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Abstract
In this paper, we present a theoretical framework to represent and manipulate narrative structures for visual storytelling. This
framework can be used in applications beyond visual storytelling, which includes formal representation of stories, emotional, social
and even economical interactions among agents. Our framework significantly extends and formalizes classical narratology theories.
In our framework, we represent narratological functions as interventions by employing an extension of causal inference theory, as
directed graphs that provide cause and effect relationships among agents. Moreover, we categorize them as real, expressed and
observed interventions. This differentiation allows us to represent beliefs, lies and misunderstandings. In our framework, any
transformation in causality graph structure is called an event by providing a non-linear temporal dimension that can even allow time-
travel. This approach provides a general framework to develop tools for modeling narration and can help to investigate social and
economic interactions.
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1 Introduction

Visual storytelling is one of the areas in visual aesthetic that is not well understood and that still requires a lot of
creativity and hard work. The major portion of any movie production process is spent for the development of stories
and storyboards. To improve the visual story development process there is a need for new theoretical approaches as
well as new tools and techniques.

This paper presents a theoretical framework for representation and modeling narrative structures such as emotional,
social and economic interactions among agents. This framework is conceptually simple and intuitive and can be
used for the development of tools and techniques for visual storytelling. Our framework significantly extends and
formalizes classical narratology theories and it can be used in applications beyond storytelling, which includes formal
representation of stories, emotional, social and even economical interactions among“irrational” agents.

In our framework, we represent narratological functions as interventions by employing an extension of causal
inference theory — using directed graphs that provide cause and effect relationships among agents and tasks [29, 28].
Moreover, we categorize them as real, expressed, and observed interventions. This differentiation allows us to represent
beliefs, lies, and misunderstandings that can happen in any social interaction between irrational agents. This approach
provides a general framework to develop models to investigate social and economic interactions.

2 Related Work

Narratological analysis was started in the 1920s by Vladimir Propp [34], who developed a grammar covering a re-
stricted corpus of Russian folktales. Propp’s analysis decomposed a candidate story into an initial state comprising a
small collection of characters (dramatis personae) and a set of narrative functions over states. The application of a
function to a state produces either the end state (the end of the story) or a new state. Propp showed that a small set
of about 30 narrative functions plus a few constraints on function ordering could generate the whole chosen corpus of
Russian folktales. Propp’s analysis was used in some early story-telling programs in Artificial Intelligence ([26, 19, 20],
with limited results. Propp’s theory was substantially refined in the 1960s ([5, 11, 8]), when a distinct discipline called
“narratology” emerged.

Greimas introduced the concept of “actant” in place of Propp’s characters and showed that a generic story could be
analyzed in terms of the circulation, which is regulated by strict rules, of valuable objects among a very limited number
of actants1. Artificial Intelligence research in story-understanding and story-telling ignored post-Propp narratological

1In this paper, we use term “agent” instead of “actant”.
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(a) One version of Firing Squad: First, court orders captain to ex-
ecute the rebel. Captain, then, orders two riflemen to shoot. Then,
both riflemen shoot and hit the rebel. As a result, rebel is executed.

(b) Another version Firing Squad: One of the riflemen shoots, but
misses the target. The second one does not shoot at all. Rebel dies
from heart attack, so he is not really executed.

Figure 1: A classic example of causal inference: Firing Squad. The drected graphs (a) and (b) provide clear representations of causal relation-
ships among actions and provides all elements of basic task dependencies.

research until very recently. Partly as a result of the work of Herman [15] and Ryan [36], computational approaches to
narrative ([27]) have gained a renewed impetus and the computational representation of standard narratological models
is one of explicit goals in the field ([37, 32, 35, 18]).

Theories of narratology is especially important for storytelling, which is one of the areas that is not well understood
and that still requires a lot of creativity and hard work. The major portion of any movie production process is spent
for the development of stories and storyboards. To improve the story development process there is a need for new
theoretical approaches as well as new tools and techniques. There is, therefore, a strong interest in storytelling [25, 38,
16]. Mateas and Stern developed one of the first interactive storytelling software called Facade [24]. Two interactive
storytelling systems that are based on a Markov Model have also been developed [9, 22].

Narrative theoreticians agree that there are at least two levels in any narration: Some events happen and these
events are related in a certain way. Although there exist various terminologies used by different researchers, these two
levels of a text can be identified by two questions : (1) What is told and (2) How is it told? In the most widely used
structuralist terminology, the answer to the “what” question is called a story and the answer to the “how” question is
called a discourse [10].

The causal inference theory introduced by Judea Pearl [31] provides a formalized approach to represent narrato-
logical functions, social and economic interactions using directed graphs. Figure 1 provides a classical example of
causal inference theory: Firing Squad. As shown in this figure, not only task dependencies, but also actual events can
be encoded by adding a description to each edge. Using that information, it is possible to differentiate two possible
implementation of the same process as shown in Figure 1(a) and (b). This is a significant advantage for studying social
and economic interactions, since it is possible to randomly create many possible implementations of the same process
and evaluate the possibility of their occurrences. For instance, less experienced riflemen are more likely to miss the
target. The rebel may not necessarily die. Even when rebel dies, it may not mean that riflemen actually executed the
order correctly as demonstrated in Figure 1(b). The causal inference theory [30, 31] is successfully used in representing
social [29, 28] and economical interactions [7, 1]. In this work, we present an extension of causal inference theory to
provide narrative functions, which will be essential in the representation of stories as interactions and task completions
by irrational agents.

3 Extended Causal Inference Theory

Classical causal inference theory can only represent factual information. It does not allow irrational behaviors that
are frequently caused by emotional responses and/or impossible events, which are important in representing story
narratives. In this paper, we demonstrate that an extended version of directed graphs that define causal inferences
can also be used to describe such irrational behaviors and impossible events by providing all narrative functions. The
new framework is based on two types of extensions to the standard directed graph representations of causal inference
theory: (1) We introduced a temporal dimension that is triggered by events that creates qualitative changes in the
universe; and (2) We introduced three layers to provide precise answers to both “what” and “how” questions. The first
extension provides a way to differentiate among qualitative and quantitative changes in the story. In our framework, any
qualitative change in causality graph structure is called an event. The second extension provides a way to differentiate
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(a) Conceptual structure of a state graph, where each blue colored ver-
tex is an agent and purple colored vertex is a task. In a state graph only
continuous changes are allowed. For instance, the hate felt by Agent 2
against Agent 3 can only be given by a continuous function. Similarly,
the change of the percentage of completion of a task can only be by
continuous functions. Quantitative dependencies are described using
inequalities.

(b) Conceptual structure of an event graph, where each colored vertex
is actually a directed graph. Each of these state graphs is qualitatively
different from each other. In other words, the number of vertices and
edges can be different in each state graph. That is, events are discrete
changes that cannot be expressed by using a continuous function.

Figure 2: The graph in (a) provides an example of a state graph. The state graph changes with time, but all the changes are described by
continuous functions. In other words, the topology of a state graph never changes. On the other hand, any topology change is described by a
meta-graph, called event graph, shown in (b). Each vertex of an event graph is a state graph and directed edges of the event graph are events. Note
that the event graph in this example includes a cycle that can correspond to either a circular story or a time travel.

among reality, expressed reality and observed reality.

3.1 First Extension: Temporal Dimension
For story representations one of the most important elements is to provide a temporal dimension to describe possible or
impossible temporal dependencies. To include time into our framework, we differentiate between two types of directed
graphs: state —pertaining to the representation of the qualitatively stable state in a given time period —and event
—pertaining to the event-based qualitative transition from one state graph to another. These qualitative state changes
can allow non-linear temporal transitions such as circular stories and time travel. Each of these event graphs define a
unique narration.
State Graphs: In our framework, the state of story in any given time is described by a state graph (see Figure 2a).
In a state graph, the agents and tasks are placed in the vertices of the graph; the relationships, emotions, and causal
interventions among agents tasks are placed in the directed edges of the graph. Edges and vertices of this graph carry
three layers of information that can provide physical, expressional, and observational states. Self-loop edges in the
state graph correspond to internal states and other edges provide relational states among agents.
Event Graphs: These are really directed graphs of directed graphs. In other words, each vertex of the event graph is a
state graph and each directed edge of the graph is an event, which corresponds to a transformation from one static state
graph to another static state graph (see Figure 2b). In other words, any modification of a static state graph is considered
to be an event. For instance, introduction of a new agent is an event since it requires the creation of a new vertex in
state graph. Similarly, changes in emotions or interventions are also events since they require changes in information
provided in edges. Most importantly, such jumps in temporal space allow circular story lines such as in the recent
movie “Live Die Repeat: Edge of Tomorrow or time travels which is very coming device in storytelling.

3.2 Second Extension: Irrationality
Our second extension is based on the observation that“humans” are not rational agents that act“only” to minimize
certain cost functions. On the other hand, we posit that“humans” do not act arbitrarily. Their actions are results of
imperfect knowledge that is accompanied by personal, social and behavioral threads. Thus, in our general framework
we consider humans to be narrative characters, which are called agents who may act irrationally, but their actions are
not arbitrary and still governed by some rules.

To achieve this we represent “physical human,” who can never been fully observed and known, just one of the layers
of “agent” who has narratological existence and can act based on limited knowledge. This layering allows us to develop
a general framework that can consider both rational and irrational behaviors. Our framework consists of three layers
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–physical, expressional and observational, which are connected with causality relationships. These three layers that
can help us to differentiate among real, expressed, and observed interventions, emotions, relationships, and events (See
Figure 3). The framework can also allow us to visualize story processes from any point of view. Visualization depends
on both expression and observation layers. The expression layer provides information about shapes and materials of
characters. The observation layer can also provide information about cameras and shots. In what follows, we provide
detailed information of each layer.

Figure 3: Flowchart of the three layers and causal-
ity relationships among the layers.

Physical Layer: This is the lowest layer in our framework. It
provides the precise description of real events and real states
such as interactions among agents and emotions of agents. This
is the layer where all agents physically exist and interact. We as-
sume that in any given time a physical layer has a well-defined
state, which is given as the collection of all the states of all
agents in the physical layer. In other words, the physical ver-
sions of agents are nothing but “boxes” or “containers” that
carry states. Physical versions of agents can have either internal
or relational versions of physical states. Internal states are the
ones about the agents and tasks themselves. For instance, be-
ing dead is a possible internal state for an agent. However, that
actant’s “container” does not cease to exist by being dead. Its
container still exists but its state is “not-living.” Internal states
can also be an emotional type such as “angry” or “happy,” or
physical type such as “tired or “sleepy.” Similarly, being completed can be a possible state of a task. Relational states
are the ones that define one agent’s or task’s “real” relation and “real” feelings towards another agent and task. For
instance, one agent can be a daughter of another agent, or one agent may hate another agent. Note that relational states
are not necessarily reciprocal. The relational states are represented as directed edges of the physical layers of the state
graphs.

We call any change in the state of the physical layer as a physical event. For instance “dying” or “completing” are
events that turn a physical version of an agent or a task from “alive state” to “non-living” state. Similarly “falling-in-
love” is an event in which one of the physical states of an agent turns from “neutral” to “love.” Each of these events
can be caused by the agent or the task itself or another agent or another task. The causations of events are called
interventions [31]. The interventions that cause physical events are represented by the directed edges of the physical
layer of the event graphs (see Figure 4(a)).

Note that the physical events are all “factual.” Physical versions of agents do not have capability to observe even
themselves. They are just “boxes” or “containers” that carry states that are continually changing. Other layers turn
these physical versions of agents into more complicated beings.
Expression Layer: This layer gives us a description how the agents express their emotions and internal states. Expres-
sion layer also provides a guidance how the events and states should be visualized. In other words, this is the layer in
which some of the states of the physical layer are expressed. Expressions formally can be considered to be a transfor-
mation from a physical layer to an expression layer (see Figure 3). They can be in a wide variety of forms such as facial
expressions, verbal expressions or postural expressions. Another problem with expressions is that small changes can
cause widely different expressions. It is therefore hard to include expressions into a model. One of our contributions
in this work can be that we do not consider all these forms and how the expressions are produced. Instead, we focus on
the source of expressions. This approach simplifies the complexity that is inherent in expressions. In terms of sources,
we consider expressions of internal states or relational states. An expressions of an internal state can be an expression
of an emotion. Shouting and frowning are examples of expressions of angry emotion. But, fake expressions are also
possible. For instance, smiling can hide the fact that the actant is angry internally. Note that fake expressions that hide
internal states may not necessarily be intentional. The actants themselves may not know that they are, in fact, angry.
Expressions of relational states are the directed edges of the expression layer of the state graphs. These are expressions
of one agent’s feeling or relationship towards another. For instance, one actant who hates another actant may say “I
hate you” or simply look annoyed. On the other hand, another actant even can act as if as if s/he liked the other person
by hiding his/her true feeling. Even a relationship between two people can be expressed. For instance, a father may
tell to his son “You are not my son.” Again, these misleading expressions may not necessarily be intentional. It may
simply the case that the agent does not know that he is actually the father. But, expression itself does not change the
fact that he is the father. Similarly, we can include expressions of tasks, which describe how their internal states can be
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visualized.
As can be seen from this discussion, expressions may unintentionally or intentionally hide or reveal facts, even

for tasks. However, they do not change the facts about physical states. We call any change in the expression as an
expression event. An expression event is usually a manifestation of physical event. On the other hand, without any
change in physical states, an expression may change. The interventions that cause the expression events are represented
by the directed edges of the event graphs (see Figure 4(b)).
Observation Layer: This is the layer where each agent’s observations are kept. Each agent’s observation can be
different since every agent can observe a different subset of expression layer. Moreover, one agent can interpret the
meaning of an expression different than another agent. Narration only exists in this layer. Narration comes from the
limited knowledge of agents and trigger further events through feedback to physical layer. In our framework, a linear
narrative is a path on a given event graph that provides sequences of “observational states.” The transition from one
“observed” state to the next is called a “narrative” event. Narrational events trigger and stimulate physical events (See
Figure 3). Note that tasks cannot make observation, but, their observations can be different than truth. For instance, a
task, which is not yet completed can be considered as completed by some agents. We consider Self-observation or self-
awareness, observations of expressions of others’ internal states, and observations of expressions of relational states.
Note that self-awareness may affect the expression. Therefore, there is feedback from observation layer to expression
layer in Figure 3. The effect can be two ways. An actant who is aware of its internal state can hide it or show it based
on its role in the story. On the other hand, an actant who is not aware of its internal state cannot show it regardless of
its role in the story. An extreme example is Bruce Willis’ character from Sixth Sense, who does not know that he is
dead until at the end of the movie.

(a) Physical Layer. (b) Expression Layer.

(c) Observation Layer for an Outside Observer. (d) Observation Layer for Captain or Rebel’s Ghost.

Figure 4: An example of three different layers of a simplified event graph: Firing squad. Note that although there is
only one physical and expression layer, there can be more than one observation layer since every agent can have its
own observation layer.

Observations of others can always be misleading. Based on their roles in a story two agents may observe/interpret
the same expression differently. For instance, an angry expression can be observed as tired by one agent and simply
as an anger by another. Observations of expressions of relational states can also be misleading. For instance, an actant
says “I love you” and one receiving actant can observe it as a manipulation, another receiving actant can observe it as a
manifestation of a real love. Observation layers also provide information about cameras and shots [4, 17, 14, 21]. We
can define a character called “audience,” who can only observe events without effecting them.

We also have observational events, which will be defined as a change in observation. In such events, nothing
in physical and expression layers has to change; however, at least one agent changes its observation. A far-fetched
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example is the movie 6th sense, in which the character of Bruce Willis was unaware of the fact that he was already
dead. The ending of the movie was his realization of being dead. This new observation did not change any existing
facts, but, we consider it an intervention since the observation changes. The interventions that cause observation events
are represented by the observation layer of directed edges of the event graphs (see Figure 4(c) and (d)).

These layers allow us to represent a wide variety of aspects of real or fictional stories from misunderstandings to
lies; from intentional lies to unintentional lies. Figure 4 provides an example of three different layers of a simplified
event graph for Firing Squad. This figure demonstrates that it is possible to precisely tell the story using this repre-
sentation. Although the rebel is not killed by firing squad, everybody can deduce that he was executed by the firing
squad. Even the ghost of the death rebel may not know that bullets did not hit him. On the other hand, unlike an outside
observer, both captain and rebel know that there was a court order. Assume two riflemen had never killed anybody
before the event. Since they did not kill the rebel they continued not to be “a murderer” after the event. Therefore, in
physical layer their state did not change. However, according to an outside observer, the Captain, the first rifleman and
the ghost of the rebel, they both are turned into a murderer (or an executioner). On the other hand, the second rifleman
knows that that he is still not a murderer since he did not shoot. As shown in this example, a storyteller can precisely
describe what really happened in the scene using such a representation.

4 Conclusion and Future Work

This representation is mainly useful for representing existing stories in a precise form. It can also be used by storytellers
to precisely define everything in their stories. Of course, the resulting structures can be very complicated to draw on
paper. Therefore, there is a need for software that can allow storytellers “to design or to model” their stories. In this
section, will demonstrate how “Extended Causal inference Theory” can be used for designing stories. We first motivate
importance of Extended Theory for narration modeling — i.e. designing and modeling of stories — with an analogy
with polygonal mesh surface modeling.

For the development of modelers, the underlying theoretical frameworks always play a pivotal role. For instance,
graphs embedded on surfaces, i.e., 2D Graph rotation systems (2D-GRS), provides an underlying theoretical framework
for polygonal mesh modeling [12]. 2D-GRS has been used to represent all possible 2-manifold meshes and it has been
implicitly used in the guise of various mesh data structures, such as half-edges [23], quad-edges [13] and doubly-linked
face lists (DLFL) [2]. 2D-GRS with topology preserving operators such as SPLICE and TWIST [13], or Euler operators
[23] or INSERTEDGE, CREATEVERTEX and TWIST [3] provide shape algebras for 2-manifolds. These operators
allow users to create all and only 2-manifold meshes. Therefore, users can create any polygonal mesh by using these
operators.

Similarly we need a theoretical framework for simulating narrative processes. We claim that the Extended Causal
inference Theory provides a formal structure that can represent all possible fictional or non-fictional stories. In other
words, any existing story from X-Men to Cinderella, from The Godfather to The Shawshank Redemption, from Psycho
to Citizen Kane could be representing precisely in this formal structure. The problem is that it is impossible to formally
prove that our structure can represent all cases. However, we can informally demonstrate that our structure can support
many unusual structures that exist in various stories.

The key part of the design will be the development of directed graphs that fully describe social interactions and
task completion processes. Again by using an analogy to polygonal modeling, it is better to provide operators that can
help story designers to model their simulations efficiently. Since we are basically dealing with directed graphs, the
basic graph manipulation operators INSERTEDGE and CREATEVERTEX are the only operators needed to manipulate
the topological structure of event graphs. Of course, as in the surface modeling case, any higher level operator can be
produced as a composite of these two operators.

Another important issue in narration modeling is to attach information to vertices and edges. Unlike surface mod-
eling, which usually requires to attach only 3D position data to vertices, in the design of simulations we have to deal
with very high dimensional data and some of this information is simply numbers. For instance, most of the information
such as emotions are not necessarily numerical. Moreover, in some cases functions must be attached to vertices that
represent tasks and inequalities must be attached to directed edges that define task dependencies. This can be very hard
for designers in general, on the other hand, as soon as designer define the undirected graph that represent the process,
it is possible to simplify the information. The information, then, could be very low dimensional and easy to describe
for the designer.

The representation, can also be used in semi-automatic story creation. In this case, the structure of the plots [39]
can be given by the pre-packaged directed graphs. The real challenge, then, lies in populating these graphs with high
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dimensional data about agent ability, behavior and personality. One of the main challenges will be to create realistic
distributions based on designer specifications. In the semi-automatic story creation, not all agents must be virtual. By
allowing real people replace the virtual agents, we actually can turn a system into a multiplayer game. Such games can
be used for educational purposes, as we have discussed earlier.

Another issue is to create dynamically changing states of virtual agents, if the agents display personality. Recently,
we have shown that discrete-time Markov processes can be used for this purpose. We demonstrated that, with Markov
processes working on physical and expression layers of our extended framework, it is possible to create never-ending
stories semi-automatically [22]. We expect Markov processes will be particularly useful in this case since they can
provide random but predictable results in long term for given agent ability, behavior and personality.

We believe that this representation can be great tool to test and verify assumptions about in a wide variety of
applications beyond storytelling. To turn the general framework into a research tool to construct different models, a
modular system for the visualization, design, and construction of models is needed. Such a modular system can be used
effectively in a broad range of social science and economic applications by providing significantly more power than
any deterministic model. For the implementation of such a system, the key is to implement the underlying structure
as a simple software kernel, which can then help design and construct specific models for specific problems. The
implementation of such a basic kernel is not really difficult because of conceptual simplicity of the general framework.
Using such a kernel, it can also be easy to design and construct simple models, in which the number of agents is small
and the number of states is limited. On the other hand, the real challenge will be the construction of the models with a
large number of agents and states. Thus, a significant amount of effort needs to go to development intuitive interfaces
that can help researchers in social sciences and economics to design and construct their own complicated model.

To achieve this goal, the kernel must be simple, extensible and allow modular development and provide strong
visualization tools. This extensibility and modularity will allow to build a variety of user interfaces based on the same
kernel. We expect that the classical theory of narratology can provide useful approaches for the development of some
user interface concepts. For instance, it can be possible to automatically construct a model with large number of actants
and behaviors based on the type of the stories that might exist in the model. For instance, if we want to create a model
in which there will be one or two quest plots, a few love plots and one rivalry plot, we can automatically create main
heroes and heroines. It is also possible to automatically create supporting actants such as a best friend, confidant or
charmer. Events may mainly come from the actions of the main actants and the others just react those events.
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