approaches (Figure 4D, dashed lines with filled triangles).

Case 3: The Effect of the Number of Diagnostic Criteria in the Category-Based Approach

As shown in Case 1-1, if more than one symptom has a common pathogenetic factor, then

including such symptoms in a single disorder category for the category-based approach im-

proves the power for detecting the factor compared to the approach based on a single symp-

tom. In Case 3, we systematically examined the effect of using multiple criteria that share

a common pathogenetic factor. Figure 5A shows the structure of the generative model. We

assumed that there are two pathogenetic factors (N = 2): x1 is a factor relevant to the mental

disorder and is of interest, and x2 is irrelevant to the mental disorder (Figure 5A). We included

the irrelevant factor to examine the false-positive rate, which is the probability that the anal-

ysis mistakenly identifies the irrelevant factor as significant. The weight of x1 for behavioral

observation yj (j = 1, ..., M) is set to 1 and that of x2 is set to zero.

The standard deviation of the noise σǫ and the number of behavioral observations M

were varied in the simulations. Recall that for a subject to be classified into a patient group,

all of the M observations need to exceed the threshold. Examples of the histograms of x̂1 are

presented in Figure 5B. The larger the number of criteria M is, the greater the difference in the

means of the two groups is. Consequently, the larger M is, the greater the discriminability and

thus the statistical powers are (Figure 5B and Figure 5C, left). The power can exceed that of

the dimensional approach in which a single behavioral observation is used. These effects are

especially prominent when the noise level is high (σǫ = 2.0).

Here the samples submitted to analysis are again different between the category-based

approach and the dimensional approach. If the same category-based samples are submitted

in both of the approaches, then the dimensional (correlation) approach provides higher power

than the category-based approach, particularly when M is small (Figure 5C, filled triangles).
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Figure 5. The effect of the number of diagnostic criteria MMM in the category-based approach
(Case 3). A) The schematic of the generative model in Case 3. Here the model includes two patho-
genetic factors (N = 2; x2 is irrelevant) and M behavioral observations. B) The distribution of the
estimated pathogenetic factor x̂1 for three M cases, with σǫ = 1.0. The sample means of each group
are indicated by the vertical dashed lines. d = Cohen’s d. C) The statistical power (with significance
level α = 0.01) of both methods as a function of M, with varying standard deviation of the noise
σǫ. The horizontal lines at M = 1 represent the analytical results (see Katahira & Yamashita, 2017,
Appendix B). The symbols and the lines connecting the symbols for M for the category-based
approach represent the results of Monte Carlo simulations. Dashed lines with triangles show the
power of the dimensional (correlation) approach that used the same sample as the corresponding
category-based method.

However, as M increases, the power of the category-based approach can even exceed the

power of the dimensional approach. The reason for this result is as follows. The power of the

correlation approach is influenced by the noise in the chosen behavioral observation yi. The cat-

egorical analysis uses ys only for classifying the individuals. The categorical analyses are also

affected by the noise in each yi, but the effect is reduced when the number of ys increases.
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For the irrelevant factor x2, the fraction of the factor deemed significant was kept to the

preset significance level of 0.01 (Figure 5C, right). This result confirms that the false-positive

rate for the irrelevant factor is maintained, as we intended.

Case 4: The Effect of a Mixture of Pathogenetic Factors

We now discuss the case in which a single behavioral observation yi is affected by more than

one pathogenetic factor xj. It is conceivable that a larger mixture degree leads to difficulty in

detecting each pathogenetic factor. For simplicity, we consider the case with two pathogenetic

factors and two behavioral observations (N = 2 and M = 2).

The transformation matrix is parametrized using a parameter c that represents the mix-

ture degree (Figure 6A; also see Eq. (13) in Katahira & Yamashita, 2017, Appendix A). When

c = 1, x1 and x2 equally contribute to both behavioral observations y1 and y2 (complete mix-

ture). When c = 0, x1 and x2 independently contribute to y1 and y2, respectively (no mixture).

When c < 0, x1 and x2 have opposite effects on the behavioral measures (one has a positive

impact, whereas the other has a negative impact). The effect of c on the transformation from

pathogenetic factors to behavioral observations is illustrated in Figure 6B.

We consider two cases in the category-based approach: One uses only a single be-

havioral observation y1 as a criterion, and the other uses both behavioral observations. The

resulting statistical powers are plotted in Figure 6C. As the mixture degree c departs from zero

in either the positive or negative direction, the power for the methods using a single crite-

rion (y1 ≥ h; dimensional approach and category-based approach) decreases. This result is

because the other pathogenetic factor functions as noise in terms of detecting the target xj

when c has a nonzero value. In contrast, the power of the category-based approach using two

criteria monotonically increases as c increases, even when c is negative. The reason for this

behavior is as follows. This approach equally uses y1 and y2; c does not largely change the

total information extracted from y1 and y2. The increase in the power for positive c is due to the

noise reduction effect reported in Case 3. In contrast, when c is negative, individuals whose

x1 is higher can easily be classified into the control group because of the inhibition from other

x2. Distributing subjects with higher values of x1 into two groups makes the discrimination

difficult, thus reducing the statistical power.

The additional pathogenetic factor x2 is added to y1 when c is nonzero; thus x2 is detected

as a relevant pathogenetic factor even when the single criterion y1 is used (Figure 6C, right

panel).

Case 5: The Effect of the Number of Pathogenetic Factors

The effect of the mixture reported in Case 4 was not drastic because there were only two

pathogenetic factors (N = 2). As the next simulation shows, when N is large, the effect is large:

It is more difficult to detect the individual pathogenetic factor xj. We varied N and the mixture

degree c while keeping the number of behavioral criteria fixed to M = 1 (Figure 7A). We

consider the statistical power for detecting the first pathogenetic factor x1, which is assumed

to be the target of analysis.

The results are presented in Figure 7B. Overall, the influences of the number of patho-

genetic factors N and the mixture degree c are similar for both the category-based and di-

mensional approaches. When the mixture degree is maximum (c = 1), the statistical power

drastically decreases as the number of pathogenetic factors increases. This decrease is modest

when the mixture degree is small (e.g., c = 0.3). Of course, when there is no mixture (c = 0),

the statistical power does not depend on the number of pathogenetic factors (data not shown).

Thus far, we have considered the situation in which researchers can measure only a

single pathogenetic factor (out of many factors) in one study. Thus we have focused on the
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Figure 6. The effect of a mixture of pathogenetic factors (Case 4). A) The schematic of the
generative model in Case 4. Here the model includes two pathogenetic factors (N = 2) and two
behavioral observations (M = 2). The parameter c indicates the mixture degree. B) The scatter-
plot of Y for two c cases. C) The statistical power (with critical value α = 0.01) of both methods
as a function of the mixture degree c. The dash-dotted lines for the dimensional approach and the
dashed lines for the category-based approach with a single criterion (y1 ≥ h) denote the results from
the analytical calculations (see Katahira & Yamashita, 2017, Appendix B). Symbols and solid lines
for the category-based approach using two criteria represent the results of the Monte Carlo
simulations.

simple correlation, or equivalently, simple linear regression analysis. However, large-scale

psychiatry studies, such as genome-wide analysis, may measure multiple factors (alleles) in

a single study (e.g., Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013).

For such situations, multiple regression analysis, which includes more than one candidate

pathogenetic factor as regressors, may be used. The filled triangles in Figure 7B show the results
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Figure 7. The effect of the number of pathogenetic factors NNN. A) The schematic of the genera-
tive model in Case 5. The model includes N pathogenetic factors and one behavioral observation
(M = 1). B) The statistical power for detecting the first pathogenetic factor x1 (with critical value
α = .01) as a function of N. The dash-dotted lines (for the category-based approach with a single
criterion and the dimensional approach with a single regressor) represent the results obtained from
analytical calculations. The symbols represent the results of the Monte Carlo simulations. The re-
sults of multiple regression using all N variables are marked with filled triangles. Only for the case
with N = 10, the results of the intermediate situation between simple regression and full multiple
regression, which uses a part of the observation of 10 factors (including the observed target factor,
x̂1), are shown in the left small panel.

of an ideal analysis in which all N pathogenetic factors are used as regressors. Here the power

for detecting x1 is computed based on the null hypothesis that the regression coefficient for x̂1

is zero. These results provided greater statistical power than the simple regression (correlation)

analysis did, which used only x̂1 as a regressor, particularly when c was large. This result

is because multiple regression can estimate the weight of x1, suppressing the influence of

other confounding factors on the behavioral observation. We also examined the intermediate

situation between single regression and full multiple regression: The case in which only L

(< N) potential pathogenetic factors (including the target factor x1) are available. The power

for the case with N = 10 is shown in the left small panel of Figure 7B. As expected, the power

monotonically increased as the number of regressors increased.

Case 6: Incorporating a Computational Model

Thus far, we have considered simple linear Gaussian models as models of generative pro-

cesses of behavioral observations. In reality, the generative processes must be more complex.

Using computational models may provide an explicit and more realistic form of the genera-

tive processes (Kurth-Nelson et al., 2016). To illustrate how a computational model can be

incorporated into our framework, we consider opponent actor-learning (OpAL), a variant of

the reinforcement learning model proposed by Collins and Frank (2014). Using this model,

Maia and Frank (2017) attempted to explain how the symptoms in schizophrenia emerge from

the aberrant activities of dopamine (DA) neurons.

The details of the model are provided in Katahira and Yamashita (2017, Appendix C). In

short, this model assumes that several symptoms, including positive and negative symptoms,

arise from two types of aberrant activity of DA neurons: (1) increased spontaneous DA tran-

sients (parametrized by pSDT), which can cause DA activity at inappropriate times, and (2)
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decreased tonic DA level (parametrized by τ). Increased spontaneous DA transients induce

the aberrant valuation of thoughts, which is assumed to be a cause of delusion. A decreased

tonic DA level induces diminished engagement with high-cost activities, which is assumed

to correspond to avolition. We synthesized a dataset through a simulation using the model.

Specifically, we varied the two parameters that characterize the DA activities and measured

behavioral observations. One is a positive symptom, namely, the existence of dominant

thought (action), which is caused by aberrant valuation, and the second is a negative symp-

tom, namely, the diminished engagement with high-cost activities. Using these data, we com-

puted the statistical power for detecting two DA parameters as pathogenetic factors for the

symptoms.

Figures 8A and 8B present an example of the formation of dominant thought through the

aberrant valuation. Because we set the actual reward to always be zero, any thought (action)

should not be reinforced in the standard reinforcement learning. However, the spontaneous

DA transients, which occur with probability pSDT(= 0.4), allow the prediction error signal

(denoted by δ) to have a nonzero value. Consequently, a randomly chosen thought (action)

can be reinforced even without an actual reward. In this simulation, from approximately the

200th time step to approximately the 500th time step, Action 10 was reinforced and frequently

selected. After approximately the 400th time step, Action 19 was reinforced and subsequently

became dominant. We consider this dominance of a few thoughts without external reinforce-

ment as an occurrence of the aberrant valuation of thoughts (i.e., a positive symptom). An

individual is assumed to experience 1,000 discrete time steps. We counted the episode with

aberrant valuation of a thought if there at least one thought (action), except for the default

action, is selected for 20% of the time steps in the later 500 time steps.

A negative symptom, a diminished engagement with high-cost activities, is examined in

the simulation as follows (for details, see Katahira & Yamashita, 2017, Appendix C). An OpAL,

as a model of an individual, is given 100 independent opportunities for taking an effortful

action. The action values for the effortful action in the model are fixed such that they can

represent a high cost of the action by assigning higher values to the NoGo value compared

to the Go value. The model can choose not to take that action. Individuals whose choice of

taking the effortful action is less than 50% are deemed as having diminished engagement with

the high-cost activity (i.e., negative symptom, avolition). The DA level exerts an influence on

the probability of taking the effortful action through balancing the weights of the Go value

and the NoGo value: A higher DA level imposes more weight on the Go value than on the

NoGo value.

Figures 8C and 8D present the relation between the DA parameters and behavioral ob-

servations (the fraction of individuals who have each “symptom” out of 1,000 individuals).

Overall, the probability of spontaneous DA transients pSDT has a direct positive influence on

the development of aberrant valuation of thoughts (dominance of a thought), whereas the tonic

DA level τ has a direct negative relation with how likely the individual is to show diminished

engagement with high-cost activities. The tonic DA level τ has an inhibitory influence on

how likely the individual is to develop a dominant thought (Figure 8C). Meanwhile, the larger

pSDT is, the less the individuals tend to show diminished engagement with high-cost activi-

ties (Figure 8D). These results correspond to the situation in which two pathogenetic factors

have opposite effects on each symptom, such as Case 4, where the degree of the mixture c

is negative. Thus, as we can predict from the results of Case 4, using both criteria in the

category-based approach provided a lower power compared to the category-based approaches

using each criterion independently (Figure 8E). The results suggest that researchers should

treat positive symptoms and negative symptoms separately to find the specific aspect of DA

dysfunctions as a pathogenetic factor of the symptoms. In addition, we can hypothesize
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Figure 8. Demonstration of using a computational model, that is, opponent actor-learning
(OpAL), as a generative model of psychosis (Case 6). A, B) An example episode of the behavior
of OpAL as a model of aberrant valuation of thoughts. The DA parameters were set at τ = 0.4 and
pSDT = 0.4. A) Chosen action (thought). Chosen ac tion for each time unit is marked with an open
circle. B) Action values. Go values (G; blue) and NoGo values (N; red) are plotted for all actions.
Although the actual reward is not given (r = 0), the action values fluctuate due to spontaneous DA
transients. C) The effects of the tonic DA level τ and the probability of spontaneous DA transients
pSDT on the fraction of subjects who have the aberrant valuation of thoughts. D) The effects of
τ and pSDT on the fraction of subjects who show diminished engagement with high-cost activi-
ties. E) The statistical powers (with the significance level α = 0.05) for detecting the spontaneous
DA transients pSDT (left panel) and the tonic DA level τ (right panel) of several approaches based
on different ways of defining “patient” according to symptoms (see Katahira & Yamashita, 2017,
Appendix C). The error bars indicate the 95% confidence interval.
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that the information about the aberrant valuation of thoughts is more effective for detecting

spontaneous DA transients as a pathogenetic factor, whereas the measurement of diminished

engagement with high-cost activities can be a better variable to be related to the tonic DA

level.

The statistical power of the approaches based on the aberrant valuation of thoughts is

relatively weak compared to that based on diminished engagement with high-cost activities.

This result occurs because the relation between the probability of DA transients pSDT and the

emergence of dominant thought are highly stochastic: Even when pSDT is very large, more than

20% of individuals do not show an aberrant valuation of thoughts (Figure 8C). In contrast,

when the tonic DA level τ is very low, almost all of the individuals suffer from diminished

engagement with high-cost activities (Figure 8D); however, this may be based on an overly

simplified assumption, and the results depend on the hypothetical population distribution of

DA parameters. Maia and Frank (2017) suggested that the aberrant spontaneous DA transients

may cause other observable effects, such as neural or behavioral effects responding to neutral

stimuli, which correlate with positive symptoms. Using other such behavioral observations

may help find that spontaneous DA transients are a cause of the symptoms. Focusing on such

behavioral observations that directly reflect the effect of the cause of mental disorders would

be one of the core proposals of RDoC.

Note that this simulation is intended only as a simple illustration. In reality, psychosis (in-

cluding schizophrenia) must be a more complex disorder that may involve several etiological

mechanisms. Nevertheless, the present demonstration illustrates the first step to incorporating

computational models into the proposed framework to evaluate a psychiatric research strategy.

DISCUSSION

In this article, we proposed a novel framework for discussing the effectiveness of research

strategies in psychiatry. We demonstrated the basic features of the framework considering

simple cases. There are many discrepancies between the assumptions of the simple cases

and the realistic situations. Before discussing the discrepancies, we discuss the implications

derived from the analyses of the model properties.

Implications

The results of the computer simulations highlight the effectiveness of dissociating a behavioral

measure from other behavioral phenotypes that reflect different pathophysiological states. If

one uses a diagnostic category whose criteria contain symptoms that can arise from different

pathogenetic factors, then the chance of finding the corresponding factor is lowered compared

with when one classifies the subjects based on a single symptom separately (as in Cases 1-2

and 3). When two factors have opposite effects on the symptoms (i.e., one factor influences

one symptom agonistically, another symptom antagonistically), the statistical power would

be weak if both symptoms were used to classify the individuals (Case 4, when the mixture

parameter c is negative). This may also be true in more realistic situations, as observed in the

reinforcement learning model of psychosis (Case 6). The RDoC approach that decomposes the

factors and measures into distinct constructs would be promising in this regard.

Meanwhile, the behavioral observations can be contaminated with noise, including er-

rors in the subjective report and individual differences in the reactivity to pathogenetic factors.

By using the behavioral observations that share common pathogenetic factors to define the

category, the category-based approach can reduce the effect of the noise. Consequently, in-

creasing the number of independent criteria can reduce the impact of such noise and make

the detection of the pathogenetic factors easier, given that the errors are mutually independent

(as observed in Cases 1-1 and 3).
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Therefore, in some cases, the conventional diagnostic category-based approach could

be more efficient in detecting a pathogenetic factor than the dimensional (RDoC) approach (as

in Case 3). Which approach is better depends on the case. The proposed model provides a

promising approach for designing an efficient research strategy to investigate a specific target.

By incorporating detailed generative models of psychiatric diseases, the researcher can deter-

mine the better research strategy, as we demonstrated in Case 6, which suggests that separating

the positive symptoms and negative symptoms is better than treating them as symptoms of a

single disorder category (e.g., psychosis).

Limitations and Possible Extensions

Nevertheless, there are several limitations of the proposed framework. The results and their

implications strongly depend on the model assumption. If invalid models are used, then the

simulation may recommend a suboptimal or even worse strategy. For example, the selection

of the population distribution of model parameters (e.g., DA parameters in Case 6, which we

arbitrarily set) might quantitatively change the results. Although the proposed method provides

a quantitative prediction, that is, statistical power, keeping the conclusion qualitative would

be better. For example, one may draw the conclusion that separating the positive symptom

and negative symptom is better for finding the pattern of aberrant DA activity, but one should

not trust the specific value of the power to determine the number of subjects to obtain statisti-

cally significant results (as an ordinary power analysis does). Seeking an appropriate model of

mental disorders itself is a challenging task and within the scope of computational psychiatry.

We have primarily considered the linear Gaussian model as a generative model. This

model assumes that the variables take continuous values and obey a Gaussian distribution.

Although this assumption makes the theoretical analysis easier, it is an obvious oversimpli-

fication. For example, consider a genetic mutation as a pathogenetic factor. The presence

or absence of an allele is represented as a categorical variable. The behavioral measure or

symptom can also be categorical (e.g., the existence or absence of a specific symptom). The

distribution of scores for some symptom ratings can be best explained using an exponential

distribution with a cutoff (Melzer, Tom, Brugha, Fryers, & Meltzer, 2002). The use of the link

function that maps variables onto the exponential function with a shift parameter may be suit-

able for such cases. Although the basic properties reported in this study may hold in various

other situations, a careful investigation would be needed, depending on the situation.

Another drastic simplification in the present model is the assumption of independence

among errors and also among pathogenetic factors. In realistic situations, there may be consid-

erable correlations among them. A second-order correlation can be modeled using amultivari-

ate Gaussian distribution, which is a simple extension of the current model. However, there

may be a higher order correlation, for example, in gene expression (Nakahara, Nishimura,

Inoue, Hori, & Amari, 2003). Such a correlation structure should be included in the model,

depending on the specific situation, particularly for discussing the impact of the relationships

between the pathogenetic factors.

Strategies in Sampling and Analysis

As we have emphasized, the category-based approach and dimensional approach differ in

how they sample the subjects. The category-based approach uses diagnostic criteria for se-

lecting the subjects (it samples the “patients”), whereas the dimensional approach is assumed

to gather subjects without prior criteria. As shown in Case 2, when the same data (those gath-

ered by the category-based approach) are used, then the dimensional (correlation) approach

tends to provide greater statistical power compared to the categorical approach (t test). This

result suggests that it might be better to use diagnostic criteria when sampling subjects and
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then perform a dimensional analysis that ignores the diagnostic label. Of course, this also

depends on the validity of the model assumption. The critical assumption related to this issue

is that the pathogenetic factors and the behavioral observations have a monotonic relation:

The greater the measured value of the pathogenetic factor is, the greater the behavioral ob-

servation is. Owing to this relation, the severe inclusion criteria for the patient group make

their pathogenetic factors easily distinguishable from those of the control group. If there is no

such simple monotonic relation, the result can change. Such a violation may occur when the

mapping from the pathogenetic factor to behavior has a nonlinear shape, such as the inverted

U-shaped function or step function, which has a critical point above which the pathogenetic

factor influences the behavior.

On the basis of the proposed framework, one can optimize the inclusion criteria (cutoff

point) of specific disorders. As shown in Case 2, the more severe the inclusion criteria of the

patient group are, the higher the statistical power is, given our assumption. However, there is

a trade-off between the power and difficulty in finding samples. Severe criteria make finding

the “patient” individuals difficult. The proposed framework can help determine the criteria

considering the trade-off for specific situations. Note that this is the issue of basic research. For

practical clinical applications, the optimal criteria would differ. A treatment can be effective

even for individuals with modest symptoms. For clinical diagnosis, the optimal boundary

should depend on the treatment response rather than be based solely on the statistical power.

Relation to Computational Psychiatry

We demonstrate how to incorporate the computational model in the proposed framework by

using a reinforcement learning model with dopamine dysfunction. Candidate mathematical

or computational models can span Marr’s three levels: computational, algorithmic, and im-

plementational (Kurth-Nelson et al., 2016). To discuss how the dysfunction at the cellular or

molecular level influences the symptom, models at a detailed biophysical level (e.g., biophysi-

cal neural circuit models;Wang & Krystal, 2014) would be suitable, whereas to discuss how the

circuit-level dysfunction affects disorders, models at the intermediate level (e.g., connectionist

models; Yamashita & Tani, 2012) would be useful. For the computational level or algorithm

level, more abstract models, such as the Bayesian cognitive models (e.g., Lee & Wagenmaker,

2014) or reinforcement learning models, are possible candidates. In principle, the proposed

framework can incorporate mathematical models at any level, as long as they can represent

the rule of translating the pathogenetic factor to behavioral phenotypes. However, the models

at a low abstraction level tend to have a large number of variables; thus generating samples

for Monte Carlo simulations has considerable computational cost. For such cases, some ap-

proximation techniques based on the small number of simulated results would be helpful. For

example, the relationship between DA parameters and the fraction of symptoms in Figures 8C

and 8D can be approximated using a sigmoid function that is parametrized by these DA pa-

rameters. Some model reduction techniques developed in computational neuroscience, such

as the mean-field method, would also be helpful (Deco, Jirsa, Robinson, Breakspear, & Friston,

2008; Wang & Krystal, 2014).

Currently the most successful applications of computational approaches to psychiatry

may be those based on fitting models to behavior and/or neural activities. For example, model

parameters that are fit to the subject’s behavior (e.g., Ahn et al., 2014; Culbreth, Westbrook,

Daw, Botvinick, & Barch, 2016; Kunisato et al., 2012; Voon et al., 2015; Yechiam, Busemeyer,

Stout, & Bechara, 2005) or the model latent variables that are correlated with blood oxygen

level–dependent (BOLD) signals (e.g., Gradin et al., 2011; Murray et al., 2008) have been

compared between subjects with a mental disorder and healthy controls. The parameters

and variables of computational models are often associated with neuromodulators (Dayan
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& Huys, 2008; Doya, 2008; Stephan, Iglesias, Heinzle, & Diaconescu, 2015; Yu & Dayan,

2005). If there are indeed such associations, then the estimate of a model parameter or a latent

variable can be used as an estimate of a pathogenetic factor. To discuss the effectiveness of such

model-based approaches, the model fit procedures can be simulated in our framework: The

estimation error of various model fit methods (e.g., maximum likelihoodmethod or hierarchical

Bayesian method) can be explicitly examined based on the synthesized dataset generated from

a hypothetical “true model” (as in Katahira, 2016).

Related Work

Recently, Flagel et al. (2016) proposed a novel framework for psychiatric nosology, termed the

Bayesian integrative framework. This framework includes the generative models that explicitly

represent how symptoms, signs, and diagnoses arise from putative causes through a physiolog-

ical state and “latent constructs,” which correspond to the constructs in RDoC. This framework

uses Bayesian inference to infer the posterior probability of latent variables and to evaluate the

models from an individual’s data. The procedures of the inference and model selection were

demonstrated in Friston (2016).

The Bayesian integrative framework shares a common feature with our framework: Both

frameworks use mathematical or computational models to model the generative processes of

mental disorders. However, the goals of the two frameworks differ. The Bayesian integrative

framework is designed to analyze individual data (including the diagnosis): It infers the latent

cause of the disorder of the individuals through Bayesian inference. The Bayesian integrative

framework is intended also to be used by clinicians to gather data for improving the model

and nosology. The ultimate goals are aiding the diagnosis, prognosis, prevention, and treat-

ment of mental disorders. In contrast, the scope of our framework is basic research strategies

in psychiatry rather than a clinical use. In addition, the target of modeling in our framework

is the population rather than the individual. Our framework is concerned with the sampling

method of subjects, whereas the Bayesian integrative framework does not explicitly deal with

the sampling procedure, at least currently. Thus our framework cannot provide useful informa-

tion about the cause of the disorder of an individual patient, whereas the Bayesian integrative

framework would provide such information.

The statistical methods considered in the framework also differ. The Bayesian integra-

tive framework uses the Bayesian method, as its name suggests, whereas our framework is

formulated with the classical hypothesis testing in mind, although replacing it with Bayesian

hypothesis testing is straightforward. Whereas the Bayesian approach is more flexible, the clas-

sical statistical framework is more prevalent in psychiatry studies. The relations between the

Bayesian integrative framework and our framework are complementary rather than competing.

Our framework would be useful in choosing the research strategy in standard psychiatric stud-

ies. As sufficient knowledge is accumulated, more detailed models and precise data become

available. Submitting these models and data into the Bayesian integrative framework would

help further refine the model and predict treatment outcomes for individual patients.

CONCLUSION

Psychiatry targets extremely complex processes and systems, that is, mental processes and the

brain. Many factors are involved in these processes and systems. Accordingly, there should

be various research strategies in psychiatry, as well as in neuroscience and psychology. A

framework for evaluating the research strategies is required. Discussion at the verbal descrip-

tion level is limited because the target system is very complex and may not be fully described

verbally. Thus computational and mathematical models could play important roles. Although

there is plenty of room for modifications, the present study is a first step toward such theoretical
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evaluations. Our study also provides an avenue via which computational approaches can

contribute to psychiatric research.
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