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A Theoretical Framework for Performance
Characterization of Elastography:

The Strain Filter
Tomy Varghese, Member, IEEE, and Jonathan Ophir

Abstract—This paper presents a theoretical framework
for performance characterization in strain estimation, which
includes the effect of signal decorrelation, quantization er-
rors due to the finite temporal sampling rate, and electronic
noise. An upper bound on the performance of the strain
estimator in elastography is obtained from a strain filter
constructed using these limits. The strain filter is a term
used to describe the nonlinear filtering process in the strain
domain (due to the ultrasound system and signal process-
ing parameters) that allows the elastographic depiction of
a limited range of strains from the compressed tissue. The
strain filter predicts the elastogram quality by specifying
the elastographic signal-to-noise ratio (SNRe), sensitivity,
and the strain dynamic range at a given resolution. The
dynamic range is limited by decorrelation errors for large
tissue strain values, and electronic noise for low strain val-
ues. Tradeoffs between different techniques used to enhance
elastogram image quality may also be analyzed using the
strain filter.

I. Introduction

Ultrasonic techniques for measuring the elasticity
of compliant tissue generally rely on the estimation of

the strain [1]–[5]. Elastography, a technique of estimating
the axial strain using differential displacements of the tis-
sue elements due to tissue compression, was proposed by
Ophir et al. [1].

This paper introduces the strain filter concept for the
performance characterization of the strain estimator in
elastography. The behavior of the upper bound of the
SNRe as a function of axial tissue strain forms a band-
pass filter in the strain domain. The strain domain refers
to the entire range of strains present in the compressed tis-
sue. The strain filter consists of a graphical and analytical
representation of the allowable range of strain values and
their resulting SNRe for a given elastographic resolution.
The width of the strain filter specifies the dynamic range,
and its height the respective SNRe value of the estimated
strain.

A block diagram elucidating the strain filter concept
is presented in Fig. 1. Elastography uses small mechani-
cal compressions on soft biological tissue that have a wide
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Fig. 1. The block diagram of the strain filter, indicating the filtering
of the tissue strains by the strain filter to predict the dynamic range
and respective SNRe at a given resolution in the elastogram. The
tissue strain measured using the ultrasound system is obtained by a
quasi-static tissue compression restricted by the mechanical bound-
ary conditions. The contributions of the signal processing and ultra-
sound system parameters are indicated as inputs into the strain filter.
Improvements in estimator performance due to other techniques are
explained by the enhancement in the correlation coefficient (reduced
signal decorrelation).

range of elastic moduli. A distribution of strains in the
medium is caused by the quasi-static compression under
certain mechanical boundary conditions. The input to the
strain filter is the actual tissue strain characterized by
an infinite dynamic range and SNRe, fine (denoted by
ε where epsilon is a very small number) resolution and
sensitivity. However, the interaction of the actual tissue
strain with the ultrasound system and signal processing
parameters corrupts the elastogram obtained, in the sense
that it now has a finite dynamic range, SNRe, sensitivity,
and resolution. The strain filter predicts the elastographic
image quality (SNRe, sensitivity, and dynamic range at a
given resolution) in terms of the signal processing and sys-
tem parameters used to obtain the elastogram. The strain
filter therefore provides a quantitative assessment of the
elastogram quality, in terms of the four parameters de-
scribed above.

In addition, the strain filter makes it possible to select
the appropriate ultrasound system and signal processing
parameters to obtain the best possible elastogram under
given tissue conditions. In subsequent sections of this pa-
per we discuss the effects of the various ultrasound sys-
tem parameters such as pulse center frequency and band-
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width, and signal processing parameters (window size and
overlap factor). Tradeoffs among different parameters and
techniques that enhance elastogram quality may be evalu-
ated and predicted using the strain filter. As illustrated in
Fig. 1, techniques such as temporal stretching (TS) [6]–[8],
multicompression averaging (MA) [5],[9],[10], and stretch-
ing multicompression averaging (SMA) [9],[10], reduce sig-
nal decorrelation, i.e. improve the correlation coefficient,
thereby enhancing the performance of the strain filter. The
improvements in the elastogram obtained using these tech-
niques may be quantitatively predicted using the strain
filter.

The ideal strain filter therefore has an infinitely high,
flat all-pass characteristic shape in the strain domain,
which means that all local tissue strains are displayed in
the elastogram with infinite SNRe; it also means that the
strain dynamic range in the elastogram is infinite as well.
Practical strain filters, however, have a bandpass charac-
teristic shape in the strain domain, where the −3 dB width
of this bandpass characteristic may be defined as the elas-
tographic dynamic range. Under typical conditions, a −3
dB dynamic range of ≈ 30 dB is predicted by the strain
filter; this is consistent with the range of strains measured
experimentally using a single compression.

A description of the literature used to develop the strain
filter is presented in Section II. The theoretical model for
the strain filter is developed in Section III. Simulations to
validate the theoretical model are presented in Section IV.
The contributions of this paper are summarized in Sec-
tion V.

II. Background

Development of the strain filter concept is based on ob-
taining the tightest bound on the variance of the strain es-
timator that includes all noise sources. Since the strain es-
timator uses time-delay (displacement) estimation to com-
pute strain, the vast literature on time-delay estimation
can be adapted for the strain estimation problem.

A. Noise Sources

The Cramér-Rao lower bound (CRLB) is the most com-
monly used lower bound on time-delay variance [13]–[16].
The CRLB, however, can be achieved only for large post
integration SNR [13],[14] and zero strain, conditions that
are unrealistic for strain estimation. The expression of the
CRLB derived by Walker and Trahey [17] (for partially
correlated signals) increases the bound on the variance
to a more achievable level. While electronic and quanti-
zation noise contributions (sonographic SNR, denoted by
SNRS) are accounted for in the expression for the CRLB
through the SNR term [13]–[16], the added effect of decor-
relation on the variance of the time delay estimate has been
modeled recently by Walker and Trahey [17]. The authors
also indicate that TDE performance can be worse than

the CRLB at poor SNRs (<15 dB) and low correlation
coefficient values (<0.5).

Signal decorrelation, a significant source of error in the
displacement estimate, increases rapidly with tissue com-
pression. Decorrelation errors are caused by the relative
displacement of the scatterers in all three dimensions due
to tissue compression. In this paper, signal decorrelation
is modeled as a noise process that reduces the composite
signal-to-noise ratio (SNRC) in the echo-signal. SNRC is
a combination of the constant electronic noise level and a
varying component due to signal decorrelation. To incor-
porate the contributions due to signal decorrelation it is
necessary to convert the correlation coefficient to an SNR
measure (SNRρ). A relationship between SNRρ and the
correlation coefficient has been independently derived by
Friemel [18], and by Céspedes et al. [12]. The expression
used to obtain SNRC is presented in Appendix A.

Increasing signal decorrelation errors with tissue strain
reduce SNRC , causing the strain estimation variance to
exceed the CRLB (as also noted by Walker and Trahey
[17]), thereby necessitating the need for a more advanced
lower bound to predict the variance of the strain estimator.
The modified Ziv-Zakai lower bound proposed by Wein-
stein and Weiss [13],[14] is used in this paper to obtain an
accurate lower bound.

B. The Ziv-Zakai Lower Bound (ZZLB)
on Time-Delay Estimation

Weinstein and Weiss present plots of the lower bound
of the time delay variance versus the post integration SNR
[13],[14] (defined as a product of the bandwidth, data win-
dow length, and the SNRC), that divides the post inte-
gration SNR domain into three distinct regions (low, mod-
erate, and high). Since SNRC is the only parameter in the
expression for the post integration SNR that varies with
tissue strain, its value determines the appropriate lower
bound.

The Cramér-Rao lower bound (CRLB) is applicable
only to high post integration SNR situations (at low
strains). In this region, time-delay estimation is subject
only to local errors (ambiguity-free mode of operation). At
moderate SNR values, the lower bound exceeds the CRLB
and obeys the Barankin bound. In this region, ambigui-
ties in the signal phase cannot be resolved; however, an
estimate of the time-delay estimate may still be obtained
using the correlation between signal envelopes. At low post
integration SNR values, the lower bound approaches a con-
stant level. In this region, both envelope and phase am-
biguities exist, and the time delay cannot be estimated
correctly. The thresholds separating these three regions
are determined by the value of the post integration SNR
[13],[14]. The above combination of lower bounds on the
variance of the time-delay estimator is referred to as the
Ziv-Zakai lower bound [13],[14]. The ZZLB provides the
tightest bound on the variance of the time-delay estimator.
The modified ZZLB and threshold values at the transition
points are discussed in Appendix B.
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In this paper, the strain variance is computed from the
TDE variance using the expression derived by Walker and
Trahey [17], as long as the ZZLB coincides with the CRLB.
The decay in the value of the correlation coefficient with
tissue compression has been modeled using an analytic ex-
pression derived by Meunier and Bertrand in [19] to esti-
mate decorrelation effects due to rotation, translation, and
biaxial deformation of the elastic tissue elements. The the-
oretical development of the strain filter is presented in the
next section.

III. Development of the Strain Filter

Axial strain s is the displacement gradient, which may
be estimated from two adjacent time delay estimates sepa-
rated by a time interval ∆t [1], assuming a constant speed
of sound in the tissue, viz:

s =
τ2 − τ1

∆t
, (1)

where τ1 is the time delay estimate at time t, and τ2 is the
time delay estimate at time t + ∆t for a data window with
duration T .

Since the strain estimate is obtained from a linear com-
bination of two random variables (time delay estimates
separated by ∆t), the variance of the strain estimator de-
pends on the variance of the time delay estimator. Assum-
ing stationarity, the variance of the strain estimate (σ2

S) is
expressed in terms of the variance of the time delay esti-
mates (σ2

t ) in [20], and is given by:

σ2
S ≥

2σ2
τ

T∆t
. (2)

(2) illustrates that for a given window size and overlap,
strain variance is reduced when the variance in the time
delay estimate is minimized. The resolution in the elas-
togram is reduced with an increase in T . Large overlap-
ping windows also generate correlated errors which bias
the strain estimate. In addition, an optimal window size
exists, where the strain estimation variance is minimum,
with an increase in the variance observed as the window
size is increased or decreased [6, pp. 122, 21]. Therefore
the strain estimation variance cannot simply be reduced
in the limit as T →∞, since σ2

τ also increases.

A. The Strain Filter in Elastography

A measure of elastographic image quality was described
[6],[7] in terms of the mean to standard deviation ratio
(SNRe) of the elastogram:

SNRe =
µs
σs

, (3)

where µs and σs are, respectively, the mean and standard
deviation of the strain estimates in a region of uniform
elasticity. The upper bound of the SNRe is obtained when

the total tissue strain (st) and the lower bound on the
strain estimation standard deviation (σZZLB) are substi-
tuted in (3):

SNRUBe =
st

σZZLB
. (4)

Incorporating the modified ZZLB expression for the
TDE variance (see Appendix B) into σZZLB using (2),
we obtain:

σ2
ZZLB ≥



(sT )2

6T∆t , BTSNRC < γ′

Threshold γ′ < BTSNRC < δ′

2σ2
BB

T∆t , δ′ < BTSNRC < µ′

Threshold µ′ < BTSNRC < η′

2σ2
CRLB

T∆t , η′ < BTSNRC

(5)

where η′, µ′, δ′, and γ′ are the modified thresholds (B-
2) scaled by the factor 2

T∆t . (5) shows the three distinct
operating regions for σ2

ZZLB , depending on the value of
BTSNRC . A distinct threshold region is observed between
the CRLB and the Barankin bound; however, the variance
increases exponentially in this threshold region (see Ap-
pendix B). Accurate estimation of the strain is possible
only within the CRLB.

The minimum variance of the time delay estimator is
given by the CRLB [13]–[17]. The CRLB for time delay
estimation has been adapted for partially correlated sig-
nals by Walker and Trahey in [17], and is given by:

σ2
CRLB

∼=
3

2π2T (B3 + 12Bf2
o )

[
1
ρ2 (1 +

1
SNR2 )2 − 1

]
(6)

where fo is the center frequency, B is the bandwidth, ρ
is the correlation coefficient, and the SNR term represents
only the contribution due to electronic noise (SNRS). This
closed-form expression obtained for signals with a rectan-
gular spectrum assumes that the variance of the time delay
estimate is bounded by the CRLB. The Barankin bound

exceeds the CRLB by a factor of 12
(
f0
B

)2
[13],[14], and is

given by:

σ2
BB = 12

(
fo
B

)2

σ2
CRLB (7)

The lower bound on the variance of the strain estimate
(σ2
ZZLB) is obtained by substituting the bound on the vari-

ance of the TDE obtained using (6) and (7) into (5).
The variation of SNRUBe (4) with tissue strain is de-

fined as the strain filter. Three distinct regions constitute
the strain filter, which depends on the appropriate lower
bound that contributes to σ2

ZZLB (5).

B. Effect of Decorrelation Due to Strain
on the Correlation Coefficient

Decorrelation errors increase with tissue strain, causing
a decay in the values of the correlation coefficient. The cor-
relation coefficient with motion compensation due to ax-
ial deformation of elastic tissue for a 2-D Gaussian model



varghese and ophir: a theoretical famework for performance characterization of elastography 167

has been derived by Meunier and Bertrand in [19], and is
given by:

ρ =
2
√
αβ√

2(α2 + 1)(β2 + 1)
e
− 1

2( f
σu

)2 (α−1)2

α2+1 (8)

where f is the spatial frequency in cycles/mm (f = 2fo
c

where c is the speed of sound in tissue = 1.54 mm/s), and
σf is the standard deviation of the Gaussian envelope in
cycles/mm (σu = 2σf

c , and σf = 1
2πσt

, where σt is the spa-
tial standard deviation and σf is the standard deviation of
the Gaussian envelope in the frequency domain), α repre-
sents the axial compression where α = 1− s, and s is the
tissue strain. The corresponding lateral expansion is de-
noted by β (with the incompressibility constraint αβ = 1).
The value of the correlation coefficient is substituted in the
expression for the CRLB (6) to model decorrelation effects.

Expressions for the CRLB [13]–[17] have been derived
for flat bandlimited signal and noise spectra. However, the
correlation coefficient in [19] is derived for a Gaussian-
shaped spectrum rather than a rectangular spectrum. A
reasonable approximation was obtained by Céspedes et al.
[11] using a rectangular spectrum centered at the Gaus-
sian center frequency with the same mean square ampli-
tude value as the Gaussian spectrum. The equivalent noise
spectral bandwidth [22, pp. 141] is defined by:

B =

∫∞
0 P (f) df
P (f) |max

=
√

2πσf (9)

where B is the bandwidth of a rectangular spectrum with
the same total power and peak amplitude as the Gaussian
pulse spectrum P (f).

Using the following typical signal parameters, T = 1
mm (1.3 µs), fo = 5 MHz, B = 3 MHz (60% bandwidth),
SNRS = 100 (40 dB), and interval between strain esti-
mates ∆z = 0.5 mm (∆t = 0.66 µs). The lower bound
on the standard deviation of the strain estimator (normal-
ized by its value at 8% strain) is plotted along with the
corresponding correlation coefficient in Fig. 2, for increas-
ing strain values. Note from Fig. 2 that the lower bound
on the standard deviation (σZZLB) increases dramatically
for strain values >0.5%. This has been previously noted
by O’Donnell et al. [5] and Céspedes [6, pp. 115]. They
show that the standard deviation of the strain for a 1-D
simulation increases dramatically due to decorrelation as-
sociated with large strain values (>3%) for a fixed corre-
lation integration time. For the same reason, past work in
elastography has used small (≤ 2%) applied strains [1],[2].

Decorrelation errors increase with tissue strain, reduc-
ing the value of the correlation coefficient, and causing
σ2
ZZLB to move from the CRLB to the Barankin bound

or the constant variance level as shown in (5). The three
distinct regions in (5) are observed in plots of the strain
filter as shown by the curves in Fig. 3. Figure 3 shows
the strain filter obtained for a 3 MHz rectangular band-
width using the ZZLB (CRLB for strains ≤10%, Barankin
bound for strains >10% and <30%, and the constant vari-
ance level for strains >30%). As the lower bound coincides

Fig. 2. The correlation coefficient and the standard deviation of the
strain estimate for increasing strain values. The standard deviation
of the strain estimate has been normalized by the standard deviation
value at 8% strain of 0.0058 µs to enable plotting both the standard
deviation of the strain estimate and the correlation coefficient on the
same graph.

with the Barankin bound, the performance of the strain
filter drops sharply, with a further drop in performance
observed as the variance coincides with the constant vari-
ance level. Note that the strain filter obtained using the
ZZLB has a smaller dynamic range than the strain filter
obtained under the optimistic assumption that the strain
estimation variance is always bounded by the CRLB.

The range of strains that can be reliably estimated us-
ing the elastogram determines the dynamic range of the
strain filter. The dynamic range of the strain estimator in
decibels is defined as follows:

DR = 20 log
[
smax

smin

]
, (10)

where smax is the maximum strain and smin is the mini-
mum strain at a specified SNRe level in the strain filter.
The quantity smin also defines the sensitivity of the strain
filter. A 1% tissue strain corresponds to a decibel value of
−40 dB. The dynamic range estimated for a −3 dB cutoff
level of the strain filter (SNRe level of 10) predicts a 30 dB
dynamic range (observed from Fig. 3) for the strain filter
obtained using the ZZLB bound, compared to the 40 dB
dynamic range predicted using the CRLB. However, the
dynamic range obtained experimentally for a single com-
pression agrees closely with the dynamic range predicted
using the ZZLB.

The slope of the strain filter for low strain values is de-
termined primarily by electronic noise contributions, with
decorrelation noise contributing to the progressive flatten-
ing of the curve. The plateau in the strain filter is caused
by increasing decorrelation errors; however, the variance
of the strain estimate is still bounded by the CRLB in
this region. At high strain values, the precipitous drop in
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Fig. 3. The strain filter illustrating the distinct regions of strain es-
timation obtained using (5), along with the strain filter obtained
under the optimistic assumption that the strain estimation variance
is always bounded by the CRLB adapted for partially correlated
signals. Note that the dynamic range of elastography may be deter-
mined from the width of the strain filter, and the heights give the
respective SNRe at every strain level.

performance is caused by decorrelation noise, which deter-
mines the slope of the graph in this region. Improvements
in the dynamic range can be obtained either by reduc-
ing electronic noise errors for low values of the strain, or
reducing the rate of decorrelation for large strain values.
Decorrelation errors can be reduced using a combination
of small compressions that allow successful step-wise tem-
poral stretching. For example, temporal stretching of the
post-compression signal [6]–[8], MA [5],[9], and [10], and
SMA [9],[10] improves the dynamic range and SNRe of
strain estimation without sacrificing resolution.

The shape of the strain filter also depends on the vari-
ation of T , f0, and B terms in the denominator of (6). For
example, the performance of the strain filter for different
values of the bandwidth is shown in Fig. 4. With an in-
crease in the system bandwidth, there is an improvement
in the maximum SNRe value, sensitivity, and dynamic
range of the strain filter. In other words, signal decor-
relation reduces with an increase in the bandwidth. The
strain filters obtained at different center frequencies are
presented in Fig. 5. Note the improvement in the sensitiv-
ity, dynamic range, and SNRe obtained with increasing
pulse center frequency. The maximum attainable SNRe
is approximately proportional to the square of the center
frequency.

The resolution of elastography depends on T and ∆t,
and is limited only by the correlation length of the ultra-
sound system. The resolution in the elastogram improves
with a decrease in the value of T or an increase in sys-
tem bandwidth. All the performance plots of the strain
filter are plotted for a constant value of the resolution. A
family of performance curves can be obtained at different

Fig. 4. A group of three strain filters, showing the distinct regions of
strain estimation. These filters correspond to bandwidths of 2.5 MHz,
3 MHz, and 3.5 MHz, respectively, with a 5 MHz center frequency
and T = 1.3 µs. Note the improvement in SNRe and dynamic range
obtained with an increase in the signal bandwidth.

resolution levels. In general, as resolution increases, the
maximum value of the SNRe and the dynamic range of
the strain filter decrease. The dynamic range, sensitivity,
and SNRe, along with the resolution, provide a complete
characterization of the noise properties in the performance
of the strain estimator in elastography.

Simulation experiments in the next section are used to
confirm the validity of the theoretical strain filter model
developed in this section.

IV. Simulation

A simulation experiment to quantify the performance of
the strain estimator for a 1-D tissue mechanical model is
presented in this section. The 1-D model used in the simu-
lation accounts only for the decorrelation of the echo-signal
due to the axial component of the strain. The theoretical
model can be adapted for the 1-D case by setting β = 1
in (8). In the simulation of the ultrasound system, a 1-D
sampled array is used to insonify a 2-D point scatterer
medium.

A. Method

The pre- and post-compression echo-signals are gener-
ated using a transducer with a center frequency of 5 MHz
and −3 dB band-width of 3 MHz (pulse standard devi-
ation of 0.27 µs). The A-scan was sampled at 50 MHz.
Cross-correlation analysis was performed using a 1 mm
(1.3 µs) overlapping window with 0.5 mm (0.66 µs) over-
lap between consecutive windows.

The transducer is modeled as a 1-D sampled aperture
composed of point subtransducer elements equally spaced
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Fig. 5. A group of strain filters for center frequencies of 3.5 MHz, 5
MHz, and 7.5 MHz, respectively, with a 60% bandwidth and T =
1.3 µs. Note the improvement in SNRe and dynamic range obtained
with an increase in the pulse center frequency. The maximum attain-
able SNRe is approximately proportional to the square of the center
frequency.

by λ/2. Each subtransducer element is modeled as a point
source or receiver with a two-way Gaussian transfer func-
tion. The scattering medium is modeled as a 2-D array of
point scatterers. The scatterer density in the media was
set to 48 scatterers/pulse width. The elastic target is as-
sumed to have a Poisson’s ratio ≈ 0. This implies that
lateral and elevational decorrelation effects due to scat-
terer motion are ignored. The applied stress is assumed
to propagate uniformly so the localized stress is constant
throughout the medium. The displacement of each scat-
terer is a function of the applied strain, and is modeled by
considering an equivalent 1-D spring system described in
[6]. The spring constant is a function of the Young’s mod-
ulus of the tissue. The applied strain is the same as the
tissue strain for a uniformly elastic homogenous medium.

The pre-compression A-line is obtained from the ran-
domly distributed scatterers. Each scatterer location is
then changed depending on the compressive force and a
post-compression A-line generated. The stretched post-
compression A-line is generated by applying a linear
stretch factor on the post-compression signal. The process
is repeated for 28 different lateral locations in the sim-
ulated phantom to obtain independent A-line pairs (lat-
eral step > beamwidth of the transducer). The strain val-
ues are computed from the individual A-line pairs. Time-
delay estimation is performed using the normalized cross-
correlation function, with the strains computed using (1).

B. Results

Fig. 6 shows the mean SNRe value and its standard
deviation (error bars), derived from 28 independent sim-
ulations, before and after temporal stretching. The x-axis
represents the total applied compressive strain expressed

Fig. 6. Plot of the theoretical strain filter superimposed on the strain
filters obtained using a 1-D simulation before ( o o o ) and after
( x x x ) temporal stretching (motion compensation).

as a percentage; SNRe is plotted, along the y-axis. The
theoretical curve of the strain filter for the 1-D case is also
shown in the figure.

Observe from Fig. 6 that both the strain filter curves ob-
tained from the simulation are completely bounded by the
theoretical strain filter curve. The theoretical strain filter
curve forms the upper bound, which determines the attain-
able experimental or simulation performance. For strain
values >2%, decorrelation errors cause the drop in the
value of the estimated strain. The CRLB bound on the
variance is no longer applicable for strain values >2%, as
shown by the simulation experiment, since signal decorre-
lation introduced due to tissue compression dramatically
increases the variance in the strain estimate.

Inaccurate estimation of the time-delay (increased vari-
ance) is primarily due to the detection of false peaks and
jitter [17]. The simulation results presented in this section
are obtained using the basic normalized correlation coeffi-
cient function. Non-linear processing to remove phase am-
biguities (contributing to the reduction of false peaks [17])
was not performed. Sophisticated algorithms that incorpo-
rate additional processing to remove false peaks can there-
fore significantly improve the performance of the strain
estimator.

V. Conclusion

This paper presents a theoretical framework for quanti-
tative assessment of the quality of elastograms. This frame-
work is described as a strain filter that is typically a band-
pass filter in the strain domain. This filter allows only a
restricted range of strain values to be included in the elas-
togram. The deviation of the strain filter from an ideal
all-pass characteristic in the strain domain is due to the
ultrasound system parameters, the finite value of the sono-
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graphic SNR, and the effects of signal decorrelation. Signal
decorrelation determines the largest value of strain that is
accurately estimated, while SNRS determines the smallest
measurable strain value. The dynamic range of the system
is thus limited on the low end by electronic noise effects,
and on the high end by signal decorrelation, resulting in a
bandpass filter in the strain domain.

The range of strains over which the CRLB specifies
the variance of the time delay defines the optimum per-
formance range for the strain estimator. The formulation
of the CRLB by Walker and Trahey does not address
the implications of decorrelation causing the deviation of
the time delay variance from the CRLB for large tissue
strains. Application of the ρ − SNRρ relationship devel-
oped by Friemel [18] and Céspedes et al. [12] clearly de-
marcates the regions over which the CRLB, the Barankin
bound, and the constant variance level are applicable. Sig-
nal decorrelation may be reduced using a combination of
small compressions that allow successful temporal stretch-
ing, (e.g., temporal stretching described by Céspedes and
Ophir [6]–[8], and SMA described by Huang et al. [9],[10]).
Temporal stretching is currently used to correct for decor-
relation only along the axial direction. Lateral and ele-
vational decorrelation errors are more difficult to correct,
since the scatterers move out of the beam for large strains.
Multicompression averaging in conjunction with temporal
stretching of the strain estimates obtained from several
small compressions, increases both the SNRe and the dy-
namic range of strain estimation without sacrificing resolu-
tion. The improvements in the elastogram obtained using
these techniques may be quantitatively predicted using the
theoretical strain filter model developed in this paper.

The strain filter concept developed in this paper pro-
vides a graphical framework for characterizing elastogra-
phy. The strain filter quantified the elastogram image qual-
ity (−3 dB dynamic range 30 dB using the ZZLB and
maximum elastogram SNRe ≈ 23 dB for a single compres-
sion), for the signal parameters specified in Section III. In
a similar manner, different elastographic signal processing
techniques can now be compared and their performance
quantified using the dynamic range, sensitivity, resolution,
and maximum SNRe obtained from the strain filter. The
shape of the strain filter defines the quality of the elas-
togram; a narrow, low filter will cause elastographic arti-
facts such as image noise and low dynamic range to plague
the elastogram. Thus, the design of the optimal strain fil-
ter for a given situation is of utmost importance to the
production of quality elastograms.

The signal decorrelation parameter and shape of the
strain filter vary with changes in the cross-correlation win-
dow length (resolution) used to obtain the time-delay. A
family of strain filter curves can be obtained at different
resolution levels. The effect of the window length param-
eter on signal decorrelation has not been analyzed in this
paper. The dependence of the correlation coefficient on the
finite window length used in the cross-correlation analysis
is discussed in [21]. The expression for the effective correla-
tion coefficient is presented as a product of the peak value

of the correlation coefficient (used in this paper) and a de-
rating factor. The derating factor accounts for the decay in
the correlation coefficient with increased window lengths.
The strain filter described in this paper is therefore more
optimistic in its prediction of the strain estimator perfor-
mance. In addition, the strain filters obtained at varying
depths in tissue also would be different. The 2-D and non-
stationary properties of the strain filter will be discussed in
a later publication. It has also been demonstrated that un-
der certain conditions, i.e. optimal multicompression with
temporal stretching [23], the bandpass characteristic of the
strain filter changes into a more desirable, high-emphasis
characteristic.
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Appendix A

A. Combining SNRS and SNRρ to obtain SNRC

The expression for SNRC which is used to compute
the post integration SNR and the thresholds in the ZZLB
is presented here. The correlation coefficient is converted
into an SNR measure [7],[18], that is given by:

SNRρ =
ρ

1− ρ . (A.1)

The variation of SNRρ with a linear variation in ρ is
illustrated in Fig. 7. Note from (A-1) that for ρ = 1,
SNRρ =∞, dropping exponentially to an SNRρ value of
22.46 dB for ρ = 0.93. The composite value of the SNR,
combining the contributions of SNRS and SNRρ is given
by [13],[14]:

SNRC =
SNRSSNRρ

1 + SNRS + SNRρ
. (A.2)

This expression for SNRC incorporates both the electronic
noise level and the decrease in SNR caused by increase in
signal decorrelation with strain. From (A.2) we observe
that SNRC will always be bounded by the smallest value
of either SNRS or SNRρ.

Appendix B

B. Lower Bound on the Variance of
the Time Delay Estimator

The modified ZZLB derived by Weinstein and Weiss
[13],[14] gives the tightest lower bound on the TDE vari-
ance. We present here the results for bandpass signals with
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Fig. 7. Plot of the non-linear variation of SNRρ with the correlation
coefficient.

a rectangular spectrum. The lower bound for the time de-
lay estimation consists of two distinct threshold effects di-
viding the entire post integration SNR domain into three
disjointed segments (the CRLB, Barankin bound, and the
constant variance level), as shown by Fig. 7 and (22) in
[14]. The distinct regions using (22) from [14] are given
by:

σ2
τ ≥


(sT )2/12, BTSNRC < γ
Threshold, γ < BTSNRC < δ
σ2
BB, δ < BTSNRC < µ
Threshold, µ < BTSNRC < η
σ2
CRLB, η < BTSNRC ,

(B.1)

where the estimate of the time delay is confined to the
interval −sT/2 < τ < sT/2, T is the length of the cross-
correlation window,B is the bandwidth of the system, σ2

BB

represents the Barankin bound, and σ2
CRLB represents the

CRLB. The quantity BTSNRc is referred to as the post
integration SNR. The threshold points used in (B-1) are
defined as follows:

η =
6
π2

(
f0

B

)2 [
ϕ−1

(
B2

24f2
0

)]2

µ =
2.76
π2

(
fo
B

)2

δ = ζ/2
γ ≈ 0.46 , (B.2)

where fo is the center frequency, ϕ−1(y) is the in-
verse of ϕ(y) = 1√

2π

∫∞
y
e−µ

2/2dµ, and (ζ/2)ϕ(
√
ζ/2) =

(12π/BsT )2, which has two solutions. The larger value of
ζ is used to compute the threshold.

When η < BTSNRc, the ZZLB coincides with
the CRLB, which is the ambiguity-free region. If δ <
BTSNRc < µ, the ZZLB coincides with the Barankin
bound, where phase ambiguities increase the TDE vari-
ance. Finally, when BTSNRc < γ, the lower bound is

characterized by the constant variance level of (εT )2/12,
which corresponds to the variance of a random variable
uniformly distributed between −sT/2 < τ < sT/2. In the
threshold region, the TDE variance increases exponentially
with the post integration SNR.

The thresholds given in (B.2) are computed for the fol-
lowing typical signal parameters: T = 1 mm (1.3 µs), fo
= 5 MHz, B = 3 MHz (60% bandwidth), and SNRS =
40 dB. Assuming SNRρ � 40 dB, SNRC ≈ 40 dB. The
numerical values of the thresholds η, µ, δ, and γ and in
(B-2) are 13.52, 0.78, 0.59, and 0.46 (22.6, −1.1, −2.3, and
−3.4 when expressed in dB), respectively, at a post inte-
gration SNR value of 43.86 dB. The reader is referred to
the papers by Weinstein and Weiss [13],[14] for a detailed
description and derivation of the ZZLB and the thresholds
for narrow and wide-band systems.
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