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A Theoretical Model of Multielectrode DBR Lasers 
XING PAN, HENNING OLESEN, AND BJARNE TROMBORG 

Abstract-A theoretical model for two- and three-section tunable 
DBR lasers is presented. The static tuning properties are studied in 
terms of threshold current, linewidth, oscillation frequency, and out- 
put power. Regions of continuous tuning are presented for three-sec- 
tion DBR lasers. We discuss different routes for continuous tuning, 
when the injection currents to the passive sections are varied, and the 
limitations on the continuous tuning range are clarified. By proper con- 
trol of these currents a tuning range of approximately 400 GHz is pre- 
dicted at 1.55 pm wavelength, which is in good agreement with the 
experimental results published thus far. 

I. INTRODUCTION 
REQUENCY tunable narrow linewidth lasers are es- F sential components in coherent communication sys- 

tems. Recently, several laboratories have succeeded in 
making multielectrode frequency tunable lasers [ 11-[6]. 
Although the spectral linewidth achieved with such de- 
vices is rather large compared to discrete external cavity 
lasers, they do have several advantages, e.g., compact 
size, high FM efficiency, and low sensitivity to environ- 
mental disturbances. In such devices, single-mode oper- 
ation is realized by a built-in Bragg corrugation in one or 
more sections. Depending on whether the corrugation is 
in the active or passive section(s), the laser is either a 
DFB (distributed feedback) or DBR (distributed Bragg re- 
flector) type. 

We have previously reported a theoretical study of the 
phase-tunable DFB laser [7], which consists of a DFB 
section and a monolithically integrated passive waveguide 
section. The principle of frequency tuning in this device 
is to adjust the phase of the reflected light from the wave- 
guide by injecting carriers into the waveguide section, 
which in turn changes the refractive index through the 
free-carrier plasma effect. The frequency tuning is limited 
to a certain range around the Bragg frequency, which is 
clamped when the DFB section is operated above thresh- 
old. Another disadvantage of this two-section device is 
that two electrodes do not allow a sufficient control of the 
oscillation frequency, side mode suppression, and output 
power. For this purpose three degrees of freedom are re- 
quired, and it is therefore relevant to study three-section 
devices. 

A qualitative analysis of tunable multielectrode lasers 
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has been reported by Coldren and Corzine [8]. They point 
out that a multielectrode DBR laser is superior to a DFB 
laser for obtaining a large tuning range, because the Bragg 
frequency is not clamped, as it is in the case of a DFB 
laser. By current injection to the Bragg section the refrac- 
tive index and the effective corrugation period can be 
changed, which in turn changes the Bragg frequency. 
They also emphasize that a three-section DBR laser with 
three separate electrodes can provide the desired control 
of the lasing characteristics. 

In this paper, we present a theoretical study of a three- 
section DBR laser [ 3 ] ,  [4], which consists of an active 
Fabry-Perot section, a passive phase control (PC) wave- 
guide section, and a passive DBR section. The two-sec- 
tion DBR laser [2] is treated as a special case of the three- 
section device. Our numerical results are in good agree- 
ment with the predictions of [8]. Nontunable DBR lasers 
(i.e., lasers with no electrode on the DBR section) have 
been studied by Patzak et al. [9], [ 101 and several other 
authors, and we have applied a similar approach for cal- 
culating the threshold gain, frequency, and linewidth of 
the DBR modes. The paper is organized as follows. In 
Section I1 we give the theoretical background for analyz- 
ing the three-section DBR laser and a general discussion 
on the properties of DBR lasers. Detailed numerical re- 
sults for both two- and three-section DBR lasers are pre- 
sented in Section 111, and the optimum routes of contin- 
uous tuning are discussed. Finally, Section IV gives a 
summary of the results. 

11. THEORETICAL BACKGROUND 
A .  Three-Section DBR Laser Model 

Fig. 1 shows a schematic of a three-section DBR laser. 
The three sections have separate electrodes and are as- 
sumed to be electrically isolated from each other. The PC 
and DBR sections are made of higher band-gap material 
than the active section and are therefore passive. When 
current is injected into one of the passive sections, the 
carrier density increases and simultaneously the refractive 
index decreases due to the free-carrier plasma effect. For 
the DBR section this leads to an increase in the Bragg 
frequency. However, the absorption also increases due to 
free carriers and this reduces the amount of feedback to 
the active section. 

The theoretical analysis is based on our transmission 
line theory for compound cavity semiconductor lasers 
[ 1 I]. For simplicity, we will neglect possible reflections 
at the interface between the active section and the PC sec- 
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Fig. 1. Three-section tunable DBR laser, r ,  and r, are the facet reflectiv- 
ities (amplitude). 

tion. A finite reflection coefficient may easily be included 
if necessary [7]. Setting a reference plane at the interface 
between the active and the PC section at z = 0, we write 
the oscillation condition as 

no and a. are the refractive index and internal absorption 
of the passive sections in the absence of carrier injection. 
The carrier-induced index and absorption changes are ex- 
pressed as 

T L ( W ,  N I )  = rl exp { - j2k l (w?  W l l }  ( 2 )  
is the effective reflectivity of the active section and 

dn 
dN 

dcu 
dN 

A n i ( N i )  = r - Ni 

A ~ ; ( N ; )  = r - N~ 

where r is the confinement factor, and dn / d N  and dcu / d N  
are material parameters. The carrier densities relate to the 

rR(w, ~ 2 ,  ~ 3 )  = rDBR(u, ~ 3 )  ~ X P  { -j2k2(w, ~ 2 1 ~ 2 )  

( 3 )  injection currents by 
is the total effective reflectivity of the passive section, both 
seen from the reference plane. w is the angular optical 
frequency; N I ,  N 2 ,  and N3 are the carrier densities in the 
active, the PC, and the DBR sections, respectively; rl is 
the facet reflectivity at z = - I , ,  and rDBR is the reflectivity 
of the DBR section seen towards the right at z = Z2. The 
two-section DBR laser (without PC section) just repre- 
sents the special case with l2 = 0. The PC and DBR sec- 
tions are assumed to be of the same material composition. 

The complex wavenumbers for the active and passive 
sections are given by 

= - w [no + A n i ( N i ) ]  - 
C 

( i  = 2 or 3 )  (4b )  
where c is the light velocity in vacuum, n1  and cul are the 
refractive index and internal absorption of the active sec- 
tion, g ( w ,  N I  ) is the modal gain of the active section, and 

IPC = eV2R(N2) (7) 

IDBR = eV3R(N3) ( 8 )  

where e is the electron charge, V2 and V3 are the wave- 
guide volumes of the PC and DBR sections, respectively, 
and 

R ( N )  = AN + BN2 + C N 3  (9)  

is the total spontaneous recombination rate per unit vol- 
ume. 

The expression for rDBR(W, N 3 )  in ( 3 )  is given in Ap- 
pendix A and is the same as that of a DFB laser [ 1 11, [ 121, 
except that there is no gain contribution to the imaginary 
part of the complex wavenumber [cf. (4a)-(4b)]. The 
Bragg frequency wE is taken to be a linear function of N3 

where wE0 is the Bragg frequency without carrier injec- 
tion. In all our calculations we have assumed zero reflec- 
tivity on the right facet of the DBR section (i .e. ,  r4 = 0, 
see Fig. 1). A finite facet reflectivity will only have little 
influence on the tuning properties, since the right travel- 
ing wave is attenuated in the DBR section. 
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a l n r R \  B. Determination of Oscillation Modes and Their 
aw 

c* I I 
Characteristics 

The oscillation condition (1) can be separated into two 
conditions, one for the gain and one for the phase shift of - In rL 
the field during one round-trip in the total cavity. The gain 
condition is found from the norm of (1) 

a t h ( w ,  N I ) ~ I  = $ a2(N2)12 - $ In I ~ I ~ D B R ( U ?  N3)1 

(11) 

whereath(w,N1)ll  = Im ( k , ( w ,  N I ) } l l  isthenetthresh- 
old gain for the active section. Equation (1 1) gives (Yth lI 
as a function of w with N2 (or Zpc) and N3 (or ZDBR) as 
parameters. The modes [i.e., the solutions to (l)] will be 
located on the curve described by (1) at the positions 
where the phase condition 

p integer 

(12) 

is also fulfilled. The expressions for (Yth(W, N I )  and the 
refractive index n l (  U,  NI ) in the active section are given 
in Appendix B. From (1 1) and (12) we obtain the separate 
frequency condition 

h(w) = 27rp, p integer (13) 

where 

N , ( w )  is the carrier density determined by (11). The h- 
function is useful for analyzing the linewidth and stability 
properties of the modes [ l  13. The linewidth of a mode at 
a given solution to (13) will be inversely proportional to 
(dh/dw)2, and a negative value of dh/dw indicates that 
the mode is unstable. The resolution between the fre- 
the mode is unstable. The relation between the frequency 
condition (13) and the linewidth is an observation [13], 
[ 141, which has attracted new attention recently [ 151, [ 161. 

As shown in [ 111, the h-function can be approximated 
by 

wn2 h ( o )  = h, + WTi" + 2-12 
C 

for w in the region of the gain peak. Here, 7in is the round- 
trip time in the active section, a is the linewidth enhance- 
ment factor, and h, is a parameter which only depends on 
the internal state of the active section. 

The linewidth of a mode is calculated by the formula 
[I11 

-2 

= R(C12 47rz, [Re { Cf;} $1 
where R is the spontaneous emission rate into the lasing 
mode, Z, is the photon number, fD = [ j(d/aw) In r L ] - '  
is the complex round-trip frequency [ 1 13, 

1 + j a  
1 + jiG,' 

c=- 

G, = v,(ag/dw), and U ,  is the group velocity. Equation 
(16) agrees with the one used by Patzak et al. for nontun- 
able DBR lasers [9], but is more general. Reference [9] 
does not take into account the enhancement of sponta- 
neous emission rate due to a nonuniform intensity distri- 
bution along the laser cavity or a possible detuning be- 
tween the Bragg wavelength and the gain peak, but these 
effects are included in our model. 

A graphical illustration of the threshold gain and phase 
condition for the modes is often used for analysis of non- 
tunable DBR lasers [9], [ 151. Fig. 2 shows an example of 
the threshold gain curve and the h-function for the case 
of a two-section DBR laser. The lengths of the active sec- 
tion (150 pm) and the DBR section (500 pm) are the 
same as for the NEC device reported in [2], and the re- 
maining parameter values are listed in Table 1. Except for 
device dimensions no other attempt has been made to fit 
the parameters to the NEC device. The solid and dashed 
curves are for ZDBR = 0 and 100 mA, respectively, and 
the horizontal axis gives the frequency deviation from the 
actual Bragg frequency. The modes are marked by dots in 
Fig. 2(a). The shape of the curves in Fig. 2(a) reflects the 
frequency dependence of I rDBR 1 and a large pass-band of 
high reflectivity is observed around the Bragg frequency. 
As the current to the DBR section is increased, the loss 
a 3 ( N 3 )  also increases and we see that the local extrema 
on each side of the Bragg frequency are "smeared out" 
and disappear. At the same time the threshold gain near 
the Bragg frequency becomes higher (i.e., the magnitude 
of rDBR decreases). The overall result is a reduced effi- 
ciency of the DBR section. 

The similarity between the structure of a t h f l  [Fig. 2(a)] 
and the h-function [Fig. 2(b)] is due to the dominance of 
the terms --(1/2) In ( r D B R I  in (11) and a In ( r D B R I  in 
(15). The influence of the linear term uin in (15) is also 
clearly seen in Fig. 2(b). The injection of current into the 
DBR section leads to an upwards shift of the h-function. 
This can be understood in simple terms. The change in 
the Bragg frequency is determined by the condition 
A ( w B n 3 )  = 0, i.e., 

(18) 
AUB - 

* E  123 
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Fig. 2. (a) Net threshold gain and (b) the h-function (14) for a two-section 
DBR laser. The horizontal axis shows the frequency deviation from the 
acrual Bragg frequency. Solid and dashed curves are for IDBR = 0 and 
100 mA, respectively. The modes are indicated in (a); closed circles: 
stable modes, open circles: unstable modes ( d h / d w  < 0). The move- 
ments of the modes are indicated by arrows in (b). Parameter values: /, 
= 150 pm, 1? = 500 pm, r l  = 0.565. 

This implies that the relative change in the first term on 
the RHS of (14) is given by 

(19) 
A ( w B n l )  - An3 

U B n l  nl n3 
The refractive index decreases with the carrier density. 
Since the carrier density is clamped in the active section 
we have I A n , / n ,  I << I A n , / n ,  I .  Therefore 
A ( wB n I ) / ( wB n I ) increases and hence h ( w ) is shifted up- 
wards. 

In Fig. 2(b) the movement of the modes is indicated. 
The modes are located at the points where h ( w  ) is equal 
to a multiple of 2 a  and we see that the modes are moving 
away from the local maxima of h ( w )  as the current is 
increased. Occasionally, two modes will meet at a local 
minimum and be annihilated, or two modes may be cre- 
ated at a local maximum and move in opposite directions. 
This happens when the h-function becomes tangential to 
one of the horizontal lines. The position is known as the 
phase condition limit [ 1 11, [ 131, and at this point the line- 
width of a mode becomes infinite (because the slope of 

TABLE I 
LIST OF PARAMETER VALUES 

Parameter  I Symbol 1 Value 
Acfttie sectton: 
Refractive index 
Group refractive index 
Internal absorption 
Recombinat ion coefficient 
Recomhination coefficient 
Recombination coefficient 
Gain curvature 
Gain coefficient 
Carrier density a t  transparency 
Extrapolated wavelength of the 

Shift of gain peak with carrier 

Facet reflectivity 
Linewidth enhancenient factor 
Inversion parameter 
Confinement factor 
Width of active layer 
Thickness of active laver 

gain peak for N I  = N o  

density 

Passttie sections: 
Refractive index 
Confinement factor 
Width of waveguide layers 
Thickness of waveguide layers 
Internal absorption 
Recombination coefficient 
Index derivative with respect to  

carrier density 
Absorption derivative with respect 

Bragg wavelength without current 
to  carrier density 

Unit  

cni-' 
sec-' 

ni3/sec 
ma/sec 

ni-1sec2 
ni2 

m-3 

pn1 

m3 sec 

p 1 1  

p i  

Pm 
Ilm 

c1n-l 
ma / sec 

m3 

mz 

the h-function is zero). The dominant mode is the one 
with the lowest threshold gain and will in general be lo- 
cated near the Bragg frequency [see Fig. 2(a)]. The low- 
est linewidth is obtained in a region below the Bragg fre- 
quency, where the h-function has a large and positive 
slope. Regions where the h-function has a negative slope 
correspond to unstable states. 

The example considered in Fig. 2 may be compared 
with the case of an AR-coated Fabry-Perot laser with 
feedback from an external grating (cf. [ l l ,  Fig. 2(a) and 
(b)]). The latter configuration is qualitatively very similar 
to a three-section DBR laser. Both lasers have an active 
Fabry-Perot section, a phase control option, and a fre- 
quency-selective reflector. For the discrete device phase 
control is performed by changing the cavity length within 
the order of a wavelength and coarse frequency tuning is 
done by tilting the grating. The total cavity length and the 
achievable linewidth reduction can of course be much 
larger, but at the expense of a more bulky device with 
high requirements on thermal and mechanical stability. 

111. TUNING CHARACTERISTICS 
A .  The Two-Section DBR Laser 

In Fig. 3 we present the tuning characteristics for the 
two-section DBR laser considered in Fig. 2. The four fig- 
ures show the variation of threshold current, frequency, 
linewidth, and output power, all as a function of the DBR 
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Fig. 3.  Tuning characteristics for a two-section DBR laser (parameters as 
in Fig. 2) as a function of the DBR current. (a) Threshold currents for 
the dominant mode (solid curve) and main side mode (dashed curve), (b) 
frequency of the dominant mode (solid curve) and Bragg frequency 
(dashed curve), (c) linewidth, and (d) output power. 

current. Fig. 3(a) also shows the threshold current of the 
main side mode and the difference between the two curves 
can be taken as a measure of the side mode suppression 
of the device. A new dominant mode is created at ZDBR = 
47 mA and the former dominant mode becomes the main 
side mode. Before the mode jump occurs, the main mode 
is moving left on the line h(w)/(27r) = 3 in Fig. 2(b), 
and as soon as the new modes are created on the line 
h(  w ) / (  27r) = 4, the main mode continues from there and 
moves left. The dashed curve in Fig. 3(b) shows the Bragg 
frequency. We notice the characteristic sublinear behav- 
ior, which is due to the saturation of the carrier density 
N3 resulting from radiative and Auger recombination. The 
dominant mode is close to the Bragg frequency but gen- 
erally has a slower tuning rate [8]. This is clearly seen in 
Fig. 2(b), where the main mode is always moving left 
(i.e.,  towards lower frequency) relative to the Bragg fre- 
quency. When the mode gets too far away from the Bragg 
frequency a mode jump has to occur. This can be elimi- 
nated for a three-section device as explained in Section 
111-B, but is unavoidable for a two-section laser. 

The linewidth variation is shown in Fig. 3(c). A mini- 
mum linewidth of 2.5 MHz is obtained. Just after the 

mode jump the linewidth goes to infinity. This happens 
because the main mode jumps to the phase condition limit 
[cf. Fig. 2(b)] and the same phenomenon was also ob- 
served for the phase-tunable DFB laser [7 ] .  Away from 
the mode jump region a fairly constant linewidth is ob- 
served. The output power is shown in Fig. 3(d). It lies 
between 6 and 12 mW with a discrete increase at the mode 
jump. In general, the power shows a decreasing trend be- 
cause of the increase in free-carrier absorption in the DBR 
section. The calculated behavior agrees well with the ex- 
perimental results of [ 2 ] .  

B. The Three-Section DBR Laser 
In the following we will present similar sets of figures 

showing the tuning characteristics of a three-section DBR 
laser. For this analysis we have chosen the cavity lengths 
reported by Fujitsu in [4], i.e., l I  = 300, l2 = 170, and 
l3 = 290 pm. In this case we have the possibility of tuning 
the two currents Zpc and ZDBR separately, or simulta- 
neously following a given procedure. Initially, we will 
consider the influence of each of the currents. 

Fig. 4 shows the tuning characteristics for variation of 
the DBR current. Since the total cavity length is larger 
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Fig. 4. Tuning characteristics for a three-section DBR laser as a function 

of the DBR current. Parameter values: I ,  = 300, I ,  = 170, I, = 290 pm. 
Legends as in Fig. 3 

than for the two-section device, the linearly increasing 
part of the h-function (not shown) gets a higher slope [the 
terms UT, ,  and 2wn2 l2 / c  in (131.  The modes are therefore 
more closely spaced in frequency and more frequent 
mode jumps are observed. Contrary to the previous ex- 
ample, the mode jumps occur between already existing 
pairs of modes, so the dominant mode never reaches a 
phase condition limit. For the same reason, the linewidth 
variation is rather small. However, our calculation of 
linewidth is based on a single-mode theory. In practice 
the laser is likely to oscillate in two (or more) modes close 
to a mode jump and this will cause a larger linewidth. It 
is also possible that the the laser will exhibit hysteresis in 
the region near a mode jump so that the mode can actually 
be pulled past the limit before a mode jump occurs. Be- 
cause of the long cavity there are several modes within 
the main lobe of the Bragg reflector, and the side mode 
suppression is rather poor. As in the previous example the 
frequency tunes at a slower rate than the Bragg frequency. 
The output power varies continuously with a slowly de- 
creasing trend, again because of the increase of free-car- 
tier absorption in the DBR section. 

The influence of changing the current to the phase con- 
trol section is demonstrated in Fig. 5 .  As the name indi- 
cates, the main function of the PC section is to alter the 

phase of the field which is reflected back to the active 
section. For a fixed current to the DBR section this ena- 
bles a tuning across the main lobe of the Bragg reflector 
as illustrated in Fig. 5(b). The frequency is increasing be- 
tween the mode jumps and mode jumps become less fre- 
quent as Zpc is increased. This is due to saturation of the 
carrier density N2 at high injection level. The frequency 
tuning is mainly governed by the condition A ( w n 2 )  = 0 ,  
cf. (14). Comparing Figs. 4 and 5 we see that the thresh- 
old current and output power are more sensitive to Zpc 
than to ZDBR. This agrees with experiments where it is ob- 
served that the power drops off faster with Zpc than ZDBR 

From the previous discussion it is clear that both of the 
two currents to the passive sections must be varied in or- 
der to obtain continuous tuning over a large frequency 
range. We have therefore made a calculation of the re- 
gions of continuous tuning in the (Ipc, ZD,,)-plane. Be- 
cause of the increase in Auger recombination and free- 
camer absorption at high injection levels, we have re- 
stricted both currents to a maximum of 100 mA. The re- 
gions are shown in Fig. 6 and are separated by the mode 
jump boundaries which are indicated as thick solid curves. 
The regions are obtained as follows. For a given value of 
ZDBR the slope dh / d w  at the Bragg frequency is calculated. 

131. 
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Fig. 5. Tuning characteristics for a three-section DBR laser as a function 

of the PC current. Same example as in Fig. 4. 
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Fig. 6 .  Regions of continuous tuning for a three-section DBR laser, when 

the PC and DBR currents are varied. The thick solid curves indicate 
mode jump boundaries and the thin dashed and solid curves refer to the 
tuning ‘Lrou te~”  1-111, which are discussed in the text. 

Because of the long cavity we can assume that the h-func- 
tion varies linearly over a frequency range around the 
Bragg frequency corresponding to one mode spacing [cf. 
Fig. 2(b)]. The (approximate) mode jump boundaries are 

found when two modes are located at fs f +Sf, where 

Sf = [y (20 )  

is the (approximate) mode spacing. Since the threshold 
gain curve is symmetric around the Bragg frequency [cf. 
Fig. 2(a)] the two modes will have the same threshold. 
For constant ZDBR the boundaries are determined by cal- 
culating the values of Zpc for which there is a pair of modes 
at fs $Sf. For a shorter device the boundaries may be 
phase condition limits as shown in Figs. 2 and 3,  but for 
a long cavity with small mode spacing they will always 
be of the gain condition type. This means that the mode 
jumps to an already existing mode, which acquires a lower 
threshold gain than the former one at the boundary. It is 
of course possible to make a more precise calculation for 
a shorter cavity, but for the actual case the approximation 
is sufficiently accurate. 

As an interesting result, (16) and (20) imply that the 
linewidth of the main mode is proportional to the square 
of the mode spacing. This means that there is a tradeoff 
between linewidth and side mode suppression, since the 
side mode suppression will generally become poor if the 
mode spacing is small (i.e., if the cavity is long). This is 
a very important consideration for practical design of these 
devices. 
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In the following we will discuss various methods for 
obtaining a large continuous tuning range. Inspired by the 
experimental method devised in [4], we tried to calculate 
the tuning characteristics along the route denoted by I in 
Fig. 6. This means increasing one of the currents until 
just before a mode jump occurs, then increasing the other 
one, and so on. The frequency tuning is shown in Fig. 7. 
Here, the horizontal axis shows the current to the PC re- 
gion, so the vertical curve segments correspond to chang- 
ing the DBR current, which is not indicated (cf. Fig. 6). 
Since this is an example of a continuous tuning curve, all 
other characteristics (threshold current, linewidth, output 
power etc.) change continuously with current ( Zpc or 
ZDBR), but the qualitative behavior is very similar to the 
curves of Figs. 4 and 5 .  Fig. 7 also shows the stepwise 
increase of the Bragg frequency. It is seen that the actual 
frequency of the dominant mode changes much less than 
the Bragg frequency, when ZDBR is varied. 

The major disadvantage by following route I is, that we 
get very close to the mode jump boundaries where the side 
mode suppression is poor. This can be avoided by follow- 
ing the routes I1 or 111; see Fig. 6.  On these lines Zpc and 
ZDBR are changed simultaneously, and it is therefore pos- 
sible to stay clear of the mode jump boundaries over a 
large range. The relations between the currents are 

ZPC = 3 * ZDBR, 

Zpc = 1.5 . ZDBR - 6 mA. 

(Route 11) 

(Route 111) 

The resulting tuning characteristics are shown in Fig. 8 ,  
here as a function of ZDBR. In this particular case there is 
no advantage in using route I11 compared to route 11, since 
the tuning range and other characteristics are very similar, 
and route I11 requires a higher PC current. However, one 
might imagine cases where the initial offset of the PC cur- 
rent could be advantageous, for instance if one wants to 
modulate the PC current with very low injection to the 
DBR region. In this region the FM efficiency can be very 
high, with a flat frequency response up to a cutoff fre- 
quency determined by the carrier lifetime [17]. In prac- 
tice, routes I1 and I11 will be easier to follow than route 
I ,  since they only require the design of a very simple cur- 
rent splitting network. 

IV. CONCLUSION 
In this paper we have presented a theoretical model for 

multielectrode DBR lasers with and without phase control 
section. The static tuning characteristics have been cal- 
culated and methods for maximizing the continuous tun- 
ing range have been discussed. 

Contrary to a multielectrode DFB laser, where the 
Bragg corrugation is in the active section, a DBR laser 
has the possibility of achieving a large frequency tuning 
range. By current injection to the passive DBR section the 
refractive index changes due to the free-carrier plasma ef- 
fect, and this in turn changes the effective corrugation pe- 
riod and the Bragg frequency. Since the carrier density is 
not clamped (as it is in an active DFB section), the Bragg 
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Fig. 7. Frequency tuning characteristics along route I in Fig. 6 .  Legends 

as in Fig. 3(b). 

frequency can be varied over a large range, typically sev- 
eral hundred GHz. However, Auger recombination and 
free-carrier absorption strongly limit the efficiency at high 
injection levels. 

The main mode will generally be located close to the 
Bragg frequency and within the main lobe of the Bragg 
reflector. Our analysis shows that the tuning rate of the 
lasing mode will be slower than that of the Bragg fre- 
quency, when the DBR current is varied. When the de- 
viation from the Bragg frequency becomes too large, a 
mode jump to the opposite side of the main lobe will oc- 
cur, either because a new mode with a lower threshold 
gain has been created (phase condition jump) or because 
one of the existing modes acquire a lower threshold gain 
(gain condition jump). If the total cavity length is large, 
there will be many modes inside the main lobe, and only 
gain condition jumps will occur. 

In order to avoid mode jumps during tuning of the DBR 
section, it is necessary to have an additional passive sec- 
tion for phase control. By current injection to this section 
one can control the phase of the light which is reflected 
back to the active section, and thereby tune the frequency 
of the lasing mode around the Bragg frequency. In this 
work we have calculated the regions of continuous tuning 
in the ( Zpc, ZDBR)-plane, and various routes for continuous 
tuning have been suggested. Generally, a linear relation- 
ship between the two currents gives a large tuning range 
and the required current splitting is easy to realize in prac- 
tice. The optimum side mode suppression is obtained 
when the mode is kept close to the Bragg frequency, but 
the minimum linewidth is obtained on the low frequency 
side of the main Bragg lobe. As an important result we 
have found that the linewidth is proportional to the square 
of the mode spacing. Thus, a narrow linewidth requires a 
long cavity with a small mode spacing, whereas a short 
cavity gives a good side mode suppression (only one or a 
few modes within the main lobe). This tradeoff must be 
considered in a practical design. 

The typical tuning range by simultaneous control of the 
PC and DBR currents is on the order of 400 GHz, and 
there is an excellent agreement-both qualitatively and 
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Fig. 8. Tuning characteristics along routes I1 and 111 in Fig. 6.  Legends 

as in Fig. 3 .  

quantitatively-with the experimental results published by 
NEC and Fujitsu. The present model provides a detailed 
understanding of the behavior of two- and three-section 
DBR lasers and our results should be useful for the design 
of future devices based on these principles. 

and Po = a/A is the Bragg propagation constant, A is the 
period of the (first order) corrugation, K is the coupling 
coefficient, r, is the facet reflectivity at z = l2 + 13, and 
0 is the corrugation phase at z = 1 2 .  

APPENDIX B 
The relation between the complex wavenumber kl  and APPENDIX A 

The expression for the reflectivity of the DBR section the frequency and carrier density is given by 
is given by [ 1 1 3 ,  [ 121 1 

UR 
+ - ( w  - U,) 

where Here, the product wnl(  w ,  NI ) is represented by a linear 
expansion around a reference point (U,, N , )  191, 1111, 
which we have chosen to be ( w B o ,  2 * lo2, m-'). The K, = jKe-Jn (A .2 )  

p = jr, exp { - j (2Ool3  + Q ) )  (A.3)  gain is given by 

NI) = gdN1 - No) - - w,(Nl))2 (B.3) 
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where up ( NI ) is the angular optical frequency of the gain 
peak, g N  is the gain coefficient, g ,  is the gain curvature, 
and up ( N o )  is the (extrapolated) angular frequency of the 
gain peak for NI = No. The relations (B. 1)-(B.4) can eas- 
ily be inverted, i .e. ,  there is a one-to-one mapping be- 
tween the ( U ,  N I  )-plane and the complex k,-plane [ l l] .  
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