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We present a simple flow model and solution to describe ‘horizontal convection’
driven by a gradient of temperature or heat flux along one horizontal boundary of a
rectangular box. Following laboratory observations of the steady-state convection, the
model is based on a localized vertical turbulent plume from a line or point source that
is located anywhere within the area of the box and that maintains a stably stratified
interior. In contrast to the ‘filling box’ process, the convective circulation involves
vertical diffusion in the interior and a stabilizing buoyancy flux distributed over the
horizontal boundary. The stabilizing flux forces the density distribution to reach a
steady state. The model predictions compare well with previous laboratory data and
numerical solutions. In the case of a point source for the plume (the case which
best mimics the localized sinking in the large-scale ocean overturning) the thermal
boundary layer is much thicker than that given by the two-dimensional boundary
layer scaling of H. T. Rossby (T ellus, vol. 50, 1965, p. 242).

1. Introduction
‘Filling box’ flows (Baines & Turner 1969) are driven by a localized destabilizing

source of buoyancy that maintains a turbulent plume in a confined volume, and have
been a useful model of flows in many natural and engineering contexts, for example,
in building ventilation (Linden 1999), in magma chambers (Turner 1980) and in the
oceans (e.g. Killworth & Turner 1982). The analysis of Baines & Turner (1969) shows
that the filling box flow reaches an asymptotic state in which the density gradient and
velocity fields are statistically steady. Crucially, however, the bulk density of water in
the box continues to evolve because the flow is driven by a continuous net supply of
buoyancy. The time rate of change of density at any given level is determined by the
vertical advection of fluid past that level. However, in many physical applications,
where the flow is in a closed volume, this net supply of buoyancy cannot continue
unchecked – compensating buoyancy losses will develop and the flow must evolve to-
wards a steady state where the net supply is zero. ‘Horizontal convection’ constitutes a
particularly interesting class of such flows where buoyancy is supplied over a section of
a horizontal boundary and removed elsewhere on that same boundary. In a thermally
equilibrated flow, the rates of supply and removal are equal. The primary motivation
for previous studies of this form of convection (Stommel 1962, Rossby 1965, 1998;
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Beardsley & Festa 1972; Hignett, Ibbetson & Killworth 1981; Mullarney, Griffiths &
Hughes 2004) has been to understand the global response of the oceans to net heat-
ing and cooling of the sea surface at low and high latitudes, respectively. However,
such models may also find application to convective flows in a confined volume in
engineering and industrial contexts where the equilibration time scale of the flow is
much shorter than the time scale over which the forcing varies.

Differential heating of the horizontal boundary in horizontal convection establishes
a thermal boundary layer, which is observed to feed into a plume at one end of the
box (Rossby 1965, 1998; Hignett et al. 1981; Mullarney et al. 2004; Wang & Huang
2005). Otherwise, horizontal convection has much in common with the circulation in
the ‘filling box’ – in both flows, water in the plume penetrates rapidly through the
depth of the box to supply a plume outflow along the opposite horizontal boundary,
whereupon it becomes part of a broad vertical flow in the box interior towards the
level of the plume source. The density anomaly of water in the plume is reduced
with vertical distance from the source by entrainment and mixing of water from
the box interior into the plume. Consequently, a density stratification is established
throughout the depth of the box in both flows. The stratification is strongest at levels
near the plume source (the forcing boundary). However, there is an especially large
contrast in the case of horizontal convection between the strength of the stratification
in the thermal boundary layer and that throughout the remainder of the box interior
(Mullarney et al. 2004). Furthermore, the absolute strength of the stratification in the
box interior is very weak in high-Rayleigh-number horizontal convection driven by a
two-dimensional thermal forcing (Mullarney et al. 2004). Although the interior might
be assumed to be unstratified as a first approximation, we discuss in § 2 the dynamical
role played by the weak stratification.

In this paper, we develop a new solution for a steady filling box (which we term a
‘recycling box’) and apply this to describe horizontal convection. We ensure that the
density field in the box is in a steady state by applying a stabilizing buoyancy source
at the same horizontal boundary as the destabilizing buoyancy source driving the
plume. The stabilizing source is of such a strength that the net supply of buoyancy
to the box is zero. Unlike the filling box flow, in which vertical diffusion or turbulent
mixing are usually neglected, vertical diffusion in the box interior is then important
in maintaining the density distribution and in transferring the matching buoyancy
fluxes to the fluid.

Rossby (1965), Hignett et al. (1981) and Mullarney et al. (2004) have developed
scaling arguments based on their experiments to describe the thermal boundary layer
in two-dimensional horizontal convection, involving a buoyancy–viscous momentum
balance. Hignett et al. (1981) considered the effect of background rotation and
Mullarney et al. (2004) conducted experiments at small aspect ratio and large Rayleigh
number. Siggers, Kerswell & Balmforth (2004) have developed a description of
horizontal convection by placing bounds on the heat transport as measured by a
Nusselt number. However, in order to predict the temperature distribution and the
overturning mass flux (given imposed thermal boundary conditions), it is necessary
to construct an explicit solution for the flow.

Manins (1973, 1979), Peterson (1979) and Killworth & Manins (1980) have
developed theoretical models including advection and diffusion in the interior, and
which have application to horizontal convection. Manins (1973) considered a turbulent
line plume in a rectangular box, a formulation which he extended to describe the
overturning circulation in the (approximately wedge-shaped) Red Sea. His predictions
for the density profile agreed well with observations, but relied on the adjustment
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of several free parameters. Manins (1979) developed a perturbation analysis for very
high Rayleigh number horizontal convection, in which the plume is assumed to be
turbulent and to arise from a point buoyancy source. He showed that in the interior,
to first order, the isopycnals are horizontal and the vertical motion is independent
of horizontal position. He argued, therefore, that detailed modelling of the plume
outflow is unnecessary because the outflow rapidly redistributes water from the plume
in the horizontal. The solution showed that the variation with depth of the vertical
velocity in the interior is almost linear. However, his solutions for the steady-state flow
(in which vertical diffusion is important) are valid only reasonably close (within a few
thermal boundary-layer thicknesses) to the horizontal surface at which the forcing is
applied. Killworth & Manins (1980) developed a similarity description of horizontal
convection driven by a quadratic temperature variation along the horizontal boundary
at which the forcing is applied. However, instead of explicitly representing the plume,
they extend the result of Manins (1979) and assume that the upwelling velocity is a
linear function of depth through the depth of the flow.

Hughes & Griffiths (2006) have proposed a solution for horizontal convection in
the context of the global oceans, where their plumes are dense slope currents on an
f -plane. Their inviscid solution describes both the plume and the interior throughout
the full box depth. Here we modify the theoretical development of Hughes & Griffiths
(2006) by considering a more general dimensionless form based on vertical plumes
from line and point sources. This solution is closely related to that developed by
Peterson (1979) for a turbulent line plume in a rectangular box.

Most importantly, this approach enables comparison of our model predictions with
experimental data for horizontal convection. We also compare our inviscid solution
to the results of the viscous boundary-layer analyses for horizontal convection of
Rossby (1965) and Mullarney et al. (2004), and show that our theory based on the
interior and plume dynamics predicts the same thermal boundary-layer properties
and Nusselt number–Rayleigh number relationship. This raises the question of why
viscous and inviscid solutions are consistent with each other.

The system of equations that we use to describe the recycling box is developed in
§ 2, followed in § 3 by the general solutions. The predictions of the model are then
compared in § 4 with horizontal convection data from laboratory experiments, and in
§ 5 we briefly discuss the relevance of buoyancy forcing for the overturning circulation
of the oceans. Finally, in § 6 we present our conclusions.

2. Governing equations
Without loss of generality, we consider in the remainder of this paper horizontal

convection driven by heat fluxes applied at the base of a box, as in the laboratory
experiments reported by Rossby (1965), Hignett et al. (1981), Mullarney et al. (2004)
and Wang & Huang (2005). The destabilizing buoyancy source then corresponds to
heating and the stabilizing flux to cooling (figures 1 and 2). In each of the experimental
studies, the destabilizing and stabilizing fluxes were applied over large areas of the
base (e.g. figure 1), but the resulting flow is highly asymmetric with a tightly confined
plume at the hottest end of the box. The global overturning circulation in the oceans
displays a similar asymmetry (Stommel 1962). These observations suggest a useful
approximation: we treat the heating flux at the base (cooling at the ocean surface)
as highly localized (as in the filling box model), and allow the cooling at the base (or
heating at the ocean surface) to be distributed. The total buoyancy supplied to the
plume will be the primary factor determining the vertical structure of the flow, and we
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Figure 1. Dye visualization of the convective flow driven in a box by differential heating
along the base (Mullarney et al. 2004). No net heating of fluid in the box occurs in this
experiment – heat is supplied over the left-hand half of the base and removed at the same
rate over the right-hand half of the base (see § 4 for details). The field of view shows only the
left-hand end of the box. The thin vertical line at the right of the photograph corresponds
to the centre of box, where dye was introduced into the boundary layer adjacent to the base.
Heat is transferred to/from this boundary layer, maintaining a horizontal density gradient
and a flow directed from the cooled region to the heated region (right to left). An eddying
outflow from the plume is visible at the top of the box, directed from left to right. Under the
large-Rayleigh-number conditions considered in this paper, most of the vertical temperature
variation occurs across the bottom boundary layer, which occupies a small fraction of the
total depth.

H

qh (heating)

qc (cooling)

z

Figure 2. Schematic diagram of the ‘recycling box’ model for horizontal convection. Bottom
heating leads to a tightly confined region of upwelling (represented as an isolated vertical
plume) from the bottom to the top in a box of depth H . Cooling at a rate qc = − qh (per
unit spanwise box width for a line plume, or in total for an axisymmetric plume) is distributed
uniformly over the base, allowing the flow to reach a steady state. If the rising plume is
turbulent, entrainment drives recirculation in the interior.

do not expect either the exact position of the heating or the size of the heated area to
play a significant role in this. Thus, provided there is no net heat input, our hypothesis
is that the precise nature of the thermal boundary conditions (applied temperature
or flux and their distribution along the box) is not important, as the stable thermal
boundary layer spreads horizontally to isolate the boundary where thermal forcing
is applied from the whole of the interior (which lies above the unstable convective
boundary layer seen in figure 1). We return to discuss this approximation in § 4.
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For a line plume (figure 2), the rate of heating qh per unit spanwise box width at
the base produces a specific buoyancy flux

Fh =
αgqh

ρrcp

(2.1)

per unit spanwise box width, where α is the coefficient of thermal expansion, g is the
acceleration due to gravity, ρr is a reference density and cp is the specific heat capacity.
In the case of an axisymmetric plume, the total specific buoyancy flux is also given
by (2.1), where qh is instead the total rate of heating. Both the line and axisymmetric
plumes are assumed to be turbulent, as in the filling box (Baines & Turner 1969;
Killworth & Turner 1982; Pierce & Rhines 1996). Experiments (Mullarney et al. 2004)
confirm this to be the case (figure 1) at Rayleigh numbers in excess of 1012 (based on
heat flux and box length).

Although figure 2 depicts an isolated vertical plume in a rectangular box, we will
take advantage of symmetry in our model to define an idealized ‘half-plume’ against
the boundary (in order to model the flow in figure 1). (This proves to be a useful model
for a line plume against a wall. However, this concept has less direct application for
plumes that are not uniform in the spanwise direction because secondary circulations
modify the plume geometry, Baines 1985.) The ratio of height to length of the box
is assumed to be small so that horizontal velocities are much greater than vertical
velocities outside of the plume. We expect in this situation that a one-dimensional
(horizontally uniform) model will provide a good description of the flow in the box
interior (Manins 1979). Under the one-dimensional approximation, we must distribute
the cooling flux uniformly over the base. As horizontal velocities immediately above
the base are observed to maintain a thermal and momentum boundary layer of nearly
uniform thickness, we also expect the one-dimensional model to describe adequately
the vertical structure in the boundary layer. We note, however, that our model neglects
the horizontal outflow from the plume, strictly representing only the region of the
box below the outflow (as in the filling box model of Baines & Turner 1969).

The plume is assumed to extend through the full depth of the box, as observed
by Rossby (1965, 1998) and Mullarney et al. (2004). There is some current debate,
however, as to whether a partial depth circulation can instead be stable (Wang
& Huang 2005). We contend on physical grounds that in a box which has reached
thermal equilibrium and is perfectly insulated apart from the single horizontal surface
through which heat is exchanged, a full-depth circulation is the only possible stable
flow state. This circulation is also consistent with the steady flows found numerically
by Paparella & Young (2002) and Siggers et al. (2004) in high-aspect-ratio (depth
to length) boxes at low to moderate Rayleigh number – the full-depth plumes were
laminar and there was upwelling everywhere in the interior (for Prandtl numbers
greater than one). In an equilibrium state, the warmest fluid in the entire box must
be immediately adjacent to the end (closest to the plume) of the heated region of the
horizontal surface. In other words, the fluid in the plume must be slightly ‘overheated’
relative to that in the interior (when there is no net heat input into the box). As the
heat extracted over the cooled part of that horizontal surface acts to increase the bulk
density of fluid in the remainder of the box (by diffusion of heat down the temperature
gradient), the warmest fluid in the box must rise to the top of the box. Alternatively,
it can be argued that a stable stratification must exist in the box interior for a
partial depth circulation to be maintained. Maintenance of a stable stratification then
requires a source of heat to the upper (non-convecting) region of the box. However,
this requirement represents a paradox because there is no such heating source – the



256 G. O. Hughes, R. W. Griffiths, J. C. Mullarney and W. H. Peterson

boundaries in the upper region of the box are insulating and heat will be removed
from this region by diffusion down the temperature gradient. Consequently, we must
conclude that partial depth circulation can be a transient state only, and that the
convecting region of the flow will deepen (until it occupies the full depth of the box,
e.g. see Jeffreys 1925, and thence supplies heat to the top of the box).

2.1. Two-dimensional plume model

We develop our model with a ‘half-plume’ that rises against the vertical boundary
(as is observed in experiments with horizontal convection, Rossby 1965; Mullarney
et al. 2004). We define either the box length to be L(z) for a line half-plume or the
box cross-sectional area to be A(z) for an axisymmetric half-plume. However, by
symmetry the model can also be applied to an isolated plume (figure 2) which does
not interact with the confining (vertical) boundaries of the box. For an isolated line
plume, the box is defined to have length 2L(z) and qh is the rate of heating per unit
spanwise box width. For an isolated axisymmetric plume, the box has cross-sectional
area 2A(z) and qh is the total rate of heating. The corresponding model for a turbulent
axisymmetric plume is summarized in the Appendix.

Following Baines & Turner (1969), we assume that profiles of mean velocity W and
density anomaly ρ − ρe through the plume cross-section are similar at all depths and
approximated well by a Gaussian form, i.e.

W (x, z) = Wp(z) exp

[
− x2

R2(z)

]
, (2.2)

ρ(x, z) − ρe(z) = [ρp(z) − ρe(z)]exp

[
− x2

R2(z)

]
, (2.3)

where x is the distance from the plume axis, W is the vertical velocity and ρ − ρe is
the density anomaly in the plume relative to water in the interior at the same height
but far removed from the plume. We define the vertical coordinate z such that the
plume starts at the origin and z increases in the direction of flow in the plume. We
have defined R/

√
2 to be the 1-σ lateral plume thickness, and Wp and ρp − ρe to be

the mean vertical velocity and density anomaly on the plume axis, respectively. Upon
integrating in the horizontal plane, the equations describing conservation of volume,
momentum and buoyancy in the plume can be written (Baines & Turner 1969)

d

dz
[
√

πRWp] = 2Ue = 2EWp, (2.4)

d

dz

[
RW 2

p√
2

]
= R

g · ẑ(ρp − ρe)

ρr

, (2.5)

and

d

dz

[
RWp g · ẑ(ρp − ρe)√

2ρr

]
= RWp

d

dz

[
g · ẑ (ρr − ρe)

ρr

]
, (2.6)

where g is the gravitational acceleration vector, ẑ is the unit vector in the z-
direction and E is a constant characterizing the ratio of an entrainment velocity
Ue to the vertical velocity Wp on the plume centreline. The entrainment velocity
can be interpreted as the rate of increase with z of the plume volume flux per unit
spanwise plume width, and E takes a value of approximately 0.1 for a Gaussian
plume (Baines & Turner 1969; Turner 1973).
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2.2. Interior model

We develop a one-dimensional description for the flow in the box interior. Rather
than allowing isotherms to outcrop along the horizontal boundary where the thermal
forcing is applied, we note that this one-dimensional approximation has the effect
of collapsing the cooling/heating (and hence the cross-isotherm flow adjacent to the
forcing boundary) to the plume edge.

As in the filling box model of Baines & Turner (1969), conservation of volume in
the box interior is expressed as

√
π

2
RWp = −L(z)We, (2.7)

where We is the mean vertical velocity in the interior over the length L(z) of the box.
Equation (2.7) holds if the box length is defined to be 2L for isolated plumes and to
be L for ‘half-plumes’ against a vertical boundary in the box.

The density field ρe in the box interior is allowed to vary with depth (cf. Baines &
Turner 1969). However, in contrast to the filling box flow, ρe does not vary with time
and advection of the density field must instead be balanced everywhere by diffusion
of the stratifying property. Thus

L(z)We

dρe

dz
=

d

dz

[
L(z)κ∗(z)

dρe

dz

]
, (2.8)

where κ∗ is the diffusivity characterizing the vertical transport of the stratifying
species. We note that the advection–diffusion balance (2.8), coupled with conservation
of volume in the interior (2.7) and buoyancy in the plume (2.6), requires that there
is no net buoyancy flux at every level in the box. We also note at this point that
we do not know the stability of the flow. Hence, a molecular diffusivity may not be
appropriate in the interior. Paparella & Young (2002) have argued that the flow is
non-turbulent in a volume-averaged sense following a rigorous definition of turbulence
(in terms of the flow behaviour in the limit κ , ν → 0 at a fixed Pr). However, this
result does not exclude the possibility of localized vertical mixing at high (but finite)
Rayleigh numbers. Our solution will also be valid for the case in which mechanical
energy is in some way supplied to small-scale turbulence from an external source (as
is believed to be the case in the oceans), with κ∗ in this instance being a turbulent
mixing coefficient.

2.3. Boundary conditions

The line plume is assumed to be forced purely by a localized (zero width in x) source
of destabilizing buoyancy at z =0. The rate at which specific buoyancy is exchanged
per unit spanwise box width with the plume at z =0 is the specific buoyancy flux F0.
The volume and momentum fluxes are zero across the boundary where the plume is
forced and, under a localized source approximation,

[RWp]|z=0 = 0, (2.9)

[
RW 2

p

]∣∣
z=0

= 0, (2.10)

R(0) = 0. (2.11)

Therefore,

We(0) = 0 (2.12)
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by (2.7). Equations (2.9) and (2.11) show that the vertical velocity in the plume Wp ,
and hence the entrainment velocity Ue (by (2.4)), must be zero at z = 0. We ensure
that the flow reaches a steady state by supplying stabilizing specific buoyancy to
the box either at a rate Fc = F0 = Fh per unit spanwise box width for a half-plume
(against a vertical boundary) or at a rate Fc = 2F0 = Fh per unit spanwise box width
for an isolated line plume. Here, Fh is given by (2.1) and the fluid is assumed to have
a linear equation of state. The stabilizing flux could be supplied locally or distributed
over some of the horizontal boundary at z = 0, but we expect the flow to be relatively
insensitive to such details because the stabilizing flux results in a stable layer adjacent
to the horizontal boundary (Mullarney et al. 2004). Although we describe the flow
in terms of the buoyancy (heat) input per unit spanwise width, the actual boundary
condition (such as an imposed temperature, a temperature gradient, or an imposed
heat flux) is irrelevant, so long as the flow has adjusted to have zero net heat input.
As we have developed an interior model that neglects variations in the horizontal,
we must distribute the stabilizing flux uniformly over the forcing boundary at z =0.
Upon integrating the specific buoyancy flux per unit spanwise box width over the
plume cross-section and taking the limit as z → 0, the boundary condition may be
written

F0 =

√
π

2
√

2

[
RWp g · ẑ(ρp − ρe)

ρr

]∣∣∣∣
z=0

=
g · ẑL(0)κ∗

ρr

dρe(0)

dz
. (2.13)

Equations (2.4)–(2.8) are strictly valid only for the part of the box volume that
excludes the plume outflow. Here, we assume that the outflow rapidly redistributes
fluid from the plume over the horizontal boundary at z = H (Manins 1979), whereupon
the fluid becomes part of the interior. Instead of explicitly modelling the outflow in
this formulation, we require that the densities of fluid in the plume and in the interior
be equal at z = H . Thus, we expect boundary conditions of zero buoyancy flux in
each of the plume and the interior at z = H , i.e.

F (H ) =

√
π

2
√

2

[
RWp g · ẑ(ρp − ρe)

ρr

]∣∣∣∣
z=H

=
g · ẑL(H )κ∗

ρr

dρe(H )

dz
= 0. (2.14)

In practice, this condition cannot be enforced, owing to the neglect of the outflow.
However, solutions that satisfy (2.14) to a very good approximation are found over a
wide parameter range. We return to discuss this point further in § 3.

2.4. Solution

In a similar manner to Baines & Turner (1969), we define the dimensionless variables
ζ , r , fp , fe, wp and we in terms of the vertical distance from the plume source, the
plume thickness, the plume centreline specific buoyancy, the interior specific buoyancy,
the plume centreline velocity and the interior vertical velocity, respectively. In selecting
a length scale with which to non-dimensionalize the variables, we assume that the
thickness of the thermal boundary layer is much less than the box depth. Under
these conditions, we argue that the flow is determined primarily by the boundary-
layer thickness, which is set by diffusion. As κ∗ and L appear only as a product in
the system of equations (2.4)–(2.8) (if We is eliminated), dimensional considerations
dictate that:

z = 2−1/6E−1/3F0
−1/6(κ∗L)

1/2
ζ, (2.15)

R = 25/6E2/3π−1/2F0
−1/6(κ∗L)

1/2
r, (2.16)
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g · ẑ(ρp − ρe)

ρr

= 21/3E−1/3F0
5/6(κ∗L)

−1/2
fp, (2.17)

g · ẑ(ρr − ρe)

ρr

= 2−1/6E−1/3F0
5/6(κ∗L)

−1/2
fe, (2.18)

Wp = 21/3E−1/3F0
1/3wp, (2.19)

We = 21/6E1/3F0
1/6κ∗1/2

L−1/2we. (2.20)

The sign conventions ensure that the dimensionless quantities ζ , r , fp and wp

are always positive and that we is always negative (as the vertical velocity in
the interior is directed towards decreasing z). If we set ρr = ρe(0), then fe is also
always negative. Equation (2.15) (with ζ set to one) gives a scaling for the thickness
h = 2−1/6E−1/3F0

−1/6(κ∗L)1/2 of the thermal boundary layer, where vertical transports
of density by advection and by diffusion are in balance. However, the dimensionless
box depth is assumed to be much greater than one (i.e. ζH =H/h � 1) for the
purposes of the large-Rayleigh-number solution in this paper. Vertical transport of
density by advection is then much more important than transport by diffusion in the
box interior, as shown by (2.20) and the Péclet number

Pe =
WeH

κ∗ =
H

h
we � O(1). (2.21)

Note that it may be physically argued that the filling box corresponds to the limit
Pe → ∞ (when an advection–diffusion balance is inappropriate anywhere in the flow);
however, the boundary condition applied in that case at z = H (instead of (2.14)) is
one of non-zero buoyancy flux.

Upon substituting (2.15)–(2.20) into (2.4)–(2.8), we obtain

d

dζ
(rwp) = wp, (2.22)

d

dζ

(
rw2

p

)
= rfp, (2.23)

d

dζ
(rwpfp) = rwp

dfe

dζ
, (2.24)

rwp = −L(ζ )

L(0)
we, (2.25)

L(ζ )

L(0)
we

dfe

dζ
=

d

dζ

[
γ (ζ )

dfe

dζ

]
, (2.26)

where

γ =
κ∗L|ζ

κ∗L|ζ=0

. (2.27)

Introducing the dimensionless specific buoyancy flux in the plume φ(ζ ) = rwpfp ,
the boundary conditions in (2.13) and (2.14) reduce to

φ(0) = γ

[
−dfe(0)

dζ

]
= 1, (2.28)

φ(ζH ) = γ

[
−dfe(1)

dζ

]
= 0, (2.29)
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respectively. Upon using (2.25) to eliminate we, (2.24) and (2.26) can be equated and
integrated from ζ ′ = 0 to ζ ′ = ζ to give

φ(ζ ) = −γ
dfe

dζ
= − γ

rwp

dφ

dζ
, (2.30)

where the boundary condition in (2.28) has been applied. Upon writing fp in terms
of φ in (2.23), integrating from ζ ′ = 0 to ζ ′ = ζ , assuming that γ is one (i.e. κ∗L is
independent of depth) and applying the boundary conditions in (2.10) and (2.28), we
obtain

r2w4
p = 2(1 − φ), (2.31)

where

r2w4
p

∣∣
ζH

= 2. (2.32)

(The assumption of uniform γ is in general required to make analytical progress.
However, solutions for variable γ may be readily obtained by solving the third-order
system given by (2.22), (2.23) and (2.30), for r , rwp and φ.)

We note that (2.30) and (2.31) are also consistent with integrating from ζ ′ = ζH → ∞
to ζ ′ = ζ and applying the boundary condition in (2.29). On physical grounds, we
take rw2

p to be the positive root of (2.31) with 0 � φ � 1. Therefore, by (2.22), (2.30)
and (2.31), we obtain an ordinary differential equation for the dimensionless plume
buoyancy flux φ,

d

dζ

[
1

2

(
1

φ

dφ

dζ

)2
]

− 21/2(1 − φ)1/2 = 0. (2.33)

We can integrate (2.33) from ζ ′ = 0 to ζ ′ = ζ to obtain a purely real first-order
o.d.e. for φ,

dφ

dζ
= −21/231/3φ

[
tanh−1

[
(1 − φ)1/2

]
− (1 − φ)1/2

]1/3
, (2.34)

which we integrate numerically. The solutions thus obtained for φ are expected to
become accurate for ζH = H/h � 1. Using (2.25) and (2.30), the solution in the interior
for the dimensionless density anomaly and the dimensionless vertical velocity is then
given by

we =
1

φ

dφ

dζ
, (2.35)

dfe

dζ
= −φ. (2.36)

The quantities describing the plume are then given by

fp = − φ2

dφ/dζ
, (2.37)

wp = −21/2φ(1 − φ)1/2

dφ/dζ
, (2.38)

r =
(dφ/dζ )2

21/2φ2(1 − φ)1/2
. (2.39)
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In dimensional form, φ(ζ ) = F (z)/F0, so that (2.34) may be written in terms of the
specific buoyancy flux,

dF (z)

dz
= −22/331/3E1/3F0

1/6

(κ∗L)1/2
F (z)

{
tanh−1

[(
1 − F (z)

F0

)1/2
]

−
(

1 − F (z)

F0

)1/2
}1/3

.

(2.40)
Similarly, the physical interpretation of the interior and plume properties may be
aided by writing (2.35)–(2.39) in dimensional form, thus:

We =
κ∗

F (z)

dF (z)

dz
, (2.41)

d

dz

[
g · ẑ(ρr − ρe)

ρr

]
= −F (z)

Lκ∗ , (2.42)

g · ẑ(ρp − ρe)

ρr

= − 21/2F 2

Lκ∗dF/dz
, (2.43)

Wp = − 2F (F0 − F )1/2

L1/2κ∗1/2dF/dz
, (2.44)

R =
L3/2κ∗3/2(dF/dz)2

π1/2F 2(F0 − F )1/2
. (2.45)

3. Results
The dimensionless solutions for specific buoyancy flux, interior upwelling velocity

and interior density anomaly are plotted in figure 3 for a box with a line plume
and in figure 4 for a box with an axisymmetric plane. These plots show that the
approximate solutions will be valid for ζH = H/h � 4 (when φ → 0, satisfying (2.29)).
For each of the plume geometries, it is apparent from (2.15) and (A 12) that the
boundary-layer thickness h increases (and hence the effective box depth, as measured
by ζH , decreases) with κ∗ and decreases with F0. The density gradient in the boundary
layer varies accordingly to accommodate the buoyancy flux imposed at ζ = 0.

The effect of plume geometry on the solutions can be assessed by comparing
figures 3 and 4. For a given Péclet number, which characterizes the vertical transport
of density in the interior (recall that the Péclet number Pe = ζHwe), it is apparent that
the turbulent line plume leads to a thinner boundary layer in the vicinity of ζ = 0. This
is because entrainment into a turbulent line plume is greater at levels near the plume
source, where the line plume has a greater perimeter, relative to an axisymmetric
plume, across which to entrain ambient fluid. Consequently, the normalized buoyancy
flux φ(ζ ) = F (z)/F0 reduces with ζ at a lesser rate in an axisymmetric plume.

We summarize the solutions in terms of a number of key quantities (table 1). These
are the maximum dimensionless vertical velocity we(ζH ) and dimensionless top-to-
bottom density difference 	fe(ζH ) in the interior, the dimensionless thickness δ of the
thermal boundary layer that incorporates 95% and 1 − e−1 (denoted by subscripts
0.95 and e, respectively) of the overall top-to-bottom density difference, and the
dimensionless vertical velocities we in the boundary layer at the dimensionless heights
δ0.95 and δe. The asymptotic dependence of dimensionless vertical velocity we upon
ζ may be predicted by noting that for ζ � 4, the dimensionless specific buoyancy
flux becomes very small. Thus, (2.22) or (A 18), (2.35) and (2.38) can be used to
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Figure 3. Solutions for the recycling box flow driven by a two-dimensional plume: (a)
dimensionless specific buoyancy flux, (b) dimensionless interior upwelling velocity, and (c)
dimensionless interior density anomaly (relative to the level of the plume source). The long
dashed lines show the predicted asymptotic dependence of the solution for 1 − φ � 1 (small
ζ ) and the short dashed line in (b) shows the fit of the predicted asymptotic dependence of
dimensionless interior upwelling velocity for φ → 0 (large ζ ).

show that
d

dζ

(
w2

e

)
→ 23/2, (3.1)

d

dζ
(we) → −21/4, (3.2)

for a line plume and an axisymmetric plume, respectively. As is apparent from
the asymptotic fits in figures 3(b) and 4(b), the plume evolution approaches that
of an entraining turbulent jet with an apparent momentum source at ζ ≈ 1. The
dependence of the maximum dimensionless vertical velocity upon ζH (in contrast to
the dimensionless vertical velocity in the boundary layer, which is independent of ζH )
reflects the role of entrainment into the plume in the recycling box flow. As we expect
the maximum overturning streamfunction to scale with we(ζH ), the results in table 1
suggest that the flux recycled through the plume in horizontal convection will be
larger than the flux in the boundary layer adjacent to the thermally forced surface
by an approximate factor that scales with ζH

1/2 in the case of a line plume, and with
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Figure 4. As for figure 3, but driven by an axisymmetric plume.

Line plume Axisymmetric plume

we(ζH ) = 23/4(ζH − 0.903)1/2 21/4(ζH − 0.874)
	fe(ζH ) = 1.28 1.73

δ0.95 = 2.06 2.36
δe = 0.93 1.17

we(δ0.95) = 1.83 1.79
we(δe) = 0.90 0.60

Table 1. Summary of recycling box model solutions for turbulent line and axisymmetric
plumes (valid for ζH = H/h � 4).

ζH in the case of an axisymmetric plume. Although the dimensionless thicknesses δ0.95

and δe of the boundary layer have been defined as that region which incorporates
a substantial fraction (0.95 or 1 − e−1, respectively) of the top-to-bottom density
difference, we find that the specific buoyancy flux also takes well-defined values at
these levels. In particular, φ(δ0.95) = F (h0.95)/F0 ≈ 0.14 and φ(δe) = F (he)/F0 ≈ 0.65.

Asymptotic approximations can also be found for the solution in the thermal
boundary layer. In the case of a line plume, (2.34) can be rearranged using (2.35), and
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expanded for small (1 − φ) to give we = − 21/2(1 − φ)1/2[1 + O(1 − φ)], which upon
substitution into (2.33) yields

we ≈ −ζ, (1 − φ) � 1. (3.3)

Together with (2.35) and (2.36), (3.3) gives

φ ≈ exp

(
−ζ 2

2

)
, (1 − φ) � 1, (3.4)

fe ≈ −
√

π

2
erf

(
ζ√
2

)
, (1 − φ) � 1. (3.5)

The corresponding results for an axisymmetric plume are

we ≈ − 35/3

22/354/3
ζ 5/3, (1 − φ) � 1, (3.6)

φ ≈ exp

(
− 38/3

211/354/3
ζ 8/3

)
, (1 − φ) � 1, (3.7)

fe ≈ −
∫ ζ

0

exp

(
− 38/3

211/354/3
ζ 8/3

)
dζ, (1 − φ) � 1. (3.8)

These asymptotic expressions for small (1 − φ) are plotted in figures 3 and 4 and
are good approximations for the dimensionless specific buoyancy flux and the
dimensionless interior density anomaly over a wide range of ζ .

The Péclet number Pe =WeH/κ∗ = ζHwe can be used to estimate the ventilation
time τ of the recycling box with a line plume as

τκ∗

H 2
∼ Pe−1 ∼ (ζHwe)

−1 ∼ ζ
−3/2
H , (3.9)

and with an axisymmetric plume as

τκ∗

H 2
∼ Pe−1 ∼ (ζHwe)

−1 ∼ ζ −2
H , (3.10)

assuming that ζH � 1 and using the asymptotic dependences for we(ζH ) from table 1.
Thus, (3.9) and (3.10) show that for values of ζH � 1 (typical of horizontal convection
laboratory experiments), the recycling box will be ventilated on a time scale much
shorter than that characterizing molecular diffusion through the depth (i.e. H 2/κ∗).

4. Recycling box model predictions and horizontal convection
We now assess whether the recycling box is a useful model to describe horizontal

convection. Both the model solution for a specific case and the predicted dependence
of the recycling box upon the governing parameters are compared with horizontal
convection data from the laboratory experiments and numerical solutions of
Mullarney et al. (2004).

The experimental tank and computational domain of Mullarney et al. (2004) were
1.25 m long, 0.15 m wide and 0.2 m high. In one of the cases of horizontal convection
that they examined, a heating power per unit spanwise tank width qh = 933 Wm−1 was
supplied through the left-hand half of the tank base, where a constant and uniform
heat flux was imposed. A constant and uniform temperature (16 ◦C) was applied over
the right-hand half of the base. By (2.1), the heat input gives a rate of generation of
specific buoyancy per unit spanwise tank width of Fh =F0 = 7.1 × 10−7 m3 s−3, where
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we have taken g = 9.8 m s−2 and water properties at the average interior temperature of
32 ◦C as given by Mullarney et al. (2004) (see their table 1: the specific heat cp = 4177.6
J kg−1 K−1, the coefficient of thermal expansion α = 3.2394 × 10−4 ◦C−1, the vertical
diffusivity κ∗ ≡ κT = 1.474 × 10−7 m2 s−1 and ρr =994.94 kgm−3). We note, however,
that the equation of state is nonlinear and that at the cooling boundary temperature
(approximately the lowest temperature in the tank), the expansion coefficient is
approximately half that at 32 ◦C. We choose the value relevant to the dynamics of the
plume and the interior, while recognizing that it is unclear how a different expansion
coefficient in the cold boundary layer might influence the flow. The numerical solutions
for horizontal convection of Mullarney et al. (2004) with both constant α and the
actual equation of state for water show no significant dependence upon α. We examine
the sensitivity of the predicted tank profiles to expansion coefficient below.

We present in figure 5 the theoretical predictions for the normalized buoyancy
flux per unit spanwise box width and the lateral thickness of the plume and for
the vertical velocity and temperature profile in the box interior, since these are the
quantities of most practical interest. The solutions have been obtained using an
entrainment coefficient E = 0.1 and a coefficient of thermal expansion α =3.24 ×
10−4 ◦C−1. An additional solution is obtained for α = 1.5 × 10−4 ◦C−1, which is the
expansion coefficient at 15 ◦C. The vertical velocity in the box interior increases with
height owing to entrainment into the plume (equation (2.7)). The buoyancy flux
reduces very rapidly with height owing to entrainment as the plume passes through
the strong density stratification in the thermal boundary layer above the bottom of
the box. The boundary-layer thickness h0.95 under these conditions is predicted to be
less than one-tenth of the box depth, i.e. h0.95 = 18 mm, such that the dimensionless
box depth ζH = H/h ≈ 22.9. Immediately above the boundary layer, the buoyancy flux
is small and continues to decrease with height. Thus, it is apparent that the boundary
condition at z = H (equation (2.14)) is indeed approximately satisfied by this solution.
The variation with height of the buoyancy flux is in stark contrast to the filling box
flow, where F/F0 would reduce linearly from a value of one at z =0 to zero at z = H .

As the vertical velocities in the laboratory convection tank are very small, only
temperatures are readily measurable. The variation of temperature with horizontal
position in the tank is generally weak, except in the boundary layer above the
heated and cooled regions of the base. Therefore, we compare the temperature profile
predicted by the recycling box model (which ignores horizontal variations in the box
interior) with a measured profile for horizontal convection above the cooled base,
where the boundary flux is stabilizing. In addition to the measured profile plotted
in figure 5(d), the horizontally averaged temperature profile from the numerical
simulations of Mullarney et al. (2004) is also shown. Both the thermal boundary-layer
thickness and the top-to-bottom temperature difference are predicted well. Although
it is not visible on the linear scale in figure 5(d), all profiles show that the box interior
(above the boundary layer) supports a stable temperature stratification. Despite the
temperature gradient in the interior being many times smaller than in the boundary
layer, it is dynamically significant since it implies that the plume must penetrate to
the top of the box to maintain that gradient.

The normalized buoyancy flux per unit spanwise box width in the plume calculated
from the previous numerical simulations for horizontal convection of Mullarney et al.
(2004) is compared in figure 5(a) with the recycling box prediction for the above
experimental parameters. Above the region in the thermal boundary layer, where the
flow structure differs from the point-source plume in the recycling box model, the
prediction correctly describes over more than two orders of magnitude the decrease
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Figure 5. Recycling box predictions for α =1.5 × 10−4 ◦C−1 (– – –) and α =3.24 × 10−4 ◦C−1

(——), appropriate to the horizontal convection experiments of Mullarney et al. (2004): (a)
buoyancy flux per unit spanwise width normalized by that supplied by the heating at the
base, (b) lateral thickness of the two-dimensional plume, (c) interior vertical velocity, and (d)
interior temperature profile. Also plotted on (a) and (c) are the normalized plume buoyancy
flux per unit spanwise width and the upwelling velocity profile, respectively, from the numerical
simulations for horizontal convection of Mullarney et al. (2004) (· · ·). The upwelling velocity
profile is obtained by averaging We(x, z) in the horizontal between x =0.16 m (outside the
plume) and x = 1.24 m (close to the box endwall furthest from the plume). Also plotted on
(d) are temperature profiles from the horizontal convection experiments (– - –) and numerical
simulations (· · ·) of Mullarney et al. (2004) obtained above the cooled portion of the tank base.
The temperature profile from the numerics is obtained by averaging T (x, z) in the horizontal
between x =0.16 m and x = 1.24 m. The measured temperatures well above the base are used
as a reference for the theoretical prediction and the numerical simulation.

with height of buoyancy flux in the plume. The predicted vertical velocity profile for
the recycling box in figure 5(c) is consistent with the previous numerical simulations of
horizontal convection (Mullarney et al. 2004, figure 10b) for the above experimental
parameters. Although the simulations indicate a complicated flow structure, the
horizontally averaged downwelling below the level of the outflow tends to increase
with height as a consequence of entrainment into the plume. Both the recycling box
predictions and horizontal convection simulations in figure 5(c) suggest maximum
vertical velocities of approximately 0.13 mm s−1. On this basis, we would estimate the
ventilation time scale τ ∼ 2H/We(max) ≈ 50 min to characterize the recycling of the
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box volume through the plume. This time scale is consistent with observations of the
time required for the dye in figure 1 to be spread throughout the laboratory convection
tank. In contrast, a ventilation time scale 2H/We(h0.95), based on the volume flux into
the thermal boundary layer (as also predicted by the Rossby (1965) scaling analysis
for horizontal convection), is approximately 210 min. For comparison, the time scale
for diffusion through the box depth is H 2/κ∗ ∼ 75 h.

In order to indicate the sensitivity of horizontal convection to the spatial distribution
of heating and cooling at the base, we have carried out an additional numerical
simulation for the same parameters as used by Mullarney et al. (2004), as described
above. However, the heating power per unit spanwise width qh =933 Wm−1 was
instead supplied over just 0.15 m of the 1.25 m base and the cooling was applied over
1.05 m of the base (with a 0.05 m thermal spacer between the regions of heating and
cooling). The numerical results suggest that the plume behaviour is mildly sensitive to
the change in boundary conditions, but the flow outside of the plume remains largely
unchanged. Indeed, the horizontally averaged temperature profiles would coincide
in figure 5(d) (hence the profile from only the original simulation is plotted). The
profile of normalized buoyancy flux in figure 5(a) is also virtually unchanged, lending
support to the notion that it is the total buoyancy supplied to the plume that is of
most importance in setting the vertical structure of the flow. It is on this basis that
we expect that the point-source approximation in the recycling box will provide a
reasonable model for horizontal convection.

We now express the predictions of the recycling box model in terms of the Rayleigh
number and compare the results with the boundary-layer scalings for horizontal
convection found by Rossby (1965) (in terms of boundary temperature) and Mullarney
et al. (2004) (in terms of the heat flux) and with the laboratory measurements and
numerical solutions for horizontal convection of Mullarney et al. (2004). Mullarney
et al. (2004) defined a flux Rayleigh number RaF based on the tank length and the
heat flux FT per unit area (applied over 0.6 m of the 1.25 m base):

RaF =
gαFT L4

ρrcpκ∗2ν
. (4.1)

Their experiments covered the range 6.5×1012 � RaF � 6.8×1014. Using the notation
in this paper, RaF = F0L

3/cνκ∗2 and qh = cFT L with c = 0.6/1.25. Thus, using the
results in table 1 together with (2.15), (2.18) and (2.20) gives

h0.95

L
= 2.06 × 2−1/6E−1/3c−1/6Pr−1/6RaF

−1/6, (4.2)

ρr − ρe

ρr

∣∣∣∣
max

= α	T |max = 1.28 × 2−1/6E−1/3

(
κ∗2

gL3

)
c5/6Pr5/6RaF

5/6, (4.3)

We(H )L

κ∗

(
≡ ψ |max

κ∗

)
≈ 2E1/2c1/4

(
H

L

)1/2

Pr1/4RaF
1/4, ζH � 1, (4.4)

respectively, where ψ |max is the streamfunction maximum. These results for the
recycling box are summarized in table 2. Substituting the values E = 0.1 and
Pr = 5.17, we find that (4.2) predicts h0.95/L = 3.39RaF

−1/6, which agrees well with the
h0.95/L = 2.65Ra−1/6

F dependence found for horizontal convection in the laboratory

experiments by Mullarney et al. (2004) and also with h0.95/L =2.87Ra−1/6
F given

by their numerical solutions. The Péclet number (4.4) based on the vertical velocity
We(H ) appears at first glance to be inconsistent with the Ra1/6

F dependence for vertical
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RaF E, qh, κ∗

We(H ) ∼ ψ |max ∼ RaF
1/4 E1/2qh

1/4κ∗1/4

ρr − ρe

ρr

∣∣∣∣
max

∼ RaF
5/6 E−1/3qh

5/6κ∗−1/2

h0.95,e ∼ RaF
−1/6 E−1/3qh

−1/6κ∗1/2

We(h0.95,e) ∼ RaF
1/6 E1/3qh

1/6κ∗1/2

U (h0.95) ∼ RaF
1/3 E2/3qh

1/3

Nu ∼ RaF
1/6 E1/3qh

1/6κ∗−1/2

Table 2. Summary of power-law dependences of the solutions for a turbulent line plume upon
Rayleigh number RaF and upon the entrainment coefficient, heat input per unit spanwise
width and interior diffusivity E, qh and κ∗, respectively.

Constants

RaF dependence Laboratory Numerical Model

h0.95

L
RaF

−1/6 2.65 2.87 3.39

U (h0.95)L

κ∗ RaF
1/3 0.46 0.40 0.33

Nu RaF
1/6 0.82 0.62 ∼ 0.75

Table 3. Comparison of multiplying constants for horizontal convection, previously measured
in the laboratory and evaluated in numerical solutions Mullarney et al. (2004), with those
multiplying constants predicted by the theoretical recycling box model in this paper. The
exponents on the Rayleigh number RaF from the three approaches are identical.

velocity found by Mullarney et al. (2004) for horizontal convection. This is because
the empirical results and boundary-layer scaling of Mullarney et al. (2004) (and also
that of Rossby 1965) are based on the vertical velocity in the thermal boundary layer,
whereas (4.4) incorporates the effect of entrainment into the recycling box plume.
Substituting instead the value for we(δ0.95) in table 1 into (2.20) gives

We(h0.95)L

κ∗ = 1.83 × 21/6E1/3c1/6Pr1/6RaF
1/6, (4.5)

for the recycling box, in agreement with the previous boundary-layer scalings for
horizontal convection. Applying continuity, Uh0.95 =We(h0.95)L, predicts the scaling
for the horizontal velocity in the thermal boundary layer in the recycling box as

U (h0.95)L

κ∗ = 0.89 × 21/3E2/3c1/3Pr1/3RaF
1/3. (4.6)

Substituting an appropriate value for E and laboratory values for c and Pr into
(4.6) predicts that Uh0.95/L = 0.33RaF

1/3, which agrees well with both the laboratory
and numerical dependences for horizontal convection, Uh0.95/L =0.46RaF

1/3 and
Uh0.95/L = 0.40RaF

1/3, respectively, found by Mullarney et al. (2004). Following
Mullarney et al. (2004), we can define for horizontal convection the Nusselt number
based on the heat flux relative to conduction along the length of the box as

Nu =
FT L

ρrcpκ∗ δT |max

, (4.7)
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where δT |max is the difference between the maximum and minimum temperatures in
the boundary layer. In order to extend the analogy to the recycling box model with
an assumed one-dimensionality of flow outside the plume, we further assume that
δT |max scales with the top-to-bottom temperature contrast in the recycling box, i.e.
	T |max = a δT |max . Thus, we obtain for the recycling box

Nu =
FT La

ρrcpκ∗ 	T |max

= 0.79 × 21/6aE1/3c−5/6Pr1/6RaF
1/6, (4.8)

and substituting an appropriate value for E and laboratory values for c and Pr into
(4.8) predicts that Nu = 1.00aRaF

1/6. We note that the minimum temperature obtained
from our one-dimensional interior model in the recycling box, and used to calculate
	T |max , corresponds to a horizontal average in the thermal boundary layer of the
nominally two-dimensional temperature distribution used by Mullarney et al. (2004)
in the calculation of δT |max . An appropriate value of a (based on the horizontal
convection measurements of Mullarney et al. 2004) where the temperature in the
boundary layer above the cooled region of the base was approximately uniform,
but steadily increased towards the plume above the heated region of the base to
enable comparison of the Nu prediction will lie between 0.5 and 1, but might be
reasonably estimated as 0.75 (based on a linear decrease in temperature with distance
from the plume above the heated region of the base). Thus, the recycling box
model predicts Nu ∼ 0.75Ra1/6

F , which compares well both with Nu =0.82Ra1/6
F

and Nu = 0.62Ra1/6
F found for horizontal convection by Mullarney et al. (2004) in

experiments and numerical solutions, respectively, and with Nu ≈ 0.35Ra1/5 obtained
for horizontal convection by Rossby (1965) (where Ra = gα δT |maxL3/νκ∗). The above
comparisons of the recycling box model predictions with the laboratory measurements
and numerical solutions of Mullarney et al. (2004) for horizontal convection are
summarized in table 3.

These recycling box results are also consistent with the bounds on horizontal
convection constructed by Siggers et al. (2004). Figure 3 suggests that as ζH → ∞
(i.e. RaF , Ra → ∞, see (2.15)), the temperature variation in the interior above the
boundary layer will vanish. However, as seen above, the dependence of the boundary-
layer thickness and the Nusselt number upon Ra is weaker in the recycling box than
the bounding dependences (Ra−1/3 and Ra1/3, respectively) obtained by Siggers et al.
(2004).

The dependence of the recycling box predictions upon the plume entrainment
coefficient, heat input and interior diffusivity, which were extracted from (4.2)–(4.8),
are summarized in table 2. We note that in (4.2)–(4.6), the solution is inviscid and
therefore RaF and Pr always appear as their product. The boundary-layer analyses
for horizontal convection of Rossby (1965) and Mullarney et al. (2004) are based
explicitly on a buoyancy–viscous balance for the horizontal flow in the thermal
boundary layer, whereas our recycling box solution is entirely inviscid, yet yields
identical results (for the two-dimensional case). We suggest that this is because the
flow outside the thermal boundary layer (for fluids with Pr > 1) is essentially inviscid
and driven by entrainment into the turbulent plume (as evidenced by the much
stronger Rayleigh number dependence of We(H ) ∼ ψ |max than of We(h0.95), table 2).
The viscous flow in the thermal boundary layer must satisfy matching conditions (such
as continuity of velocities) at the edge of the boundary layer with the external inviscid
flow. However, the bulk characteristics of the thermal boundary layer, such as the
driving temperature difference, the horizontal mass flux and the Nusselt number, are
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determined by the external flow. Viscosity will modify the temperature and velocity
structure within the boundary layer itself, subject to these strong overall constraints.
Thus, the buoyancy–viscous boundary-layer scaling analyses (Rossby 1965; Mullarney
et al. 2004) cannot predict the maximum overturning streamfunction. We postulate
that in high-Rayleigh-number horizontal convection, the external flow modifies the
boundary-layer structure typically observed in a Pr > 1 fluid such that the thermal
and momentum boundary layers are of similar thickness (as observed by Mullarney
et al. 2004).

5. Is the concept of a buoyancy-forced overturning relevant to the oceans?
The meridional overturning circulation of the oceans carries heated surface waters

poleward, where they are cooled and sink in highly localized downwellings at polar
latitudes. In the downwelling plume of largest buoyancy flux (the outflow from the
Weddell Sea) the cold water sinks to the bottom, spreads through much of the oceans
as Antarctic Bottom Water, and is eventually returned to the surface layers by a
broad slow upwelling in the interior. If the ocean is presumed to be in a steady state,
the interior upwelling of cold water must be countered by downward mixing of heat
(and upward mixing of density) through the full depth. The global oceans represent
a very complex system that is forced by a variety of mechanisms which include
buoyancy (others include wind stress and Coriolis forces influencing the mean flow,
and winds and tides providing energy to turbulent mixing). However, as fundamental
oceanographic questions remain concerning the importance of buoyancy-forcing in
the context of the global oceans, it is instructive to consider here models for simpler
overturning circulations that are buoyancy-driven.

In this section, we consider a highly idealized representation of the global oceans as
a non-rotating rectangular recycling box with vertical plumes. Our aims are twofold.
First, we can understand a flow in which buoyancy is clearly the only mechanism
supplying momentum to the overturning circulation. Secondly, we are able to examine
the robustness of our conclusions to different plume representations. We accomplish
this by comparing our results with recent work treating plumes as geostrophic slope
currents (Hughes & Griffiths 2006), which is more realistic for the plumes in the
oceans. Laboratory experiments (Killworth & Turner 1982; Wong & Griffiths 2001)
suggest that the plume reaching the bottom will dominate the overall density structure,
hence we consider a single plume in the recycling box model. We choose the bulk
geometry and forcing for the circulation in our box to be commensurate with the
global oceans. The cross-sectional area of the recycling box ocean is taken to be
3.6 × 1014 m2 with an average depth of 3780 m (Gill 1982), and the rate of heat input
is set to the poleward heat transport in the southern hemisphere oceans (2 × 1015 W,
Houghton et al. 1996, p. 212). We take the reference density ρr = 1025 kg m−3 and
the specific heat capacity cp =3990 J kg−1 K−1, appropriate for seawater at 20 ◦C and
atmospheric pressure Gill (1982), and the expansion coefficient α = 2.54 × 10−5 K−1

appropriate for seawater at −2 ◦C (Gill 1982, this temperature being representative of
the water in the Weddell Sea that feeds the sinking plumes and eventually becomes
bottom water). The rate of supply of specific buoyancy to the recycling box ocean in
the single (‘southern hemipshere’) plume is 1.2 × 105 m4 s−3, by (2.1).

Measurements in the ocean interior of turbulent dissipation and of vertical tracer
dispersion (e.g. Gregg 1989; Ledwell et al. 1993) suggest that the rate of vertical
mixing can be characterized by a diffusivity of order 10−5 m2 s−1. (The density
structure in the oceans has been previously described by a simple one-dimensional
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Figure 6. Density profiles predicted by the recycling box model (for κ∗ = 10−5 m2 s−1, and the
geometric parameters and seawater properties discussed in the text) for a single axisymmetric
‘half-plume’ (– · · · –), a single axisymmetric isolated plume (· · ·) and the geostrophic slope plume
of Hughes & Griffiths (2006) (——). Potential density (σ0) profiles averaged from the Levitus
1994 dataset (http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/) for the northern (—
—) and southern (— - —) hemisphere oceans are shown for comparison. The predicted density
profiles are referenced to the global average potential density measured below depths of 3000m
(≈ 1027.83 kg m−3).

balance of advection and diffusion (cf. (2.8)), from which the measured abyssal
gradients imply a diffusivity of order 10−4 m2 s−1 (Munk 1966; Munk & Wunsch
1998). However, as no account was taken in these balances of entrainment into the
plumes, we use the measured κ∗ = 10−5 m2 s−1 here.) By (A 12), we calculate ζH ≈ 2.5
and ζH ≈ 3.1 for a single axisymmetric ‘half-plume’ and a single axisymmetric isolated
plume, respectively, in this idealized recycling box ocean. Although we expect our
axisymmetric plume solution to be only approximate at these values of ζH , the
predicted density structure is compared in figure 6 with the measured (horizontally
averaged) density profile in the oceans and the solution for the same governing
parameters of the more sophisticated geostrophic slope plume model of Hughes &
Griffiths (2006). In addition, the axisymmetric half-plume and isolated plume solutions
predict overturning rates of 4.8×106 and 7.3×106 m3 s−1, respectively, which compares
with 18.4 × 106 m3 s−1 predicted by Hughes & Griffiths (2006) and the range of total
bottom water formation rates 7−30×106 m3 s−1 estimated from observational studies.
The effect that plume geometry has on the amount of entrainment is apparent upon
comparison of the various predictions. At any given level, the axisymmetric ‘half-
plume’ has less circumferential area than the axisymmetric isolated plume across which
to entrain ambient water. Thus, the total volume of ambient water entrained (which
is equal to the maximum overturning flux) is smaller and the top-to-bottom density
difference is larger. The model of Hughes & Griffiths (2006), which allows for the
plume to expand laterally on a topographic slope owing to baroclinic instability, has
a much greater surface area at shallow to intermediate depths than an axisymmetric
plume. Thus, in their model, the density increase with depth in the interior occurs
more rapidly and the maximum overturning flux is greater. The boundary-layer
thicknesses he estimated from the density profiles in figure 6 (1700 and 1470 m for
the axisymmetric ‘half-plume’ and the axisymmetric isolated plume, respectively, and
550 m for the geostrophic slope plume) are consistent with the above entrainment
characteristics. It is, however, worthy of note that none of these boundary-layer
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thicknesses in the recycling box ocean follow the scaling for horizontal convection
of Rossby (1965) and Mullarney et al. (2004), which yields a much smaller thickness
of O(100) m. These previous boundary-layer scalings are based on the volume flux
in a two-dimensional thermal boundary layer in horizontal convection. However,
the sinking regions in the oceans more closely resemble localized three-dimensional
plumes, which therefore cannot accommodate the volume flux from the near surface
that is required by the boundary-layer scalings based on a two-dimensional flow.
Accordingly, entrainment into the localized sinking plumes takes place over a greater
range of depths, thus increasing the boundary-layer thickness as figure 6 shows.

None of the recycling box models take account of mechanisms of vertical buoyancy
transport other than by entrainment into plumes and (uniform) diffusion. In the ocean,
however, additional mechanisms such as wind-driven upwelling and locally enhanced
mixing (owing to processes such as breaking internal waves and the interaction of
internal tides with topography) are present and likely to account for some of the
discrepancy in figure 6 between measurements and the predictions based on simple
entraining plume models. Nevertheless, it is apparent that entrainment into localized
plumes is likely to be very significant for the global oceans and that accurate modelling
of plume geometry is an important step in understanding the density structure of the
oceans.

6. Conclusions
We have developed a simple model to describe high-Rayleigh-number horizontal

convection by taking advantage of the features that this flow has in common with a
special class of ‘filling box’ flows. Specifically, differential heating along one horizontal
boundary in horizontal convection gives rise to a localized vertical turbulent plume
that ventilates the box volume. As in the filling box, entrainment into this plume
maintains a stable density stratification throughout the box depth (we note, however,
that compared with a geometrically identical filling box forced with the same buoyancy
flux, the stratification beyond the thermal boundary layer is much weaker in the
case of horizontal convection). With zero net heat input into the box in horizontal
convection, the density profile is steady and maintained by diffusion against the
vertical motion that ventilates the box volume. In our model, we have considered
both two-dimensional and axisymmetric localized plumes that are assumed to have
a point source at the differentially heated surface, and we represent the box interior
as horizontally uniform. Although the circulation in horizontal convection is driven
by horizontal density gradients along the differentially heated boundary, comparison
with measurements shows that our model (in which these gradients are condensed
to the edge of the plume) correctly predicts many aspects of the flow, including the
vertical density structure, the thermal boundary-layer thickness adjacent to the heated
boundary, the magnitude of the circulation, and the dependence of Nusselt number
upon Rayleigh number.

Our model provides a basis for investigating the role that horizontal convection
may play in the context of the meridional overturning circulation in the global
oceans. Although additional effects of importance to the ocean circulation, such as
wind-forcing, have obviously been neglected, our results support the assertion that
horizontal convection is likely to be of importance in the overturning circulation, in
contrast to some popular views in the oceanographic literature. The models predict
global overturning rates consistent with that measured. A particularly notable result
is that entrainment into localized plumes is expected to affect the global vertical



Theoretical model for horizontal convection at high Rayleigh number 273

density structure in the oceans. Although the vertical plumes considered in this paper
are shown to be an oversimplified representation of the sinking regions in the oceans,
the sensitivity of our results to plume geometry serves to illustrate the importance of
understanding such sinking regions.

We thank three anonymous reviewers for their comments. The work was finded in
part by the Australian Research Council (DP0664115).

Appendix. Axisymmetric plume
We outline here our model for the recycling box driven by a turbulent axisymmetric

plume whose radius is assumed to be much smaller than the lateral dimensions of the
box. The cross-sectional area of the box and the specific buoyancy flux in the plume
is defined to be 2A(z) and 2F0 = Fh, respectively. Thus, an axisymmetric ‘half-plume’
against a vertical boundary can be represented with a specific buoyancy flux of F0 in a
box of area A(z). If the mean vertical velocity and density anomaly through the plume
cross-section take the Gaussian form in (2.2) and (2.3), then the equations describing
conservation of volume, momentum and buoyancy in the plume and conservation of
volume in the box interior are (Baines & Turner 1969)

d

dz
[R2Wp] = 2RUe = 2ERWp, (A 1)

d

dz

[
R2W 2

p

2

]
= R2 g · ẑ(ρp − ρe)

ρr

, (A 2)

d

dz

[
R2Wp g · ẑ(ρp − ρe)

2ρr

]
= R2Wp

d

dz

[
g · ẑ (ρr − ρe)

ρr

]
, (A 3)

πR2Wp

2
= −A(z)We, (A 4)

respectively. The vertical advection–diffusion balance in the box interior is given by

A(z)We

dρe

dz
=

d

dz

[
A(z)κ∗(z)

dρe

dz

]
. (A 5)

The plume is approximated as a point source of buoyancy with no volume flux at
the forcing boundary so that the boundary conditions are

[R2Wp]|z=0 = 0, (A 6)

R(0) = 0. (A 7)

Therefore,

We(0) = 0 (A 8)

by (A 4). Further, we assume the horizontal velocity Ue at z =0 to be zero (i.e. a
no-slip boundary) and, by (A 1), entrainment into the plume at z =0 is also zero,

[RWp]|z=0 = 0. (A 9)

As described in § 2.3, a stabilizing buoyancy flux is supplied to the box either at a rate
Fc =F0 = Fh for a half-plume or at a rate Fc = 2F0 = Fh for an isolated plume. We
choose to distribute the stabilizing flux uniformly over the forcing boundary at z = 0.
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Upon integrating the specific buoyancy flux per unit area over the plume cross-section
and taking the limit as z → 0, the boundary condition may be written

F0 =
π

4

[
R2Wp g · ẑ(ρp − ρe)

ρr

]∣∣∣∣
z=0

=
g · ẑA(0)κ∗

ρr

dρe(0)

dz
. (A 10)

Equations (A 1)–(A 5) are strictly valid only for the part of the box volume that
excludes the plume outflow, which is neglected here. As discussed in § 2.3, we determine
the validity of our approximate solution by checking whether boundary conditions at
z = H of zero specific buoyancy flux hold in each of the plume and the interior, i.e.

F (H ) =
π

4

[
R2Wp g · ẑ(ρp − ρe)

ρr

]∣∣∣∣
z=H

=
g · ẑA(H )κ∗

ρr

dρe(H )

dz
= 0. (A 11)

As in § 2.4, we define the dimensionless variables

z = 2−1/2π−1/4E−1/2F0
−1/8(κ∗A)

3/8
ζ, (A 12)

R = 21/2π−1/4E1/2F0
−1/8(κ∗A)

3/8
r, (A 13)

g · ẑ(ρp − ρe)

ρr

= 21/2π−1/4E−1/2F0
7/8(κ∗A)

−5/8
fp, (A 14)

g · ẑ(ρr − ρe)

ρr

= 2−1/2π−1/4E−1/2F0
7/8(κ∗A)

−5/8
fe, (A 15)

Wp = 21/2π−1/4E−1/2F0
3/8(κ∗A)

−1/8
wp, (A 16)

We = 21/2π1/4E1/2F0
1/8κ∗5/8

A−3/8we, (A 17)

so that (A 1)–(A 5) become

d

dζ
(r2wp) = rwp, (A 18)

d

dζ

(
r2w2

p

)
= r2fp, (A 19)

d

dζ
(r2wpfp) = r2wp

dfe

dζ
, (A 20)

r2wp = −A(ζ )

A(0)
we, (A 21)

A(ζ )

A(0)
we

dfe

dζ
=

d

dζ

[
γ (ζ )

dfe

dζ

]
, (A 22)

where

γ =
κ∗A|ζ

κ∗A|ζ=0

. (A 23)

Following the method in § 2.4, we obtain an ordinary differential equation for the
dimensionless specific buoyancy flux in the plume φ(ζ ) = r2wpfp ,

d

dζ

[
1

φ

dφ

dζ

]
+ 21/4(1 − φ)1/4 = 0, (A 24)
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which becomes singular at ζ = 1. We integrate (A 24) from ζ ′ = 0 to ζ ′ = ζ to obtain
a first-order o.d.e. for φ,

dφ

dζ
= ±29/8φ

{
tanh−1

[
(1 − φ)1/4

]
+ tan−1

[
(1 − φ)1/4

]
− 2(1 − φ)1/4

}1/2
. (A 25)

As φ decreases with ζ , we take the negative root of (A 25) and integrate numerically
subject to the boundary condition φ = 1 at ζ = 0.

Solutions for the dimensionless density anomaly and vertical velocity in the interior
are then given by (2.35) and (2.36), while the dimensionless vertical velocity and
density anomaly in the plume are given by (2.37) and (2.38), and the dimensionless
plume radius by

r = − dφ/dζ

21/4φ(1 − φ)1/4
. (A 26)
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