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Abstract: Fretting in the partial-slip and gross-slip regimes under a constant normal load is considered. The 

tangential force–displacement relations for the forward and backward motions are described based the 

generalized Cattaneo–Mindlin theory of tangential contact and Masing’s hypothesis on modelling the 

force–displacement hysteretic loop. Besides the critical force and displacement parameters (characterizing 

the triggering of sliding), the model includes one dimensionless fitting parameter that tunes the tangential 

contact stiffness of the friction–contact interface. Explicit expressions are derived for the main tribological 

parameters of the fretting loop, including the slip index and the signal index. The presented phenomenological 

modelling approach has been applied to the analysis of two sets of experimental data taken from the 

literature. It has been shown that the experimentally observed simple relation of a rational type between the 

slip index and the slip ratio corresponds to the gross-slip asymptotics of the corresponding model-based 

predicted relation. The known quantitative criteria for the transition from the partial slip regime to the gross 

slip regime are expressed in terms of the stiffness parameter, and a novel geometric transition criterion is 

formulated. 
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1  Introduction 

The phenomenon of fretting has been observed for  

a long time [1], and it is still the subject of active 

tribological research, both experimental [2] and 

theoretical [3]. Whereas fretting wear, fretting fatigue, 

and fretting corrosion are frequently encountered in 

frictional contacts subjected to prolonged tangential 

oscillations of small amplitude, overall, the accumulated 

fretting damage may become a critically decisive factor 

for long-term functionality of the contact interfaces. 

An important example of serious consequences that 

may result from fretting wear is associated with flow 

induced vibrations in the pressurized water reactor 

system of nuclear power plants [4, 5]. 

In addition to the stick regime of fretting, which is 

regarded as a non-dissipating regime [6], there are 

distinguished two main regimes of fretting wear: 

partial slip and gross slip, and their distinction from 

experimentally observed tribological characteristics 

of a contact interface, such as variations of the tangential 

force and the relative displacement, is rather to be 

regarded as one of poorly understood aspects of 

fretting process [7]. This is mainly because the regime 

transition occurs when a relative motion is undertaken 

over the entire contact interface, which is usually 

hidden from observation in the real engineering 

applications.  

Significant progress in the analysis of the fretting 

regime transition was achieved when Fouvry et al. [8] 

introduced certain transition criteria to quantify the 

boundary between the partial and gross slip. In  
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particular, based on the classical Cattaneo–Mindlin 

theory [9, 10] of tangential contact (in a ball on flat 

contact configuration), the effects of partial slip and 

dissipated energy were highlighted and, in particular, 

the so-called slip and energy ratios were suggested as 

dimensionless transition criteria.  

Varenberg et al. [11] have made another important 

contribution to our understanding of the transition 

from fretting to reciprocal sliding by introducing a 

similarity criterion, termed as the slip index, as a result 

of their dimensional analysis of the mechanics of 

fretting contact. Further, Varenberg et al. [12] have 

established a simple empirical relation between the 

slip ratio and the modified slip index that incorporates 

the friction coefficient.  

In response to the need of monitoring fretting 

characteristics in real-time, Kim et al. [13] introduced 

the so-called fretting signal index as a normalized 

phase difference between the friction force signal and 

the displacement signal, when one of them vanishes. 

However, to the best of the authors’ knowledge, there 

are no published reports revealing the interdependence 

between the different transition criteria introduced  

so far.  

In the present study, we develop a unified 

mathematical modelling framework, which incorporates 

as a special case the Cattaneo–Mindlin theory-based 

models used in Refs. [8, 13]. To keep the analysis 

simple, we employ a one-free-parameter model for the 

tangential force loading of a contact–friction interface, 

which is based on Masing’s hypothesis (see, e.g., [14]) 

for a hysteresis loop formed by the unloading and 

reloading curves in cyclic loading. In particular, the 

developed approach allows to theoretically justify the 

experimentally established relation [12] between the 

slip index and the slip ratio. As an important result of 

the presented analysis, we formulate a simple model- 

free transition criterion, which is based on geometric 

properties of the slip ratio/slip index variation curve.  

2 Theory 

2.1 Masing hysteretic model for fretting contact 

We consider a contact interface that may experience 

relative tangential motion under a constant normal 

load, N. Let F and x denote the tangential force and 

the corresponding relative displacement, respectively. 

Moreover, let 
*

F  and 
*

x  denote the critical force and 

displacement at incipient sliding starting from the 

position of rest, when the tangential load is gradually 

increasing. For quasi-static (non-accelerating) sliding, 

we assume 
*

F F  and, thus, the tangential force F is 

balanced by the friction force 
*

F N , where   is 

the Coulomb coefficient of friction. 

The functional dependence ( )F x  of the tangential 

force F on the tangential displacement x in the case of 

initial loading is termed as the backbone curve (see 

Fig. 1). We note that the derivative d ( ) / dF x x  is called 

the incremental tangential stiffness, and its value at 

the zero point is equal to 
0

tan( ) , where 
0

  is the 

angle of inclination of a tangent line to the backbone 

curve at the origin (see Fig. 1). The slop 
c 0

tan( )S   

is usually called the (initial) interface contact stiffness. 

For frictional interfaces, 
c

S  determines the maximum 

incremental tangential stiffness.  

The Masing model for reciprocating quasi-static 

sliding between the contacting surfaces with the force 

amplitude 
0

F  below the critical value, that is 
0 *

F F , 

gives the following analytical expressions for the 

forward, ( )F x


, and backward, ( )F x


, force–displacement 

curves (see Fig. 2), which are based on a chosen 

expression ( )F x  for the backbone curve, 

0
0

( ) 2
2

x x
F x F F

  
    

 


         (1) 

0
0

( ) 2
2

x x
F x F F

  
   

 


            (2) 

It is to emphasize that the Masing model exploits 

the symmetry condition ( ) ( )F x F x  
 

. 

 

Fig. 1 Backbone curve for the Masing model of the tangential 
reaction of a fretting contact interface. 
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Fig. 2 Schematic diagram for a hysteresis loop of the Masing 
model in partial slip. (A hysteresis curve, which enters the gross 
slip stage, has been shown in Fig. 3.) 

Following the Ref. [15], we assume that 

 

   
            



* *

*

* *

1 1 , 0

,

m
x

F x x
F x x

F x x

      (3) 

We note that the case 3 / 2m   corresponds to the 

Cattaneo–Mindlin theory [9, 13] (see also Ref. [8]). In 

its general form, the Eq. (3) represents the model of 

tangential reaction of a lap-type joint (we refer to the 

Ref. [13] for details). In the present study, the exponent 

parameter 1m   is used as a fitting constant, along 

with the parameters 
*

x  and 
*

F . 

If the displacement amplitude is not large, that is 

0 *
x x , then the substitution of Eq. (3) into Eqs. (1) 

and (2) yields  

0
0 * *

*

( ) 2 2 1
2

m

x x
F x F F F

x

 
     

 


        (4) 

0
0 * *

*

( ) 2 2 1
2

m

x x
F x F F F

x

 
    

 


           (5) 

where, in view of Eq. (3), the force and displacement 

amplitudes are related by 

1/

0 0

* *

1 1

m

x F

x F

 
   

 
               (6) 

If the displacement amplitude is large, that is 
0 *

x x , 

then the force amplitude 
0

F  equals 
*

F , and thus, Eqs. (1) 

and (2) imply that  

            
    

0
* 0 0 *

* 0 * 0

2 , 2
( ) 2

, 2

x x
F F x x x x

F x

F x x x x


  (7) 

and  

    
         

* 0 0 *

0
* 0 * 0

, 2

( )
2 , 2

2

F x x x x

F x x x
F F x x x x


    (8) 

where 
0

(( ) / 2)F x x  and 
0

(( ) / 2)F x x  are given by 

the first line of Eq. (3) upon the substitution of 

0
( ) / 2x x  and 

0
( ) / 2x x  instead of x, respectively.  

The schematic diagram for a hysteresis loop in  

the case 
0 *

x x  is shown in Fig. 3. In the case of 

displacement-controlled loading, when the displacement 

variable x is specified, the value of the displacement 

amplitude 
0

x  may take an arbitrary positive value.  

In the force-controlled tangential loading, the force 

amplitude 
0

F , of course, cannot exceed the critical 

value 
*
.F  

 

Fig. 3 A characteristic friction loop in the gross slip regime, 
when 0 *x x . 

Remark 1. We recall that Masing’s model of hysteresis 

in symmetric periodic oscillations between the turning 

points 
0 0

( , )x F   and 
0 0

( , )x F  assumes that the forward 

force–displacement curve ( )F x


 can be obtained 

from the backbone curve ( )F x  by means of an affine 

transformation without shearing, that is 
1

( )F x C 


 

2 1 2
( )C F c x c . The transformation coefficients 

1
c  and 

2
c are defined from the condition that the argument 

1 2
c x c  of the function 

1 2
( )F c x c  should change from 

0 to 
0

x , when the argument x of the function ( )F x


 

increases from 
0

x  to 
0

x . At the same time, the 

coefficients 
1

C  and 
2

C  are determined from the 
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condition that the corresponding values of ( )F x


 should 

increase from 
0

F  to 
0

F . Thus, from the equations 

1 0 2
0c x c    and 

1 0 2 0
c x c x  , it follows that 

1
1 / 2c   

and 
2 0

/ 2c x , and therefore, by reinforcing the 

conditions 
0 0

( )F x F  


 and 
0 0

( )F x F


, in view of the 

relation 
0 0

( )F F x , we readily get 
1 0

C F   and 
2

2C  , 

which is in complete agreement with Eq. (1). 

2.2 Slip ratio 

We recall [11] that the slip amplitude is defined as  

the amplitude of the relative displacement between 

two positions where the tangential force vanishes.  

In other words, we consider the equations ( ) 0F x 


 

and ( ) 0F x 


 and evaluate their solutions 
1

x x   and 

1
x x , respectively. The value of 

1
x , thus, gives the slip 

amplitude and by definition satisfies the equation 

1
( ) 0F x 


                 (9) 

The so-called slip (or sliding [8]) ratio is defined as 

s d
/s A A , where 

d
A  is the imposed displacement 

amplitude, and 
s

A  is the resulting slip amplitude. In 

our notation, where 
d 0

A x  and 
s 1

A x , we have 

1

0

x
s

x
                  (10) 

When the backbone curve is defined by Eq. (3), it  

is readily seen that the root of Eq. (9) is independent 

of 
*

F  (this conclusion also follows from a simple 

dimensional analysis) and thus depends on the values 

of the model parameters 
*

x  and m as well as on the 

value of the imposed displacement amplitude 
0

x . 

Hence, the slip ratio will be a function of the 

dimensionless parameter m and the relative displacement 

amplitude: 

0

*

x

x
   

In view of Eqs. (5) and (8), Eqs. (9) and (10) yield  

   
      

  

122
1 1 1 , 0 1

1 , 1

mm m

m

c

s
c

 
 




    (11) 

where we have introduced the auxiliary notation 
( 1)/2 2 m m

m
c   . 

It can be verified that Eq. (11) complies with the limit 

0s   as 0  . To this end, the slip ratio is shown 

to depend only on the imposed relative displacement 

amplitude 
0 *

/x x   and the dimensionless stiffness 

parameter m that tunes the tangential contact stiffness 

of the friction–contact interface. 

2.3 Slip index 

We recall that the notion of the slip index,  , was 

introduced [11] based on the dimensional analysis  

of the hysteretic friction loop by the equation   

d c
/A S N , where 

c
S  is the tangential stiffness of the 

contact interface, and N is the normal load. In our 

notation, we have 

0 c
x S

N
                   (12) 

According to Ref. [11], the stiffness 
c

S  is defined as the 

slop of the forward force–displacement curve ( )F x


 at 

the beginning of the forward motion (see Fig. 2), that  

is 
0

c
(d / d )

x x
S F x





. In view of Eqs. (1) and (7), we  

easily find that 
c 0

(d / d )
x

S F x


 , and therefore, Eq. (3) 

implies that  

*
c

*

F
S m

x
                  (13) 

Thus, the substitution of Eq. (13) into Eq. (12) yields  

0

*

x
m

x
                   (14) 

where we have taken into account that * .F N  

Thus, in the framework of the developed generalized 

Cattaneo–Mindlin theory-based model, the slip index 

is found to be proportional to the coefficient of friction 

 , the stiffness parameter m, and the relative 

displacement amplitude 
0 *

/x x  that we denoted 

above as  . 

2.4 Energy ratio 

Following Ref. [8], we consider the ratio between the 

dissipated energy, 
d

W , and the total energy, 
t

W , and 
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denote it by  , that is  

d

t

W

W
                   (15) 

The total energy 
t

W  is defined as the energy  

input, i.e., 

t 0 0
4W x F                 (16) 

whereas the dissipated energy (per cycle) is given by  

    0

0
d

d
x

x
W F x F x x


 

 
          (17) 

If the displacement amplitude is not large, that is 

0 *
x x , then the substitution of Eqs. (4) and (5) into 

Eq. (17) yields  

 

        

            

1 1/

0* *
d

*

1/

0 0

* *

8
1 1

1

1
1 1

2

m

m

FmF x
W

m F

m F F

m F F

       

(18)

 

where, in view of Eq. (3), we have  

0
0 *

*

1 1

m

x
F F

x

  
    
   

            (19) 

Hence, the substitution of Eq. (19) into Eq. (18) leads 

to the following result 

 

      

            

1

0* *
d

*

0 0

* *

8
1 1

1

1
1 1

2

m

m

xmF x
W

m x

m x x

x x

        

(20)

 

In particular, when the imposed displacement 

amplitude coincides with the critical value of 

displacement, that is 
0 *

x x , Eq. (20) yields  

0 *

*

d d * *

4( 1)

1x x

m
W W F x

m


 


       (21) 

It is of interest to note that *

d
0W   in the special case 

1m  , which corresponds the case of linearly elastic 

tangential response (without dissipation), when Eq. (3)  

simplifies as 
* *

( ) ( / )F x F x x  for 
*

0 .x x   It can be 

simply verified that in the case 1m  , Eq. (20) also 

yields 
d

0W   for any 
0 *

(0, )x x . 

If the displacement amplitude is large, that is 
0 *

x x , 

then the substitution of Eqs. (7) and (8) into Eq. (17) 

implies that  

* 0
d d * *

*

4 1
x

W W F x
x

 
   

 
         (22) 

where *

d
W  is given by Eq. (21). 

Thus, the energy ratio   as a function of the relative 

displacement amplitude 
0 *

/x x  can be evaluated by 

Eqs. (15), (16), and (20), when 
0 *

x x , and by Eqs. (15), 

(22), and (16) with 
0 *

F F , when 
0 *

x x . Observe that 

the energy ratio simply follows from Eq. (15) by 

substituting there the expressions given by Eqs. (16) 

and (20) or (22) followed by simple algebra. However, 

when the derived formulas are applied for numerical 

calculations, it is much simpler to program the 

dissipated ratio 
d t

/W W  in three simple steps: first, 

we calculate the total energy 
t

W , second, depending 

on the value of the relative displacement amplitude, 

we calculate the dissipated energy 
d

W , using one of 

Eqs. (20) or (22), and then, we take the ratio of 
d

W  

to 
t

W . 

2.5 Signal index 

Regarding the periodic character of fretting oscillations 

and per se following Ref. [13], we introduce the phase 

of displacement signal   by assuming that  

0
cosx x                 (23) 

It is clear (see Fig. 3) that, when the phase angle   

(being measured in radians) increases from zero to 

π / 2 , the tangential displacement x decreases from 

the maximum value 
0

x  (displacement amplitude) to 

zero. 

Let 
1
  denote the phase corresponding to the 

displacement 
1

x  defined by Eq. (9). Based on the 

phase difference between the point 
1

x x , where the 

tangential force vanishes, and the point 0x  , where 

the tangential displacement vanishes, we introduce the 

signal index,  , as the ratio of the phase difference 

1
π / 2   to the normalizing value π / 2 , that is 
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1

2
1
π

                  (24) 

In view of Eq. (23), the following relations hold true: 

1 1

0 1 0

1

1 0 /2 2 2

0

1

0

d d
d

1

arcsin
2

x

x x x

x

x x

x

x

  


   
 


 

  
 

It is pertinent to recall here that, in view of Eq. (23), 

we have 
0

arccos( / )x x   for 
0 0

[ , ]x x x  , and thus, 
2 2 1/2

0
d ( ) dx x x     for 

0 0
( , )x x x  .  

Thus, the substitution of the obtained value for 
1
  

into Eq. (24) yields  

1

0

2
arcsin

π

x

x
               (25) 

Observe that though the obtained result simply follows 

from Eq. (24) and equation 
1 1 0

arccos( / )x x  , the 

calculus-based method allows a straight-forward 

generalization of Eq. (25) for harmonic oscillations of 

a general nature. 

Finally, we note that, in light of the definition of 

the slip ratio (see Eq. (10)) Eq. (25) can be represented 

as (2 /π)arcsin s  . In other words, in the framework 

of the developed generalized Cattaneo–Mindlin 

theory-based model, the signal index   is uniquely 

determined by the slip ratio s. 

3 Results 

3.1 Transition criteria 

Following Ref. [8], we consider quantitative charac-

teristics of the transition between a partial and a 

gross slip behaviour at the fretting contact interface 

that complies with the Masing hypothesis. According 

to the assumed backbone curve (3), the transition 

between the partial slip and gross slip regimes is 

represented by the condition 
*

x x . Hence, let 
*

s , 
*

 , 

and 
*

  denote the values of s,  , and  , respectively, 

evaluated at the transition point 
*

x x . Then, in view 

of Eqs. (10), (11), (15), (16), (20)–(22), and (25), we find 

that  

*
1

m
s c                    (26) 

*

1

1

m

m
 




                 (27) 

 *

2
arcsin 1

π m
c                (28) 

where ( 1)/2 2 m m

m
c   . 

We observe that for 1m  , all Eqs. (26)–(28) yield 

zero values, whereas the criteria 
*

s , 
*

 , and 
*

  are 

increasing functions of m (see Fig. 4), such that they 

tend to unit as m tends to infinity.  

Figure 5 illustrates a general trend in the variation 

of the parameters s,  , and   as functions of the 

relative displacement amplitude .  Without dwelling 

on details of mathematical analysis, it is of interest to 

observe that all the considered functions are convex 

for 1   and concave for 1  . In other words, the 

curvatures of the curves s,  , and   vs.   change 

their signs when passing the transition point 1  . 

 

Fig. 4 Transition criteria. 

 

Fig. 5 Variation of the dimensionless parameters s, ,  and   
as functions of .  
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Hence, by generalizing the observed results, we can 

formulate the following general transition criterion: the 

transition from partial slip to gross slip is identified 

with the inflection point of any of the curves s,  , 

and   versus the relative displacement amplitude  . 

3.2 Gross-slip asymptotics 

It is of interest to observe that the slip ratio s and 

the energy ratio   in the gross slip regime are given 

by simple rational expressions. Indeed, according to 

Eqs. (11) and (22), we have 

  1 for 1mc
s 


             (29) 

  

2 1

1 for 1
( 1)m

 


           (30) 

At the same time, from Eq. (25) we derive the 

following asymptotic formula: 

  


1

2
2 1

1 2 , 1mc 


          (31) 

By comparing Eqs. (31) with (29) and (30), it becomes 

clear that the signal index slower approaches to the 

limit value as   tends to infinity.  

3.3 Variation of the slip ratio vs. the slip index 

First, we note that, in view of Eqs. (10) and (14), Eq. (29) 

can be represented in the form  

1
m

s mc



                 (32) 

where   is the slip index. 

It is of interest to observe that, based on a large 

number of experimental results, Varenber et al. [12] 

empirically established the relation 1 1.1 /s    , 

which is of the form of Eq. (32). By comparing Eqs. (32) 

with (29), it becomes evident that this experimental law 

corresponds to the gross-slip asymptotics (see Eq. (29)). 

Figure 6 shows the result of fitting of the 

experimental data for nano- and microscale fretting 

from Refs. [11, 16], which were represented in Ref. [12] 

based on average friction coefficient values. It is readily 

seen that while the simple approximation from   

Ref. [12] fits well the experimental data in the gross  

 

Fig. 6 Variation of the slip ratio s vs. the modified slip index /  . 
Experimental data is according to Refs. [11, 16]. 

slip regime, the function  ( / )s m , where ( )s   is given 

by Eq. (11), is capable of fitting also the data in the 

partial slip regime. 

4 Discussion 

As it was already mentioned above, the tangential 

contact model (see Eqs. (1)–(3)) reduces to the Cattaneo– 

Mindlin contact model in the special case 3 / 2m  , 

which corresponds to the Hertzian normal contact. 

Of course, the adopted phenomenological approach 

does not provide expressions for 
*

F  and 
*

x  similar 

to those furnished by the Cattaneo–Mindlin theory 

of elastic tangential contact. We recall that the latter 

theory, which assumes the Hertzian contact geometry 

and isotropy of the material properties, was generalized 

to arbitrary axisymmetric and non-axisymmetric 

geometries [17, 18] and transverse isotropy [19]. In 

particular, if the initial gap between the contacting 

surfaces, which is measured in the undeformed state 

in the direction normal to the contact interface, is 

described by the monomial shape function ( ) Λr r  , 

where r is the polar radius from the centre of circular 

contact area, then the following relation holds true: 

( 1) /m    . Moreover, the case 1   and, thus, 

2m   corresponds to the conical contact geometry, 

and m decreases to 1 as the shape parameter   

increases to infinity and, thereby, the contacting 

surfaces become flatter (the limiting case 1m   was 

noticed in Section 3.1).  
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The effect of the tangential contact stiffness parameter 

m on the initial part of the normalized force– 

displacement relation of the backbone curve is shown 

in Fig. 7, where the effect of different friction coefficients 

for partial slip and sliding (static and kinetic coefficients 

of friction, 
s

  and 
k

 , according to the terminology 

[20]) is illustrated as well. The modification of the 

backbone curve that accounts for different critical 

values of the tangential force 
*s s

F N  for 
*

x x and 

*k k
F N  for 

*
x x  can be formulated as Eq. (33): 

 

   
      
     





* *

*

k
* *

s

1 1 , 0

,

m
x

F x x
x

F x

F x x



      (33) 

We underline that, compared to Eq. (3), the above 

formula introduces only one additional dimensionless 

parameter, namely, the friction coefficient ratio 
k s

/  . 

Figure 8 shows the results of fitting the experimental 

data presented in Ref. [21] by using the model 

predictions that are based on the backbone curves 

given by Eqs. (3) and (33) (see curves 1 and 2, 

respectively). We note that the total energy in the slip 

regime was evaluated as 
t 0 *

4W x F , where according 

to Ref. [21], 
*

F  is the maximum tangential force 

associated with the displacement amplitude 
0

x . 

Evidently, the refined model based on Eq. (33) allows 

a better fit of the energy ratio results, and, in particular,  

 

Fig. 7 Effect of the stiffness parameter m on the variation of the 
backbone curve for 0 *x x . Effect of the different static and 
kinetic coefficients of friction ( s   k ) on the variation of the 
backbone curve for 0 *x x . 

 

Fig. 8 Variation of the energy ratio   vs. the displacement 
amplitude 

0
x . Experimental data is according to Ref. [21]. Curve 

1 is drawn based on the constant friction coefficient model; curve 
2 takes into account a drop of the friction coefficient from 0.9 to 
0.85 in the transition to sliding. 

this modified model accommodates the observed 

jump in the energy ratio upon the transition from 

partial slip to sliding. It should be emphasized that 

the ratio 
k s

/   was not used as a fitting variable, 

and its value was evaluated based on the friction 

coefficients 
s

0.9   and 
k

0.85   taken from the 

data presented in Ref. [21]. 

Yet another point that deserves a comment is a 

pronounced discrepancy between the model predictions 

and the experimental data for larger displacement 

amplitudes (see Fig. 8). Apparently, this can be 

explained by the effect of the system stiffness, that  

is of the tangential accommodation of the testing 

device [8], since the dissipated energy is evaluated 

as 
d t e

W W W  , where 
e

W  is the elastic energy. That  

is why, when the elastic energy is also stored in the 

system besides the contact interface, the share of the 

dissipated energy 
d

W  in the total energy 
t

W  decreases. 

At the same time, the models presented above 

implicitly take into consideration only contact 

deformations at the contact interface. 

Another important result of the presented analysis 

is that the empirical relation 1 1.1 /s    , which was 

established in Ref. [12] between the slip ratio s and 

the slip index  , represents the so-called gross-slip 

asymptotics. This, in particular, means that the empirical 

relation, if applied for determining the transition 

between the partial and gross slip, may introduce a  
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systematic error as a priori can be expected from any 

asymptote, provided insufficient experimental data is 

available for the analysis, and other additional tools of 

analysis (like the newly introduced convexity/concavity 

geometric criterion) are not applied.  

We recall that differential calculations were applied 

in Ref. [8] for evaluating the transition point from the 

maximum of the second derivative of a certain contact 

parameter (tangential force or dissipated energy) with 

respect to the contact displacement. It is to note here 

that the second derivative of the dissipated energy is 

identically equal to zero in gross slip. However, as 

Fig. 8 shows, the tribological data is very noisy and, 

therefore, the application of the numerical differentiation 

tools is rather problematic. On the contrary, the 

convexity/concavity transition criterion can be easily 

implemented, and, moreover, in many cases the 

transition point may be approximately established by 

the direct inspection of the plotted data. It should be 

emphasized that a number of transition criteria have 

been introduced since the seminal paper by Fouvry 

et al. [8], but to the best of the authors’ knowledge, 

the simple convexity/concavity transition criterion 

(without the necessity of specifying the backbone 

curve) has not been reported in the literature up to now. 

It is to note here that the fretting signal index was 

introduced in Ref. [13] by assuming the harmonic 

variation of the tangential force, that is like the functional 

dependence 
0
cosF F  , where   is the phase angle. 

However, this approach effectively works only when 

0 *
F F , when there is a one-to-one correspondence 

between the variables F and   in the base interval 

[0,π]  . It is also to note here that, though Eq. (23) 

adopts the first harmonic variation for the tangential 

displacement x, following the Ref. [13], the dependence 

of x on the phase angle   can be approximated by the 

equation 
0

( )x x q   with an arbitrary (including saw- 

like modulation) function ( )q   which monotonically 

decreases from its maximum, 1, to its minimum, –1, 

in the interval [0,π] . In such a way, Eq. (25) should 

be replaced by Eq. (24), where 
1
  is evaluated as 

Eq. (34): 

1

1 0

1

1 10 /

d
d

( ( ))x x q q

  


  
             (34) 

Here, 1

0
( / )q x x   is the inverse function for 

0
/x x  

( )q  , and ( )q   is the derivative of the function 

( )q   with respect to the argument  . To be more 

precise, Eq. (34) tentatively assumes that the operations 

of differentiation and integration involved may be 

defined for the function ( ).q   It is also pertinent to 

recall here that 1 1( ) 1 / [ ]( ) ( )q q q    , where 1[ ] ( )q    

is the derivative of the function 1( )q  . Thus, in 

view of the assumption that 1 ) 0(1q  , the right-hand 

side of Eq. (34) can be simplified as 1

1 1 0
( / )q x x  . 

We observe that Eq. (34) that adopts the change of 

the phase angle   from zero (maximum displacement) 

to π  (minimum displacement) is convenient for 

theoretical analysis. In real-time monitoring, the 

displacement signal comes as a discrete function of 

time. As such, we may assume that ( )x f t , where 

( )f t  is a periodic function of the time variable t 

varying between 
0

x  (minimum) and 
0

x  (maximum) 

with a period T, so that   ( )f t T f t  . Let 
0

t , 
1

t , and 

2
t  be time moments corresponding respectively to the 

subsequent points 
0

x , 
1

x , and 
2

0x   (see Fig. 3). The 

phase angle can be introduced in the usual way as 

0
t    , where 2π / T   is the angular frequency 

of oscillations. Thus, we can write 

 
2 2 1

1 1
10

2 2 4 d
d d

π π ( )

t x

t

x
t

T f f x





 


   
       (35) 

We note that in practise, one needs only the middle 

equation in relation Eq. (35), which simply reduces to 

2 1
(4 / )( )T t t   . 

As it has been already mentioned at the end of 

Section 2.5, the signal index   is simply related to 

the slip ratio s, and to the best of the author’s 

knowledge, this fact was not highlighted before. We 

recall that the signal index, as it was introduced by 

Kim et al. [13], has shown to be effective for monitoring 

fretting characteristics in real-time, and therefore, a 

novel point of view on this transition index developed 

in the present study (where we have brought under  

a single mathematical modelling umbrella different 

transition indexes and criteria known in fretting analysis) 

is, without any doubts, of practical importance for 

tribologists. 

It is to note here that the notions of the “static” and 

“kinetic” coefficients of friction have been introduced 

above following to Blau [20]. It is clear that from a 
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so-called microscopic point of view, the transition 

from rest to gross slip involves microslips between 

asperities forming the rough surfaces. However, the 

related questions about the variation of the coefficient 

of friction at the contact interface lie outside of the 

scope of the present study, as they refer to the micro- 

scale modelling approach. On the contrary, in the 

present study we necessarily take a so-called macro- 

scale point of view, as the slip index is measured from 

the macro-scale characteristics of fretting loops. 

Finally, we observe that the presented above simple 

mathematical modelling framework can be further 

generalized to account for the effect of variation   

of the backbone curve due to wear. Recently, the 

phenomenon of non-monotonic behaviour of the 

dissipated energy in the partial-slip regime of fretting 

wear was highlighted in Refs. [22, 23]. In this way, the 

stiffness parameter m (which is shown to be dependent 

on the contact geometry) is likely to become dependent 

on the number of fretting cycles due to the contact 

geometry adaptation. Another possible generalization 

concerns the application of artificial neural networks 

(ANNs) (see, e.g., Ref. [24]) for the purpose of 

realistic description of the backbone curve based 

on experimentally observed data for the tangential 

force–displacement relation in the fretting loop. 

5 Conclusions 

In the present study, a unified mathematical modelling 

approach for the analysis of the tangential force– 

displacement hysteretic loops in fretting has been 

developed based on Masing’s hypothesis about    

the scaling of the forward and backward force– 

displacement curves from the backbone curve. By 

adopting a one-free-parameter generalized Cattaneo– 

Mindlin contact model of the frictional tangential 

contact loading, explicit relations for the main 

tribological parameters of the fretting loop (slip   

and energy ratios among others) have been derived. 

As a result, novel transition criterions, which are 

parameterized by the interface stiffness parameter, 

have been introduced, including the convexity/concavity 

geometric criterion that is shown to be a model-free 

transition criterion.  
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