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SUMMARY

The induced drag polar is developed for wings capable of attaining
extremely high loadings while possessing an elliptical distribution of
circulation. This development is accomplished through a theoretical
investigation of the vortex-wake deformation process and the deduction
of the airfoil forces from the impulse and kinetic energy contents of
the ultimate wake form. The investigation shows that the induced
velocities of the wake limit the maximum 1ift coefficient to a value
of 1.94% times the wing aspect ratio, for aspect ratios equal to or
less than 6.5, and that the section properties of the airfoil limit the
1lift coefficient to 12.6 for aspect ratios greater than 6.5. Relations
are developed for the rate of deformation of the vortex wake. It is
also shown that linear wing theory is applicable up to 1lift coeffi-
cients equal to 1.1 times the aspect ratio.

INTRODUCTION

The development in recent years of advanced methods of boundary-
layer control has made possible the attainment of very high lift coeffi-
cients with two-dimensional airfoil sections. Use of boundary-layer
control on three-dimensional wings has likewise resulted in large
increases in the maximum sectional circulations by preventing flow
separation at high angles of attack. For a wing of finite span, how-
ever, this increased circulation is necessarily accompanied by an
increasingly powerful trailing vortex system. The velocities induced
in the vicinity of the wing by this system can become quite large,
with a pronounced effect on the wing aerodynamic force, especially on
the 1ift component. Successive increases in circulation produce
diminishing increases in wing lift.

1The basic information presented herein was a part of a thesis
entitled "The Limit of Circulation Lift on Airfoils of Finite Aspect
Ratio" which was offered in partial fulfillment of the requirements
for the degree of Master of Aeronautical Engineering, University of
Virginia, Charlottesville, Virginia, May 1960. However, some addi-
tional material on the effects of wake deformation on longitudinal
stability has been added.



From a design and performance standpoint it thus becomes of con-
siderable importance to determine these wake effects in a quantitative
manner. It is customary practice in conventional wing design to employ
linear wing theory; this is justified since normal wing stall limits
the maximum 1ift coefficient to relatively low values. TFor wings
intended to operate at very high 1lift coefficients, however, the ques-
tion arises as to the limit of the valid use of linear theory, since
the linearizing assumptions are no longer justified for large deforma-
tions and displacements of the wake.

The present investigation has as its object, therefore, the quanti-
tative estimation of the effects of the vortex wake deformation on the
wing aerodynamic forces, with view to establishing the limiting 1ift
coefficient for linear-theory application, and also the nature and magni-
tude of the deviation from the linear prediction at the higher 1ift
coefficients. This development is accomplished by considering in some
detail the rolling-up process of the wake and by deducing the aero-
dynamic forces from the impulse and kinetic energy of the final wake
form. The results are presented in the form of the wing-induced drag
polar, for all aspect ratios. As a corollary, for use in stability
analyses, the rate of rollup of the vortex sheet is investigated and
an expression is developed for the distance required for complete
rollup, for a given lift coefficient and aspect ratio.

The basic analysis is carried out for the specific case of a con-
ventional wing which maintains an elliptical distribution of circula-
tion at all 1lift coefficients. The various wing-propulsion systems -
such as the jet-flap wing - are excluded. The elliptical distribution
is chosen because it yields results which are generally applicable to
the more common planforms where the larger part of the vorticity is
shed near the wing tips. The methods of the analysis are, however,
general and may be applied to other distributions, although the calcu-
lations may be more involved.

Throughout the analysis the air is treated as an inviscid, incom-
pressible fluid. Inasmuch as the attainment of high 1ift coefficients
by actual wings requires the removal or reenergization of the boundary-
layer air, the production of a large viscous wake by the airfoil is
precluded and viscous effects are negligible. In the sequel, therefore,
the wake referred to is the vortex wake associated with the wing circu-
lation gradient and not a viscous wake.
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SYMBOLS

R
aspect ratio, —

Sy

cross-sectional ares of the ovoid wake

circle radius (Joukowski transformation); ellipse major
semiaxis

wing span; ellipse minor semiaxis

D.
induced drag coefficient, ——==—
ov°
- Sw

1ift coefficient, —p—
oV
5 Sw

wing chord

induced drag force

vortex sheet rollup distance (along X-axis)
vector element of surface area

vector element of arc length

total wake kinetic energy

kinetic energy per unit length of subcore
wing aerodynamic force vector

component of f’ due to momentum changes

resultant force on bound vortex system

impulse per unit length of wake

total wake impulse vector
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Rl,Rg,r

ry,Tos

vortex moment of inertia about system center of gravity
1ift force

generalized length

hydrodynamic mass per unit length of wake

number of turns per unit length of vortex helix

denotes specific point in space

local velocity vector of induced field

velocity of center of gravity of generalized vortex system
radial distances from vortex core centers

radius of fully developed vortex core

R R
normalized radial distances from vortex centers, T% and =2

respectively
general surface area
wing area
time
general stream velocity
x-component of induced velocity
free-stream velocity, (vector)

resultant velocity at wing section

y-component of induced velocity

circumferential velocity

complex potential, @ + iy

z-component of induced velocity
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velocity of center of gravity of vortex sheet

unit vector along positive X-axis

lateral coordinate of center of gravity of vortex system
complex variable in Y-Z plane, ¥y + iz

vertical coordinate of center of gravity of vortex system
unit vector along negative Z-axis

geometrical angle of attack

absolute angle of attack

C L 5
circulation, 5@ q.ds

circulation around median section of wing

inclination angle of final wake
dummy variable of integration
generalized wake inclination angle

T

vortex strength, B

fluid mass density
dynamic pressure

the wake vortex sheet
time required for complete rollup of vortex sheet

velocity potential

cos‘l EZ

eccentric angle,
b

stream function

surface vorticity of vortex sheet



Subscripts:

c property of vortex core

i index number

S property associated with wing surface

X,¥,2 components along X-, Y-, and Z-axis, respectively
z property associated with vortex sheet
Superscript:

P reference point at which velocity is computed

THE WAKE-DEFORMATION FPROCESS

Wake~Induction Effects

Induced~velocity effects.- Consider a wing in steady flight
operating with an elliptical distribution of circulation

r(y) = ro\fl - (?i)g (1)

b

Emanating from the trailing edge is a vortex sheet whose intensity
immediately behind the trailing edge 1is

ar _ _FO(E)E S A— (2)

dy b 2
dl - <§Z\
b/

This sheet may be considered a superposition of an infinite number of

vortex filaments each of strength %E dy as shown in figure 1.
Y

At any point P in the flow field the total velocity (relative to
__’.)
the fixed airfoil) is the sum of the free-stream velocity V, the
P
induced velocity a% associated with the bound vorticity, and the

induced velocity QEP due to the wake vorticity. Vectorially,
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This velocity field also applies to the vortex sheet and since the

field is not, in general, uniform, the vortex sheet undergoes deforma-
tion as it passes downstream. Since the vorticity distribution of the
wake determines the effective velocity field in the vicinity of the
airfoil, by equation (5), this wake deformation is reflected as a change
in the aerodynamic force vector acting on the wing. As is evident from
equations (2) and (3), a large-span wing with small T, (small angle

of attack) will produce a relatively weak wake and the rate of deforma-
tion will be small; thus, the wake will maintain its sheet form for a
considerable distance downstream.

High circulation effects.- If now the elliptical circulation loading
form as given by equation (1) is maintained while I's 1is increased, the

wake will increase in intensity according to the Helmholtz law of vortex
continuity. The large induced velocities associated with the high inten-
sity cause a rapid deformation of the vortex sheet which, in addition

to being displaced downward, begins to roll up from the edges. The down-
ward progression of the wake causes it to be inclined to the free-stream-
velocity direction by an angle 6 = 8(x). The rollup process causes the
vorticity of the initial sheet to become increasingly concentrated into
two vortex cores, and the resulting alteration of the induced field
decreases the downward progression of the wake so that 8, in general,
decreases in the downstream direction (d6/dx negative). A generalized
sketch of this variation of the wake angle is shown in figure 2. Here
the angle 6 1s the inclination of the forming vortex cores. Far
downstream, where the wake has reached a stable state of deformation

(has become fully rolled up) the inclination angle is denoted by

= 6(00).

The wake deformation has two primary effects on the flow at the
wing. First, the result of the inclination of the wake is that the

P
velocity a; induced at the airfoil is rotated forward as it increases

in magnitude (fig. 3). Second, the concentration of the vorticity into
cores causes a variation of the magnitude of the downwash across the
span. $Since the wake intensity increases with Ty 80 does the rate at

which the sheet rolls up, and also, the angle of inclination of the wake
increases. Thus, the downwash variation across the span becomes a func-
tion of Iy, for a wing of given span. For a wing with given T, as

the span is decreased the intensity of the wake increases and addition-
ally the wake becomes more narrow, so that the deformation will proceed



more rapidly for a low-aspect-ratio wing than for one with high aspect
ratio. Thus, the form of the downwash distribution is also a function
of aspect ratio.

The inclination of the wake introduces at the wing an induced-
_)
velocity component opposing the free-g}ream velocity V; thus, the
resultant effective velocity vector VR existing at a section of the
wing decreases in magnitude and is rotated downward as the section cir-

culation is increased. Both of these effects lessen the increment in
lift which accompanies the circulation increase.

In order to obtain an increase in circulation it is necessary to

increase the absolute angle of attack ay of the section with respect

-
to Vgr. However, as the geometrical angle of attack of a section is
—>
increased the velocity VR decreases in magnitude and rotates in a

direction so as to reduce the absolute angle of attack; therefore, the
variation of T' with geometrical angle of attack becomes nonlinear in
the high circulation renge so that the slope dI'/da decreases. Also,

_)
since the resultant velocity varies across the span, Vg = V;(y), due

to the wake deformation, and the form of this velocity variation varies
with T, the nature of the variation of sectional 1lift with angle of

attack becomes quite complex.

In the foregoing discussion the circulation distribution INy)
has been specified as being elliptical. In order to maintain such a
distribution physically, it would be necessary to carefully tailor the
wing geometry so as to accommodate the resultant-velocity variation

= -
Vr(y). Since VR(y) also varies with T, it is clear that the wing

geometry must be variable if the elliptical circulation distribution
is to be maintained. Conversely, if the wing geometry is fixed, the
form of TI'(y) must change with T,. Of course, from this simple

analysis no quantitative statements can be made about the nature or
rapidity of the resultant-velocity wvariation.

For the elliptical circulation loading, the value of Vg is uni-

form across the span of an elliptical wing for small values of I.
However, for large values of T, or small aspect ratios the rapid

rollup of the vortex sheet will tend to change the V% distribution.

Hence even though an elliptical distribution of circulation may exist

on a wing the 1ift distribution, which is dependent on G%, may there-
fore be quite different in form.

[NV I i ol e
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The results of this simple qualitative analysis indicate that the
wake effects will set a limit on the maximum 1ift coefficient of a
finite-span wing. In order to obtain a quantitative estimate of these
effects it 1s necessary to consider the details of the wake deformation.

Development of the Final Wake Form

Consider now a straight wing of any aspect ratio operating with
the elliptical circulation loading of equation (1). It is prescribed
that the loading shall remain elliptical at all values of 1lift coeffi-
cient. This condition may be physically realized by suitably varying
the sectional camber of the wing for each value of Cj or by properly

twisting the wing. The intensity of the trailing vortex sheet at the
trailing edge is given by equation (2). The flat vortex sheet is an
unstable form of vorticity and, for reasons to be discussed later, pro-
ceeds to roll in from the edges and to travel downward in the center so
that relatively soon after its formation it appears somewhat as shown
in figure 4. This rolling-up and displacement process continues until
some distance downstream the original vortex sheet has separated in the
middle and become colled up into two cores of concentrated vorticity
which are inclined by an angle © to the free-stream flow. These
approximately circular cores extend on downstream to infinity where
they join the ends .of the starting vortex.

If now the form and properties of the final wake can be quantita-
tively determined, the aérodynamic force on the wing can be determined
by suitable application of the general energy and momentum theorems.
In order to establish the final wake form the system of reference axes
shown in figure 5 is used, where the origin is located at the midspan
of the trailing edge and the X-axis is parallel to the cores of the
final waske, which is inclined to the free-stream velocity by the
angle 8. The axes move with the airfoil so that the flow is steady.
The positive directions of the induced-velocity components u, v,
and w are as indicated. (The components of V are V cos & and
V sin & in the x- and z-direction, respectively (fig. 6).)

Under the action of the total velocity field the vortex filaments
comprising the initial vortex sheet assume a helical form as they wind
about the growing cores (fig. 4). Far downstream where the rolling up
may be considered complete, this system of helical filaments approxi-
mates what might be called a pair of vortex solenoids. These fluid
solenoids possess the same induction properties as their electrical
counterparts, with proper accounting, of course, for the fluidity of
the cores. Far downstream the flow inside the cores has the components
Vcos &+ u v, and w - V sin 5, while outside the cores it has the
velocity components V cos &, v, and w - V sin 8 in the x-, y-, and
z-direction, respectively.
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Considering now a narrow strip of the flat vortex sheet taken near
the trailing edge of the wing (as in fig. 4), if the rate of deformation
of the sheet in the longitudinal direction is small, the wake may be
established to a good approximation by considering the rolling up as a
two-dimensional process and tracing the deformation of the two-
dimensional strip as it moves downstream. At the higher deformation
rates the assumption of a two-dimensional rollup appears less accurate
since the shape of the wake on either side of the strip will vary some-
what from that of the strip. However, the assumption is made that up
to the maximum 1ift of the airfoil the rate of deformation is suffi-
ciently low so that the two-dimensional deformation may be used to con-
struct a first-order approximation of the wake form. A justification
of this assumption lies in the fact that the primary concern is not
with an accurate description of the entire sheet deformation but with
only the relatively small region where the sheet is adding to the core.
With this assumption the cross section of the wake at any distance
downstream is that of the deformed two-dimensional strip.

Properties of two-dimensional vortex systems.- The following two
theorems which will be of subsequent use are derived in detail in
reference 1:

Theorem 1l: If a system of two-dimensional vortices exists on one
side of a flat bounding wall the center of gravity of the vortex system
will translate parallel to the wall with the velocity

_ zpiqi S (1)

o = Zri _eri

where Pi indicates the circulation of the individual vortices and FR

is the magnitude of the force exerted by the fluid on the bounding wall.
The center of gravity of a vortex system is obtained from the relations

‘ (5)

[N
I

for a y,z coordinate system.

[SANGI I i e
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Theorem 2: If a vortex system produces no moment with respect to
its center of gravity the moment of inertia of the system will remain
constant in value for all time,

E:Piriz = Constant (6)

Here ry

of gravity.

is the distance of the vortex TI; from the system center

These theorems are written for a system of discrete vortices. TFor
the case where the system is continuous (i.e, a vortex sheet), the sum-

mation j{: is replaced by a line integration along the sheet.

Deformation of the wake strip.- These results may now be applied
to determine the deformation of the initially flat strip of wake taken
from the vortex sheet immediately behind the trailing edge. A y,z coor-
dinate system as shown in figure 7 is used in which the vortex strip
initially lies along the Y-axis with the origin located at the center
of the strip. ©Since the two halves of the strip are mirror images,
the plane y = O may be taken as a solid bourdary and only the half

0¢< y < g need be considered.

The intensity of the strip is initially

g @l

and the center of gravity of the strip is

b/2
S v
- 0 J b
y = = &
b/2 8 |
JF ar 5 (7)
y
o dy
z =0
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The strip will initially tend to move downward as a flat sheet with a

velocity given by w = g%. However, a flat vortex sheet is inherently
unstable and begins to curl up at the edges as it travels downward.
This instability may be physically explained in the following qualita-
tive manner. The flow field about the flat sheet is identical to that
about a translating plate where very low pressures occur at the edges
due to the very high velocities. The fluid sheet is unable to resist
these suction pressures at the edges and under the pressure gradient,
rotational fluid from the interior flows into the tip region thereby
increasing the circulation about the tip. (The vortex "sheet," it
should be noted, is the idealized form for a finite thickness layer of
rotational fluid.) The initial vorticity distribution is thus altered
and the velocity field produced is such that it causes the sheet to
begin winding about the tip core. The rolling-up process during the
very first moments of deformation have been treated in detail by Kaden
(ref. 2). A numerical investigation of the rolling-up process using a
row of discrete vortices to represent the vortex sheet has also been
performed by Westwater (ref. 3). Both of these (two-dimensional)

treatments indicate that the semisheet (O <Sy< %> coils up into a

spiral of the form shown in figure 8.

As the strip rolls up and moves downward its center of gravity

moves along the line y = %b, as predicted by theorem 1. The initial
velocity of the center of gravity is W = -—= and after rollup is com-

- r
plete the velocity is W = 2 —=,
b

Considering again the initially flat strip of figure 7, the total

circulation associated with a segment vy s Yy < I using equation (2),

. 2’
18
) - fyj/ga‘y' ool - (32 )

For convenience in subsequent derivations, y 1s now written in terms
of the eccentric angle o,

cos @ (9)

<
il
mic

O\ = B
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Then,
% = —PO % cot P (lO)
I‘(yl) = I, sin @, (11)

The center of gravity of the segment ¥y < y S % is

Y
s L B e e L )
(1) Yv/2 sin @ (12)
El = 0
With respect to the origin y = O, the moment of inertia of this seg-
ment is
/2, ar b\2 1 3.2
Jo(yl) = y2 = dy =T, —) sin q>l<l - = sin qal) (13)
¥, dy 2 >

Transferring this moment of inertia to the center of gravity of the

segment yj 5 y S :Z— gives

I(¥y) = Jo(ry) - I1(3’1)3’12

Ty l:(g—)gsin cpl(l - —;— sin2q)l) - <%>2 Ei o (cpl + % sin 2cpl> 2:} (1%)

Now as the rollup proceeds, the strip coils up in a nearly circular form,
as shown by the results of Kaden (ref. 2) and Westwater (ref. 3); there-

fore, the segment y; § y 5 b coils into a spiral contained within a

2
circle of radius rj. As the circular core grows, the circulation of

the enclosed vorticity is given by

P(r1) = T(v1) (15)
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Similarly the moment of inertia of the segment after coiling is equal
to its original value by theorem 2,

I(ry) = 3(n) (16)

Thus when r increases by dr, y must decrease by dy (whence ¢
increases by d¢) and the corresponding increments in core circulation
and moment of inertia become

ar ar
= ar = aa dp = Ty cos @ dp (17)
ar 2 aJ
dr = — A 18
dr do ¢ ( )

Differentiating equation (14) gives

2 2
dJ _ (b> 3 cos @ ( 1 . >
— =T (=) |cos + —_— + = sin 2
de °\2 [: ? s sinem vre ?
S <® + 2 sin 2@\(1 + cos 2@%} (19)
2 sin o 2 /

Substitution of equations (17) and (19) into equation (18) yields

i sin 2q>>2 - %Ei)-rsl—;% <q> + % sin 2cp) (20)

r

R

Since @ and y are related by the expression cos ¢ = % Y, equa-

tion (20) denotes the relation between y and r. A plot of %%
against %? as given by equation (20) is shown in figure 9. For

small values of @ (@ — 0) equation (20) can be linearized by a
limiting process to give

2r _ 2
T =3 sinyp (21)

[OXNN BN e el o



O\ = =

15

or in terms of y (y —9%), this becomes after g similar limiting process
2(b
r==(=- 22
3(2 Y> (22)

A small segment of the strip near the tip is thus coiled within a circle
of radius equal to 2/5 the length of the segment. Equation (22) has
been plotted in figure 9 where it is seen that it closely approximates
equation (20) through most of the range. Hence equation (22) may, with
sufficient accuracy, be used to obtain the final core properties since
over 95 percent of the total vorticity is contained within the core
region where the agreement is quite good. Also shown in figure 9 is a

2
plot of %L against 7;. Figure 9 is taken from the results of

o}
reference 1.

These results lead to the picture of two final vortex cores of
nb
L

concentrated near the centers, as shown in figure 10.

radius 1y = b spaced a distance apart with the vorticity heavily

Final wake form.- The deformation of the vortex strip is now traced
as it passes downstream by using the axis system of figure 5 with the
assumption that the deformation follows the relations Jjust established.
Everywhere outside the developing cores the x-component of velocity is
taken to be V cos 5, while the y- and z-components are v and
w - V sin d, respectively. When the core has grown to a radius r

the circulation of the enclosed vorticity is T(r). Since the cores
are nearly circular in form, especially for small values of r, the

tangential velocity Vip at the core surface (vT = J;é + (w - V sin 6)2>
is assumed uniform and is therefore obtainable from the circulation,

I'(r)
2nr

VT(I') = (25)

The core grows by the addition of vortex filaments from the sheet to
its outer surface. The filaments add along the streamlines which are

determined by the velocity components V cos & and Vip to form con-

centric vortex helices of intensity %g. (See fig. 11.) This winding

process continues until the original sheet has been consumed.

By use of equation (22) relating the core properties to those of
the initial sheet, the circulation, intensity, and tangential velocity
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distributions within the fully developed cores can be determined as
pure functions of the radius. The core circulation is

1 1/2
I(r) = Fo[ -+ (v- Br)g] / (2k)
12
i
the intensity is
ar 1 ol-1/2
Loy S-S (25)
and, by using equation (25), the tangential velocity is
wefo [1 oL (s (26)
T 2nr |7 12

It is evident from equations (25) and (26) that both %g and Vi

become infinite at r = 0. These are also properties of a mathematical
point vortex. Unlike the point vortex, however, the velocity distribu-
tion given by equation (26) leads to a finite kinetic energy for the
core flow, as will be shown later.

Axial velocity field u(r).- The preceding development led to the
picture of the cores as a superposition of concentric vortex helices,
each helix being a vortex filament from the original sheet. A helix of

radius r has an intensity %g and induces a constant longitudinal

velocity du across its interior. As shown in appendix A the differ-
ential induced velocity due to this elemental helix is

- ar ~
du = n(r) — dr (27)

where n(r) is the number of vortex turns per unit length of the core
and

n(r) = va(x) (28)

2ﬂr[y cos & + u(ri]

OV =
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At the surface of the developing core the longitudinal velocity is
V cos &, since u = 0; therefore, n(r) is given by

VT(T)

n(r) = —
2nrV cos d

However, as more vortex lines are added, the longitudinal velocity u(r)
within the core tends to change, thus changing n(r) of the filaments
within the core. After the cores are fully developed, n(r) is given
by equation (28). The value of u at a given radius is obtained by
summing the velocities induced by the helices exterior to that radius,

b/3
w(r) = f n(n) g-% an (29)
r

where 17 denotes a dummy variable of integration. For the region

% 2 r 2 0, using equations (26) and (28) gives

- - 1/2
n(r) = - ‘o 1- i; (b - 5r)21. (30)
(Enr)ety cos ® + u(r)‘ L 16 |
therefore,
b/3 \
(r) = —2— 1.2 ' > Sy R (51)
u by Pp2 e /; [V cos B + u(n)i (T]g n) 1

This integral equation has the equivalent differential form

T2 \
(V cos B + u) dw_Zo0 (D >

The solution of this equation, subject to the condition u{%): 0, gives

the axial velocity field. Although the differential equation is non-
linear, it is readily integrated after separating the variables. Thus,

u I 2 -b/l5 .
f (Vcos & + u')du' = BL f br) _ %)d,]
O i

hﬂgbg r R
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Expansion of this equation yields

1.2 9Fo2 R b b
= u“ + uvV cos 8 = loger - logg =+ —~ 1
2 L xPp2 > >r
and since
2

r L

0 - % y2(1 - cos®s)

b2 I

the axial velocity field becomes, as a function of core radius and wake
inclination angle,

2
u = \JVECOSQS + —9%— ve(a - cos25)<—3b; - 1 - log, %} - Vcosd (32)
or
2
u="Vcos & ﬁ + 22— (sec® - 1)ry(r) - 1 (3%)
where

£1(r) = (5% - 1 - log, %)

This relation (eq. (32)) predicts an infinite value for u at
r = 0, but unlike the velocity field vgq, the kinetic energy of the

u(r) field is infinite. In order to obtain a more useful picture of
the axial velocity field, divide both sides of equation (33) by V cos
to obtain

- ‘
v - 2 - m
— \Il + 2 (tan®s)f(r) - 1 (3k)

which gives the ratio of the axial veloecity u +to the wake-direction
component of the free-stream velocity. A plot of fl(r) against r/b

is presented in figure 12. Now for small values of ®, say & = 59,

tan®s = 0.008. TFor most of the core area, say r = 0.1b (this includes
91 percent of the total core area), fl(r) is small, reaching the value

of 1.1 at r = 0.1b. Thus for small wake angles the axial velocity u
is of negligible magnitude over most of the core area. Very near the
center, however, the ratio attains very large values, becoming infinite
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at the core centers, even for values of ©® approaching 0. It is
obvious from physical considerations that the large core velocities
cannot exist, and the reason for their prediction by equation (34) can
be directly traced to the assumptions made in the derivation of this
result.

In the derivation of equaiion (29) (see appendix A), it was assumed
that n was sufficiently great that each vortex turn could be considered
to lie in a plane. This assumption is equivalent to a pitch approaching
zero for all helices. However, an analysis of equation (3%0) with u =0
shows that even for appreciable values of & (8 € 30°), n is small
(n << 1) for the outer helices (r near b/3). Hence, the planar con-
dition is not approached and due to the inclination of the induced-
velocity vector with respect to the core axis the potential magnitude
of the axial velocity over the core interior will not be realized.
Additionally, these same effects on interior helices may produce nega-
tive axial velocities which can counteract the positive induced veloc-
ities of the outer helices.

In the derivation of equation (26) the rollup of an infinitely
thin vortex sheet was considered, so that the vorticity at the tips

<y = i%) was infinite. In reality, the vortex-sheet wake consists of

a layer of rotational fluid which attains appreciable thickness near
the tip (ref. 4 and fig. 13). Since the vorticity of the layer is
spread over a finite volume of fluid the vorticity density at the tip
cannot be infinite, for a finite circulation in a circuit surrounding
the tip region. Surveys show that near the center of the rolled-up
vortex cores the fluid possesses a large but coastant vorticity and
the fluid there must rotate as a solid. Within this small subcore,
vp 20 as r -0, so that n again becomes increasingly smaller as

the center is approached. Thus, no infinite axial velocities can
actually occur.

These effects associated with a more accurate representation of
the physical flow regime as it actually exists, offer a sufficient
explanation as to the invalidity of equation (34) very near the core
centers.

It is of course possible to extend the analysis to a more refined
consideration of the physical flow regime so as to include the effects
of the subcore on the axial velocity field. The primary problem then
is to establish the size of the subcores. However, due to the comp-
plexity of such a treatment, and in view of the fact that u is very
small, even for relatively large values of & (& S 30°), as is con-
firmed by experimental evidence (ref. 4), such an analysis is not
Justified for the purposes of the present investigation. Therefore,
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it is now assumed, to the degree of accuracy of the foregoing assump-
tions, that the axial velocity field is sufficiently small so that its
effects may be neglected in the calculation of the airfoil forces.

Rate of Deformation of the Vortex Sheet

The preceding results concerning the deformation of the vortex
sheet can be used to determine the degree to which the sheet has rolled
up at any given downstream station ("downstream" referring to distance
along the X-axis in fig. 5). Considering a cross section through a ]
developing core, such as shown in figure 14 where vp 1is the tangential i
velocity at the core surface (assumed uniform around the periphery), the
rate at which the sheet adds to the core is given by

EZ"—'VT (%35)

where dy 1is an elemental length of the sheet. The relation between Yy
and r as previously developed is (eq. (22))

23

dy = - g dr (36)

The time required for the core to develop to a radius r is therefore

Substitution of vp from equation (26) yields

: fr 1 5]-1/2
t = — - = -
Vb sin & 0 n[: B2 (b 5n):} " (37)

The downstream distance x corresponding to this time is

r -1/2
X =Vt cos & = 6 cot & b/‘ il - L (b - 5ﬂ)2 / dn (38)
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The rolling-up process is complete when r = %, and the time and
distance for complete development are obtained by setting the upper
limit equal to b/3 in the common integral of equations (37) and (38).

Using the general result

p2

(a2 - p2)

sin"l g + Constant

p [ 2 2, a2
dp = - = a~ - + =
P P P 2

1/2

and associlating p with 7 (p = nl/e), the common integral of equa-
tions (37) and (38) can be evaluated to yield the results

t=nVsu16[ J_V5 1) ifl“%%} (59)
oo HEET e

for any value of r.

o'

} (40)

For complete rollup of the elliptical sheet, r = %, therefore,

T = 0.1211 % cos & (k1)
d = 0.1211b cot B (L2)
For small angles,
5 - 2 Lo
a2 Vb
Since for an elliptical wing
c
5 = 4 L
3 A

equations (41) and (42) may be written in the following form:

T = 0.9% éi (43)

<o




22

d = 0.9%b é% (4h)

This form is useful for comparison with Kaden's results (ref. 2).
DETERMINATION OF THE AERODYNAMIC FORCES

_.)

The lifting airfoil experiences a resultant aerodynamic force F

which is composed of the 1ift and induced drag components taken normal
and parallel, respectively, to the free-stream velocity. In the present

system of axes (fig. 5) the gerodynamic force f’ is resolved into com-~
ponents F, and Fy as shown in figure 15 where the positive force

directions are indicated by the vectors. The transformation equations
for the two force systems are, from figure 15,

L =F, cos & - Fy sin & (5)

Dj = F, sin & + F, cos ® (46)

Z

Determination of any two force components allows the calculation of the

-
resultant aerodynamic force ¥; therefore, F, and D; will be deter-

Z
mined for this purpose.

Determination of F,

Far behind the airfoil the wake consists of two vortex cores con-
taining the coiled vortex sheet. Withlin the vortex cores the motion
is irrotational except for the surface of velocity discontinuity repre-
senting the coiled sheet. This wake has been created from air which
was initially at rest (considering the flight of the wing through still
air). The creation of the motion associated with a unit length of the

-
wake has required the application of a definite vector impulse -I' by
the airfoil. From the viewpoint of a stationary airfoil in a free-

—_
stream flow of velocity V (steady flow), the instantaneous time rate
of change of the total impulse of the wake is constant and equal to a
component of the aerodynamic force acting on the control volume,

-

o= 4
F' o= = (u7)
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Since the impulse is a vector quantity, it may be resolved into its
components, whence

e L 30 )
2 dt
ar
Fy' = a%ﬁ e (48)
F.!' =0
Yy |
J

(Fy' = 0 Dbecause of the plane of symme%ry of the wake).

The coiled vortex sheet may be considered, as previously mentioned,
as being formed from a superposition of concentric helical vortex fila-

ments of strength %g dr. Corresponding filaments (one from each core)

form a vortex pair which may be considered part of the boundary of an
infinite vortex ring of which the bounding filament is helical in form.
The total impulse of a unit length of the wake may therefore be obtained
by summing the impulse contributions of all the vortex filaments com-
prising the cores.

For any vortex ring formed by a closed vortex filament of strength T°
the impulse acting on the boundary generating the motion from rest is

T-= ffs o(F - #)dS (49)

where p¢ is the impulsive pressure acting at a point on a surface S

having the ring as its boundary, and @, and @ refer to the potential

values at neighboring points on either side of the surface (fig. 16).
On passing through the surface the potential must suffer a Jump equal
to T whence @, - §, =T, and

T- ffs oTH as (50)

ﬁ
where 7 ds = dS, gives the resultant linear impulse to generate the
-
ring. The value of I is independent of the form of the surface S
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taken, by applying Stokes' theorem. Since I' is constant by Kelvin's

circulation theorem (%%ﬁ‘ggaidf)= 0 , the force required to increase

the impulse of the ring is

aT a 5,
al _ 0 & n ds 1
at P dtjj (51)

The impulse of a helical vortex pair located at radius r within
the core is now determined. The axes of the helices are spaced wb/h
apart as shown in figure 17. Corresponding points on the two filaments
may be connected by a straight line parallel to the Y-axis so that a
surface may be constructed, all of whose generators are normal to the
X- and Z-axes and connect corresponding points on the two helices as
shown in figure 18. If this area is denoted by S, the impulse per
unit length of the pair is

S
-
dI'=ff o & arw’ as (52)
dr
The z~component of this impulse is
. ar S—-)—-)
ar,' =p = dr n.z 4s (53)

_’
where 2z 1s a unit vector parallel to the Z~axis. However ﬁiE)dS is

merely the projection of the area ﬁ’dS on the X-Y plane (fig. 19), so
that equation (53) becomes, considering the symmetry of the projection
of a helix with regard to its axis,

ar
b o dr (54)

and this gives the z-impulse per unit length of a helical-filament pair.

From the results of the section "Axial velocity field wu(r)," the
Jongitudinal velocity u 1s negligible so that integration of equa-
tion (54) yields the simple result

b/3
b ar b
F'=TF = — V —_ = —
\/; o n éos o} dr = p m ToV cos B (55)
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for the z-component of the aerodynamic force. This is exactly the same
result as would be obtained by considering the cores as line vortices
of strength I,.

From figure 18 it is evident that there should exist also a force
component F.', since from the geometry of the wavy impulse surface it

X
555
UZY\ x.n dS < 0

can be seen that

where X 1is a unit vector in the positive x-direction; that is, there
is a net component of impulse surface area in the negative x-direction.
This force Fy' 1is clearly the force associated with the increase in
longitudinal momentum due to u. Under the assumption that u is
negligible, Fyx' = 0.

A second method for determining F, through a consideration of

the hydrodynamic mass of the wake body is given in appendix B. The
results, as may be expected, are again identical tc those for a vortex
pair.

Determination of Dj

The component D;i of the aerodynamic force is determined by an

integration of the wake kinetic energy. The basic relation for this
calculation is the power equation,

©,0 S o)
ax /ﬁ 1Y y2 o2 pr C u2 4+ v= + W
= = VDj = pV ) e—————dS + pV cos B [/ ds
it {1 = pV cos u[\ > oV co S

Se .2 2
+pﬁc“+‘2’“’2uas (56)

where «,0 denotes an integration over a plane taken perpendicular to
the cores and far downstream of the wing, of the area external to the
vortex cores, and S, denotes integration over the core areas. If u
is considered negligible, equation (56) becomes simply,
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(a) (b)

©0 o .2 Se 2 4 2
Di=pcos6\/f L—;i-ds+pcosﬁjf V——;——"-r—ds (57)

These integrals are designated (a) and (b) as shown.

Integral (a) is simply evaluated by considering the two-dimensional
velocity field due to the vortex pair. The complex potential is (fig. 20)

W = ik logg Ry - ik loge Ro (58)

T
where «k = -2—%. The stream function of the motion is V¥ = k loge R—l, SO0
2

that

£ cos skZY“w’o (v2 + w2)as

1]
nlo

cos[[mo< 5—- vgi)dydz
cos affw’o [a% (w) - < (w{ldy az

(59)

since the flow is everywhere irrotational. By Stokes' theorem and
equation (59)

cossﬂm,o(ﬁ+#)ﬁ=—§-cos6§gcv(vdy+wdz) (60)

hVE Rel

rlo

where the contour C denotes the core boundaries and the connecting
line as shown in figure 20. The integration is carried out in the
positive direction with the enclosed area to the left. Since

(v dy + w dz) = vy ds, where Vp 1s the tangential speed at the core

boundary, equation (60) becomes

00,0 Cl R
% cos 6/] (v2 + wg)dS = -p cos Sfﬁ loge ds (61)
Ro

O\ B
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where Cq denotes counterclockwise integration around the right core

only. On this boundary R; = % so that

- 55 kvp loge Ty ds = - 5?—(— log, % (62)
Rl I‘lb . .
(In the expression loge §§ = loge ;Eg, b 1s cancelled before inte-

gration.) For rp we have

Cl 21 T
55 K(loge r2)VT ds = % L/; Vip E% log, re(e)de (63)

From the geometrical relationships of figure 21, the following functions

of 8 are obtained: N

VT(G) =

|
N
]

cos |6 - sin‘l <s1n 0 )

BTEZG) |
’ T (64)

21b t T, 8)

r2(6)

[t}
|/\ |
=

5

LA % cos 6)2 + <§29—9>%}l/2

Graphical integration of equation (63) then yields

2

C1 T,
9§ K(loge r2)vT ds = -6.432 o3 (65)
T

and integral (a) of equation (57) becomes

w0, 0 |
g cos 5\[7p (v + w2)as = 0.1205p cos & I',2 (66)

Integral (b) of equation (57) is to be evaluated over both vortex
cores. If the geometrical relations of figure 22 are used, the core
velocity components are



28

I‘\ . .
v = .0 r sin © _ sin °] Il _ j; (b _ 3r)2
en | . 2 5 r |\ b2
<Z b+ rcos 8] + (r sin 8)
| /
=4 (67)
r B ﬁ b+ r cos 6 -]
w = -9 _gos 61y _ L (b - 5r)2
21 . W2 b
<— b + T cos e) + (r sin 08)°
|\ b .

The velocity vy within the cores, as given by equation (26),

becomes infinite at r = 0. The kinetic energy of the core however
approaches a finite value. If a very small region near the center of
the core where vy becomes large is considered, the kinetic energy of
this region can be obtained by summing the rotational and the transla-
tional energies. Thus,

dE! = (% pVT22nr dr + VgsinES % pa2nr dr)
where
T2 1 1
2 o1 _—(b—B)EJ
v I
T Yn? re [j be
and .
2
I r 2
gt =420 11X (v-mm)2lan+ & or 2
n 2 27°
1 T Jo T b N 72 b
B ) 2
| L (gr.2r) 2 i ® (68)
b\ b 2y 73 b2

and the kinetic energy per unit length of the core is finite, even
though the rotational velocity is infinite at r = O.

Now arbitrarily choosing a small value for r, say r = 0.00lb,
integral (b) can be evaluated by using equation (68) to obtain the
induced drag corresponding to the energy in the region O < r S 0.001b

ONU B
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D; = 9.1098 5in®% cos BEVADH2 (69)

Aerodynamic Forces

Solving equation (46) for F, and substitution into equation (45)
gives the 1ift force,

L =F, sec - D; tan (70)

From equation (55), after substituting for FO,

F, = 3.8757 sin & cos BpVob? (71)

From equations (69), (70), and (71), the final expressions for the lift
and drag forces are

L = oV2(3.8757 sin & - 9.1098 sind)

D; = pV2b2(9.lO98 sin®s cos )
12
Since E; = A, the corresponding coefficients may be expressed as

2A(3.8757 sin & - 9.1098 sinds)

Cy,
(72)

D, = 2A(9.1098 sin“® cos 5)

1

1]

It follows from equations (72) that the forces are directly proportional
to the aspect ratio A.

The results of equations (72), obtained by using © as a parameter,

C
are plotted in figure 23 in the form T% against
C Cpi
1ifting-line result Z? = \lx —%l

Crs
—Di. The linearized

is included for comparison.

N\ H
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and by using the following integral for the induced drag corresponding

to the energy in the region 0.00lb Sr S E,

o) N -
p cos & 29__ o/3 fgﬂf r sin 6
0 L (

5 5
4 Y 0.001b ﬁ b+ r cos e) + (r sin )@

—D -
|
\
|

] 5 ﬁ b + r cos 8
- E&E_Q\’ - jE (b - 3r) + 5
r b :<£ b + r cos 6> + (r sin 8)°

L

_zﬂ
|
- Egi_g vl - = (b - 5r)2
4
This integral may be evaluated numerically for each core yielding the
total value (sum of both cores)

1
1
[

2

Iy
5.0056p cos & ——
2n2

The integrations were performed by digital computer using Simpson's
rule. Evaluation of equation (68) for the region 0 < r € 0.001b
over both cores yields for the induced drag

2
o.oooooﬁ] p cos Bl

{% (0.0060 - 0.0000045) +
2 72 ps

This subcore value is an extremely small percentage of the total kinetic

energy of the cores and an even smaller percentage of the total flow
kinetic energy. Hence it is immaterial whether the velccity field of
equation (26) or that due to a subcore of constant vorticity (as is
the actual case) is used to determine the kinetic energy of the flow
near the core center, since the value is in either case negligible.
This is true, of course, only if the radius of the constant vorticity
subcore is small, and experiment shows this to be the case (ref. 4).

Substitution of the final values for integrals (a) and (b) into

2
equation (57) and replacing Iy with %5 Vb sin & gives the induced

drag as a function of & as follows:



AU = B4

31
DISCUSSION OF RESULTS

One of the most important results to be noted from the normalized
drag polar of figure 23 is that & maximum 1lift coefficient exists and
this maximum coefficient is proportional to the wing aspect ratio. From
equations (72), the maximum lift coefficient is

CL,max = 1-94A (73)

and this occurs for a wake angle & = 22.1°. Thus CL,max is obtained
when T = 1.86Vb for an elliptical circulation loading.

The relation for Cp max (eq. (73)) requires some explanation

since it predicts unrealistic values of 1ift coefficient for wings of
large aspect ratio. For example, for A = 15, CL,max = 29.1. It is

clear that for wings of large aspect ratio, CL,max is determined by

some effect other than the wake induced velocity. For normal wings
such as considered herein, CL,max is set by the physical ability of

the section to produce circulation. If a Joukowski profile, as obtained
by conformal transformation of & circle of radius a is considered, the
theory shows that for the section,

C, = 8x % sin ag

where ¢ 1is the chord of the profile and a, 1is the absolute angle of

attack of the zero 1ift line. This angle @, determines the circula-

tion around the section, since the Kutta condition requires that the
point on the circle corresponding to the profile trailing edge be s
stagnation point. The maximum value of a/c is 1/2, so that for this
case

CL = l"ﬂ sin (I,a

and

CL,ma.x = )-HI

for o = %' When a, = %, the front and rear stagnation points for

both the circle and the profile have coincided. For the profile, both
stagnation points then lie on the trailing edge, and any further pro-
duction of circulation is impossible from a physical standpoint. If
all profiles are assumed to behave in a manner similar to the Joukowski



%2

profile, the limit Cp pay = kn = 12.6 may be set for all profiles.

Now assuming that a maximum section 1lift coefficient of 12.6 can be
attained by each section of the three-dimensional wing, the wing 1ift
coefficient cannot exceed 12.6. Hence, regardless of aspect ratio,
the absolute Cy pgx ©Of the wing cannot exceed 12.6. This leads to

the conclusion that only wings having A < 6.5 will have CL,max

2
limited by wake effects. Here A = g— where
W
b/2
Sy = c ay
-b/2

These results are summarized in figure 24 which is a plot of maxi-
mun circulation 1lift coefficient against aspect ratio. Below an aspect
of 6.5 CL,max 15 given by the relation

CL, max = 1-9%A

Avove this value of A, OCp gy 1is equal to 12.6. This curve may be

considered the boundary of all possible circulation 1lift coefficients.
(See fig. 24.)

A brief analysis of the physical meaning of CL/A is of interest.

In the derivations only an elliptical distribution of circulation is
considered to exist for each value of T, without regard to the physi-

cal means for obtaining such a distribution. In practice any number of
wing configurations producing a given 1ift coefficient and having
elliptical circulation can be had merely by a suitable combination of
chord, camber, and twist distributions, for the same span. Hence the

2
aspect ratio A = be can scarcely have any unique physical meaning,

since it depends upon the particular S, chosen for its definition.
The value of S, to be used in computing the value of A for use with

figure 23 is therefore arbitrary, so long as the same value is used to
define the 1ift coefficient for the wing. This follows from the fact
that the normalized 1lift coefficient is independent of wing area:

CL _ 1L Sw_ L

A4Sy p2 g2

-

t

[OANN 0N i
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Thus, figure 2% may be used as the drag polar for wings which appreci-
ably alter their geometry and area for various regions of the lift
range, provided of course that the circulation distribution at each
1ift condition approximates the elliptical form. The problem of
designing a wing which will possess an ellipticel or any other speci-
fied distribution of circulation at a given Cj necessitates a knowl-

edge of the downwash distribution at the wing and, as previously men-
tioned, this information cannot be furnished by momentum considerations.

c Cpy\ 172
. s . L _ -Di
The Prandtl lifting-line result o 1t Y

ure 23 for comparison with equations (72). No appreciable deviation of

is shown in fig-

C
the linear and nonlinear relations occurs below 7% = 1.1. Thus use of
2

C
the linear-theory result Cp; = ;%— for calculation of the induced drag

appears valid up to the values of 1lift coefficient equal to the aspect
ratio of the wing. This result is also summarized in figure 24 which
shows a plot of the equation Cj = 1.1A. TFor combinations of Cy,

and A below this line, 1lifting-line theory is valid. Above this line
the nonlinear relation of equations (72) is applicaple.

Unfortunately, experimental data at sufficiently high values of
CL/A for comparison with the nonlinear region of tae theoretical

results do not exist. However considerable data are available for
boundary-layer-control wings of various aspect ratios and planforms
operating at moderate values of C(, and experimental results (refs. 5

to 13) for several wings are compared with the theory in figure 25.

As shown in the figure, the experimental points represent a range of
aspect ratios, planforms, and boundary-layer-control systems. In all
cases the maximum 1lift coefficient of the wing is limited by stall,

and the points shown represent values just before the stall of the
wing. The data correlate well with the normalized polar, even for the
rectangular planform and wing-body configurations. The data for the
wing of aspect ratio 20 correlate especially well, as might be expected.
Reasonable agreement occurs even for wings with appreciable amounts of
sweepback. This agreement may be considered as experimental verifica-
tion of the theoretical prediction that the lifting-line relations are
valid even for high 1ift coefficients provided the aspect ratio is suf-
ficiently large (Cp, £ 1.1A).

An additional point of interest in figure 2% is the relation

Cr = Cn:. At ‘L., 90 %L _ %Dt ang ir the total drag of the win
L—Dl' A * b4 A—A) g g
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is assumed to equal the induced drag the thrust required for flight is
equal to the 1ift. Thus, an aircraft capable of operating at Cy 2 1.90A

must have sufficient thrust to take off vertically. This result may be
used as & rough demarcation line between STOL and VIOL capabilities of
a given STOL aircraft,

The drag polar of figure 23 as established by this investigation
is similar to that arrived at by Helmbold (ref. 14) using a different
procedure. The agreement is due, however, to the fact that the axial
velocity field is assumed negligible in the present treatment. In the
derivations of reference 14, no restrictions were placed on the induced
axial velocity so that the agreement with the present results indicates
that the assumptions of reference 14 reduce it to a two-dimensional
treatment of the problem.

The result given in equation (42) predicting downstream distance
at which the vortex sheet is fully rolled up may be compared with the
result of Kaden (ref. 2). Kaden's relation for an elliptical sheet,

d = 0.28p A
CL
may be put in the form
- 0.0k cot B
b

. From equation (42),

5o’

CL _X
for small values of B, since 23

= 0.12 cot ®

o’lR

The present theory predicts a distance three times as large as does
Kaden's result. However, Kaden's derivation is based upon the rollup
of a semi-infinite vortex sheet, so that the question as to when the
rollup is complete is indeterminate, making the coefficient 0.28 some-
what arbitrary in nature. The result of the present theory is based
on complete rollup of a finite semisheet. The apparent difference in
the two results is practically negligible, however, as may be seen by a
consideration of figure 9. Here it is seen that the greater part of
the vorticity is concentrated near the center of the core so that, for
example, when the core has grown to only 64 percent of its final radius
2r

(TT = 0.&4) it already contains 92 percent of the vorticity. Using

this radius, r = 0.22b (where equations (20) and (22) diverge
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appreciably), as the basis for essentially complete rollup, the result
from equation (40) is

= 0.05 cot &

ole

which may be taken as the "essentially" complete rollup distance. This
choice of radius is, however, purely arbitrary and the complete rollup
distance is given by

d-0.12 cot 8
b

That the complete rollup requires considerably more distance than
the essentially complete rollup is shown in the experimental data of
Muttray (fig. 18 of ref. 15) where the vortex cores move inward lat-

erally toward the equilibrium line y = % b only very slowly.

A knowledge of the rollup distance is primarily of interest in
estimating the downwash field for longitudinal stability analyses. In
lieu of accurate experimental data, a first-order approximation of the
downwash field behind a highly loaded wing might be estimated from the

foregoing results. For this purpose the relation % = 0.05 cot & is

plotted in figure 26 as a function of CL/A by using equations (68).
This plot shows for example, that the vortex sheet of a wing with

C
aspect ratio 6 pulling a 1lift coefficient of 3 <7% = 0.5) will be
essentially rolled up at a distance d = 0.76b along the wake axis.
If the tail location is such that it lies beyond d for. a given CL/A,

the velocity field may be estimated by use of equations (58) and (67).
If the tall is located forward of d the velocity field might be
roughly estimated by use of Kaden's results (ref. 2) for the lateral
location of the cores, combined with equation (40) which determines
the size of the cores. It is emphasized that this method is quite
approximate, but it furnishes a means for first-order analysis of sta-
bility effects at high 1lift coefficients.

CONCLUDING REMARKS

The objective of this paper has been the development of the com-
Plete drag polar for wings having an elliptical distribution of circu-
lation and the obJjective has been sought through a detailed considera-
tion of the wake produced. In the course of the derivations the
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assumption was made that the axial velocity within the cores was negli-
gible in its effect on the wing forces and an attempt was made to
justify this from both theoretical and experimental considerations. In
view of the other simplifying assumptions made in the derivations a
more detailed analysis of the axial velocity field does not appear
Justified.

The resulting theory predicts that the wake induced velocity limits
the maximum 1ift coefficient to a value equal to 1.94 times the wing
aspect ratio A for wings with A < 6.5 and that airfoil section char-
acteristics 1limit the 1ift coefficient to 12.6 for wings with A > 6.5.
The theory also indicates that up to lift-coefficient values of 1.1A
the results of the linear lifting-line theory are valid. Although
experimental data for values of 1ift coefficient Cy sufficiently high

C
to compare with the theory near (j%) are not available, existing
max

data for many current wing planforms using boundary-layer control cor-
relate well with the theoretical results in the lower range of CL/A.

Experimental data indicate that with the relatively small amounts of
boundary-layer control currently being used on operational aircraft,
the stall 1ift coefficient is still sufficiently low that linear theory
is applicable.

Finally, experimental evidence indicates that the theory predicts
with reasonable accuracy the lift-drag relationship near stall CL,max

of wings with widely varying planforms, flap deflections, degrees of
sweep, and methods of boundary-layer control.

Langley Research Center,
Naticnal Aercnautics and Space Administration,
Langley Field, Va., November 1k, 1960.

M~ v ™ L L



[N e .

57
APPENDIX A
THE AXTAL VELOCITY FIELD OF A VORTEX SCLENOID

The vortex lines comprising the vortex sheet which emanates from
the trailing edge of a lifting airfoil coil about the tip filament to
form concentric helices as they pass downstream. By virtue of their
helical form they act as a solenold, inducing arn axial velocity u
within the vortex core. The following is a brief derivation of the
velocity profile of such a vortex solenoid.

Magnitude of u Due to a Single Vortex Ring of Radius r

Far downstream the solenoid can be considered as having infinite
length and being circular in form. The number of turns per unit length
of each helix is assumed sufficient that each turn can be considered to
lie in a plane normal to the axis. From induction theory, the axial
velocity induced at its center by a ring of radius r is

en
_ ar _ ar
Moenter ~ e Jg rdé = = (A1)

where dI' is the strength of the vortex filament and 6 1is the angle
as shown in figure 27. For any point P on the axis of the helix,
located a distance x from the ring, the axial velocity induced by the

ring is

21 2
ar
Au . o= dl'r JF r d9 = L (A2)
P,axis . 2
’ Mﬂ(xe + r2)5/2 0 2(}\:‘2 + r2)5/

Magnitude of u Due to a Single Infinite Helix of Radius r

If n 1is the number of turns or vortex rings per unit length of
the helix of strength dI' and radius r, then the circulation per unit
length is n dI' The circulation about a ring of width dx is n dI' dx
(fig. 27). From equation (A2) this ring will induce at a point P on
the axis the velocity

nreal dx nredl dx

2 )3/2 - 2R5

Au s =
P,axis
’ 2(x2 + T
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where R is defined in sketch at bottom of figure 27. For the velocity
at P due to a length 1 of the helix (using bottom sketch of fig. 27),

n dr 92 ar
_ . _n
A“P,axis =5 Jf sin 8 a6 = 5 (cos 0, - cos‘eg)
91
since
n dr erX _nar R.de sin29 _nar sin 6 4o
oRJ 2R sin 6 2

When the helix is infinite, el = 92 =0 and

Mup =n 4l (AB)

Velocity Profile u(r) for Entire Vortex Core

A helix of radius r having n(r) turns per unit length and

strength 4I' = %% dr contributes an element of axial velocity of

ar
a = = 4
u n(r) r

at all points on the axis of the helix. Since the helix i1s infinitely
long this velocity is constant over the interior. By summing all the
helices comprising the core, the axial velocity profile is

T
u(r) = lim Z buy = f ° n(n)d—F an (AL)
kKoo r dn

where 7 1s a dummy variable of integration, r, 1is the outer radius

of the vortex core, and k 1s an integer.



NI

29

APPENDIX B
ALTERNATE METHOD FOR CALCULATING F,

The stable wake far downstream from the wing consists of two vortex

cores of diameter %b with centers ﬁb apart moving normal to them-

selves with a velocity V sin & (fig. 10). The relative closeness of
the cores results in the formation of two distinct systems of streamlines
relative to the cores, as will be shown. One system is closed - that
is, the streamlines form closed curves about the cores - whereas, the
other consists of open streamlines - that is, beginning and ending at
infinity (fig. 28). The result is that the vortex pair entraps the
fluid within the closed system and carries it along in its translation
with a velocity V sin ®. The force exerted by the airfoil to give this
mass of air the translational velocity V sin 8 is clearly the aero-
dynamic force Fj;. This force consists of two parts: that associated
with the translational momentum of the closed body of fluid and that
necessary to accelerate the body of fluid to the velocity V sin &.
Determination of the time rate of change of the z-impulse associated
with the formation of this wake will, as before, give the force F,.

The calculation is begun by first determining the boundary of the
closed body, that is, the enclosing streamline, from which the sec-
tional area may be established. Since each core has a strength Ko

the complex potential of the steady flow is, in terms of the complex

variable z' =y + iz,
s [ 3
W( ) _ I‘o i1 ! ' 1 1 1 (V . 5) l<——2—) ' ( )
z —51[ oge(z - zl) - oge(z - 22)] + sin ®)e z Bl
whence
1/2
2 2
v To 10 [(y-yl) +z] Vy sin & (B2)
= = - sin
on e 12"

[(y - y2)2 * 22]

Here y and 2z are Cartesian coordinates. The bounding streamline is

2
given by V¥ =0, and since Ty = Er Vb sin 8, the equation of the boundary

becomes, after some transformations,
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y = g b{oge [(y + %)2 + 22} - log, I:(y - g)g + 22}} (B3)

This implicit equation can be solved graphically to obtain the boundary
streamline. The section of the wake is an oval with minor axis of

0.926b and major axis of 1.639b, with an area of 1.76Ob2. As is evident
from equation (B3), the cross-sectional area is independent of both T

and core radius.

The wake may thus be considered as a fluid cylinder of oval section
moving normal to its axis with velocity of V sin &. This cylinder
carries a momentum per unit length of

O\ - B

pA'V sin 8 (BA4)

where A' = l.760b2, the sectional area of the cylinder. The part of
the force F, due to the cylinder momentum is obtained from the time

rate of change of the wake z-momentum due to the creation of the cylinder,
(Fz), = pVPsin & cos BA' = L. T60pV°b°sin & cos & (25)

The second part of the force F, 1is that associated with the flow
momentum external to the cylinder. The fluid motion external to the
fluid cylinder is identical to that associated with the motion of a
so0lid cylinder of the same shape. As predicted by hydrodynamic theory,
the application of a definite impulse is required to accelerate an
immersed body from rest to a steady velocity U in a fluid also at rest
initially, and this impulse is greater than that needed for equal accel-
eration in a vacuum. Thus the presence of the fluid increases the
effective mass of the body by an amount M', the hydrodynamic mass,
which is equal to the drift mass of the particular body.

The power expended in generating a unit length of the exterior
flow about a s0lid cylinder of any sectional shape moving normal to its
axls 1is

aE au
= = F'U = M'U — B
at dt (56)

where F' 1s the part of the total force which must be applied to the
body to overcome its acceleration drag. Converting equation (B6) to
an impulse gives
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k/hF'dt = MU =T’ (B7)

where I' 1s the impulse per unit length of cylinder to generate the
external motion from rest. The determination of the second part of F,

now reduces to a calculation of M' for the oval cylinder of the wake.
The oval is assumed to be a true ellipse, since it varies only

slightly from an ellipse with similar minor and major axes. The kinetic

energy in the flow exterior to an elliptical cylinder with major axis 2a

and minor axis 2b, moving with the steady velocity U normal to its
semiaxis a 1s, per unit length,

E = % an2a2 (B8)

Using equation (B6) yields

M' = pra? (B9)

for the cylinder drift mass. In the present case a = 0.819b and
U=V sin & and I' is obtained from equation (B7) as

I' = (0.819)2pxbV sin &

Then
(Fz), = 4L . 2.1160v?b%s1n 5 cos &
2 dt
Finally,

Fy = (Fz); + (Fz), = 5.876pV"b7sin & cos & (B10)

These results indicate that the fluid within the closed body carries
45.4 and the external flow 54.6 percent of the z-momentum imparted by
the airfoil to the fluid.

It is of interest to compare these results with those of the usual
momentum treatment of airfoil 1ift, wherein it is represented that the
r

airfoil obtains 1ift by imparting a downward velocity W = 7? to a mass

of air passing through a circle of diameter equal to the wing span
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L=p EE— ig-v cos B

For small values of ® (cos & » 1), this expression reduces to

3
L = %T oV2b%sin &

so that
L = 3.8760V°b7sin &
This is identical with the previous result for FZ. However, the present

treatment gives the true physical wake, while the circular form has no
physical reality.

Il(_

N\ -
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Figure 1.- Trailing vortex system behind a finite-span wing.

Figure 2.- General representation of the vortex-wake inclination.

Zero Lift
Line

Figure 3.- Forces and velocities acting at a section of a finite-span
wing having high circulstion.
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Figure 4.- General representation of the deformation of the trailing vor-
tex sheet behind a finite-span wing.

Figure 5.- System of coordinate axes taken parallel to the ultimate wake.
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Figure 6.~ Components of the free-stream velocity.
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Figure 7.- Axis system for the initially flat wake strip.

Figure 8.- Coiling vortex sheet. (See ref. 2.)
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Figure 9.- Variation of circulation with radius and the relation of the

vortex sheet to the core size.
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Figure 10.- Cross-sectional view of the ultimate wake taken normal to the
core axes.

Figure 11.- Elemental length of a vortex helix of radius

r formed by
the deformation of a vortex sheet wake.
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Figure 12.- Variation of the function fl(r) with radius in the vortex

core.
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Vortex layer ;
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Figure 13.- General representation of the thickness variation of the vor-
tex layer behind a finite-span wing. (See ref. 4.)

vr

dy

Figure 1k.- Addition of the vortex sheet to the vortex core.

Figure 15.- Force systems for a lifting airfoil.
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Figure 20.- Path of integration for determining kinetic energy external
to a vortex pair.

Figure 21.- Geometrical relations for establishing equations (6L4).

Figure 22.- Geometrical relations for establishing equations (67).
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Maximum-lift-coefficient boundary
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Figure 2k4.- Variation of 1ift coefficient with aspect ratio and regions
in which linear and nonlinear theory apply for calculation of

induced drag.
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Figure 26.- Relation of rollup distance

with normalized 1ift coefficient.
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Figure 27.- Geometrical relations for axial-induced velocity field of a
vortex helix.
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Figure 28.- The streamline V¥ = 0 which forms the boundary between the
open and closed streamline systems.
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