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SutnmarjQ 

A comprehensive mechanism for making quantitative estimates of the 
seismic response associated with quasi-monochromatic system of pressure 
waves in shallow water is proposed. Based on generalized linear wave 
theory, it applies to low-frequency components in the microseism spectrum. 
A model of pressure response function is derived by considering the 
agitated surface of open sea with wave trains converging towards the 
shore-line from scattered sources. As expected, this favours low-frequency 
swell and is able to isolate energy associated with a specified frequency 
component. 
Lastly, an expression for the local energy balance in the seismic wave 
guide is deduced and the computed results from this theory is tabulated 
with those from recent measurements. Broadly speaking the two are 
sufficiently in agreement except at very low frequency range of the 
spectrum. 

Introduction 

Microseisms are generally defined as micro-scale oscillations of the solid earth 
accompanying disturbed weather systems. Spectral analysis of the seismograph 
records often reveals two distinct types of oscillations, corresponding to two distinct 
peaks in the spectrum. The low frequency peak has a frequency equal to that of the 
associated swell (Haubrich, Munk & Snodgrass 1963; Hasselmann 1963; Hindle & 
Hatley 1965; Darbyshire & Okeke 1969). The upper frequency peak has frequency 
components equal to twice that of associated free gravity waves (Banerji 1930; 
Darbyshire 1950; Longuet-Higgins 1950 and, more recently, Hasselmann 1963; 
Darbyshire & Okeke 1969). 

Extensive work has been done by various investigators to explain the origin and 
mode of propagations of microseisms. Broadly speaking, it is established that they 
are launched by the action of the pressure field on the sea floor as free gravity waves 
propagate. This effective pressure field may be of iirst-order in the form of a system 
of quasi-monochromatic wave trains and thus has the same frequency as that of 
associated elastic modes. There is also a second-order pressure effect shown to be 
identified with the piston-like vertical motion of the water column produced by 
randomly distributed groups of standing waves which are in phase. This motion 
couples the centre of gravity oscillations of the water column to waves of compression. 
This, in turn, is capable of communicating energy in the form of acoustic vibrations 
to the sea-bed independent of the depth of the water layer, thus initiating double 
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frequency microseisms associated with dominant peak in the niicroseisms spectrum. 
The two mechanisms may operate simultaneously and, therefore, excite two different 
types of earth tremor. This theoretical model sets out to re-examine the characteristics 
of low frequency microseims identified with the low frequency peak in the spectrum. 
It is intended to obtain, through slightly more involved analysis, a form of energy 
density spectrum as a function of wave vectors and bottom topography for each 
frequency component in the spectrum. 

The critical role played by bottom topography of a shallow sea in modulating the 
gravity wave pressure spectrum has recently become evident and is an important 
parameter in explaining the observed relationship between low frequency microseims 
and gravity wave components. Previous analyses on this topic have rested on the 
bases (a) that the bottom contours are parallel to the coast lines, and (b) that the wave 
trains on the sea-surface approach the beach normally (Darbyshire & Okeke 1969) 
or at a small angle of incidence (Hasselman 1963). In a complex irregular sea such as 
the Irish Sea with a small beach gradient and slowly varying bottom topography, 
it seems likely that there will be considerable contribution to seismic energy from 
wave trains approaching the beach obliquely. An attempt is therefore made in this 
model to incorporate this effect by allowing for the angle of incidence to vary between 
-n/2 and 4 2 .  

Finally, a comprehensive model of energy conversion processes associated with the 
seismic field as a mathematical framework is presented. However, it is acknowledged 
that, since the geometry of the bottom topography and other relevant physical 
variables affecting the propagational characteristics of seismic mode can never be 
specified in detail, a total agreement of theory with observation can hardly be achieved. 

Formulation of source function 

It is shown that the amplitude of the bottom pressure field associated with free 
gravity waves of wave number KO is proportional to sech ( K O  h) (Lamb 1932) where 
h is the depth of water layer; this may be approximated to exp ( -0.08K0 / I )  
(Darbyshire & Okeke 1969). However, in  this model, the approach adopted is to 
derive an expression for the linear wave profile using shallow water theory (Stoker 
1957) and to convert this to pressure field by hydrostatic assumption. 

It is useful first briefly to review the essential equations of hydrodynamics 
governing shallow water propagations. Take R = (s2 where x = R cos 0 
is the co-ordinate axis perpendicular to and y = R sine parallel to the shoreline; 
the particle velocity components in R and 8 directions are q = (qk ,  qe) respectively. 
Also take q ( R ,  0, t )  as the sea-surface profile. 

Thus, 

aqR 4 8  aqR +-  - =-9- dq, 
at +qRdR R ao aR 

Expressing the physical quantities involved, 11, qR and q,, as a linear series expansion 
in terms of small parameter E = O(Ka) with a as the mean wave amplitude in shallow 
water and K, the modulation wave number, the flow boils down to small changes 
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A theoretical model of primary frequency microseisms 29 1 

superimposed on the ambient state. The perturbed linear distribution functions are: 

q R  = & q p +  ... (4) 

40 = & q p +  ... (5 )  

11 = p) + &q‘” + . . . 

p = p‘O’+&p(I) ... 
and 

for the pressure p. 
The equations of order E are: 

From (8). (9), (10) and dropping the suffix (1) then 

Usually, consider a beach of constant gradient a’ and assume that the parameter q 
oscillates with frequency wo, then let 

q = qo(R)  cos [me] exp (iw, r )  (12) 

i i i  being a constant to be determined later; and qo(R)  satisfies the equation 

d2 90 + 2 R - + (  dqo R o o 2 u ’  
R Z  - 

dR2 dR 9 

This is a form of spherical Bessel equation with the solution qo(R) = (d/R)*qo’(R),  
d is a constant with dimension of length to be specified and qo’(R) satisfies the equation 

I],’ = 0. 1 d 2  9,’ Rdqo’ RwO2 a’ 
R 2 ~  + - - [ (m2-+)-  

d R  d R  9 

From (12) and (14), to give a possible form of wave profile, with unit amplitude in 
deep water, assume ni = .), then 

qo = di R - i  J0(2wO a’* R* g-*) 
and 

tl(R, 8,  r )  = d* R e +  J0(2w, u’* R + g W i )  cos (8/2) exp (iw, t )  

-(lr/2) < 8 < ( 4 2 )  
(15) 

and J ,  is a zero order Bessel function of the first kind and R is measured from the 
generating zone. 

The foregoing analysis is true only if the wave length involved is long compared 
with depth of shallow water. Fortunately, this is satisfied by swell with period greater 
then 4 s which is usually a source of low frequency microseisms in a wide area of the 
Irish Sea. Thus, under this condition, the effect of water layer on the wave pressure 
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becomes negligible. We may, therefore, regard the sea-bed as a dynamical system 
subjected to a stationary and homogeneous progressive pressure field 

(16) p ( l )  = P, ,  = d * p ,  gR-*  J0(2w0 di R* g-*) cos (U/2) exp (iw, r )  

and pa is sea-water density. 

Spectrum of bottom pressure field 

Fourier-Bessel transform in obtaining amplitude spectrum. Thus, from (1  6) 
In dealing with motion with symmetry, it seems appropriate to use generalized, 

d* R-*  J0(2w0 a’+ R+ g- * )  cos (0/2) 
m op 

= 3 , /CH(K’, 8, w0)’ J o ( K ‘ R )  K ’ d K ’ + +  1 , /SH(K‘,  0, w,)’ J , ( K ’  R )  K ‘ d K ‘  
n n 

where CH(K‘ ,  8, oo) and S H ( K ’ ,  0,  coo) are the spectral amplitudes of the bottom 
pressure fields assumed to be symmetric. K ‘  is the wave number in generalized form. 

Applying inversion formula to (17) then, 

- (42 )  < 0 < (7q2) 

K O  and K being the wave numbers associated with gravity and seismic wave fields 
respective] y . 

From (18) and (19), 

(a) At very low frequency, wo - 0 

(b) As indicated by Hasselmann (1963), the physical factor essential for the 
generation of primary frequency microseisms in shallow seas is the amplitude 
modulation usually identified with low phase velocity bottom pressure fields as sea 
waves with frequency wo propagate through a beach with variable depth configura- 
tions. Consequently, the energy of the pressure wave is spread over a wide range of 
Fourier components with small wave numbers associated with high phase velocities 
included. Thus, in the range of small-numbers, K O  matches K and energy conversion 
from pressure wave to seismic wave fields takes place. 

In this situation, 

CH’(K’, 8, wo)+SH2(K‘,  8,  w0)  = w0-’ d-’(ga’ c0s2(8/2)). (19b) 

Define the dissipationless power spectrum 

Swo(K’, 8) = CH’(K’,  8,  w o ) + S H Z ( K ’ ,  8, wo). (20) 

since !,(x) is maximum near x = 0, the power spectrum expressed by (20) favours 
low frequency modes of propagation. It also increases with decreasing wave number, 
steep breach gradient as already obtained by previous investigators (Darbyshire & 
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A theoretical model of primary frequency niicroseisms 293 

Okeke 1969). With (20) it may be possible to estimate the energy of each component 
wave train in a frequency-power spectrum, the integration being performed from 
-n/2 to 4 2  with respect to direction of approach. 

For a swell, the frequency spectrum is narrow and hence, the energy is mainly 
clustered within an infinitesimal bandwidth 6K centred at peak wave number K,. 
Thus. the total energy of a wave train 

2rc2 
KO 

E = -  2 p w  gSw,(Krn, 8) 6 K .  m a )  

And total pressure effect, 
2n2 p,,, g 6 K  0 

{CH(K, ,  8, coo) cos wo r + S H ( K , ,  8, wo) sin w,, 1 )  cos - 2n2 
F P 3 3  = KO2 2 

(21) 
relating two spectral amplitudes. 

Seismic response 
I ntroditctioii 

In computing components of ground displacement associated with microseisms, 
it seems physically more realistic to incorporate into the model the effect of energy 
dissipation due to wave damping. Since experiments confirmed that this effect is 
proportional to the wave frequency, in low frequency components, it may be regarded 
as of second order in importance. However, in the simplest representation. it is often 
assumed that energy loss is proportional to particle vibrating velocity. But to obtain 
a more meaningful form of frequency equation, we take, instead, a simplified form of 
Voigt solid in which (a) the energy dissipation is proportional to the time rate of the 
change of strain components (Kolsky 1963), (b) if A and p are elastic Lame’s constants, 
1,’ and p‘ are constants identified with the specific energy dissipation, then, A’/A = p’ /p 
(Quimby 1925; Thompson 1933; Kolsky 1963). In other words, elastic and dissipative 
behaviour of the material are alike. This introduces only one independent attenuation 
constant A’ in the boundary equations. 

ReleiTatit equarions 
In the sea bed, let 4 and $ be the single-valued displacement potential functions 

expressing the propagational characteristics of the pressure and shear waves 
respectively. Introduce the complex frequency w = wo+i6to for which 6w -g wo. 
thus, 4 = &(R) exp ( - iwt) ,  t+b = IClo(R) exp (- iwt). To allow for attenuation, 6w 
must be positive and real. In axial symmetric wave motion. 

1 d d 2  w2 + - - + 7;i + -) 4 0  = 0 
a2 
(1 R S R  aZ 2’ 

1 2 ii2 w2 + -. __ + - + - aZ (z R aR d Z 2  p2 
where a and p are phase-velocities of pressure and shear waves respectively. 

As a formal integral representation of solutions of (22) and (23) take 
W 
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whcrc 

A ( K )  and B ( K )  are amplitude components. 
representing the components of ground displacements and defined by 

Let U ,  and U ,  be linear variables 

24 ? 2 *  I d* L/ - 
dR R d R  

J ,  is a first order Ressel function of first kind such that 

L - sz 

d 
d R  - J l ( R )  = - J o ( R ) .  

Then. using equations (24)-(27) 

U , ( R .  Z) exp ( + c o t )  
m 

= J’ K z [  - A ( K )  exp (- K , Z )  + K ,  B ( K )  exp (- K ,  Z ) ]  J , ( K R )  dK 
0 

U , ( R .  Z) exp (+ io j t )  

= i K Z [ K , A ( K )  exp(-K,Z)+K2 B ( K )  exp ( - K , z ) ]  J O ( K R ) n K  
n 

Bouridarj corrdirions 
At the sea-floor Z = 0, 
(a) the tangcntial stress vanishes and this demands that 

i.e. from (28) and (29) 
2K, A ( K )  - (2K2 - 0 2 / B 2 )  B ( K )  = 0. 

(b) Vertical component of stress is balanced by the high phase-velocity component 
pressure of free gravity wave, 
i.e. 

= J K P , , ( K .  o0, 6 )  J o ( K R )  exp ( - i w t ) d K  
0 

u2 = (A+2p) /p , ,  j?’ = p / p s ,  p8 is the density of sea bed. Assume Poisson’s hypothesis, 
i.e. t( = PJ3. After simplifying, we have only one attenuation parameter A’. From 
(28). (29) and (31) 

(32 )  p33 ( ~ 2 + i ~ 1 2 ’ ) { ( 2 K 2 - ~ z / ~ 2 )  A ( K ) - 2 K 2  K , B ( K ) }  = -. 
P S  
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A theoretical iiiodel of primary frequency microseisms 29 5 

And from (30)  and (32) 

where 
A ( K )  = ( P 2 + i ~ ~ . ‘ ) { ( 2 K 2 - t u 2 / a 2 ) ( 2 K 2  - t 0 ~ / / ? ~ ) - 4 K ~  K ,  K # ] .  

Take 

Hence, 
F ( K )  = ( / l / t ~ ) ’  A ( K ) .  ( 3 5 )  

Away from the generating source, the applied pressure is zero. 
However. to make the vertical ground displacement still finite and non-zero, 

F ( K .  w,+idw) = 0 (from this expression, attempt is made to derive dispersion 
relation shown in the accompanying Appendix and Fig. 1). take i.’ = y/?-’ then 
6w = 0- l ly  and hence SK = do/V, where Ci is the propagation velocity of the 
amplitudes peak. In the frequency range < 6 < lc/s, y = 2.7 x lop3  per s. 
(Attewell & Ramana 1966) S = 00/2. Hence from (35) 

Expressing J o  in asymptotic form (Jeffreys & Jeffreys 1966) 

J o ( K R )  = +[Hso(KR) +Hio(KR)I 

4 0  

3 0  

10 

0.5 1 .o 2.0 3.0 
X-rod km-‘ 
Secondary and primary frequency dispersion curve 

FIG. 1 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/27/3/289/837089 by U

.S. D
epartm

ent of Justice user on 17 August 2022



296 

where 

E. 0. Okeke 

2 +  
Hi, = (T) exp ( - i ( K R  --&n)). 

Using (37), (38) on (36) 

UAR, ,  wo) exp (-0.1 l y t )  cos w, t 

K ,  is still the wave number identified with the peak of amplitudes spectrum. Since 
0 < Arg F ( K )  < n, the zeros of interest are in upper half plane. As lKl -+ 00 so, the 
integral vanishes as K-’” where a semi-circular contour is chosen in  complex 
K-place. 

Thus, as with similar problems in Seismology (Ewing, Sardetsky 6r Press 1957) 

where 

CJ,(R,, w,) exp (-0.1 l y t )  cos wo t = 
P S  

At resonance 

N K,-’ 
K K, ,Crn2 = - (km, s, unit) 

n = ~  16 

This theory sets out to analyse the local energy balance in the wave guide. We 
take R ,  to denote the beach length of gradient a’ over which the water layer is 
negligible; and thus, shallow water gravity waves of frequency o,, are associated with 
appreciable bottom pressure. R ,  is estimated from the relationship a’ R ,  oo/c,  = O(1) 
where a‘R, = h (the depth of water layer usually small compared with a given 
wavelength) and cn is the characteristic seismic speed in the sea-bed. 

Frequency power spectrum 
From (39), let 

U ( t ) w ,  = U ( R o ,  wo)exp(-O.llyr) 

(42) is a representation of the time series associated with displacement processes of 
the sea bed. We use frequency power spectrum to obtain the contributions to the total 
potential energy of the wave fields derived from each frequency in the spectrum. 
The power per unit frequency associated with the Fourier component with frequency 
wo is R,(w,). It  is indicated by Darbyshire & Okeke (1969) that with variation of 
only 1 per cent in wave number, quantitatively, 

where U ( t )  w,  is given by (39) and (42). 
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A theoretical model of primary frequency microseisins 297 

Similarly, let R,(oo) represent the contribution to the energy (per unit frequency) 
of the bottom pressure field associated with gravity wave of frequency o,, and with 
unit amplitude in deep water. Then, from (20), (21) and (40), 

Discussion 
Here we are interested in gravity waves associated with deep frontal disturbances 

in sea areas which propagate towards the continental shelf. I t  seems likely that their 
sources are not only at the centre of the depression but spread throughout the whole 
area influenced by severe and prolonged frontal disturbances. Therefore, in computing 
the amplitude of associated seismic response shown in Table 1, we take into considera- 
tion the contributions arising from wave trains approaching the shelf within a wide 
range of directions. For waves recorded at Rhosneigr, Anglesey used in this model, 
there were contributions probably from West, North-west, North, South-west and 
South. 

In linear model, appreciable bottom pressure due to individual wave component 
is ot'the order ofits wave length as re-emphasized in equation (21) using equation (19a) 
or square of its period using equation (19b). Therefore, crude estimates of bottom 
pressure were made using the wave refraction diagrams for the Irish Sea. From the 
same diagrams, we estimated the width d of the breaker-zone for different wave 
components. These were based on the work of Darbyshire & Okeke (1969). 

It appears, therefore, that throughout shallow sea areas considered, swell with 
period greater than 10 s is identified with appreciable bottom pressure response and 
also likely to break when d is order of some few metres. However, for components 
in 5- to 10-s band, the effective depth of water layer is less than 35 m with d = 0.33 kni. 
Further, consistent with the bottom topography of Irish Sea, we take the beach 
gradient to be 0.01 when the depth of the sea is less than 35 m and 0.005 otherwise 
indicating areas of nearly constant depth. 

The corresponding results of observation in Table 1 were computed from the 
records collected by the author on 1967 February 5, with the co-operation of the staff 
members of Marine Science Laboratories, Angiesey. The microseims and wave 

Table 1 

Period in Secs. 
( S )  

5 
6 

7 
8 
9 

I2 
15 
18 
20 
23 
25 

Frequency c/sec. 
( C I S )  

0.20 
0.167 
0.150 
0.143 
0.125 
0.110 

0.080 
0.067 
0.056 
0.05 
0.043 
0.04 

Observed 
x10-'2 
0.21 
0.65 
0-67 
0.65 
0.58 
0.57 

0.25 
0.07 
0.06 
0.06 
0.08 
0 ' 00 

Theoret ica I predict ions 
x10- '*  

0.85 
1.25 
I .30 a' = 0.01 
1.31 
1.10 
1 . 1 '  

0.18a' - 0.01 
0.02 when h < 33 m 
0.03 
0.02 a' = 0.005 
0.015 otherwise 
0-013 
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records were collected from Menai Bridge and Khosneigr stations respectively. 
Waves with frequency components less than 0.06 c/s were likely to have penetrated 
the Irish Sea from the Atlantic and hence. were referred to as Atlantic waves in this 
analysis. 

The type of instruments used in recording, their locations and the processes 
employed in computing frequency power spectrum from these records were as 
described by Darbyshire & Okeke (1969). 

From Table I ,  it appears that the predicted ratios for Irish Sea waves are higher 
and Atlantic waves lower than observed by about a factor of two. This factor is still 
lower over the range covered by very low frequency components in the spectrum. 
To some extent, this may be due to the approximations employed in this model, 
In addition, probable long periodic fluctuations in the form of background noise 
associated with thermal turbulence of the air in the vault of seismo-graph described 
by Hinde & Hartley (1965) might have affected the seismic records used and thus made 
measurable alterations to the microseisms power spectral densities i n  the range of 
very low frequencies. 

Nevertheless, the author concludes that the observed and theoretically computed 
results are sufficiently similar in order of magnitudes and thus, suggests that the 
method employed is correct to a reasonable extent. 
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Appendix 

Dispersion eqtratiotr 

wJ 
- ~ ( x - 2 + ~ - 1 ) ~ ~ ~ ~ 2 + ( ~ ~ - ~ , ~ p ~ 1 )  = o ( 2 .  I )  

4x2 /I 
is the frequency-equation for the whole propagation and may be put in the form 
((0’ -o,’(K))(to* -o,’(K)) = 0 where 

is the double-frequency branch 

is the primary frequency branch. 

These two branches are de-coupled, and hence propagate independently. 
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