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ABSTRACT 
Many enterprises incorporate information gathered from a 
variety of data sources into an integrated input for some 
learning task. For example, aiming towards the design of an 
automated diagnostic tool for some disease, one may wish to 
integrate data gathered in many different hospitals. A major 
obstacle to such endeavors is that different data sources may 
vary considerably in the way they choose to represent related 
data. In practice, the problem is usually solved by a manual 
construction of semantic mappings and translations between 
the different sources. Recently there have been attempts to 
introduce automated algorithms based on machine learning 
tools for the construction of such translations. 

In this work we propose a theoretical framework for mak- 
ing classification predictions from a collection of different 
data sources, without  creating explicit translations between 
them. Our framework allows a precise mathematical analy- 
sis of the complexity of such tasks, and it provides a tool for 
the development and comparison of different learning algo- 
rithms. Our main objective, at this stage, is to demonstrate 
the usefulness of computational learning theory to this prac- 
tically important area and to stimulate further theoretical 
and experimental research of questions related to this frame- 
work. 

1. INTRODUCTION 
While the world has accumulated an astronomical amount 

of data, use of this data is significantly inhibited by our in- 
ability to efficiently integrate data from multiple sources. 
The strength of the XML standardization movement 1 is a 
good indicator of the significance of this problem. In ad- 
dition to motivating standardization for future data collec- 
tion, this problem has inspired investigation into methods 

The goal of the XML standardization movement is for ev- 
ery industry to have a set of standard data structures for 
exchange of information. 
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for integrating non-standardized data. Much of this work 
has focused on data integration systems, which allow access 
to multiple data sources through a single mediated schema. 
However, the problem of creating semantic mappings (i.e., 
mappings which preserve the meaning of the data) between 
the original schemas and the mediated schema remains a 
serious bottleneck. 

We address the problem of data integration for the pur- 
pose of classification prediction. In this setting, the data has 
the form of a set of attributes and a classification ('yes' or 
'no'), and one desires the ability to predict the classifications 
of new attribute combinations based on several small sets of 
training examples. We show that there are quite natural 
scenarios in which this can be done without the creation of 
explicit semantic mappings. That is, the information gath- 
ered from multiple data sources (without knowledge of the 
semantic mappings between them) can be utilized to guar- 
antee better predictions than any algorithm could have ob- 
tained by considering any one of these sources on its own 
(with explicit know|edge of its semantics). 

As an example, consider a hospital hoping to improve 
its methods for determining which patients diagnosed with 
pneumonia are at high enough risk to warrant hospitaliz~ 
tion. While standard machine learning tools allow them 
to use relevant data (patient histories for patients previ- 
ously diagnosed with pneumonia) collected by the hospital 
to make these predictions, it is known that larger sets of 
data guarantee a greater likelihood of more accurate pre- 
diction. Similar data sets from many other hospitals are 
available, and it would be ideal to augment the data set 
with data from them; however, use of these data sets is hin- 
dered by the use of different database schemas by different 
hospitals. Previously, one would have to first determine the 
different schemas and translate all the data into one uni- 
fied database; however, we offer a new alternative: in the 
sequel, we describe a technique for using the raw databases 
(without modification) to improve prediction. 

1.1 Our Model 
We model a situation in which some fixed probability dis- 

tribution generates database entries (examples) and their 
labels (classifications). A learner has access to a collection 
of databases with labeled entries, sampled i.i.d, from this 
distribution. However, each database presents these entries 
using its own representation schema. The task of the learner 
is to predict, based on these labeled examples, the labels of 
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new entries in one of the databases. While the identities 
of the data  sources and the set of potential  representation 
schemas used by the database are known to the learner, the 
learner does not know which schema corresponds to which 
database. 

1.2 R e s u l t s  

We demonstrate the utility of computat ional  learning the- 
ory to the problem of learning from disparate da ta  sources. 
We present a meta.algori thm for incorporating information 
from data  sources that  are encoded in ways unknown to 
the learner, in a way that  achieves classification prediction 
that  is provably bet ter  than what  can be achieved by algo- 
ri thms that  base their predications on any one of the da ta  
sources alone. Our main results show that,  having access to 
sufficiently many disparate sources, classification prediction 
becomes significantly more effective than learning from any 
one of the sources alone, without determining the explicit se- 
mantic mappings between them, and in particular, without 
the need to apply semantic knowledge about  the different 
schemas used by these da ta  sets. In this work, we focus on 
the information complexity of the prediction task, setting 
aside the computational  complexity aspects of this problem. 

More specifically, fix a set of potential  hypothesis (classi- 
fication) functions ~ and assume that  the semantic trans- 
lation functions, used to encode the da ta  in each of the da ta  
sets, come from some family of functions .~. For example, a 
typical such family ~ might include permutations (to allow 
for different orderings of attr ibutes),  as well as linear func- 
tions acting on individual at t r ibutes (to allow for disparity in 
the units in which at t r ibutes are measured.) Let D 1 , . . .  , Da 
be a sequence of sample set s, each consisting of entries from 
one database and the corresponding classifications of those 
entries. We propose the following meta-algorithm: 

On input of D 1 , . . .  , D=, search for some h E H 
and functions f l , . - -  , f= E .~, that  minimize the 
average of the empirical errors of h o f l  on Di. 
To predict the label on a new entry, represented 
using the scheme of some da ta  set Di,  apply the 
resulting h o ffi to this new entry. 

We provide formal tools to analyze the prediction success 
of such an algorithm. Our results provide guaranteed error 
bounds in terms of combinatorial  parameters that  depend 
on the richness of the hypothesis class and of the family of 
data  transformations, and on the  relationship between these 
two classes of functions. 

Since we do not restrict the label-generating distribution 
in any way, the results we get are relative to the best predic- 
tor within our class of hypothesis. This is in line with the 
common agnostic learning (or statistical regression) frame- 
work. 

The rest of the paper is organized as follows. We begin, in 
Section 2, by discussing our learning approach for a concrete 
example, namely the task of learning Euclidean rectangles 
for data  sets that  are distorted by unknown linear shifts. 
We prove that  in this case, our algorithmic approach al- 
lows the use of the disparate data  sources almost as if they 
were all undistorted and merged into a large unified da ta  
set. Preparing the ground for a more general analysis, we 
provide in Section 3 a brief overview of some fundamental  
concepts from computat ional  learning theory which will be 
used throughout the paper. We then go on to outline , in 
3.3, a relevant result from [1] bounding the generalization 

error of learning in the framework of multiple related tasks. 
In section 4 we prove error bounds for a general case. These 
bounds are formulated in terms of combinatorial parame- 
ters that  measure the information complexity of our learn- 
ing task. Section 5 discusses related work and, finally, we 
offer concluding remarks in section 6. 

2. LEARNING RECTANGLES FROM SHIFTED 
DATA SETS 

Let us begin by considering a concrete example. Let the 
database entries consist of points in the Euclidean space R d 
(for some fixed d), and assume that  the the classification of a 
point is determined by some axis aligned rectangle (unknown 
to the learner). Tha t  is, a point is labeled 1 if it lies within 
this rectangle, and 0 otherwise. 

Assume that  the different database schemas are obtained 
by shifts (of the points) of R d. I.e., for each database i there 
is some vector v i, and a point x = (Xl , . . .  , xd) is repre.sented 
in the i ' th  database as x + v ~ = (xl + v~ , . . .  , Xd + v~). 

We will show" that  the use of such extra  databases helps in 
learning the side lengths of the rectangle used by the labeling 
algorithm (although the algorithm is not provided with the 
shifting vectors v~).. 

Informally, the learning algorithm is as follows: For each 
database, D~, find smallest rectangle, Ri, containing all points 
in that  database labeled 1. Output  ( r l , . . .  , rd), where r j  is 
the maximal length of the j ' t h  side over all t h e / ~ ' s .  

We show tha t  with this algorithm, the learner's predic- 
tions based on n disparate da ta  sets of size m are as good 
as could be guaranteed based on a single da ta  set of size 
n (m - c), where c is a constant depending on the Euclidean 
dimension and the desired prediction accuracy. 

We now state formally the algorithm described above and 
analyze its performance. 

Algorithm: For each da ta  set Di,  and each coordinate j ,  
1 < j _< d, take 

m~,~ = max{Ix j -y~ l  : ( ( x l , . . .  Xd), 1), ((Yl . . . .  Yd), 1) e D~}, 
and take 

T h e o r e m  2.1. Let P be any probability distribution over 
R d , let R be an axis aligned rectangle in R d, and let V 1 , . . .  , v ~ 
be d dimensional vectors. Let D 1 , . . .  , Dn, be sets of labeled 
points, so that Di is generated by sampling i.i.d, via P points 
x E R a, and putting in Di the labeled point (x + v ~, R(x) )  
(where R(x )  =: 1 in x e R and 0 otherwise). 

For any e > 0 , i f  the algorithm, A ,  described above is 
applied to D1 ...... ,Dn ,  and i f  the size of each data set Di 
exceeds m,  

with probability exceeding d (2 (1 , m ,~ ) , .a  out- 
puts a vector of side lengths ~ that has error less 
than e. 

(Where the error of a rectangle r relative to P and R is the 
probability that a P-random point will be classified differently 
by r and R) .  

Note that  this generalization guarantee is as good as the 
one that  is obtained by the standard considerations [8] from 
a single training da ta  set of size n ( m  - c), where c is a 
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constant  dependent on e and the Euclidean dimension d. 
Tha t  is, for the purpose of learning the side lengths of a 
target rectangle, the distortion by unknown shifts can be 
overcome by the learning algorithm; beyond a certain "ori- 
entat ion constant" per database, each example contains as 
much information as if it had not been shifted at all! 

PROOF. Definition: Given rectangle r = [vx,vl + sl] x 
. . .  x [vd, Vd + Sd], distribution P on R ~, and 0 < e < 1, we 
define rj(e) = 

[Vl, ~/l "4- 81] X . . .  X [~)j, Vj "q- 6] X . . .  X [~d, ~d + Sd], 

where 6 is such that  P ( x  E rj(e)) = e, and r~(e) = 

[Vl, Vl -~ Sl] X . . .  X ['0] + 8ff4 - -  6 r, V j  "Jr" 8j]  X . . .  X [Ud, 'Ud "~ 8d], 

where 6' is such that  P e 6 ( e ) )  = e. 
Informally, r j  (e) and r~ (e) are simply slices of thickness 

6, 6' (in coordinate j) off of opposite sides of r such that  for 
a point (x, b) chosen according to P, x has probability e of 
lying within each of the resulting slices. 

Consider the target rectangle, r. If for some j ,  1 < j < d, 
some D~ contains (the appropriate shift of) a point from 
both r j ( ~ )  ' a and r j  (g) ,  then the error contributed by coordi- 
nate  j is less than c~. Thus, the total  probability of getting 
more than error c~ from an inaccuracy in coordinate j is at 
most (2 (1 - -~)m)n. In order for the total error to exceed 

e, there must exist a l ,  ...ad, with ~ia=l o~j > e, such that  
the error contributed by coordinate j is at least a j .  In this 
case, some o~j is such that  a j  > e/d, so there must be some 
coordinate which contributes an error of at least e/d. The 
probability of this occurring is at most d (2 (1 - ~a)m) n. [] 

Our main objective in this work is to investigate the ex- 
tent to which such performance can be obtained in more 
general situations. In particular when the labeling is nonde- 
terministic, and for arbitrary prediction functions and other 
families of data  transformations (in place of the rectangles 
and shifts). 

3. BACKGROUND 
In this section we introduce some standard concepts and 

tools of Computat ional  Learning Theory. For all this and 
more, see [2]. 

The s tandard approach to classification prediction prob- 
lems is to begin with some set H (called a hypothesis space) 
of possible classification functions, i.e. subsets of the do- 
main 2¢ (or equivalently, their characteristic functions, for 
h e ~ X h  : X --~ {0,1} 

X h ( X ) = {  0 i f x ~ h  } 
1 i f x E h  ") 

Then one goes about  selecting a good hypothesis from H 
based on available data. 

3.1 VC-Dim and Information Complexity 
For hypothesis space H over domain X, we have the fol- 

lowing definitions: 

D e f i n i t i o n  3.1. For any A C X,  define 

H a ( A ) = I { h N A  : h E H } I .  

D e f i n i t i o n  3.2. For natural number m, define 

Ha(m) = max{Ha(A) : [A I = m}. 

In words, Ha(m) /s the maximal number of subsets of S 
that can be obtained by H on any set S of size m. 

Def in i t i on  3.3. 

VC-dim(H) = m a x { m :  Ha(m) = 2~}. 

The VC-dimension is a measure of the complexity of a 
hypothesis space. The following, known as Sauer's lemma, 
demonstrates how the VC-dimension of a hypothesis space 
controls the number  of dichotomies induced by H on a set 
of any size, m. 

T h e o r e m  3.4. Fora l lm  E N, I I~ (m)  < (era~d) d , where 
d = VC-dim(H). 

Furthermore, the VC-dimension gives a bound on the in- 
formation complexity of ordinary classification prediction, 
i.e. how large a sample is needed to ensure that  a hypothe- 
sis that  performs well on the sample data  is likely to perform 
nearly as well on new data. 

We measure the empirical error of a hypothesis h on a 
sample (or training) set T by 

~rT(h)  = ]{(x,b) E T : h(x) ~ b}[ 
ITI 

The true error of h on distr ibution P is 

ErP(h) = P{(x,b)  E X x {O, 1} : h(x) ¢b} .  

T h e o r e m  3.5. I f T  is a random sample from distribution 
P on X x {0,1} with 

ITI _> (64/e2)[log(4/5) + 2 VC-dim(H) log(12/e)] 

then for any h E ~ with probability at least 1 - 6, 

ErP  (h) - l~rT (h) _< e. 

3.2 Standard Learning Frameworks 
Before one can state formal generalization results, a dis- 

t inction is usually made between two cases; The realizable 
case, often called the PACframework, and the general (non- 
realizable) case, the Agnostic framework. In the PAC frame- 
work, it is assumed that  that  some hypothesis h E H is a 
perfect classifier, i.e., ErP(h)  = O. (Such an h is called 
a target function.) In this framework, it is reasonable to 
ask that  a learner find a hypothesis h such that  Er  P (h) is 
small. While this assumption allows for nice clean analysis 
of learning problems, it is rarely true in real-world problems. 
In contrast, the agnostic framework allows the distribution 
to be arbitrary. In this framework, it is s tandard to judge 
the success of the learner relative to the best hypothesis, 
ho in the given hypothesis space; thus, ff a learning algo- 
r i thm produces hypothesis h, we are satisfied with a result 
regarding the probability that  [ErP (h) - ErP (ho)[ < e. 

With the exception of section 2, we work in the agnostic 
framework. 
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2( Domain of database entries (excluding the classi- 
fications) 

3.3 A Related Problem 
Our general results rely on work of Baxter [1] on multi task 

learning, which we introduce in this section. 
Section 3.4 of [1] considers the following problem: Sup- 

pose we have n probability distributions, P1 , . . .  ,P,~, on 
X × {0, 1}, and for each i, we have sample set D6 generated 
by sampling m times from X × {0, 1} according to P6. Given 
a boolean hypothesis space family H over )d, if we choose 
hypothesis h~ to approximate D~, such that  h i , . . .  , h,~ are 
all from some single H • H how well does this sequence of 
hypotheses generalize to P1 , . . .  , Pn? 

In order to address this problem, [1] introduces the analog 
to the VC-dimension that  appears as our definition 3.7. 

Notation. For function g : Y ~ Z and ~ = (y l , . - .  ,y,~) • 
yn ,  ~(~) will denote ( g ( y , ) , . . . ,  g(Yn)) E Z n. 

D e f i n i t i o n  3.6. I I H ( n , m ) =  

max " : 3H E H with h l , . . .  ,hn • H 
~, ..... ~ , e x ~  ~(_~)  

D e f i n i t i o n  3.7. dH(n)= max{m : I IH(n,m)----2  n'n} 

The following, which appears as corollary 13 in [1], 2 is a 
bound on the generalization error in terms of dH. 

T h e o r e m  3.8. [1] Let H be any permissible boolean hy- 
pothesis space family. 3 If  the number of examples m of each 
task satisfies 

m>_ ~ 2d~ log--•  + - n l ° g  , 

then with probability at least 1 -6  (over the choice o lD1 , . . .  , D,~), 
for any H • H, and h i , . . .  ,h~ • H, 

- ~ / ~ r D ' ( h l )  < •. 
6 = 1  6 = 1  

4. GENERALIZATION BOUNDS FOR THE 
AGNOSTIC SETTING 

Let X be our domain set, let I-~ C_ 2 x denote the hypothe- 
sis class that  we work with, and let .~ be the set of potential 
semantic transformations. Formally, we assume that  .~ is 
a set of functions f : X ~ X such that  ~ is a group un- 
der function composition and such that  ~ is closed under 
the action of ~ ,  i.e., for all h • ~ and f • .~, there exists 
h' e ~ such that  x • h ¢:~ f (x)  • h'. 

We define equivalence relation ,~y on I~ by 

h , ~ : r h  ~ i f f B f f • ~  such that  h ~ = h o f  

Let P be a distribution on 2( × {0, 1}, and suppose we are 
given data  sets D1 , . . .  , Dn, each containing at least m train- 
ing examples, where examples (y, b) • D6 are generated by 

2Note that  although [1] only states that  ~ ~6~1 Err°i(h~) -< 
1 n gg ~ = ~  l~r D' (h6) + •, it is clear from the proofs in [1] that  

this stronger form holds. 
3permissibility [1, 2] is a "weak measure-theoretic condition 
satisfied by almost all 'real-world' hypothesis space fami- 
lies". Throughout  this paper we shall assume that  all our 
classes are permissible. 

P 
D/ 

n 

m 

E 

N 

all(n) 

Family of possible transformations from X to X, 
mapping between the different database schemas 
A distribution on X × {0, 1} 
ith database, consisting of classified database en- 
tries, (x, b) • X x {0, 1} 
The number of databases 
The number of entries per database 
Desired prediction accuracy 
Tolerated probability of desired accuracy not be- 
ing achieved 
Hypothesis space of possible classification func- 
tions from 2( to {0, 1} 
Equivalence relation defined on ~ h ~ "  h' iff 
there is some f • .~ mapping h to h' 
Set of equivalence classes of H under ~,~- 
Generalized VC-dimension for collection H of hy- 
pothesis spaces 

T a b l e  1: T a b l e  of  S y m b o l s  

drawing (x, b) according to P,  and applying transformation 
f6 E .~ to x to obtain y = f6(x). 

Our problem fits into the multi task learning setting as 
follows: The hypothesis space family, H, is the family of all 
equivalence classes of ~ y ,  i.e. H -- H/  ~ y ,  and P6 is the 
distribution obtained by first generating (x, b) according to 
P,  and output t ing  (f6(x), b). 

Notation. Let; ~-I...x denote H / ~ y .  
Explicitly, Hn~~(m,  n) = 

max " : f l . . .  f,~ • .T, h • H 
~gl , . . .  ~Xr~ E X  ~'~ 

h o A ( ~ )  
and dn~~ (n) is the maximal value of m for which this 

quanti ty is 2 ~n.  
Theorem 3.8 indicates that  the generalization that  may 

be guaranteed for such a learning setting is controlled by 
the value of this last parameter. In the following section we 
analyze dn ~~ (n) as a function of the maximal VC-dimension 
of any equivalence class of N and the relationship between 
this hypothesis space and family ..~'. 

4.1 Computation of d n ~ ~ ( n )  
We begin a simple upper bound on dn~~ (n). 

L e m m a  4.1. For any n, dn~~(n)  _< VC-dim(~I). 

PROOF. If there exist ~'i', • . . ,  ~n  • X such that  

: : hi "-'.~ h2 . . . .  :r h ,  = 2 m~, 

W.(~) 

then N shatters ~ for any 1 < i < n. []  

We will now prove severn more interesting bounds on 
du~~(n). We first consider the case where I.~1 is finite. 

T h e o r e m  4.2. I f  .~" is finite and i ~  >- VC-dim(N), 
then 

dn~ , (n )  < 21og(I.~l) 
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PROOF. For fixed ~ i , . . . ~  E X m, we have to bound the 
number of distinct matrices of the form 

f o r / l , . . .  , / ,  ~ . f  , h e l l .  
Such a matrix is obtained by applying h to the vector 

(T(~'i) . . . .  ,~n(~) ) .  
Obviously, there are at most [jrr ~ many ways of choosing 

f t , . . .  , fr~- Once this sequence of transformations is set, the 
matrix is determined by the dichotomy induced by the h on 
the above vector. 

Let D denote VC-dim(~.  Applying Sauer's Lemma, the 
number of dichotomies that may be induced by h G H on a 
vector of m X n many points is at most (.~_~)D. 

It follows that the number of possible matrices is upper 
bounded by ( . ~ ) D  × I Jr]"' The proof is now concluded by 

noting that for m _> 21og(Ijrl), it is the case that ( _ ~ ) D  × 

ijrl-  < 2 '~" []  

We now consider j r  such that [ ~ / ~ "  I is finite. 

T h e o r e m  4.3. l f  , ,~  is of finite index k, and n > to~ ~ - -  4d logd'  

then 

d~~~(n) < logk + 4dlogd, 
n 

for d = max {3, m a x n e . / ~ ~  VC-dirn(H)}. 

PROOF. Fix h G ~ and let H = [h]~~. Since, by Saner's 
lemma, IIH(ra) < ( .~ )d  LS rod, H contributes at most m a 
distinct rows for n×m matrices to be counted in II~~~(n, m). 
So, H contributes at most rn r'a to this quantity, and thus 
lrI~~z(n, m) _< km "a. 

Now, if I I~~x(n ,m)  _> 2 ran, then kmna >_ 2 ran. Equiva- 

lently, 1 .~  + d log rn > m. 
So, suppose n > _.!ea.k.. and consider mo = L~+4d logd .  

- -  4dlog d' 
Observe that 

log k + d log rao 
n 

= l ° g k + d l ° g ( l ° n  g k ÷ d l ° g d ) n  

<_ log k + d log(4d log d & 4d log d) 
n 

= logk + dlog(Sdlogd) < too. 
n 

By monotonicity, for n > ~ and d > 3, da~~(n) < - -  4 d  l o g  d - -  - -  

~T t0 .  [ ]  

Finally, we proceed to generalize this last theorem to 
such that ~ y  is of infinite index. 

Def in i t ion  4.4. For h ~ l~, and ~i' , . . .  , ~ G ,.ym define 
splitsh (~7,  . . . , ~ )  

= " : h~ . . . . .  h ,  ~ [h] 

Def in i t ion  4.5. For fixed ~ , . . .  , x"-ff E X m, define 

h -<(~r,... ,~)  h' 

ify 
sp l i t sh (~  . . . . .  ~ )  C sp l i t sn , (~ , . . .  , ~n) 

Def in i t ion  4.6. Let 

Hmaz(n) = {h : h is <(~, . . . ,~)-maximal) .  

For h, h' G H ~ ( n ) ,  define 

h "~C~r,... ,~)  h' 

i f f  

splitsh (xi ' , . . .  , ~n) = splitsh, ( ~  . . . . .  ~n). 

Defin i t ion  4.7. Define index(y,m,n)(H) = 

sup (index of ~(~y,... ,~)  on Hma~(n)). 
z'-y,... ,~ f f  6 ~ r n  

Finally, let D = VC-dim(H), and define 

index(~,n)(~ = sup index(~,m,n)(~ 
l < m < D  

T h e o r e m  4.8. Ifindex(j:,n)(H) = ¢(n), and 

logS(n) 
n >  4 ~ o g d '  

then 
log ¢(n) + 4dlogd, drl~~(n) < 

where d = max {3, max/./eH/~~ YC-dim(H)}.  
PROOF. Recall that in the proof of theorem 4.3, we counted 

a contribution from each H = [h]~~ of ( . ~ ) , d  towards 
Hx~~(n, m). Observe in the first paragraph of the proof 

_ h '  that if splits(~,~,. . . ,~)(h) C splits(y,~,. . . ,~))( ), then 
any contribution counted from H in this argument would 
also be contributed by H' = [h']~ x. Thus, we only need 
count these contributions from index(y,m,r,)(H) many ,,iF- 
equivalence classes. The theorem follows. [] 

4.2 Main  Results  
We are now ready to state our main results. As before, 

we have distribution P over ,~' x {0, 1}, family ~ of trans- 
formations on X, closed under inverse and composition, hy- 
pothesis space H closed under the action of Jr, and data sets 
Di~. . .  , Dr,, such that each Di consists of at least m exam- 
pies (fi(x),b), for some fixed fi E Jr, where each (x,b) is 
drawn independently according to P. 

T h e o r e m  4.9. For any 0 < e, 5 < 1, and any Ny-equivalent 
h i , . . .  , hn G H, if  any of the following conditions hold, and 
Di are generated randomly as described above, then with 
probability at least 1 - 5, 

Erm(hi)  - rOi(h~ < e. 
i = l  i = l  

1. jr  is finite, 

n VC-dira(H)) 
H e . / ~ x  ( log(n) ~ max 

and 

m > ~ 4 log log(I.rl) + ~ log 

4 4 7  



2. ~ has finite index k on E n > ~ and - -  4 d  l o g  d '  

[( ) 88 1 k 1 log m >  ~ 2 log +4d logd  + ~  , 

where d = max {3, m a x H e . / ~ x (  VC-dim(H))}  

3. index(7,n)(K) = ~(n), n > ~ and - -  4 d l o g  d ' 

m>~88 [ 2 ( l o g ~ )  ( l ° g ~  (n) -t- 4dlogd) +~ log-~] , l  

where d = max {3, maxHerl/~~( VC-dim(H))} .  

This theorem gives sufficient conditions on the size of 
the data sets to guarantee that (with high probability) the 
equivalence class with optimal average empirical error on 
the data sets contains a hypothesis which is which is near- 
optimal on average over the data sets for the underlying 
distribution. This is a first step 4 in justifying the following 
meta-algorithm: 

1. Find an equivalence class [h]~x of hypotheses that 
minimizes 

r~ 

inf -1 Z t~rD' (hi). 
n hl, . . .  ,hnE[h]~ i = l  

2. Use standard learning techniques on Dj to select h ~ E 
[h]~y which performs well on Dj. 

Part 1 of theorem 4.9 says that for finite sets of transfor- 
mations, once the number of data sets is sufficiently large, 
the logarithm of the size of the set of potential transforma- 
tions may replace the VC-dimension of the hypothesis class 
H for the purpose of deriving sample complexity guarantees. 
Parts 2 and 3 say that this VC-dimension may be replaced 
by a function of the maximal VC-dimension of any of the 
equivalence classes of the hypothesis class and a measure of 
the complexity of the interaction between H and .T. 

Finally, we present part 3 of theorem 4.9 as a bound on 
the generalization error in terms of the other parameters. 
(We omit the analogous statements for parts 1 and 2.) 

Coro l la ry  4.10. Let 0 < e, ~ _< 1, let 

d =  max ( H ~ x ~  ~ ( VC-d im(H)) ,3 )  , 

and let index(:~,,)(~) = ¢(n), where D = VC-dim(H). I f  
n >  ~-~--(-~ rn > 3, and 

- -  8dlog d ~ 

e>-~i2(l°g~(n) +8dl°gd)l°gm÷ ll°g~ -n 

with probability at least 1 - 5, 

E r a ( h i ) -  rDi(hl < e. 
i = l  i = l  

One drawback of the above results is that ,they all bound 
the average, over all n data sets, discrapency between our 
empirical estimates and the true error of hypotheses. In a 
subsequent paper, [12], we have been able to improve these 

4The second step is to prove that the average true error is 
close to the true error on any one of the data sets. We have 
recently succeeded in proving a result [12] along these lines. 

results to bounds that apply to any selected single data set. 
Namely, the current bounds that guarantee 

E r a ( h i )  - rD~(hl) < e 
i=:1 i = l  

can be shown, with no extra cost in sample size, to guar- 
antee for every j _< n, 

inf n I h,e[hl~ ErPJ(hl) -- inf - - 1 Z  t~rDi(hi ) _< e. 
hl,... ,hnE[h]~3: n i = 1  

5. RELATED WORK 
Previous work on database integration has focused on 

schema matching, the problem of producing semantic map- 
pings which transform data instances from one schema to 
instances of another. ([11] provides a comprehensive survey 
of schema matching.) This has been approached primar- 
ily by considering the schemas involved and using linguis- 
tic information (e.g. attribute labels which are synonyms 
or homonyms) and/or constraint information, such as data 
types, value raaages, and cardinalities, which is usually in- 
cluded in schemas [10, 4, 9]. However, some recent work has 
made use of both schema information and machine learning 
on actual data [5, 6, 17]. 

Our approach differs from this previous work in two sig- 
nificant ways. First, it focuses on the particular task of data 
integration for classification prediction, as opposed to com- 
plete unification of multiple databases into a single database. 
Our work suggests that it may be advantageous to focus on 
data integration with a particular use of the data in mind, 
as the available data may be sufficient for this use but in- 
sufficient for determining the semantic mappings. 

The other important difference between our work and 
prior database integration work is that our methods make 
no use of the database schemas, which is advantageous as 
the schema information may be incomplete or inaccurate. 

We should point out the distinction between our notion 
of "data integration" and the concept of "data fusion," on 
which there is an abundance of literature [7, 15, 16]. Data 
fusion seeks to integrate data from sources that are disparate 
in a much stronger sense than the one we have considered 
here. Whereas we have assumed that the different sources 
are merely transformed versions of one another, in data fu- 
sion, each of the sources actually provide different kinds off 
information about some common phenomenon. The differ- 
ent sources may differ significantly not only in the represen- 
tation of the data, but also in the type of information and 
even the accuracy of the information. A typical example 
involves networks of different types of sensors in different 
locations. This is clearly a more difficult problem than the 
one we have considered here. 

Another relevant line of research involves learning mul- 
tiple "related" tasks (multitask learning) [1] and "learning 
t o  learn" [14]. The former addresses the problem of simul- 
taneously learning multiple related tasks, while the latter 
considers learners as embedded in an environment in which 
learning of prior tasks improves the ability of the learner to 
learn future tasks. While these approaches have not previ- 
ously been applied to data integration, they are well-suited 
to this problem, as the tasks of learning different schemas for 
similar databases are indeed tightly related tasks, for which 
it is natural to expect to gain useful knowledge from each 
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task. Fur thermore ,  we feel t h a t  our  work sheds some light 
on wha t  i t  means  for tasks to be "related,"  a concept  whose 
formal definition has been sufficiently elusive to all bu t  ha l t  
progress on the  theoret ical  side of mul t i task  learning (in 
spite of the  p le thora  of promising exper imenta l  work in this  
area, e.g., [3, 13]). Perhaps  our concrete concept of "re- 
lated" and  successful analysis of mul t i t ask  learning within 
this  framework will inspire fur ther  formal development  in 
this  area. 

6. CONCLUSIONS 
In th is  work we have a t t e m p t e d  to provide a formalism to 

suppor t  the  appl icat ion of the  ma themat ica l  machinery  of 
computa t iona l  learning theory  to the  task of classification 
predict ion util izing d ispara te  da t a  sources. The  results  we 
ob ta in  justify the  use of an  empirical  risk minimizat ion  ap- 
proach in this  domain.  In par t icular  they  show t h a t  da t a  sets 
consist ing of t ransformed t ra in ing  samples may be  utilized 
on the  basis of knowing a set of potent ia l  d a t a  t ransforma-  
t ions even when the  ac tual  semant ic  mappings  applied to 
each d a t a  set are not  known. 

The  analysis shows t h a t  the  information complexity of 
such an  approach depends  on the  richness of bo th  the  hy- 
pothesis  class used for predict ion (or regression) and  the  set 
of potent ia l  d a t a  t ransformat ions .  Fur thermore ,  this  sample 
complexity also depends  on the  relat ionship between these 
two families of functions. The  crucial factor in de te rmining  
this  sample complexity tu rns  out  to  be the  equivalence rela- 
t ion induced on the  hypothesis  class by the  set of da t a  t rans-  
formations.  This  is formally measured  by the  VC-dimension 
of the  resul t ing equivalenceclasses  of hypotheses  and  by the  
index of this  equivalence relation. 

The  s t rongest  results  in this  work are obta ined  for the  
specific case of learning rectangles, in the  PAC setting, under  
the  set of mul t id imensional  da t a  shifts. In t h a t  case we prove 
tha t ,  for the  purpose of learning the  shape  of the  rectangles, 
d ispara te  d a t a  sets are as effective as a single t ra in ing  d a t a  
set of size close to the  size of thei r  union. 

We view this  work as a kind of appet izer  for fur ther  ap- 
plications of COLT techniques to issues of ob ta in ing  collec- 
t ive knowledge from a set of varied d a t a  sources. This  work 
leaves many  loose ends hanging,  and  we hope they  will s t im- 
ulate fur ther  research. 
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