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Abstract. A simple theoretical study of the linear electro-optic effect is presented. This 
semiclassical approach is based on the single-energy-gap model, the dielectric theory and 
the concepts of bond charge and effective ionic charge. A general expression is obtained for 
the electro-optic coefficient of a crystal and is applied to a wide variety of diatomic and 
ternary compounds including zincblende (GaAs, Gap, ZnSe, ZnS. ZnTe, CuCI), wurtzite 
(ZnS, CdS, CdSe), quartz (SOz),  lithium niobate (LiNbO3, LiTa03), KDP (KH2P04, 

KD2P04, NHsHzPOd), chalcopyrite (AgGaS2, CuGaS2) and proustite (Ag3AsS3). The cal- 
culated results are generally in good agreement with experiment. 

1. Introduction 

In the weak-field approximation, the induced polarisation in matter is linearly related 
to the applied electric field as (Yariv 1975) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= EOXE (1) 

where is the electric permittivity in vacuum and x i s  the susceptibility of the medium. 
P and E are vectors, so x i s  a tensor of rank two. Due to the complex interaction between 
the electric field and matter, the susceptibility x is, in general, field dependent. Such a 
nonlinearity becomes manifest at large field amplitudes. The polarisation can be 
expressed as an expansion in terms of the total field in the medium: 

(2) P = E~XE + EorEE + coREEE + . . . . 
The coefficients r and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR relate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and E to second and third orders. r is a tensor of rank 
three, and R is a tensor of rank four. If the medium has inversion symmetry, it follows 
that the second-order tensor r is identically zero. The lowest nonlinear effect in such a 
system is the third order. This happens in gas systems or in a centrosymmetric crystal 
such as rock salt or caesium chloride. 

We can take the total field as 

(3) ET = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EW eiot + E" ei*' + cc) 

where E" represents the amplitude of the optical electric field of frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  ER is the 
low-frequency electric field amplitude, w 9 Q. The term indicated by 

(4) put' = c0 = 2corE"EW 
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represents the electro-optic effect. Physically, the applied static field ER can be viewed 
as causing a change of the optical susceptibility of the medium, and consequently, the 
index of refraction at a frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR .  This causes the optical field to acquire sidebands 
at w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt nQ. The large interest in this physical property is due in part to its wide application 
in light modulators and numerous laser devices. 

In many applications it is necessary to modulate the amplitude, phase, frequency or 
direction of a laser beam at high speed. The electro-optic effect is found to be an excellent 
method for performing these tasks due to its fast response and accurate control. The 
modulating low-frequency signal Eneinf is applied to the crystal through which the laser 
beam passes. With a choice of specific orientations of the crystal, we can modulate the 
amplitude, phase, frequency or direction of the incident beam. An excellent review 
article discussing these techniques in detail can be found in the paper by Kaminow and 
Turner (1966). Common to all the applications listed above is the need for crystals with 
high electro-optic constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, so that the modulation power can be minimised. Many 
efforts have been made in this direction. These, however, were based on empirical 
approaches. It was concluded (Kaminow and Turner 1966) that ‘perhaps the develop- 
ment of a theoretical understanding of the electro-optic effect will lead to the discovery 
of synthesis of the ideal substance for each application in a logical way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .’. This is the 
motivation behind the investigation reported here. 

Theoretical attempts to understand the electro-optic effect began in the late 1960s. 
Kaminow derived a simple relation between an electro-optic coefficient measured at 
radio frequencies and the corresponding Raman-scattering efficiencies (Kaminow 
1967). Using the measured efficiencies, he calculated the electro-optic coefficients of 
LiNbOs and LiTaOs, which are in good agreement with experiment (Kaminow and 
Johnston 1967). With the macroscopic equations between polarisation, ion displacement 
and electric field, Kelly (1966) found an expression for the coefficient of zincblende 
crystals. The result was applied to CuCl and ZnS with satisfactory agreement with 
measurements. The electrostatic point-charge model and dielectric theory have been 
used to determine the electro-optic coefficients of 111-V compounds (Flytzanis 1969) 
and 11-VI crystals (Flytzanis 1971). The theoretical treatments are so far limited to 
diatomic crystals. The measurement of the electro-optic coefficient reveals that materials 
with large coefficients are actually complex crystals with more than two kinds of atoms. 
Therefore, a generalised theory to describe the electro-optic behaviour of simple crystals 
as well as complex systems is needed. A complete review of the formal theory of the 
nonlinear optical effect can be found in the paper by Flytzanis (1975). In this paper a 
simple model is derived for calculating the electro-optic coefficient of crystals with 
various structures and constituents (Shih and Yariv 1980). 

Based on the quantum-mechanical approach of the one-gap model, the susceptibility 
of a diatomic crystal is found to depend on the energy gap. The energy gap is then 
phenomenologically interpreted as the combination of symmetric and asymmetric parts. 
From the microscopic point of view, these two are the result of the motion of bond- 
charge in the bond region. Its harmonic and anharmonic motions respond to the total 
field in the crystal, inducing the linear and nonlinear susceptibilities. In the low-fre- 
quency regions the ions are displaced from their normal sites due to the electric field 
applied. From the expression derived for the dependence of the optical susceptibility on 
bond-rotation and bond-stretch, we derive an expression for the electro-optic coefficient 
of crystals. The result is, hopefully, applicable to crystals with arbitrary complex struc- 
ture. The theory is reviewed briefly in § 2. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 6 3-8 the theory is applied to the calculation of the coefficient of various crystals. 
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They include zincblende and wurtzite crystals, quartz, LiNb03 and LiTaOj, KDP family, 
chalcopyrite compounds, and Ag3AsS3. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§ 9, the theory and calculation are summarised. A possible direction for seeking 
better electro-optic materials is pointed out. The limitation and the possible develop- 
ment of the theory are discussed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Theory 

The starting points for our semiclassical analysis are the dielectric description of diatomic 
crystals in the Phillips-Van Vechten (PV) theory (Phillips 1968a, b, Van Vechten 1969, 
Phillips and Van Vechten 1969) and the bond-charge calculation of the bond nonlinearity 
in the theory of Levine (l969,1973a, b ,  c). With the concept of the effective ionic charge 
and the isotropic displacement, a general expression for the electro-optic coefficient can 
be obtained. Due to the uncertainty in the measurement of coefficients, a large enough 
margin is allowed for the accuracy of the theory in order to achieve its generality. 
However, the uncertainty in the theoretical estimate is usually comparable with or less 
than that in the experiment. 

To meet the purpose of predicting the properties of new materials, the theory is 
required to employ as few physical parameters as possible. In order to serve as a guide 
to the crystal grower, it is important that the parameters entering the theory can be 
measured on small crystals or powder. This will obviate the need for expensive and 
lengthy growth of crystals often to find that the coefficients are disappointingly small. 

The interaction between an external electric field and the electrons in a solid is 
responsible for its index of refraction. Using the nearly-free electron model in the 
semiconductor, it is found that the dielectric constant at long wavelengths can be 
calculated from (Penn 1962) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&(CO) = 1 + (hmp/Eg)*[1 - (E , /~EF)  + 4(Eg/4E~)7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

where a$ = 4nNe2/m is the plasma frequency. EF is the Fermi energy level and E, is the 
average energy gap of the semiconductor. E , / ~ E F  is usually about 0.1. So the suscepti- 
bility in this model has a very simple expression: 

%(CO) = (h@,/E,)*. (6) 

E; = Et + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2. (7) 

The effective band gap E, is given by 

It is clear that Eh is the symmetric part of the energy gap relating to the covalent bonding, 
while C is the asymmetric part relating to the ionic bonding. In diamond-like crystals, 
the asymmetric part vanishes and E, is identically equal to Eh. 

The expressions for Eh and C are given according to the PV theory by: 

Eh = 39.74 dos (eV) 

c = be2[(Z,/r,) - ( ~ p i r p ) ]  exp(-k,R) 

do  is in Angstoms, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = 2.48 (8) 

(9) 

where R = $do is the interatomic distance, b is a dimensionless constant depending on 
the row of atoms a a n d  b, r,  is the atomic radius, Z, is the core charge, and exp( - k,R) 
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is the Thomas-Fermi factor (Kittell976) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa0 is the Bohr radius and Nis the electron density corresponding to eight electrons 
per diatomic volume. 

In this theory the covalency and ionicity parameters of the bond are defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C21Ei. 

A complete list of values of C, Eh, fc, and fi for 68 diatomic crystals is given by Van 
Vechten (1969a, b). 

The main reason for the appeal of the PV theory is that it depends on only two 
physical quantities: atomic radius and coordination number. We have avoided the 
complex calculation of the electron wavefunction by replacing the versatile band struc- 
ture with a simple energy gap. The simplicity of this semiempirical result makes it a 
suitable starting point for the theory of the nonlinear optical effect. However, the 
division of the potential into symmetric and antisymmetric parts applies only to diatomic 
crystals. Any extension of the PV theory should be limited to diatomic crystals. In order 
to extend our theory to more complex materials we look into the unit cell from the 
microscopic point of view. It is assumed that the bulk susceptibility is due to the 
geometrical superposition of the susceptibilities of individual bonds: or equivalently, 
that the total dipole moment can be taken as the vector sum over a unit cell of individual 
dipoles, each associated with a single bond: 

where an, is the direction cosine of the bond n in the ith direction, Dn is the bond 
susceptibility along the bond direction, V is the volume of a unit cell, n indicates the 
individual bond, and the summation runs through the bonds in one unit cell. In the 
formulation of (13), we assume that the dipole is induced only along the bond direction, 
and we neglect the transverse contribution. Usually, the transverse susceptibility is much 
smaller than the longitudinal one, since it involves promotion of the electron into 
antibonding orbitals with high energies, so expression (13) is usually a good approxi- 
mation. In diatomic crystals, there exists only one type of bond: 

It can be seen that the bond susceptibility is proportional to the bulk susceptibility in 
crystals of the same structure. We assume that relation (6) gives the bond susceptibility 
except for a proportionality constant depending on the crystal structure. The quantities 
Eh and C are fundamental properties of the bond. With this concept, we can calculate 
the linear and nonlinear susceptibility in an extended PV theory. 

The physical interpretation of the Eh and C is based on the bond-charge model 
(Levine 1973b, c). It is thought that the overlap of the electron distribution in two 
adjacent atoms generates a bond charge in the bond region. It represents only a small 
amount of charge, but it possesses high mobility. Its harmonic and anharmonic motion 
responding to the applied total field is the source of linear and nonlinear dipole moment. 
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Although the calculation of Eh and C is insensitive to the individual atomic radius 
and depends on the bond length only, the anharmonic motion of the bond charge should 
be sensitive to its own position. 

The expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC given in equation (9) should be good for the nonlinear effect 
because it already contains the dependence on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  and rp and is thus sensitive to the 
motion of the bond charge. The homopolar energy gap E h  given in equation (8) is only 
a function of r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-t rp, This is approximately true for the harmonic motion of the bond 
charge, but it may not be correct for the anharmonic motion, especially for the highly 
unequal atomic radii. Considering the small contribution of core electrons to the bond 
susceptibility, it is proposed that a generalised homopolar part of the energy gap is 
(Levine 1973b, c) 

where (E;2)o is the homopolar gap when r ,  = rp = rg, r, is the average core radius. 
Using the assumption of the geometric superposition of the individual bond dipoles, 

the change of the macroscopic susceptibility is expressed in terms of the changes of the 
bond susceptibility and direction cosines: 

The changes of direction cosines are due to the relative displacement of atoms. Assuming 
that an electric field applied in the k direction induces a displacement Axk, we have 

where do is the bond length, do = 2ro. 

charge and the stretching of the bond. As B 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD andA in (11) has been neglected, we have: 

The change Abn of the bond susceptibility is due to the displacement of the bond 
(hoJ2/E;, where the small contribution 

A/3/ig = [A(w?coW~~] + fcEiA(Eh2) - 2fi(AC/C). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(18) 

The variations of U;, E;’, and C depend on do, r,, and rp, so we have to relate these 
quantities to the known physical parameters. When the bond length changes, it is 
assumed that the ratio of atomic radii remains constant. The two independent par- 
ameters, r ,  and rp, can be transformed into two parameters relating directly to the 
macroscopic properties of the crystal: 

Are = (re/&) Ado + 6 
Arp = (rp/do) Ado - 6 

where 6 is the displacement of the bond charge independent of the ionic motion, and 6 
corresponds to the optical susceptibility, while Ado corresponds to the low-frequency 
dielectric constant. 
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From equations (9), (15), (18) and (19) it is a straightforward procedure to obtain: 

AP/P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Ifi(1 + 4k,ro) + sfc - $1 Addro 

+ [ 4 f ( Z ,  + Zp)/(z, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZp) + 4 2 s  - l)fcpd8i(ro - rc)? (6Ido))  (20) 

where p = ( r ,  - rp)/(r, + rp). In the first square bracket, the term 4ksro is obtained 
because the screening wavenumber k, is proportional to rr1’*, The number (-4) is due 
to the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAop is proportional to r03’2. The expression in the second square bracket 
is the electronic contribution from the bond-charge response. It is identical to the result 
obtained by Levine (1973b, c) in his calculation of the nonlinear optical susceptibility 
and will not be considered here. Thus the expression in the first square bracket represents 
the ionic contribution of a single bond due to the bond stretching. 

Substituting equations (17) and (20) into (16), the ionic contribution to ( A X L , ) k  is 

(21) 
1 

A)$ = [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 (Bniro) If%r%lank + i ( a n L 6 l k  a n l a ~ k ) ] ]  A X k  

where 

f = fi( 1 + &ro) + sfc - 2.5 

= (k,roi2 - 1.48)fi - 0.02 (22) 

f is  the ionicity factor and 6 j k  is the Kronecker delta function. The relative displacement 
of atoms A x k  is related to the dielectric constant of the crystal as: 

Nf?,*AXk = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE L k )  E; (23) 

where N is the number of pairs of atoms per unit cell, e,* is the Callen (1949) effective 
ionic charge, E& is the relative dielectric constant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACL is the relative optical permittivity, 
and E$ is the low-frequency electric field in the k direction. The effective charge e,* is 
related to the Szigeti effective charge e t  as (Callen 1949) 

e,* = e:(& + 2)/3si .  (24) 

Furthermore, the Szigeti effective charge has been found empirically to be equal to 
(cihw,) in diatomic crystals (Lawaetz 1971). If we adopt this relation for more complex 
crystals, it becomes possible to calculate the effective charge from the knowledge of the 
atomic radius and structure. The only physical quantity which we cannot calculate is the 
static dielectric constant &io. In this paper we use the experimental data of E& to calculate 
the electro-optic coefficient. 

Next we will relate the change of the susceptibility to the electro-optic coefficient. It 
is conventional to define the coefficient in terms of the change of lh:, i.e. 

A(l/n2), = rqkEk.  (25) 

The matrix form for r must reflect the crystal symmetry. Highly symmetric crystals 
possess fewer independent nonzero elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA complete list of the matrix form for 
various point groups can be found in the book by Yariv (1975). 

The coefficient rLlk is related to the change in optical susceptibility by (Yariv 1975) 

r , k E i  = - A X l , k / & :  E;. (26) 
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Combining equations (21), (23), and (26), the final expression of the electro-optic 
coefficient is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As the direction cosines appear only as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, or a,,a,ak, it is apparent that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY , [ k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 if the crystal 
has inversion symmetry. Usually, a;a;cuk should be an order of magnitude smaller than 

ifza, # 0. The ionicity factor has been calculated for many crystals. Its value is about 
0.1-0.2 for diatomic crystals and never exceeds 0.3 for most complex crystals. 

We have established a theoretical model and derived an expression for the electro- 
optic coefficients of crystals. In the following sections, the theory will be applied to 
crystals with two or three atoms per formula. First we consider zincblende and wurtzite 
crystals which are the basic lattice structures considered in the PV dielectric theory. The 
crystal quartz is chosen to extend the theory beyond the AB type, 

In some of the ternary compounds, not all the bonds have to be taken into account 
in the calculation. Lithium niobate and lithium tantalate are used to demonstrate the 
negligible contribution of the highly ionic bond like Li-0. It is also shown that the 
distorted octahedron which results in two different bond lengths for Nb-0 is responsible 
for the nonlinear effect. The KHzPOj (KDP) family is interesting in its nonlinear 
properties. The calculation shows the dominant role played by P-0 bonds. In order to 
investigate materials with a wider range of transparency in the infrared region, we 
calculate the coefficient of chalcopyrite crystals which have a unit cell structure evolved 
from the zincblende crystal. The last ternary crystal we consider is proustite, whose 
complex structure consists of 54 bonds per unit cell. 

In the remainder of this paper we calculate the ionic part of the electro-optic coef- 
ficient. The electronic contribution is obtained from the measured second harmonic 
generator coefficients. The sum of these two parts is compared with the measured value. 
In general, our calculated values are in good agreement with those obtained 
experimentally. 

3. Diatomic crystals-zincblende and wurtzite 

The diatomic crystals can be divided into four groups, according to their structures: 
zincblende, wurtzite, rock salt, and CsCl type. The crystals with rock salt and CsCl 
structures possess inversion symmetry and, consequently, do not have a linear electro- 
optic effect. Zincblende crystals are cubic, while wurtzite crystals are hexagonal, but 
both are in tetragonal coordination. The crystal structure of the two types is identical if 
one is limited to the nearest neighbours. They can be distinguished only by comparing 
the positon of the next-nearest neighbours. 

If the slight distortion from the perfect tetragonal structure in wurtzite (Lawaetz 
1972) is neglected, the coefficients of both types of crystals can be calculated in a similar 
way. In table 1, the parameters used in equation (27) are presented. For the calculation 
of Zala,ak we have chosen the coordinates such that one of the four bonds points in the 
direction of (111) for zincblende and in the + z  direction for wurtzite. The sense of the 
positive polarisation of the bond is defined as the direction from the positive ion to the 
negative ion. Those definitions are in compliance with the conventional choices used in 
experimental measurements. With the quantities in table 1, the electro-optic coefficient 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Parameters for zincblende and wurtzite crystals. 

Zincblende Wurtzite 

Number of atoms in a unit cell 

Volume of a unit cell 

Number of atoms per unit volume 

f f l  

ra? 

B da3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=z da3 

B a :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI: ffl a2 ff3 

4 2 

of diatomic crystals is found to be: 

a h f  
zincblende ~ 1 4  = 0.3689 - 

e,*le 

wurtzite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E '  - 1) (&Ac - E ' ) / E ' 2  

and other coefficients are identically zero due to the symmetric property of the crystals. 
In expressions (28) and (29), r is in units of lo-'* mV-l, while a0 and aeff are in units of 

We have calculated the electro-optic coefficients of nine diatomic crystals using 
formulae (28) and (29). The results for the zincblende (GaAs, Gap, ZnSe, ZnS, ZnTe, 
CuCl) and wurtzite (ZnS, CdS, CdSe) are compared with experimental data in table 2. 

A. 

Table 2. Parameters and results of equations (28) and (29). a = a0 or a,ff. r's represent r14 

(zincblende) and r33 (wurtzite) and are in units of m V-'. reXpr,~ are measurements with 
clamped crystals. Their signs are not yet determined, unless so specified. 

Zincblende Wurtzite 

A B  GaAs GaP ZnSe ZnS ZnTe c u c i  ZnS CdS CdSe 

5.65 
13.2b 
0.192 
0.310 

-0.091 
0.20 

+ 1.03 
-2.73h 
-1.7 
-1.6h 

5.45 
12.OC 
0.284 

0.370 

0.23 
+ 1.53 

-0.113 

-3.20' 
-1.7 
-1.1" 

5.67 
9.1d 

0.450 
0.630 

0.33 
+2.64 
-4.681 
-2.0 

2.0p 

-0.163 

5.41 
8.3d 

0.528 
0.623 

0.35 
+2.93 
-4.77k 
-1.8 

1.6P 

-0.179 

6.09 
10. Id 
0.331 

0.546 

0.26 
+2.07 
-6.41' 
-4.3 

4.3p 

-0.119 

5.41 
7.5" 

0.656 
0.749 

-0.212 

0.27 

-5.56 
+2.66" 
-2.9 
-2.4P 

5.39 
8.7' 

0.567 
0.623 

-0.181 
0.35 

+3.63 
-5.63k 
-2.0 

1.8P 

5.85 
9.4d 

0.652 
0.683 

-0.162 
0.41 

+3.75 
-6.71k 
-3.0 

3.0P 

6.08 
10.2d 

0.562 
0.699 

-0.147 

0.36 
+3.61 
-7.40' 
-3.8 

4.3p 

a Wyckoff (1963); Jones and Mao (1968); Kaminow and Turner (1966); Berlincourt eta1 (1963); e Alomas 

et a1 (1968); Kobyakov (1966); g V a n  Vechten (1969a, b); hMooradian and McWhorter (1969); ' Wynne and 
Bloembergen (1969); Soref and Moos (1964); Patel (1966); I Chang er a /  (1965); Chemla et a1 (1971); 

Nelson and Turner (1968); p Kaminow and Turner (1971). 
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Values of the parameters ao, a,ff, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, e," are listed in the table and discussed in the 
following. 

In table 2, a represents a. for zincblende, and aeff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( 6 ~ 8 c o > ' . ' ~  for wurtzite. The 
values of dielectric constants, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE&, are taken from the experimental data. We note that 
the crystals with a higher number of valence electrons (n,) havelarger&. This behaviour 
is probably not related to the value of ny directly, becuase it can be seen that the effective 
ionic charge is actually smaller for higher n, crystals. It should be the result of the bond 
rigidity. The crystal with lower nv is more ionic and has stronger bonds. The distortion 
of the crystal in response to an applied field is smaller, resulting in smaller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE&. This 
argument is also applied to crystals with the same n,. For example, ZnTe > ZnSe > ZnS 
because the atomic radius and the covalency follow the sequence Te > Se > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS .  So the 
relative displacement is larger for ZnTe, resulting in a higher E&. 

The ionicity factor is a very important parameter which is calculated from the 
screening wavenumber and the bond ionicity. It is involved (see equation (27)) in the 
magnitude of the contribution from the summation of the triple product of direction 
cosines. The value off  in diatomic crystals ranges from 0.1 to about 0.2. Because it is 
such a small value, the accuracy of the estimate of s becomes very important. However, 
f i s  in general a negative quantity. 

The effective ionic charge is calculated from the Szigeti effective charge. It is a very 
small value due to the local field correction factor. The ionic contribution of the 
electro-optic coefficient is obtained by using equations (28) and (29). The uncertainty 
of conic is due mostly to two sources. One is the uncertainty in the measured values of the 
physical parameters. The other is in the assumptions and approximations of the theory. 
Overall, the uncertainty of rionic should be about 15-20%, which is usually also the 
standard deviation of the measurement. 

The purely electronic contribution is obtained from the coefficient of the second 
harmonic generation (SHG) using the relation (Yariv 1975) 

rip = -4djjk/&i&j. (30) 

We have assumed that the coefficient dijk has no dispersion in the frequency. As Yijk is 
obtained in the limit of long wavelength, d ~ j k  should be the value measured at long 
wavelengths where the nonlinear effect and linear effect are less dispersive. The value 
of relet seems to have no obvious relation to the number of valence electrons. 

The predicted coefficient is the sum of the theoretical calculation qOnic and the 
experimental data r,lec. The predicted value is compared with the measurements. reXptl 
is obtained with clamped crystals where the strain-induced effect can be neglected. 

The comparison between rHh,e,O and rexptl shows that the prediction is in good agreement 
with experiment including the sign. The worst discrepancy is in Gap, but it is interesting 
to note that the electronic contribution is about double the ionic contribution. This is in 
good agreement with the observation from Raman scattering (Faust and Henry 1966). 
Another interesting example is CuCl: it is found that r,lec of CuCl is positive and reXptl is 
negative, which implies that rionic must be negative and large. If we assign a negative sign 
to our calculated result, the value of r%,O is close to what we expect it should be. The 
question arises as to why CuCl should possess a different sign for y,,,ic compared with the 
other crystals. This anomalous behaviour has been explained by considering the d- 
electron contribution (Kaminow and Turner 1964). The d electrons in Cu atoms are 
bound loosely and can be considered as valence electrons. Since the Cu atoms have more 
valence electrons than the C1 atoms have, the Cu ions become more positive than the C1 
ions. The situation is completely different for GaAs, where the Ga ions are more 
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negative than the As ions because the Ga atoms have fewer valence electrons. Therefore, 
when a low-frequency field is applied, it is very possible that the relative displacement 
in CuCl is in the opposite direction compared with what happens in GaAs. However, 
this argument can only be fully supported by a direct measurement of the relative 
displacement of ions in these crystals. The displacement is small (-0.01 A), but it might 
be detectable by the new technique of modulation x-ray diffraction (Fujimoto 1978). 

It should not be surprising that agreement of the theory with experiment is satisfac- 
tory, since it is based on a theory describing the bond properties of diatomic crystals. 
However, the dc dielectric constant is not much larger than ek,  A small error in e& could 
lead to a large discrepancy in the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  which depends on ( E &  - E ; )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. In other 
complex crystals with very large values of &dc such critical dependence disappears. The 
prediction becomes more reliable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Diatomic crystal-quartz 

The interest in quartz is due mostly to its availability in nature in large crystals of excellent 
optical properties. The transparency region extends from uv (-1800 A) to the infrared 

At room temperature, quartz (SOz) has the a structure. Its point group is 32 with 
three molecules in a unit cell. Although quartz has only two kinds of atoms, it is 
completely different from the zincblende and wurtzite structures. For the diatomic 
crystals of AB, type, it has been suggested that the heteropolar part of the energy gap 
is replaced by the expression (Levine 1973a) 

(-7 Pm). 

c = be2(Z, / r ,  - nZpirp) exp(-k&) (31) 

where n is the number of atoms /3 per formula unit. The reason for including n is that the 
valence electron spends about n times the period around atom /3 as around atom a. The 
effective screened Coulomb potential is thus multiplied by n for atom /3. 

From the crystallographic data, we find the bond length is 1.61 8, and the volume of 
a unit cell is 113 A3. Every silicon atom bonds to its four nearest oxygen atoms, while 
every oxygen atom bonds to two silicon atoms. There are twelve bonds in a unit cell 
which are all identical except in direction. 

Although quartz possesses birefringence, the difference in the index of refraction is 
only about 1%.  For convenience, we use the average value C d  = 4.0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACC$ = 

From the summations of the direction cosines, the coefficient rll which has been 
-2qd =l. 

measured experimentally is derived from (27): 

For demonstration and clarity all physical quantities appearing in the calculation are 
presented in table 3. The prediction is compared with the measurement. The excellent 
agreement should not be over-emphasised. The uncertainty in rP;Pt is 10% and in &I' is 
even higher. In table 3 two quantities having abnormal values should be discussed. The 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is much higher than the value in zincblende and wurtzite, and e: is also much 
larger. The higher values off and e: are actually the result of a lower valence electron 
density. In a comparable size of the unit cell, quartz has twelve bonds, while zincblende 
crystals have sixteen bonds, which affects the value of the plasma frequency. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACalculation of rll for quartz. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~ 

Symbol Value Remarks 

o b  9.4 A3 Bond volume 

n b  2 Number of valence electrons per bond 
n 0.21 ' 4 -3  n = nb/vb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f iw, 17.1 eV ho,(eV) = 37.16(- 
kF 1.85 A-' kF = ( 3 ~ 2 n ) " ~  

Eh 12.2 eV Homopolar energy gapa 

C 14.1 eV Heteropolar energy gap* 

E, 18.6 eV E; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=a + C2 

f -0.39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf =  ( k d 2  - 1.48)j - 0.02 
e,*le 0.82 e,*le = Clho, 
e:le 0.50 e,* =e:(&' + 2)/3&' 
N 0.106 k3 Number of ionic charges per unit volume 
E' 2.4 Optical permittivityb 
E& 4.5 Dielectric constant 
ro 0.805 A Half of bond length 
+? 0.61 x m V-.' Use equation (27) 
dii 0.4 x m V-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASHG coefficient at 1.06 pmd 

di i 0.44 x m V-.' Assume Miller index is constant at 0.633 pm 

r;p -0.32 x m V-' f ly =4dll/$ 
rll 0.29 x lo-'* m V-' I '  -*I1 + f ly 
rexpt'i 

ks 2.10 A-' ks = (4kp'"e)''2 

f; 0.57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf; 

r - '0" 

dip"' at 0.633 pme 0.29 x lo-'* m V-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a Levine (1973a); Kaminow and Turner (1971); Zubov et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai (1963); Miller (1964); 
e Rosner et a1 (1967). 

The only experimental value used in this calculation is the dielectric constant E&. 
This value has been measured over a wide range of temperatures. It is found that in pure 
crystals E& is constant up to about 600"C, where the phase change to Pmodification takes 
place (Zubov et a1 1965). 

5. Lithium niobate and tantalate 

Up to this point we have calculated the electro-optic coefficients of crystals with only 
two kinds of atoms and only one type of bond. However, the principle of the geometrical 
superposition of susceptibilities does not limit the applicability of our method to diatomic 
crystals. In the following we will extend the theory to complex crystals. 

The first crystals we consider are lithium niobate (LiNb03) and lithium tantalate 
(LiTa03). These are used extensively in integrated and electro-optics. Large crystals 
(>1 cm) with good optical and electrical qualities are available. Due to their high 
transition temperature both crystals are easy to handle, for example, cut, polish, press, 
without creating additional domains. 

At room temperature the structures of LiNb03 (Abrahams et a1 1966) and LiTa03 
(Abrahams et a1 1967) are rhombohedral with point group 3m. Oxygen atoms form 
octahedral coordinations with the three-fold axis along the z direction. There are two 
formulae per unit cell. Two lithium ions and two niobium ions occupy four out of six 
octahedral sites in a unit cell. The positions of the lithium and niobium ions are distorted 
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from the centre of the octahedron due to the occurrence of an empty site for every three 
octahedral structures. The distortion is actually responsible for the second harmonic 
generation and linear electro-optic effect. The electro-optic tensor has the nonvanishing 
components: r 3 3 ,  r13  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~ 2 3 ,  r22 = - r12 = - r16, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 4 2  = ~ 5 1 .  

Bond lengths in both crystals are found to be: 

Ta-0 

Li-0 

1.891 A and 2.071 A 

2.076 A and 2.293 A. 

We can see that for each kind of bond there are two different bond lengths. Naturally, 
different bond lengths result in different bond susceptibilities. Rigorously speaking, 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The properties of bonds, N b - 0  and Ta-0 in LiNbO? and LiTa03-LiM03 

M-0 ( ~ b - 0 ) ~  (Nb-O)L (Ga-O)s (Ta-Oh 

1.889 A 
8.20 eV 

17.54 eV 
19.36 eV 

0.821 

2.84913 

1.10334 
0.396 
0.64244 
0.921 
1.10236 

2.66154 

-0.292 

2.112 A 
6.22 eV 

13.75 eV 
15.09 eV 

0.830 
-0.241 
-4.01420 
- 1.10871 
-0.195 

- 1.79678 

1.085 
- 1.7405 
-3.5821 

1.891 A 
8.18 eV 

19.24 eV 
20.91 eV 

0.847 

3.0438 

1.1302 
0.410 

0.7833 

0.9350 
1.2032 
2.8229 

-0.282 

2.070 A 
6.53 eV 

15.75 eV 
17.05 eV 
0.853 

-0.238 

-3.8760 

-1.1293 
-0.261 

-1.6175 

1.070 
- 1.6698 
-3.4918 

there should be four different bonds in a unit cell. However, it has been found that the 
contribution of the Li-0 bond to the linear and nonlinear susceptibility is negligibly 
small (Jeggo and Boyd 1970). We can neglect the susceptibility due to these bonds but 
cannot neglect their existence. Li-0 bonds still have to be taken into account when 
calculating the bond volume, plasma frequency and screening factor. So we need only 
be concerned with the structured information of the Nb-0 bonds and the Ta-0 bonds. 
The results are presented in table 4. In the table we use the subscript S to indicate 
quantities for shorter bonds and L for longer bonds. The structure information is applied 

only to obtain (f2a& +1Ca3) and (f2d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+2a3) which correspond to the coefficients 
~ 5 1  and r 3 3 ,  respectively, since these two coefficients are large and of most interest for a 
3m crystal. The reason why ~ 5 1  and Y~~ are large becomes obvious in table 4. In these two 
crystals 2a3 # 0. Furthermore, ZCQ has about four times the value of 24 and nearly 
three times the value of 2 4 ~ ~ 3 .  As f is a small value (f< 0.3), the term 2a3 actually 
dominates over the term containingf, which involves the information on the electronic 
structure. 

The results of calculations are shown in table 5.  The ionic charge of niobium is found 
from the average C and hw,. However, the ionic charge of lithium is set equal to one, 
due to the high ionicity of the Li-0 bond. If it is assumed that under the applied electric 
field the displacements of the niobium and lithium ions have the same magnitude and 
are in the same direction, the effective ionic charge per formula is obtained to be 1.8e 
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for LiNb03 and 2.0e for LiTa03. The low-frequency dielectric constants which are 
different in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy directions are listed to calculate the factor (&Ack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- E L ) / E ~ E ~  . The 
value found is the ionic contribution to the electro-optic coefficient and is entered as 

. The electronic contribution is obtained from the coefficient of SHG (Miller and 
Savage 1966). The theoretical prediction rSum is taken as the sum of these two values and 
is compared with the experimental measurement (Turner 1966). It is found that the 
prediction is in good agreement with experiment. The difference is less than lo%, which 
is well within the uncertainty of the theory and the measurement. 

yionic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Calculations of r15 and r33 for LiNb03 and LiTa03 (in units of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm Vi). 

LiNb03 LiTa03 

C 15.5 eV 17.4 eV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hw, 28.6 eV 29.3 eV 

edie 3.7 4.0 
e:ie 1.8 2.0 

E&,3 28 43 

ErL.l,Z 43 41 

( Ehc> - E ! ) / & ;  &j 1.5419 1.6393 

( Eic3 -&$/E42 1.0245 1.7210 

rR'" +19.7 + I 6 2  

r 8"' '20.5 + 16.7 
r j p ' l  + 23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 15 
r g l c  +19.9 +27.8 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;" +25.9 +31.5 

r SJP'" t 28 +30 

r ;pc +0.8 +0.2 

r 5:eC +6.0 +3.7 

6. The KDP family 

Potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP) 
are among the best known of the nonlinear materials. They can be grown easily from a 
water solution with dimensions as large as several centimetres. The crystals are usually 
of good optical quality and can be cut or polished without difficulty. At  room tempera- 
ture, KDP and ADP are piezo-electric, and belong to the point group 42m. Although 
the SHG has been observed (Van der Ziel and Bloembergen 1964) below the Curie 
temperature, no electro-optic measurements have been made at low temperatures where 
ADP is antiferroelectric and KDP is ferroelectric. Above Tc the only nonvanishing 
electro-optic coefficients are r41 = ~ 5 2  and ~ 6 3 .  The transparent region for the crystal is 
from 0.2 pm to about 2 pm. Both the electro-optic coefficients and the index of refraction 
are almost constant over this range. 

Without changing the crystal structure, other members of the KDP family are 
obtained by replacing K,  H and P with some atoms from the corresponding columns in 
the periodic table or with some equivalent clusters, e.g., K can be replaced by NH4. So 
far, only five members of the family have had their dielectric constants determined. 
They are KH2P04 (KDP), KD2P04 (KDDP), KHzAs04 (KDA), RbH2As04 (RDA), 
and NH4HzP04 (ADP). Therefore, we will apply the theory to these crystals and 
compare the results with experiment. 
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In KDP, both K and P are in tetragonal coordination with oxygen atoms. The 
hydrogen atom is situated about 0.21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, from the midpoint of the line joining the oxygens. 
There exist three different bonds: K-0, H-0, and P-0. Using an argument similar to 
that used when discussing the Li-0 bond in LiNb03, the contribution of the K-0 bond 
to the linear and nonlinear susceptibility can be neglected due to its high ionicity. The 
H-0 bond is covalent and contributes to the linear susceptibility. However, the almost 
isotropic distribution of H-0 bonds makes the contributions to the nonlinear suscepti- 
bility cancel each other, so the only contribution to the electro-optic coefficient comes 
from P-0 bonds. Normally, we use the principle of the geometrical decomposition of 
susceptibility to obtain the bond polarisability. In KDP, the participation of H-0 bonds 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx prevents us from calculating the polarisability of P-0. In order to avoid such 
difficulty, we can assume that the polarisability of a bond is almost the same in two 
crystals if the environments of the bond are similar. In the crystals without hydrogen 
atoms, AlP04 is the best candidate to find the polarisability of the P-0 bond because 
the P atom in KDP and Alp04 has the same coordination structure. The bond properties 
of P-0 in AlP04, including C, Eh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi, have been obtained by decomposition (Levine 
1973a). Since all members in the KDP family have the same structure, the properties 
and direction cosines of P-0 bonds should not deviate much from crystal to crystal, With 
this argument, the electro-opticcoefficient for any crystalsof the KDP type is represented 
by the formula 

y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -- Eo x(p-o) (2 a,a*a,/x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*) -f. 
Ne: ro E' 

The values of parameters appearing in the formula are: 

C(P-0) = 12.7 eV 

Eh(P-0) = 13.2 eV 

fi(P-0) = 0.481 

hw,(P-0) = 25.1 eV 

e,*/e(P) = 2.53 

e:/e per formula = 5.8 

e,*/e per formula = 3.2 

N = 0.010 formula A-3 

x(P-0) = 0.85 

ro(P-0) = 0.78 8, 

2 a1a*a3(2 d)-' = 0.5 

ksrO = 1.92 

(Shay and Wernick 1975) 

f =  -0.271. 

Using these values, the coefficient is found to be 

r = (ehc - ~ ' ) ~ ' - ~ 2 . 4 7  x lo-'* m V-],  

(33) 

(34) 
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The electronic contribution is calculated from the SHG coefficient and ranges from 0.2 
to 0.4. It is negligible compared with the total value which is about 10. Thus the 
electro-optic effect in KDP is essentially ionic. Since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 4 1  coefficient in most crystals 
has not been measured at high frequencies, we present only the calculation of 763 in table 
6. The predictions are in good agreement with experiment. In the calculation, E' is taken 
to be 2.3 because it is almost a constant for various crystals. We also assume that all 
positive ions, K, H and P, are displaced by the same distance under the applied electric 
field. Without this assumption, the calculation of the displacement of P atoms from the 
knowledge of &is impossible. 

Table6. The electro-optic coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA163 of KDP, KDDP, and ADP. The values correspond- 
ing to constant stress are noted by (T) and constant strain (clamped) by (S). 

KDP (T)21" 3.535 8.7 9.4' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(S )  21b 3.535 8.7 8.8' 

KDDP (T)50" 9.017 22.3 26.4' 

(S) 48d 8.639 21.3 24.08 
ADP (T)15" 2.401 6.5 8.5h 

(S) 14d 2.212 5.5 5 . 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a Berlincourt et a/ (1964); Kaminow and Harding (1963); Sliker and Burlage (1963); 

Kaminow (1965); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe Blokh (1962); ' Rosner et a/ (1967); g Christmas and Wildey (1970); 

Carpenter (1950,1953). 

7. Ternary chalcopyrite compounds 

Ternary compounds are of special interest because of their large electro-optic coeffi- 
cients. As we have shown previously for LiNb03, LiTa03, and the KDP family, the 
coefficient is as high as 30 X m V-', which is an order of magnitude higher than the 
coefficient for diatomic crystals. However, the use of such materials is limited to rela- 
tively short wavelengths. The infrared absorption of KDP begins at 1.5 pm due to the 
vibration of H+ ions. The upper limit of the transparency range of oxides is at about 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm. In order to extend the applicability of electro-optic materials to longer wave- 
lengths, we have to choose compounds with heavier atoms. 

For example, oxygen can be replaced by other atoms in the same column, such as S, 
Se or Te. The simplest compound has the structure of chalcopyrite (CuFeS2) with a point 
group z2m. A unit cell of the chalcopyrite structure consists of two unit cells of the 
zincblende structure, such as GaAs. Sulphur atoms occupy the positions of As, while 
Cu and Fe share evenly the positions of Ga. With a little distortion from the perfect 
tetragonal coordination, the ratio of the lattice constants, cia, is usually less than 2 (Shay 
and Wernick 1975). 

In general, compounds with the chalcopyrite structure are written as ABC2. Both 
A-C and B-C bonds are not extremely ionic and contribute comparably to both the 
linear and the nonlinear susceptibilities. These compounds are consequently used to test 
our theory of additive bond susceptibilities. 

Both the dielectric constant and the linear electro-optic coefficients have been 
measured in the crystals AgGaS2 (Cound et a1 1970), CuGaSz (Turner er aZ1974). Our 
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calculation will concentrate on these compounds. The results will be compared with 
experimental measurements. 

For the chalcopyrite crystals, only the nonzero summation 2a1aza3 of both bonds 
contributes to the electro-optic coefficient. Since these crystals have birefringence, we 
have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr41 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr52 # r63 with different dielectric constants = &2 # &3 and, in general, 

Table 7. The calculation of electro-optic coefficients r63 and r41 for the ternary chalcopyrite 
crystals. r's are in units of IO-'* mv-' .  

Characteristics AgGaS2 CuGaSz 

1.28A 

3.68 

12.45 A3 
0.1606 A-' 

3.87 eV 
9.87 eV 
0.867 

21.71 eV 

2.012 A-' 

-0.1868 

0.91 

1,1945A 
4.43 

9.763 A3 
0.2049 k3 
2.095 A-' 
4.58 eV 
9.95 eV 
0.825 

24.52 eV 
- 0.2086 

0.81 

ro 1.148. 1.1628. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 5.84 6.07 

u b  8.80A3 8.987 A3 
n, 0.2557A-) 0.25048. 

B-Ca ks 2.174 A-' 2.166 A-' 
Eh 5.147 eV 4.91 eV 
C 5.416 eV 5.60 eV 

f; 0.525 0.565 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f iw, 18.79 eV 18.59 eV 
e:le 0.72 0.75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf -0.1465 -0.1451 

ezie 0.732 0.688 

( xA I rA ) fA  + (xB/ rB) fB  0.6438A-! 0.7658 A-' 
~ C i ' l ( u Z ( u 3 / ~ d  0.57735 0.57735 
d N e  (10-'2mAiV) 47.0 41.5 

Edc3 14b 10' 

(Edc - E ) / 2  0.192 0.096 
+4.58 +2.56 

r63 relet -7.85d -1.55' 

-3.27 +1.01 
3.0b + 1.05' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,on 

,.sum 

rexpl'l 

Edcl lob 9.3' 
(Edc - E)/? 0.096 0.078 

+2.30 1.2.08 ria" 

-7.5gd - 1.55' r e k c  

r41 Pm -5.28 +0.53 
4.0b +1.1" rerp!'l 

a Wyckoff (1964); Cound et a1 (1970); Turner et a1 (1974); Kleinman (1962); e Boyd et 
a1 (1971). 
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Col: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=Z& # E&. However, we can assume the crystal is in perfect tetragonal coordi- 
nation in the calculation of the summation of direction cosines without introducing 
significant error. Therefore, the value 2a1a2a3/2$ = 0.57735 will be used for both 
A-C and B-C bonds in all chalcopyrite crystals. 

We next review the considerations involved in the calculation of the electro-optic 
coefficients, N ,  ro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 ,  k,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkF (to calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnu,) are obtained from the crystallo- 
graphic data. Eh is obtained from a knowledge of the bond length. We then determine 
fi and ezie using the value of C. Finally, the bond susceptibility has to be determined. In 
the case of only one kind of bond, there is no problem in obtaining the bond susceptibility 
if we know the crystal susceptibility and its geometrical factor. However, if the crystal 
has two kinds of bonds, only their average value of the bond polarisation can be obtained 
from the knowledge of the crystal susceptibility and its bond directions. In order to 
obtain the bond polarisation separately, a new method, which considers the crystal 
ABC2 as the superposition of two fictitious zincblende crystals AC and BC, has been 
suggested in the investigation of bond ionicities (Levine 1973a). 

The values of parameters and the results of the calculation are shown in table 7 for 
the two crystals AgGaS2 and CuGaSz. The results are compared with experiment. The 
measurement of the coefficient is at 0.633 pm for AgGaSz, while at 3.39 pm for CuGaS2. 
Due to the dispersion of the optical permittivity, we use the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEA = 6.50 and E! 

= 6.25 at 0.633 ym for AgGaS2. The values of ~ 6 3  are in good agreement with experiment, 
while the results for 741 are satisfactory. For the theory, the assumption of uniform 
displacement may not be suitable in the chalcopyrite compound. It is quite possible that 
the relative movements of Ag, Cu and Ga with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS have different magnitudes. 
However, we need more experimental data to check this assumption. At the same time, 
it is a challenge to find amethod to account for the different displacements theoretically. 

8. Other ternary compounds 

The ternary compounds are of continuous interest due to their simple structure, large 
nonlinearity, and wide range of transparency. There are many different chemical com- 
positions in the ternary system. However, only those of A"B:"Cy' type andA$B"'C:' 
type have been investigated in some detail. 

In the A"B;"Cy' type, A could be Zn,  Cd or Hg, B could be Al, Ga or In and C could 
be S, Se or Te. Most of these compounds are in the point group4 or 42m, except ZnIn2S4, 
which is 3m (Berger and Prochakham 1969). The crystals of 4 or 32m (defect chalco- 
pyrite) have similar structures in the zincblende or chalcopyrite compounds, except that 
there are 25% vacancies of atom positions. In the defect chalcopyrite, there are 24 bonds 
per unit cell while chalcopyrite has 32. From the principle of the susceptibility super- 
position, Xof the defect chalcopyrite should be in general smaller than Xof chalcopyrite. 
This fact is seen clearly by comparing the susceptibility of CdGa2S4 and AgGaS2; 
[CdGa2S4] = 4.25, while [AgGaS2] = 4.76. A detailed crystallographic study of the 
defect chalcopyrite structure has been done more than twenty years ago (Hahn et al 
1955). Although the structures of 4 and 42m are different, the summations of direction 
cosines Cat ,  Za,q and ZaLqak are the same for both structures if considered in perfectly 
tetragonal coordination. 

The compound ZnIn2S4 has a layer structure of the point group 3m with three 
formulae per unit cell (Lappe et a1 1962). The lattice constants are a = 3.85 A and c = 

37.0 A. The two indium ions have different coordination numbers. One third of the In 
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atoms occupy slightly compressed octahedral voids, while two-thirds of the In and Zn 
atoms occupy enlarged tetrahedral spaces. 

Although the structure information for A"Bi"Cy' crystals is complete, no measure- 
ment of the dielectric constant has been carried out. The calculation of the ionic part of 
the electro-optic coefficient is still impossible. 

The other type of interesting ternary compound is A:Bi1'C7'. Three crystals of this 
type, Ag3AsS3, Ag3SbS3 and T13AsSe3 have been studied in some detail for their struc- 
tures, optical properties and nonlinearities. However, only the dielectric constant and 
electro-optic coefficients of Ag3AsS3 have been measured (Warner 1968). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 8. Values of physical parameters used in the calculation of the electro-optical coeffi- 
cients of proustite (Ag3AsS3). 

Characteristics AS-S Ag-S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c ff3 7.844 2.137 
ea: =ea: 7.291 11.589 

z ff3 3.418 12.811 

ca: =- zaia: 3.190 2.005 

Za3a? =za3ff1 -3.177 0.089 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X a v g  6.9832 5.6383 

ro 2.293 8, 2.4408, 

u b  14.305A3 17.231 A3 
nv 0.2097 0.1741 k3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ks 2.4117.k' 2.4877 A-' 
Eh 5.0735 eV 4.3501 eV 
C 3.9107 eV 5.2620 eV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi 0.3727 0.5940 

f -0.1222 -0.1603 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f iw, 17.0175 eV 15.5051 eV 
e:le 0.5745 2.0362 

22 a3 -1.490 -2.266 

e8le 
GlNe 

1.1158 
80.96 mA V-' 

Ag3AsS3 belongs to the point group 3m with six formula units per unit cell. The 
lattice constants of its hexagonal unit cell are a = 10.80 A and c = 8.69 A. The bond 
distance of an As atom to the nearest three S atoms is 2.293 A. Every S atom is bonded 
to one As atom (2.293 A) and two Ag atoms (2.44 A). In all, there are 54 bonds in a unit 
cell, where As-S has 18 and Ag-S has 36. The summations of direction cosines for both 
bonds are listed in table 8. From the nonzero summations of Z:aiqak, we know the 
nonzero coefficients of Ag3AsSs (proustite) are r33, r22 = - r12 = - r61, r13 = r23, and 

As in the chalcopyrite compounds, we can obtain the values of most physical par- 
ameters for both bonds from the structural information. However, we cannot find the 
bond susceptibility in the same way, because there is no equivalent structure in 3m which 
has only two atoms in the formula. So we try to decompose the susceptibility into the 
individual bonds by using the bond-additive principle: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r51 = r42. 

xAg-S(Z 4,2)Ag-S + % A d @  d,2)As-S = x o  

xAg-S(Z 4 ) ~ g - s  + X A ~ - S ( ~  &)Ass = X e .  (35) 
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From the measured ordinary and extraordinary susceptibilities xo and xe, we can solve 
for the contribution of the individual bonds xAg-s and xAS-s. The susceptibility in table 8 
is taken as if all the bonds in the crystal are occupied by the same kind of bonds. The 
averaged susceptibility is calculated from xavg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +(axo + xe). The values of all physical 
parameters are shown in table 8, including the effective ionic charge. 

Table 9. Comparison of the theoretical prediction for the electro-optic coefficients of 
Ag3AsSs with experiment. All coefficients are in units of 10-'2mV-1. For the coefficient 
r,,k, the first two rows are calculated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X - Lf0r ia;ak + d(a;S,k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa$,,)] and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EL& - EL)/&:&; .  
ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX/ro [fd + CY] -0.2144 0.1277 1.7295 2.1375 

(&Ac - & ' ) / & ' E '  0.1310 0.1504 0.1592 0.2220 

elec a (-)1.10 (-)0.97 (-)0.97 ? 
rsum (+)0.94 (-)2.36 (-)20.95 ? 
rexpt'l b (+)1.05 (-)2.54 ? ? 

tonic (+)2.04 (-)1.39 (-)19.98 (-)34.43 

a Hulme (1967), Boggett and Gibson (1968); Warner (1968). 

The calculated values of the electro-optic coefficients are shown in table 9. The sign 
of the coefficient depends on the definition of the crystal polarity. Since all measurements 
of SHG coefficients and electro-optic coefficients are in absolute value, we compare the 
values of $,', reiec and Y to deduce the possible sign for each quantity. The only thing we 
know about the sign is the relative sign between the ionic parts of the coefficients. The 
estimate of signs is entered in parentheses. The prediction is in good agreement with 
experiment. The comparison is on the smaller coefficients where both contributions are 
comparable. We also predict the value of r33 although d33 has not been measured 
experimentally, since the ionic effect dominates in the electro-optic response. It will be 
of interest to see if measurements confirm the large predicted values for ~ 5 1  and Y ~ ~ .  

9. Discussion 

Based on the PV dielectric theory and the bond-charge model, we have obtained a 
general expression for the ionic part of the electro-optic coefficient. The theory has been 
applied to the calculation of the electro-optic coefficient of many crystals with different 
structures. The crystals used in the comparison possessed tetragonal and octahedral 
coordinations, single-bond, one kind of bond with different bond lengths, two different 
kinds of bonds. In general, we find that the theoretical calculations are in good agreement 
with experiment. This proves the general applicability of the theory to different crystal 
classes. 

Referring to the key result (equation (27)), we point out that the structural infor- 
mation is more important than the detailed electronic information in seeking better 
electro-optic materials. The ionicity factor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, is a new factor in the theory and is very 
small for all the investigated bonds, so the term Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaj usually dominates over the term 
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f X  aiqak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 2 a;: is not equal to zero. As a consequence, the coefficient of a crystal with 
nonzero 2 cui should have a higher value. This is fully demonstrated by the fact that r33 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr51 in the 3m crystals like LiNb03, LiTa03 and Ag3AsS3 are an order of magnitude 
larger than in most other crystals. However, not all 3m crystals have higher coefficients. 
For example, ZnIn& has a zero value of and is not expected to have a large 
electro-optic coefficient, but a distorted octahedral structure is surely a promising 
mechanism for a larger electro-optic response. Such octahedral structure usually occurs 
in the point group with a 3-fold or 6-fold axis. Therefore, the crystals belonging to those 
point groups are promising candidates for electro-optic applications. 

Although the theory has proved successful in predicting the electro-optic constants 
of diatomic and ternary compounds, it remains on somewhat shaky ground in the case 
of quarternary crystals, where more than two kinds of bonds have to be taken into 
account, It is very important to point out some basic assumptions and soft spots inherent 
in the theory. 

(i) The relation between the dielectric constant and the ion-displacement depends 
on the bond-strength and is not completely known. In the theory, we accept it as a 
parameter and use its measured value in the calculation. It will be very important to 
know the dependence of E& on the structure and atom information like the crystal 
susceptibility, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, as well as ambient temperature; 

(ii) The displacement of ions is assumed to be uniform. This is not true in practical 
situations. The understanding of the displacements for different ions is still beyond the 
scope of the theory, but becomes important in more complex crystals; 

(iii) The crystal susceptibility is considered as the geometrical composition of only 
the bond susceptibilities. The transverse bond polarisation has been completely neg- 
lected. This is justifiable for most crystals, but not for highly anisotropic bonds; 

(iv) In the ideal situation, it should be possible to calculate the bond susceptibility 
from knowledge of the crystal structure. However, we obtain the bond susceptibility for 
chalcopyrite and 3m crystals from the measured macroscopic crystal susceptibility, The 
reason is that we find the ‘b’ value used in the calculation of C cannot be determined 
theoretically with the same accuracy as in the case of diatomic crystals. In diatomic 
crystals, b is related to a high degree of accuracy to the coordination number. Qualita- 
tively, b in the ternary compounds still follows the relations but deviates highly from the 
predicted value. So we rely on the principle of bond-addivity to find the bond suscepti- 
bility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA generalised method to obtain b becomes very important to the further improve- 
ment of the theory. 

In conclusion, the theory has been applied successfully to the understanding of the 
electro-optic effect in the diatomic and ternary compounds. However, considerable 
further improvement is needed to meet the challenge of complex crystals and the task 
of seeking out new electro-optic crystals. 
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