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Abstract—Physical unclonable functions (PUFs) are security primitives that

enable the extraction of digital identifiers from electronic devices, based on the

inherent silicon process variations between devices which occur during the

manufacturing process. Due to the intrinsic and lightweight nature of a PUF, they

have been proposed to provide security at a low cost for many applications, in

particular for the internet of things (IoT). Many metrics have been proposed to

evaluate the security and performance of PUF architectures, two of which are

uniqueness and min-entropy. The uniqueness of a PUF response evaluates its

ability to differentiate between different physical devices, while the min-entropy

estimation is a measure of how much uncertainty the PUF response contains. The

min-entropy is a lower-bound of real entropy. When the uniqueness of a PUF

design is close to the optimal, it is unclear if this also implies that the design has a

significantly high entropy; hence it would be useful to ascertain the minimum

uniqueness required to achieve a given entropy. To date, a thorough investigation

of the relationship between uniqueness and entropy for PUF designs has not been

conducted. In this paper, this relationship between the uniqueness and entropy is

explored, and for the first time, to the authors’ knowledge, the relationship between

them is modeled. To verify this model, both simulated and hardware-based

experimental results are performed, with a test-bed containing 184 Xilinx Artix-7

FPGA based Basys3 boards providing a large data set for granular results. The

experimental results demonstrate that the proposed model accurately estimates

the relationship between uniqueness and min-entropy, with both the theoretical

analysis and software simulations closely matching the experimental results.

Index Terms—Entropy, physical unclonable functions, uniqueness

Ç

1 INTRODUCTION

THE internet of things (IoT) has revolutionized our lives through
remote health care, autonomous vehicles, smart homes, etc.. How-
ever, it also brings security and privacy issues by opening up new
attack vectors for criminal hackers to exploit for, e.g., the distributed
denial-of-service (DDoS) attack on Dyn used over 10,000 Internet of
things devices, taking down Twitter, SoundCloud, Spotify, Reddit
and a host of other sites [1]. The Internet of things is expected to have
a large impact on a wide range of markets, from wearable health-
care devices to embedded systems in smart cars, many of which will
be underpinned by devices which are limited with regards to com-
putation and power consumption. Conventional security approac-
hes based on computationally complex cryptographic algorithms,
are typically too resource intensive to implement on these resource
constrained devices. Additionally, an attacker will likely have physi-
cal access to many of these embedded Internet of things devices

allowing implementation attacks such as side-channel analysis
(SCA) or fault analysis (FA) to be performed [2]. Hence, it is impor-
tant to evaluate alternative, low-cost, security approaches to secure
lightweight Internet of things devices.

Physical unclonable function (PUFs) are a security primitive
which utilise the inherent process variations present during
manufacturing in order to generate a unique digital fingerprint
that is intrinsic to the device itself [3]. As this natural variation
between the devices is outside the control of the manufacturer,
they are inherently difficult to clone, as well as providing certain
additional tamper-evident properties [4], [5]. These properties
have a number of advantages over current state-of-the-art alterna-
tives, opening up interesting possibilities for higher level security
protocols such as secure non-volatile key storage or lightweight
device authentication, for both application-specific integrated cir-
cuit (ASIC) and field programmable gate array (FPGA) based
designs. Hence, PUFs are potentially a very promising candidate
for increasing the security of Internet of things devices.

In order to evaluate and compare PUFs designs from a security
viewpoint, a number of metrics have been suggested [6], two of
which we examine further here; uniqueness and entropy. Unique-
ness is the ability to distinguish between different devices based on
its PUF response to the same challenge. As these PUF instantiations
are identical, the difference between the responses is based entirely
on the manufacturing process variation. While uniqueness tells us
how well the PUF can distinguish between devices, thus giving us
an indication of how random the responses are, it does not provide
us with the actual entropy available, which is required to formalize
security parameters [7].

In order to estimate the entropy of a PUF, a number of methods
have been proposed. The context-tree weighting (CTW) lossless
compression algorithm is employed to estimate the upper bound of
entropy (i.e., best case) [8], [9], [10], [11], [12]. Min-entropy is another
metricwidely employed to evaluate the lower bound of unpredictabil-
ity of a response [9], [11], [13], [14], [15]. It estimates the lower bound
(i.e., worst case) as described in the National Institute of Standards
and Technology (NIST) specification 800-90 [16]. The actual entropy
is expected to be somewhere between these two bounds.

Table 1 provides an overview of some previously reported
results for the metrics of various PUF designs [17]. It is reasonable
to assume that as the randomness of the PUF response increases,
the hamming distance (HD) between the responses tends to the
ideal of 0.5. Although the uniqueness results are very close to the
ideal value of 0.5, the min-entropy results are not as close to their
optimal value of 1. The CTW ratio represents the ratio of response
information before compression and after compression. Ideally,
CTW is expected to be 100 percent, i.e., it is difficult to compress
the response due to its randomness. Except for the results from
Simons et al. [13], the results in Table 1 are only evaluated over a
small number of experimental devices.

A combination of uniqueness and robustness using mutual
information was proposed to analyse the entropy of PUFs [18],
while a conditional entropy calculation was also employed to
determine whether a MUX PUF is linear [19]. However, a thorough
investigation of the relationship between uniqueness and entropy
for PUF designs has not yet been conducted. When the uniqueness
of a PUF design is close to the optimal, it is unclear if the design
has a sufficiently high entropy. It is also interesting to consider
what is the minimum uniqueness required to achieve a given
entropy. Moreover, as it is not accurate to empirically calculate the
entropy over a small sample size, a model to detail the relationship
between uniqueness and entropy is of practical relevance.

In the context of a security evaluation, worst-case analysis is pref-
erable to best-case. Hence, in this paper, we focus on developing a
theoretical link between the uniqueness and min-entropy, and

� C. Gu, N. Hanley and M. O’Neill are with the Centre for Secure Information Tech-
nologies (CSIT), Institute of Electronics, Communications & Information Technology
(ECIT), Queen’s University Belfast (QUB), Belfast BT3 9DT, U.K.
E-mail: {cgu01, n.hanley}@qub.ac.uk, m.oneill@ecit.qub.ac.uk.

� W. Liu is with College of Electronic and Information Engineering, Nanjing Univer-
sity of Aeronautics and Astronautics (NUAA), Nanjing 211106, China.
E-mail: liuweiqiang@nuaa.edu.cn.

� R. Hesselbarth is with the Fraunhofer Institute for Applied and Integrated Security
(AISEC), Munich 85748, Germany. E-mail: robert.hesselbarth@aisec.fraunhofer.de.

Manuscript received 22 Jan. 2018; revised 4 July 2018; accepted 13 Aug. 2018. Date of
publication 22 Aug. 2018; date of current version 22 Jan. 2019.
(Corresponding authors: Chongyan Gu and Weiqiang Liu.)
Recommended for acceptance by J. D. Bruguera.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2866241

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019 287

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
_

https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0002-2595-7648
https://orcid.org/0000-0002-2595-7648
https://orcid.org/0000-0002-2595-7648
https://orcid.org/0000-0002-2595-7648
https://orcid.org/0000-0002-2595-7648
mailto:
mailto:
mailto:
mailto:


verifying its feasibilitywith both software simulations and hardware-
based experimental analysis. Specifically, our research contributions
are summarized as follows.

� A novel model explaining the link between uniqueness and
min-entropy has been proposed, which can be used to esti-
mate the relationship between them. To the best of the
authors’ knowledge, this is the first time this link has been
investigated.

� A software simulation is conducted to evaluate the feasi-
bility and performance of the proposed model. The simula-
tion results show that the proposed model can accurately
estimate either uniqueness or min-entropy, given the other.

� Ahardware experiment based on a ring oscillator (RO)-PUF,
implemented on a large scale testbed of 184 Xilinx Artix-7
FPGA based Basys3 boards, is presented. The empirical
min-entropy and uniqueness experimental results are 0.73
and 0.48, respectively, which match with both theoretical
analysis and software simulation.

� The duration of the RO acquisition time significantly
impacts the robustness of the PUF responses. Therefore,
the effect of varying the duration of the RO on the pro-
posed model is also investigated. It shows that the pro-
posed method accurately estimates the trend and lower
bound of the relationship between uniqueness and min-
entropy.

The rest of this paper is organised as follows. Section 2 describes
the basic concept of uniqueness and min-entropy. Section 3
presents the proposed theoretical model. The experimental setup is
described in Section 4. The experimental analysis of both the soft-
ware simulation and the hardware implementation of a RO PUF
are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2 PRELIMINARIES

In this work the link between uniqueness and min-entropy is
explored. In order to explain these two concepts, some definitions
are outlined in Table 2 and illustrated in Fig. 1.

Some basic mathematical functions, e.g., HD and HW, are uti-
lised to calculate the PUF metrics, which will be introduced in this
section. The function HDðRi;RjÞ over two n-bit responses, Ri;b and
Rj;b, is calculated as

HDðRi;RjÞ ¼
X

n

b¼1
HD Ri;b;Rj;b

� �

: (1)

The function HWb is defined as

HWb ¼
X

m

i¼1
Ri;b: (2)

2.1 Uniqueness

Uniqueness represents the ability of a PUF to uniquely distinguish
a device from a population of identical devices. It measures the
inter-chip variation by evaluating the HD between a group of m
devices. When m is sufficiently large, this can then be extrapolated
to the population of devices as a whole. Ideally, for a well designed
PUF architecture, the expected HD between any two devices for a
randomly selected challenge should be close to 0.5, indicating that
approximately half the response bits are different between the two
devices.

Accordingly, uniqueness can be expressed as shown in (3).

U ¼ 2

m m� 1ð Þ
X

m�1

i¼1

X

m

j¼iþ1

HD Ri;Rj

� �

n
; (3)

where a PUF circuit is implemented on m devices, each device i

returning a response Ri for a randomly selected challenge C which
is applied to all devices; then the uniqueness is defined as the
expected HD between any two of the k devices.

Subsequently combining with (1) gives

U ¼ 2

m m� 1ð Þ � n

X

m�1

i¼1

X

m

j¼iþ1

X

n

b¼1
HD Ri;b;Rj;b

� �

¼ 1

n

X

n

b¼1

2

m m� 1ð Þ
X

m�1

i¼1

X

m

j¼iþ1
HD Ri;b;Rj;b

� �

 !

:

(4)

This allows the uniqueness for each bit, Ub, to be calculated inde-
pendently according to (5).

Ub ¼
2

m m� 1ð Þ
X

m�1

i¼1

X

m

j¼iþ1
HDðRi;b;Rj;bÞ: (5)

Assuming the uniqueness per bit, Ub, is independent and identi-
cally distributed (IID);1

U ¼ 1

n

X

n

b¼1
Ub: (6)

It is clear that where the uniqueness for each bit Ub is close to 0.5,
then the overall uniqueness U will also tend to the optimal. How-
ever, conversely a value of U ¼ 0:5 does not guarantee that the
individual bits are well balanced, and a hidden bias can exist.
Hence, the uniqueness of the individual bits should also be exam-
ined when evaluating a PUF response.

TABLE 1
An Overview of Uniqueness, Min-Entropy and CTW Ratio Results

Type Uniqueness Min-entropy CTW Ratio Sample size

SRAM-NXP [9] 0.49 0.75 99.1 20
SRAM-TSMC [9] 0.50 0.76 100 20
DFF [9] 0.50 0.77 100 20
Buskeeper [13] 0.50 0.82 99 194

TABLE 2
List of Parameters

Symbol Definition

m The number of devices, indexed by fi; jg
n The bit-length, indexed by fbg
Ri The response from the ith device
Ri;b The bth response bit from the ith device
HDðRi;RjÞ The HD between the responses from devices i and j
HWb The hamming weight (HW) of the bth bit overm devices

Fig. 1. Definitions used in this work.

1. While this is the goal for a PUF architecture, in practice this is not assured
and must be carefully examined for a given design.
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2.2 Min-Entropy

Min-entropy is a measure of the lower bound of the unpredictabil-
ity of the response, i.e., the entropy provided in the worst case sce-
nario. The commonly used method in the literature to calculate this
employs the method outlined in NIST specification 800-90 [16] for
evaluating the min-entropy of a binary source. The n-bit responses
of m devices have an occurrence probability at each bit of p1 and p0
for the values of 1 and 0, respectively. p1 and p0 are calculated by
HWb
m

and 1� HWb
m

, respectively, where HWb is the number of 1’s in m

devices. The maximum probability, pb max ¼ max p0; p1ð Þ, is used to
estimate the min-entropy per bit as outlined in (7).

~Hmin;b ¼ �log 2 pb maxð Þ; (7)

where,

pb max ¼
HWb
m

HWb > m
2

1� HWb
m

HWb � m
2
:

(

(8)

The full min-entropy of the design is then given by (9), and is
calculated by averaging the estimated min-entropy of each bit. The
ideal case where ~Hmin ¼ 1, is returned when the probability of a
given bit being equal to 0 or 1 is equal, i.e., pb max ¼ 0:5, hence
HWb ¼ m

2
.

~Hmin ¼
1

n

X

n

b¼1

~Hmin;b: (9)

3 MODEL FOR RELATIONSHIP BETWEEN UNIQUENESS

AND MIN-ENTROPY

To build up a model for uniqueness and min-entropy, the relation-
ship between the HW and uniqueness is first obtained. Following
(5), let HDb be the HD between each pair of m devices for a single
bit b of the n-bit response.

HDb ¼
X

m�1

i¼1

X

m

j¼iþ1
HDðRi;b; Rj;bÞ: (10)

The uniqueness per bit Ub from (5) can then be represented as

Ub ¼
2

m m� 1ð Þ � HDb: (11)

The HD can be considered as a sum of the appearance of pair
(0,1) between each of the m devices for each bit. It can be repre-
sented as qðm� qÞ, where q is the number of 1’s in the m devices,
and HWb ¼ q in this case. Hence, the HD is related to the HW
according to (12);

HDb ¼ HWb � m� HWbð Þ: (12)

Therefore, the uniqueness for a single bit in (11) can be expressed
as

Ub ¼
2

m m� 1ð Þ � HWb � m� HWbð Þð Þ: (13)

Switching the terms around and solving the quadratic allows us to
calculate HWb as a function of Ub as shown in (14);

HWb ¼
m

2
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Ub þm� 2 � Ub �m
m

r

 !

; (14)

thus allowing us to derive the relationship between the uniqueness
Ub and the min-entropy ~Hmin:b from (7). For the first min-entropy
probability condition of (8), (14) can be substituted in allowing us
to calculate it as a function of the uniqueness

HWb >
m

2

m

2
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Ub þm� 2 � Ub �m
m

r

 !

>
m

2

Ub >
m

2 � m� 1ð Þ :

(15)

The above transformation process can also be used for the sec-
ond condition in (8). Hence, we can calculate the min-entropy in
(7) as a function of uniqueness by using the probability pb max of a
response bit as defined in (16).

pb max ¼
1
2
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Ubþm�2�Ub �m
m

q

� �

Ub > m
2� m�1ð Þ

1� 1
2
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Ubþm�2�Ub �m
m

q

� �

Ub � m
2� m�1ð Þ :

8

>

>

<

>

>

:

(16)

It can be seen that the min-entropy is not only related to the
uniqueness but also the number of devices m. The dependency on
m is shown in Fig. 2, where it can be seen that the uniqueness
when measured bit-wise tends to the ideal value of 0.5 as m

increases. Therefore, we can see that when m9200 an estimation
of the entropy provided by a given bit will have an inherent bias.
As the uniqueness is generally calculated over the full response
vector, this can return a value of 0.5, masking individual bit biases.

Fig. 3 shows the relationship between uniqueness and min-
entropy when calculated per bit over a varying number of devices.

Fig. 2. The uniqueness as a function of the number of devices.

Fig. 3. The relationship between uniqueness and min-entropy for different numbers
of devices. It is derived by using the proposed relationship model as shown in (7)
and (16).
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As the uniqueness increases, the related min-entropy grows
accordingly as expected. However, when the number of devices
used for calculations is small, e.g., m ¼ 10, the maximum min-
entropy is 0.6, considerably lower than the ideal value of 1.

A ratio as shown in (17) is defined to clearly quantify the rela-
tionship between uniqueness and min-entropy.

r ¼ Hmin

U
: (17)

Ideally, for an ideal uniqueness of 0.5 and min-entropy of 1, the
ratio r is equal to 1

0:5
¼ 2.

4 EXPERIMENTAL SETUP

To verify and demonstrate the efficiency of the proposed model,
acquisitions are evaluated from both a hardware implementation
and a software simulation of an RO PUF design.

4.1 Hardware Experiment

For the hardware experiment, a set of acquisitions taken from
m ¼ 184 Digilent Basys-3 boards containing a Xilinx Artix-7 FPGA
[20] are recorded. A RO-PUF [21] is utilised to generate an n-bit
response for each device, where n ¼ 64. We implement the core RO
on the FPGA, with the subsequent post-processing in software. The
ROs are the entropy source of the PUF, while the post-processing
can at best retain the existing entropy, it can never increase it hence
does not need to be implemented in hardware. The design under
test is a three stage RO, as shown in Fig. 4.

Algorithm 1. Response Generation Algorithm

procedure RESPONSE–GENERATION

for prob ¼ 0:1 to 0.5 do
% prob is the probability of 0 and 1 in a response
for i ¼ 1 tom do
%m is the number of devices
R mð Þ  RandomNumberGenerator prob; nð Þ
% n is the number of bits of each response

end for
Uniqueness HammingDistanceðRÞ
Min� entropy (9)

end for
end procedure

An enable input activates or stops the oscillator and an output
buffered by a toggle flip flop is used to generate a signal. It can
compactly fit in a single Xilinx Artix-7 slice. We fix the physical
placement and routing paths of the ROs over all the FPGAs.

Fig. 5 shows the experimental setup, which consists of four
modules in total, each of which holds 60 Basys-3 boards, 10 7-port
USB hubs, a Raspberry PI, and power supply. The USB connection

between the PI-2 and Basys3 boards powers the FPGAs as well as
providing a JTAG interface to program each FPGA with the design
under test, and a UART interface to communicate with the config-
ured design and receive the measurement results. The Raspberry-
Pi communicates over a local area network (LAN) with a global
experiment control server, which also stores the measured data.
The array was built as part of the FP7-Sparks project, and a more
detailed description can be found in [22].

4.2 Software Simulation

The software simulation is carried out in Matlab 2016. A group of
m� n arrays of responses is generated by using the algorithm
shown in Algorithm 1, where m is the number of devices and n is
the number of bits of each response. In this work, m is set to
ð1 k or 10 kÞ depending on the case study and n is set to 64.

5 EXPERIMENTAL ANALYSIS

Based on the analyses in Section 2, there are three important related
cases to investigate:

� Case one: Given the estimated min-entropy of a PUF
design, how well can it be used to distinguish between dif-
ferent devices, i.e., what uniqueness does it provide?

� Case two: Given the empirical uniqueness of a PUF design,
how much min-entropy does it provide?

� For a RO-PUF, what is the relationship between unique-
ness and min-entropy for different evaluation times. How
do the experimental results match the proposed theoretical
model?

5.1 Case One-Uniqueness for a Given Min-entropy

To evaluate the uniqueness result under different min-entropy val-
ues, the probability of occurrence of 1 is set from 0.1 to 0.5 (or 0.5 to
0.9) with a step of 0.1, i.e., pb max 2 0:1 . . . 0:5½ �. The theoretical
uniqueness value as a function of min-entropy is then calculated
using (8) and (13) with these values of pb max.

Fig. 6 shows the uniqueness results of the theoretical expecta-
tion and software simulation over an increasing number of devices
m, with a specified min-entropy value Hmin; as well as the calcu-
lated values from the test-bed acquisitions. For the hardware
results from the entire set of 184 FPGAs, the calculated uniqueness

Fig. 4. Ring-oscillator architecture.

Fig. 5. The hardware testing platform.
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and min-entropy values are 0.48 and 0.73, respectively, with the
estimated values closely following the theoretical expectation. The
hardware-based experimental result presented in Fig. 6 matches
both the theoretical and simulated results, as a solid line, particu-
larly for a large number of devices. Hence, we can see that the theo-
retical model is verified by both simulated results and actual
experimental results.

As previously mentioned, to achieve an optimal value for the
min-entropy, pb; max should tend towards 0.5; therefore the HW
should be approximately m

2
. Hence, from (13),

Ub ¼
2

mðm� 1Þ �
m

2
� m�m

2

� �

¼ m

2 � m� 1ð Þ :
(18)

Assuming m is large, as m!1, the uniqueness Ub ¼ 0:5. This
shows the benefit of a large test-bed in order to accurately estimate
the uniqueness for a given min-entropy, with m0150 devices
desirable.

5.2 Case Two-Min-Entropy for a Given Uniqueness

In a similar manner, for a given uniqueness calculated from a PUF
design, the expected min-entropy can now be calculated. In the
software simulation, the uniqueness Ub is set from 0.18 to 0.5,
derived once again from pb max 2 0:1 . . . 0:5½ � similar to case one. A
theoretical expectation is calculated by (7), (9) and (16) with these
values of Ub. In an ideal scenario, assuming the uniqueness of a
given bit is 0.5, Ub ¼ 0:5, pb max can be derived from

pb max ¼ 1� 1

2
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 0:5þm� 2 � 0:5 �m
m

r

 !

¼ 1� 1

2
� 1þ 1

ffiffiffiffiffi

m
p

� �

:

(19)

Assuming that m is large, m!1, where pb max ! 1
2
, then the min-

entropy Hmin ¼ 1.
Fig. 7 shows the min-entropy results calculated from the theoret-

ical model and software simulations over an increasing number of
devicesm, with a specified uniqueness value Ub; as well as the test-
bed acquisitions. It can be seen that the higher the uniqueness value
the closer the min-entropy is to the ideal value of 1. It also shows
that the larger the number of devices m the higher the min-entropy

value (the lower-bound of real entropy) for a given uniqueness. The
hardware-based experimental result presented as the black line in
Fig. 7 matches both the theoretical and simulated results particu-
larly for a large number of devices. Fig. 7 also shows the min-
entropy results assuming Ub ¼ 0:5 calculated overm different devi-
ces. Again, this shows the benefit of a large test-bed in order to accu-
rately estimate themin-entropy for a given uniqueness.

5.3 Effect of RO Evaluation Times

When evaluating RO-based PUF designs, the length of time over
which the RO frequency is estimated has a significant effect on the
noise of the response. Generally, the longer the evaluation time,
the less noise the response will have [22].

To investigate the influence of evaluation time on both unique-
ness andmin-entropy, the RO frequency estimated across increasing
evaluation times is calculated. Fig. 8 shows the influence on the min-
entropy, for evaluation times of 16; 32; 64; 4096; 655536; 524288½ �
clock cycles. Smaller evaluation times lead to a smaller switching

Fig. 6. The uniqueness results over different devices for a given min-entropy. The
solid lines exhibit the results from software simulation (Simi), the lines with only
markers represent the results from the proposed theoretical model (Theo), and the
black line shows the experimental result (Expr) from 184 devices.

Fig. 7. The min-entropy results over different devices for a given uniqueness. The
black line shows the results from the hardware experiment (Expr) over 184 devi-
ces. The other solid lines exhibit the results of the software simulation (Simi). The
lines with only markers demonstrate the results of the proposed theoretical model
(Theo).

Fig. 8. The hardware experiment for investigating the min-entropy over different
RO evaluation times in a range of 16 to 524288. The maximum and minimum min-
entropy are 0.726 and 0.442.
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count at the RO output. This leads to a less accurate estimation of the
RO frequency, as well as less variation between the actual count val-
ues of the different RO instances giving a lowermin-entropy estima-
tion. For the 184 devices used in the hardware experiment, the min-
entropy estimation is 0.726 for the longest evaluation time of 524,288
clock cycles, and 0.442when the number is 16.

Fig. 9 shows the influence of different RO evaluation times on
the uniqueness result. The box plot is derived by evaluating the
uniqueness over all 184 devices, for each of the evaluation times. It
can be seen that the lower the evaluation time, the lower the
uniqueness obtained as it is harder to distinguish between the PUF
instances for the same reasons as outlined in the min-entropy case.
The longer the RO evaluation time, the smaller the box in Fig. 9
and the less outliers.

Fig. 10 exhibits the relationship between uniqueness and min-
entropy over different RO evaluation times for both the hardware
experiment and the proposed theoretical model. The minimum RO
evaluation time results in uniqueness and min-entropy values of
0.362 and 0.431, respectively. ThemaximumROevaluation time leads
to uniqueness and min-entropy values of 0.457 and 0.674, respec-
tively. The longer the RO evaluation time, the higher the uniqueness
and the min-entropy. Moreover, it can be seen that the empirical
results closely follow that expected from the theoretical model.

6 CONCLUSION AND FUTURE WORK

In this paper, a novel theoretical model is developed to investigate
the relationship between the uniqueness and min-entropy of a PUF
response. A software simulation demonstrates that the proposed
model can accurately estimate either uniqueness or min-entropy
given the other. We have analysed the effect of the number of devi-
ces on both uniqueness and min-entropy in practice. For the ideal
case, the larger the number of devices, the closer the min-entropy
can get to the ideal value of 1, and the closer the uniqueness is to
the ideal value of 0.5. In practice the larger number of devices leads
a more accurate estimation as for a given value of uniqueness, the
min-entropy value is bounded when calculated over a small num-
ber of devices. A hardware experiment based on a RO PUF design
is presented to evaluate the proposed model and it is implemented
on a large scale testbed of 184 Xilinx Artix-7 FPGA based Basys3
boards. The min-entropy and uniqueness experimental results are
0.73 and 0.48, respectively, which match both the theoretical analy-
sis and software simulation. Hence, the proposed model can accu-
rately estimate the trend and the lower bound of the relationship

between uniqueness and min-entropy. Moreover, for the RO PUF,
the longer the RO evaluation time, the higher the uniqueness and
min-entropy.

The RO PUF is utilised to verify the feasibility and accuracy of
the proposed model. In future work, an analysis of using the pro-
posed model with other PUF architectures will be performed, as
well as investigating the relationship between the process variation
and entropy.
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