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Abstract: The aroused quest to reduce the delay at the interconnect level is the main urge of this
paper, so as to come across a configuration of carbon nanotube (CNT) bundles, namely, squarely
packed bundles of mixed CNTs. The demonstrated approach in this paper makes the mixed CNT
bundle adaptable to adopt for high-speed very-large-scale integration (VLSI) interconnects with
technology shrinkage. To reduce the delay of the proposed configuration of the mixed CNT bundle,
the behavioral change of resistance (R), inductance (L), and capacitance (C) has been observed with
respect to both the width of the bundle and the diameter of the CNTs in the bundle. Consequently,
the performance of the modified bundle configuration is compared with a previously developed
configuration, namely, squarely packed bundles of dimorphic MWCNTs in terms of propagation
delay and crosstalk delay at local-, semiglobal-, and global-level interconnects. The proposed bundle
configuration is, ultimately, enacted as the better one for 32-nm and 16-nm technology nodes, and is
suitable for 7-nm nodes as well.

Keywords: mixed CNT bundle; crosstalk delay; interconnect; propagation delay; RLC model

1. Introduction

The overwhelming exploitation of interconnects to the device delay makes researchers
weigh Carbon Nanotubes (CNTs) for the possession pertinent to long mean free path [1],
electrical properties [1,2], thermal properties [2,3], electromigration, and current density [4].
Moreover, crosstalk delay is a potential stymie for CNTs due to capacitive coupling be-
tween adjacent bundles [5]. While it is brought up, in previous literature [1], that the
performance will be meliorated with further technology scaling, CNTs can render much
better performance based on the exploration of some features.

It is claimed in [5,6] that mutual inductance does not have a considerable impact
on crosstalk-induced delay and glitches; instead, coupling capacitance with electrostatic
and quantum capacitance makes the main contribution. It is also noticed in [7] that
the graphitized electron beam-induced deposition (EBID) carbon has the capability to
produce a low-resistance ohmic contact to multiple shells of MWCNT, in the context of
making high-performance electrical interconnect structures for next-generation electronic
circuits. Although the densely packed configuration of bundled CNTs is seizing attention
for improving performance, a trade-off between propagation delay and crosstalk delay is
conspicuous [8]. Having noticed, from earlier work [5], that SWCNT and DWCNT shows
poorer performance than Cu-based interconnects, owing to higher coupling capacitances,
we endeavored to avoid putting any SWCNTs and DWCNTs on the edge of the bundle in
our configuration.

To improve the crosstalk delay along with propagation delay, some works [6,9–12] are
conducted by introducing different bundle configurations and by combining both MWCNT
and SWCNT in the bundle. Rai et al. claimed that the structure with MWCNTs surrounded

Crystals 2022, 12, 186. https://doi.org/10.3390/cryst12020186 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12020186
https://doi.org/10.3390/cryst12020186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-9232-7745
https://orcid.org/0000-0003-4522-2814
https://doi.org/10.3390/cryst12020186
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12020186?type=check_update&version=1


Crystals 2022, 12, 186 2 of 14

by SWCNTs yields better performance by considering the tunnelling and intershell coupling
between adjacent shells by depicting four different structures in [10]. The same group,
subsequently, showed that the structure with SWCNTs and MWCNTs possessing equal
halves vertically was the best one in terms of frequency noise amplitude by delineating
the same four structures in another work [11]. However, it is demonstrated in [6,9] that, by
varying the relative position of MWCNTs and SWCNTs in the bundle, CNTs with spatial
distribution, putting the SWCNTs entirely wrapped up by the MWCNTs in the bundle,
indulges lower crosstalk delay than those with random arrangements. A delay-efficient
configuration of a mixed bundle is proposed in [12] as well, though the crosstalk delay
performance of this configuration is not well-proved since this work opposes the fact,
mentioned in [6,9], that SWCNTs are mounted over the boundary of the bundle.

The aim of this paper is to present an innovative diameter-controlled configuration
to alleviate the propagation delay and crosstalk delay of size shrinking interconnects,
which is feasible from the fabrication aspect. This configuration is presented here with a
detailed theoretical and mathematical model analysis and comparison results to assure
better enquiries of its performance and enlighten its advantages. To analyze the delay
performance, the analytical delay model has been obtained using the parameters from
previous works [13–16].

The rest of this paper is organized in the following manner. A modified configuration
of a mixed CNT bundle is proposed and illustrated in Section 2. Section 3 is used to
develop the mathematical models for RLC elements for isolated CNTs, and eventually for
a mixed bundle based on the configuration introduced in Section 2. Section 4 is dedicated
to the interest of simulating and analyzing the performance indicators, propagation delay,
and crosstalk noise for different technology nodes, and depicting a graphical comparison
with the previously well-developed research work [17,18]. Section 5 comes up with the
conclusion by appending the future work potentialities and improvements.

2. Modified Mixed CNT Bundle Configuration

Our endeavor in this paper is to enhance the performance by altering the configuration,
shown in Figure 1a. In this newly introduced configuration, illustrated in Figure 1b, the
replacement of smaller MWCNTs takes place with a bunch of SWCNTs, which are wrapped
up by the larger MWCNTs. This modified approach is a virtue of increasing the number
of CNTs in the bundle so that we can fill up the unoccupied space with SWCNTs more
efficiently and densely. The spacing between shells of MWCNTs and adjacent CNTs,
equivalent to the van der Waals distance (δ ≈ 0.34 nm) between graphene layers in
graphite, is maintained concurrently [19,20].

Figure 1. (a,b) In both architectures, the size of the larger MWCNTs are the same. The main
modification happened in the introduced configuration by means of smaller MWCNTs replaced by a
bunch of SWCNTs with the same predefined diameter, according to the space available based on the
technology nodes.
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The proposed configuration is inspired by the geometric pattern previously proposed
in the works [17,21], to accommodate a greater number of CNTs in the bundle. In addition
to every four larger MWCNTs forming a square by taking the vertices of the square in
the center of those MWCNTs, another square forms in the center of the square. A certain
number of SWCNTs is accommodated in this newly formed square, which will follow the
hexagonally packed pattern. The number of larger MWCNTs and the number of SWCNTs
in the bundle are calculated using Equation (1).

By considering one-third of the shells of the MWCNTs as metallic [22], the average
number of conducting channels for a shell can be calculated by:

Nc(i) ≈
{

αTDi + β if Di >
DT
T ;

2
3 if Di ≤ DT

T ;
, (1)

where α = 2.04× 10−4 nm−1K−1, β = 0.425, DT = 1300 nm·K, and Di is the diameter of
the ith shell of the MWCNT.

To assure the simplicity of the calculation and to show the relation among all parame-
ters, we are going to pursue further by considering a constant ‘a’, which is the side of the
square formed by the MWCNTs in Figure 1. Thus, the diameter of the outermost shell of
the MWCNT is:

DMWmax = a− δ. (2)

The number of shells of MWCNTs can be calculated using the following Formula (3),
according to [9,12,23]:

n =

⌈
DMWmax − DMWmin

2δ

⌉
. (3)

According to the geometry of circle, we know that the diagonal of the bigger square
from Figure 1 is

√
2a. Hence, we may calculate the side (s) of the smaller square from

Figure 1 by:
s =
√

2a− (a + δ) =
(√

2− 1
)

a− δ. (4)

To calculate the plausible number of accommodated SWCNTs in the smaller square of
Figure 1:

NSW =

(
NSWH NSWV −

⌊
NSWV

2

⌋)
(5)

where

NSWH =

⌈
s− DSW

DSW + δ

⌉
; and NSWV =

⌈
2(s− DSW)√
3(DSW + δ)

⌉
.

The number of MWCNTs in Figure 1 is, thus:

NMWh =

⌊
w− DMWmax

DMWmax + δ

⌋
(6)

NMWv =

⌊
h− DMWmax

DMWmax + δ

⌋
, (7)

where bXc and dXe signifies that each element of X has been rounded to the nearest integer
less than or equal to that element, and to more than or equal to that element, respectively.

The number of smaller squares (NSq) in Figure 1 can be estimated by the following
expression:

NSq =
(

NMWh − 1
)
(NMWv − 1). (8)
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The total number of SWCNTs in the bundle is given here:

NSW∑
= NSqNSW. (9)

3. Improved Mathematical Models

After obtaining the total number of CNTs (both MWCNT and SWCNT) from Section 2,
we develop and extract the diameter-controlled RLC elements for the mixed bundle of
dimorphic CNTs at different technology nodes in this section. In Figures 2–4, the diameter
of the MWCNTs is yielded as a function of ‘a’, the diameter of SWCNTs is presumed to
be the constant value of 1 nm, and the length of the interconnect and aspect ratio are
considered as 100 µm and 2, respectively.

3.1. Resistance in Mixed CNT Bundle

The mathematical approach to determine the equivalent resistance of the mixed bundle
is the extraction of the resistance components for isolated CNTs and, eventually, the total
resistance of the bundle. To pursue the calculation, we will consider the equivalent single-
conductor (ESC) model, where the resistance of the shells of the MWCNTs are in parallel,
and adjacent CNTs are also in parallel [24]. According to [25], the quantum resistance (Rq)

of SWCNTs can be estimated using the conductance G =
(

2e2

}

)
MT, where e is the electron

charge with the value of 1.62× 10−19 C, and } = 6.6262× 10−34 Js is the Planck constant:

Rq =
}

4e2 ≈ 6.45 kΩ. (10)

On the other hand, in the case of a single-wall nanotube length (l) exceeding the mean
free path of electrons (λSWCNT), another resistance (Rs) comes up along with the former
one, owing to scattering, which can be computed from the following expression:

Rs =
}

4e2

(
1

λSWCNT

)
. (11)

Finally, the total resistance, emerging from the previous two components of the resis-
tance, for an isolated SWCNT, is denoted by (12):

RSWCNT =

{
Rc + Rq if l << λCNT;
Rc + Rq + lRs if l ≥ λCNT;

. (12)

The lump resistance (Rlump), having the quantum or intrinsic resistance from Equa-
tion (10), caused by the quantum detainment of electrons in a nano-wire and imperfect
metal–nanotube contact resistance (Rc), may vary from a few to several hundreds of
kilo-ohms, based on the fabrication process [9,12,26]. The lump resistance for different
isolated MWCNTs of the proposed bundle configuration using (13) has been acquired
from [4,9,23,24,26,27]:

Rlump =

[
n

∑
i=1

(
Rq

Nc(i)
+ Rc

)−1
]−1

. (13)

The per-unit length (p.u.l) scattering resistance (Rs) emerges for the length of the nano-
wire surpassing the effective mean free path of the electron [24]. The scattering resistance
(Rs) for different isolated MWCNTs of the proposed bundle configuration is estimated from
Equation (14), based on [4,9,26]:

Rs =
n

∑
i=1

Rq

Nc(i)λi
. (14)
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The equivalent resistance of the bundle including both MWCNTs and SWCNTs can be
reckoned by the following expression:

Rbundle =

[(
Rq

NMW
+ l

Rs

NMW

)−1
+

RSW

NSW∑

]−1

. (15)

The characteristics of resistance (R) depend on both the width of the interconnect
wire based on the technology node and the diameter of the used CNTs in the bundle. The
simultaneous impact of both factors is observed in Figure 2. It is obvious that the lower
resistance for the bundle is attainable by increasing the width of the bundle along with the
diameter of the CNTs. Since it is taken into account that all the CNTs in the bundle are in
parallel with each other, the increased number of CNTs can be obtained by increasing the
width in a given space of the bundle, and can reduce the resistance significantly. Moreover,
the increased diameter of the MWCNTs increases the number of shells, which are also in
parallel to each other.

5 6 7 8 9 10
Width of interconnect bundle (nm)

25

30

35

40

45

50

55

60

65

70

75

D
ia

m
et

er
 o

f C
N

T
s 

(n
m

)

0.05

0.1

0.15

0.2

0.25

0.3

Resistance (k )

Figure 2. Synchronal variation of resistance of the squarely packed bundle of mixed CNTs from
altering the width of the bundle and the diameter of the CNTs.

3.2. Inductance in Mixed CNT Bundle

To determine the overall inductance for our proposed configuration of the mixed
bundle, we will first calculate the inductance for isolated SWCNT and then for the isolated
MWCNT, and finally, the equivalent inductance for the entire bundle will be demonstrated,
as given in Equation (20). The inductance of the SWCNT consists of two components,
which are denoted as kinetic inductance (Lk) and magnetic inductance (Lm). Considering
the ballistic conduction for a 1D conductor, the kinetic inductance (Lk) can be obtained by:

Lk =
}

2e2vF
, (16)

where vF is the Fermi velocity of an electron with the value of approximately 8× 105 ms−1.
Since Lk is the function of some constant values, the approximate per-unit length (p.u.l.)
value is 16 nH/µm [28]. On the other hand, the stored energy of carriers in a magnetic field
engenders magnetic inductance (Lm) in SWCNTs [28] which is approximated by:

Lm =
µ0

2π
ln
(y

d

)
, (17)
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with µ0 = 4π × 10−7 Hm−1. Now, in the case of MWCNTs, the magnetic inductance for
the ith shell can be approximated by the following expression:

LmMW(i) =
µ0

2π
cosh

(
2h

DMW(i)

)
, {i ∈ N : 1 ≤ i ≤ n}. (18)

The magnetic and kinetic inductance of the isolated MWCNT in the proposed bundle
is calculated using Equations (18) and (19), respectively:

LkMW(i) =
n

∑
i=1

Lk
2Nc(i)

. (19)

Finally, the overall equivalent inductance of the bundle is estimated in (20), which
indicates that the kinetic inductance component of SWCNT exists when the length of the
interconnect wire exceeds the electron mean free path:

Lbundle =


(

NMW
LmMW+LkMW

+
NSW∑

LmSW+LkSW

)−1
if l ≤ λCNT;(

NMW
LmMW+LkMW

+
NSW∑
LmSW

)−1
if l > λCNT;

. (20)

The inductance of the bundle also exhibits the same phenomena as the resistance does.
The behavioral change of the inductance of the bundle, with the width and diameter of the
CNTs in the bundle, is depicted in Figure 3. Based on the attained diameter, we estimate
the delay of the bundle in Section 4.
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Figure 3. Concurrent extraction of inductance of the squarely packed bundle of mixed CNTs by
varying the width of the bundle and the diameter of the CNTs.

3.3. Capacitance in Mixed CNT Bundle

The p.u.l. quantum capacitance for a CNT is estimated in Equation (21) by taking the
analogy of the required energy to enclose an extra electron at an acquirable quantum state
level beyond the Fermi energy level and effective capacitance. This capacitance comes into
notification due to the quantum electrostatic energy stored in the nanotube while carrying
the current [28]:

Cq =
2e2

}vF
≈ 0.1 fF/µm. (21)
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It has already been mentioned that, to estimate the inductance for a isolated SWCNT,
that SWCNT must have four conducting channels, and these channels should form a
parallel combination [28]. As a result, the equivalent effective quantum capacitance of an
isolated SWCNT can be approximated here:

CSW = 4Cq ≈ 0.4 fF/µm. (22)

The electrostatic capacitance is expressed in the following expression by considering
the SWCNT as a thin wire with the diameter DSW putting, at a distance of ‘y’, away from
the ground [28]:

Ce(SWCNT) =
2πε0εr

cosh−1
(

y
DSW

) , (23)

with absolute dielectric permittivity (ε0) = 8.854× 10−12 Fm−1. Now, the capacitance for
an isolated MWCNT is calculated using the recursive model. It is recommended in [6]
that it is mandatory to determine the quantum capacitance of each shell before estimating
the effective capacitance of a single MWCNT. The quantum capacitance is basically the
estimation of the finite density of electronic states of quantum wire [24].

Cq =
4e2

}vF

n

∑
i=1

Nc(i). (24)

According to the ESC model of MWCNTs, it can be inferred from [27] that a shell-to-
shell mutual capacitance between two adjacent shells of MWCNT is:

Cs(i + 1, i) =
2πε0εr

ln
(

Di+2δ
Di

) , {i ∈ N : 1 ≤ i ≤ n}, (25)

where Di is the diameter of the ith shell of any isolated MWCNT. At first, in the case of the
outermost shell, the equivalent capacitance (CESC), expressed in Equation (26), represents
only the quantum capacitance of that shell. As much as we move toward the inner shell,
the quantum capacitance of that particular shell makes a parallel combination with the
equivalent capacitance (Cq−s), as shown in expression (28); a series combination of the
capacitance of any shell and the mutual capacitance between that shell and previous shell
obtained in (27), will continue until reaching the innermost shell.

CESC(1) = Cq(1) (26)

Cq−s(i− 1) =
(

1
CESC(i− 1)

+
1

Cs(i + 1, i)

)−1
where, {i ∈ N : 2 ≤ i ≤ n} (27)

CESC(i) =Cq(i) + Cq−s(i− 1)where, {i ∈ N : 2 ≤ i ≤ n}. (28)

The electrostatic capacitance demonstrates the potential difference between the ground
and the CNT over the ground plane [24]. The p.u.l. electrostatic capacitance can be
approximated in (29):

CE =
2πε0εr

ln
(

Di+2δ
Di

) . (29)

The conglomerate capacitance of the proposed mixed bundle is obtained in (30) by
considering the overall effect of the SWCNTs and MWCNTs in the bundle. To estimate this,
we considered the effect of electrostatic capacitance of MWCNTs over the ground plane on
the effective capacitance in series:
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Cbundle =
NMWH CE

(
NMWCESCMW + NSW∑

CSW

)
NMWCESCMW + NSW∑

CSW + NMWH CE
. (30)

Unlike the resistance and inductance, capacitance shows a descending behavior, with
a lower diameter of CNTs in the bundle. We can also notice, from Figure 4, that capacitance
decreases further in higher-technology nodes. The reason behind this phenomenon is that
the capacitance components rising from parallel CNTs magnify the equivalent capacitance
in the bundle.
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Figure 4. Contemporaneous denouement of capacitance of the squarely packed bundle of mixed
CNTs by varying the width of the bundle and the diameter of CNTs.

4. Simulation Results

This section illustrates the performance comparison of a squarely packed bundle of
dimorphic MWCNTs and that of mixed CNTs to exploit the feature of using mixed CNTs in
the interconnect bundle. To observe the performance in terms of propagation delay, we
simulate the Kahng’s model, obtained from earlier work [13], using the extracted equivalent
value of RLC and the optimized dimensions of CNTs in Section 3. Having the RLC value
of our model, we validate the extracted conductance, inductance and capacitance rising in
our configuration by comparing them with those in the previously discussed mixed CNT
model in [18]. Subsequently, we assess the performance of the proposed configuration in
terms of crosstalk delay, excerpted from [4], using the optimized size of particular CNTs
and extracted RLC in Section 3, and the number of CNTs in Section 2.

To validate the RLC value of the proposed model, the conductance and inductance of
the mixed CNT bundle is observed by varying the probability of metallic CNT (%) using
Equation (1). We observe, from Figure 5, that the conductance of our mixed CNT bundle
configuration varies proportionally with the percentage of metallic CNTs in the bundle. It
can be deduced from expression (1) that the number of channels per shell increases with
an increase in the percentage of metallic CNTs, which, in turn, reduces the resistance and
increases the conductance of the bundle. As our proposed configuration is densely packed
and geometrically organized, its capacity to hold a noticeably higher number of CNTs in
the bundle makes the conductance of our configuration, as depicted in Figure 5, much
higher than that of the mixed CNT bundle in [18]. For the same reason, our proposed
configuration comes up with a lower inductance than the previous mixed CNT models
in both Figures 5 and 6. Figure 6, meanwhile, demonstrates that the capacitance of the
proposed model increases with increasing interconnect lengths, though our configuration
still sustains better performance by generating lower capacitances. In this circumstance, we
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can infer that by increasing the percentage of metallic CNTs and delimiting the interconnect
length, we can reduce the extracted RLC parameter and, eventually, the delay.
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Figure 5. Impact of increasing metallic CNTs on the conductance and inductance and comparison of
the results of the proposed configuration and the earlier mixed CNT bundle configuration. Overall
conductance and inductance of the mixed CNT bundle is obtained, considering the interconnect
length of 40 nm.
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Figure 6. Findings of overall bundle inductance (L) and capacitance (C) for different interconnect
lengths to observe the comparative parameter illustration of the proposed configuration and the
previous model by considering that 2

3 of the CNTs are metallic in the bundle.

It is demonstrable from Figures 7–9 that our proposed configuration yields a lower
propagation delay than the preceding configuration in [17] does. It is conspicuous, from
Table 1. that we can increase the number of CNTs without distorting the overall config-
uration of the squarely packed bundle using the proposed approach. As a consequence,
the resistance and inductance decreases while the capacitance increases for any specific
technology node. Finally, the overall impact decreases the propagation delay for the
squarely packed bundle of mixed CNTs, which is represented in the Figures 7–9 for the
local, semiglobal, and global levels, respectively. However, the preceding squarely packed
bundle configuration does not seem suitable for 7-nm technology nodes, because of the
unavailability of space to accommodate CNTs of various sizes. Hence, the simulation
illustrations don not include the delay of a squarely packed bundle of dimorphic MWCNTs
for 7-nm technology. In comparison with [18], the unique contribution of our proposed
configuration is the feasibility for 32-nm, 16-nm, and 7-nm technology nodes, along with
performance enhancements.
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Table 1. Diameter and number of pertinent CNTs accommodated in the bundle during simulation to
obtain propagation delay and crosstalk delay.

Interconnect
Length (µm)

Technology
Node (nm)

Squarely Packed Dimorphic Squarely Packed Mixed

DL
MWmax

(nm)
NL

MW
Ds

MWmax

(nm)
Ns

MW
DMWmax

(nm) NMW
DSW
(nm)

NSW∑

Local
(0–100)

32 nm 10 32 4.31 21 10 21 1 96

16 nm 8.5 8 3.72 3 8.5 8 1 15

7 nm - - - - 4.5 3 1 8

Semiglobal
(101–500)

32 nm 10 32 4.31 21 10 21 1 96

16 nm 8.5 8 3.72 3 8.5 8 1 15

7 nm - - - - 4.5 3 1 8

Global
(501–2500)

32 nm 10 48 4.31 33 10 33 1 160

16 nm 8.5 14 3.72 6 8.5 12 1 25

7 nm - - - - 4.5 12 1 5
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32 nm

32 nm

16 nm

16 nm

7 nm
Squarely packed bundle of dimorphic MWCNTs

Squarely packed bundle of mixed CNTs

Figure 7. Comparison of delay performance of a squarely packed bundle of mixed CNTs and that of
dimorphic MWCNTs for local-level interconnect lengths. The size and number of accommodated
CNTs for different technology nodes are mentioned in Table 1.
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Figure 8. Illustration of comparative delay performance of a squarely packed bundle of mixed CNTs
and that of dimorphic MWCNTs for semiglobal-level interconnect lengths. The size and number of
accommodated CNTs for different technology nodes are mentioned in Table 1.
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Figure 9. Demonstration of comparison between the propagation delay performance of a squarely
packed bundle of mixed CNTs and that of dimorphic MWCNTs for global-level interconnect lengths.
The size and number of accommodated CNTs for different technology nodes are mentioned in Table 1.

The crosstalk delay, basically, arises from the capacitance formed between the CNTs
from different bundles, while it is considered that all CNTs in the bundles are in parallel [4].
The inter-bundle capacitance, the function of spacing between the the centers of two
adjacent CNTs, the average diameter of the adjacent CNTs, and the relative permittivity
based on the level of interconnect length, is estimated by Equation (31), where DMWmax is
used as the diameter because we placed MWCNTs on the edge of the bundle to reduce the
overall crosstalk impact, having been motivated by previous works [6,9]:

CcmESC =
πε0εr

cosh−1
(

Sp
DMWmax

)NMWh . (31)

Eventually, the crosstalk performance of our proposed configuration is depicted in
Figures 10–12 for local-, semiglobal-, and global-level interconnects by comparing with
the preceding configuration from [17]. It is noticeable from Figure 11 that the crosstalk
performance of the proposed configuration is substantial for both the 32-nm and 16-nm
technology nodes. On the other hand, Figure 11 illustrates significant crosstalk performance
betterment in the 32-nm technology node, compared with that in the 16-nm technology
node. In the case of the global-level interconnect, the amount of crosstalk delay performance
enhancement of our proposed configuration for both 32-nm and 16-nm technology nodes
is almost the same, as is illustrated in Figure 12. It is also demonstrable that our proposed
configuration is appropriate for 7-nm technology nodes.
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Figure 10. Comparative exhibition of the crosstalk delay of the proposed and previously developed
bundle configurations for different technology nodes at local-level interconnect lengths. The dimen-
sion of the used CNTs are the same as those used in the simulation for obtaining propagation delays
at the local level.
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Figure 11. Comparative analysis of the crosstalk delay of the proposed and previously developed
bundle configurations for different technology nodes at semiglobal-level interconnect lengths. The
dimension of the used CNTs are the same as those used in the simulation for obtaining propagation
delays at the semiglobal level.

500 1000 1500 2000 2500

Length of global level interconnect ( m)

10-1

100

101

102

C
ro

ss
ta

lk
 d

el
ay

 (
ns

)

32 nm 16 nm

Squarely packed bundle of mixed CNTs

32 nm 16 nm 7 nm
Squarely packed bundle of dimorphic MWCNTs

Figure 12. Comparative illustration of the crosstalk delay of the proposed and previously developed
bundle configurations for different technology nodes at global-level interconnect lengths. The
diameter and number of the used CNTs are the same as those used in the simulation for obtaining
propagation delays at the global level.
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5. Conclusions

A modified configuration of the squarely packed bundle of mixed CNTs is presented
to assure the high speed VLSI interconnect with less area possession. By proposing this
configuration, the simultaneous applicability of both MWCNTs and SWCNTs for scaled
interconnects in future VLSI-integrated circuits is analyzed abstractly. The propagation
delay and crosstalk delay performance are extracted and analyzed using an RLC model
and a delay model. As a result, it exhibits the transcendence of squarely packed bundles of
mixed CNTs for local-, semiglobal-, and global-level interconnects at 32-nm, 16-nm, and
7-nm technology nodes. In this approach, CNTs with only two different sizes are used. In
the upcoming endeavor, our intention is to advance the work by adding the CNTs with
various sizes to make the configuration more convenient in terms of fabrication process.
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