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Abstract: A theoretical solution is formulated to analyze the vibration behaviors of circular 
diaphragm-type piezoactuators based on the Hamilton’s principle and Rayleigh-Ritz method, 
which are particular suitable for modeling the deflection of multilayer structures. Each of the 
actuator three layers is considered as an individual layer in the modeling. The energy associated 
with the solution includes the kinetic energy of the actuator, the elastic potential energy of the 
various layers, the electric potential energy in the piezodisc, and the work done by the force of 
electric filed. The transverse displacement is separated into a time dependence term and a mode 
shape term, then the vibrational governing equation is derived using the functional variation, and 
is approximately solved through the method of multiple scales. Moreover, added mass loads are 
introduced to the diaphragm center for the sake of decreasing the resonant frequency, where many 
MEMS devices, such as gas micropumps and ejectors, have a higher working efficiency. The 
proposed analytical solution is validated numerically via the finite element method (FEM) and 
experimentally via measurements; the theoretical results are found to be in good agreement with 
the FEM results as well as with the experimental results. Furthermore, the effects of mass loads, 
geometric dimensions and material properties of the piezoactuator on the resonant frequency are 
discussed. 
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1 Introduction 

The multilayer diaphragm-type piezoactuators, converting electrical energies into mechanical 
ones, are extensively applied to the micro electro mechanical systems (MEMS), such as complex 
fluidic handing systems consisting micropumps [1], ejectors [2], drug deliveries [3], and etc. 
Normally, a diaphragm-type piezoactuator is composed of passive layer, bonding layer and PZT 
layer, shown in Fig. 1(a). When a voltage is imposed on the piezodisc, its contraction or expansion 
in the radial and lateral directions induces a bending moment to the actuator, and results in a 
deformation in transverse direction. Such actuators with a piece of piezodisc bonded on one side 
or both sides of the passive layer are termed as unimorph or bimorph, respectively. Furthermore, 
in most applications, the radii of the piezoelectric and bonding layers are generally smaller than 
the radius of the passive layer to generate larger deflections, and the piezoactuator is tightly 
clamped around its periphery [4]. 

Accurate analytical solution to the deflections of such diaphragm-type piezoactuators in 
terms of the actuator dimensions, material properties, and loads are highly valuable for their 
design. The static analysis is appropriate when the excitation frequency of the piezoactuator is 
considerably below its resonant frequency. However, the static deflections of these piezoactuators 
are mostly less than 0.5 μm/V [5, 6], which limits the developments of various piezoelectric 
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devices and is desired to be enhanced for a higher working efficiency. Taking the piezoactuated 
gas micropumps as an instance, larger deflection of the actuator is much helpful in promoting the 
pressure rise and flow rate [7]. According to the vibration theory, an effective method to amplify 
the deflection is exciting the actuator at its resonant frequency. Therefore, theoretical solution on 
the resonant analysis of the diaphragm-type piezoactuators is necessary. 

The vibration behaviors of the diaphragm-type piezoactuators have attracted many attentions 
in the past decades because of their important role in MEMS devices. The investigations include 
analytical solutions [8], finite element method (FEM) simulations [9] and experimental 
measurements [10]. For the computational efforts, classic plate theory (CPT), which based on the 
Kirchhoff plate model, has been widely employed to study free vibration of the piezoelectric thin 
circular/annular plates. Based on the CPT, a research was conducted by Wang et al. [11] on 
analytical solution for free vibration behaviors of a piezoelectric coupled circular plate with 
simply supported and clamped boundary conditions; the solution was validated through the FEM 
simulation. Duan et al. [12] investigated free vibration behaviors of a piezoelectric coupled thick 
annular plate based on the Kirchhoff and Mindlin plate theories, and the results indicated that 
thicker PZT layer increases the resonant frequency of the actuator. Compared with the 
piezoelectric coupled thick plates, thin diaphragm-type piezoactuators always have larger 
transverse displacements and lower resonant frequencies [13], and are suitable for the fluidic 
handling systems. Yao et al. [14] investigated dynamic behaviors of a square edge-clamped 
multilayer piezoelectric diaphragm based on the CPT and obtained the governing differential 
equations using the Rayleigh-Ritz method. They concluded that the density and elastic modulus of 
the actuator are dominant factors affecting the resonant frequency of the actuator through the 
parametric study. Employing the Hamilton’s principle, dynamic behaviors of a one side clamped 
rectangular piezoelectric actuator were studied by Zhao et al. [15], using the first-order shear 
deformation theory to model the thick laminated plate. Olfatnia et al. [16] investigated the 
vibrational characteristics of a circular piezoactuator used for the biosensors after introducing the 
residual stress of the diaphragm to the governing equation, supposing the multilayer diaphragm as 
one membrane. They also observed the vibration modes of the circular diaphragm through a 
microscope, suggesting that the first mode had the maximum energy emission to the medium [17]. 
Gomes [18] proposed a new theory on the vibration of a circular piezoelectric diaphragm with an 
approach to separate the diaphragm into an inner circular multilayer membrane and an outer 
annular elastic membrane, which generated two distinct eigenvalues. After considering the 
damping and relaxed clamping conditions of the diaphragm, overestimation of the resonant 
frequency was explained and the theory agreed well with the experimental measurements. Such 
piezoactuators utilized in the micropump were also investigated by Kaviani [19], who derived a 
dynamic model through explicitly solving the governing equations using separation of variables 
method; the damping effect was considered and the theory was verified by the FEM simulation. 
Using the piezoelectric constitutive equations, Esfahani and Bahrami [20] proposed governing 
equations to investigate the vibration behaviors of an edge-clamped piezoelectric micro-plate in 
fluidic environment, which was modeled as a damping foundation. The equations were solved 
using generalized differential quadrature method and were also validated through FEM 
simulation. Based on the thin plate theory and Kelvin–Voigt laws, another work concerning the 
vibration of a piezoelectric microplate was also presented by Esfahani and Bahrami [21]. 

The resonant frequencies of the circular piezoactuators utilized in the transducers are mostly 
over 10 kHz. However, the frequency at that range is too high for the fluidic handling devices and 
may results in a failure. Such as in the micropumps, higher excitation frequency is benefit for the 
power output of the piezodisc, but too high working frequency may lead to the failure of the 
mechanical valves [22]. Moreover, too high working frequency may causes tremendous energy 
loss due to the acoustic radiation [23]. One effective method to drop the resonant frequency of the 
diaphragm without weakening the actuation force is fixing an added mass load at the diaphragm 
center, which has been frequently utilized in the piezoelectric energy harvesting devices [24]. 

A previous method to model the vibrational diaphragm piezoactuators was via eigenvalue 
analysis to the mode function. However, the multilayer actuator was supposed as one membrane 
for the method, which may result in discrepancies. Moreover, the mode function may difficult to 
be solved when some other terms, such as mass load, are introduced to the governing equations. 

This research presents an analytical solution on the dynamic behaviors of a circular 
diaphragm-type piezoactuator based on the Hamilton’s principle and the Rayleigh-Ritz method. 
Deflection of the actuator satisfies the Kirchhoff thin plate theory. The Energy associated with the 
solution includes the elastic potential energy of the deflecting actuator, the kinetic energy during 
the vibration, the electric potential energy in the piezodisc, and the work done by the force of 
electric filed. Each of the piezoactuator three layers is considered as an individual layer in the 



dynamic modeling. Moreover, a mass load is incorporated to the actuator for the purpose of 
decreasing its resonant frequency. The proposed solution is validated via the FEM simulation as 
well as the experimental measurement. Based on the equations, effects of the center mass load, 
actuator dimensions, and material properties of the passive layer on the piezoactuator resonant 
frequency are further investigated. 

(a)  

 (b)  
Fig. 1. ( a) Schematic and (b) dimensions of the circular diaphragm-type piezoactuator 

2 Analytical modeling 

The basic idea of the multilayer diaphragm-type piezoactuators is converting the contraction 
or expansion of the PZT layer in radial and lateral directions to a large bending displacement of 
the actuator in the transverse direction, and the conversion is fulfilled through the bonding layer, 
which tightly glues the passive layer and PZT layer together. As presented in Fig. 1(b), the radius 
of the PZT layer and bonding layer is r2, and the radius of the passive layer is r1; the thicknesses 
of the passive layer, bonding layer and PZT layer are tp, tb, and tpzt, where the subscript p, b, and 
pzt represent the passive layer, the bonding layer, and the PZT layer, respectively. In the multilayer 
structure, there exists a neutral plane that has no transverse strain, and h is the distance from the 
neutral plane to the bottom of the passive layer. The actuator vibrates with a fixed periphery. The 
modeling is based on the following assumptions: 

(1) Isotropic multilayer diaphragm and uniformly distributed properties; the PZT layer is 
polarized along z direction. 

(2) The deflection follows the Kirchhoff thin plate theory: (i) the normal stress and shear 
stress are neglected, i.e. σzz=0; (ii) elements remain perpendicular to the neutral surface 
after bending, i.e. erz=eθz=0. 

(3) Impact of the electrodes layer on the deflection is neglected since its thickness is less 
than 0.5 μm [25]; the viscoelastic nature of the bonding layer is neglected [26]. 

(4) Electric potential is assumed to be evenly distributed along the thickness of the PZT 
layer. 

2.1 Governing equations of the piezoactuator 

The stains and stresses in both radial and lateral directions are considered in the three layers. 
Based on the Kirchhoff thin plate theory, radial displacement (ur), lateral displacement (uθ), radial 
strain (err) and lateral strain (eθθ) of the actuator are defined [27]: 
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where w represents the transverse displacement and is a function of r, θ and t. 
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According to the generalized Hook’s Law, stresses in radial (σrr,p) and lateral (σθθ,p) directions 
of the passive layer are calculated as 

  (3) 
where Ep and vp are the Young’s modulus and Poisson’s ratio of the passive layer. 

The thickness of the bonding layer is around 20 μm, which is far thinner than the passive 
layer and PZT layer, its viscoelastic nature is negligible. Hence, the stresses in radial (σrr,b) and 
lateral (σθθ,b) directions of the bonding layer are expressed as 

  (4) 
According to the linear piezoelectric constitutive equations, stresses in radial (σrr,b) and lateral 

(σθθ,b) directions of the PZT layer are calculated as 

  (5) 
where Ez is the electrical field strength in the PZT layer. 

2.2 Theory of vibration 

Based on the generalized Hamilton’s principle, the variational function of the piezoactuator is 
expressed as [28] 

  (6) 
where F is a function of time; T, U and We are the kinetic energy, potential energy and electric 
energy of the actuator, respectively. W is the work done by the force of electric field. For the 
multilayer piezoactuator, they are expressed as 

  (7) 

where v is the velocity of the actuator and satisfies: ; σ and ε are the strain and stress of 
the layers, Dz is the electric displacement of the PZT layer, V(t) is the excitation voltage imposed 
on the PZT layer, and q(t) is the charge on the surface of the PZT layer. 

When a mass is fixed at the diaphragm center, shown in Fig. 2, the kinetic energy (T) of the 
piezoactuator is comprised of the kinetic energy of the three layers and the mass (Tm). Therefore, 
the total kinetic energy (T) and total elastic potential energy (U) of the actuator is 

  (8) 
The Rayleigh-Ritz method is one of the methods solving boundary value problems through 

reformulating the given problems to a minimization problem [15]. To obtain the governing 
equations based on the method, separating the displacement (w) as 

  (9) 

where  is the vibration function describing shape of the actuator at resonance, and X(t) is 

( )

( )

2

, 2 2 2

2

, 2 2 2

1 1

1 1

p p p

rr p rr p

p p

p p

p p rr p

p p

E zE d w dw
e e

dr r dr

E zE d w dw
e e

dr rdr

θθ

θθ θθ

υ
σ υ

υ υ

σ υ υ
υ υ

⎧ ⎛ ⎞
= + = − +⎪ ⎜ ⎟

− −⎪ ⎝ ⎠⎨ ⎛ ⎞⎪ = + = − +⎜ ⎟⎪ − − ⎝ ⎠⎩

( )

( )

2

, 2 2 2

2

, 2 2 2

1 1

1 1

b b b

rr b rr b

b b

b b

b b rr b

b b

E zE d w dw
e e

dr r dr

E zE d w dw
e e

dr rdr

θθ

θθ θθ

υ
σ υ

υ υ

σ υ υ
υ υ

⎧ ⎛ ⎞
= + = − +⎪ ⎜ ⎟⎪ − − ⎝ ⎠⎨ ⎛ ⎞⎪ = + = − +⎜ ⎟⎪ − − ⎝ ⎠⎩

( )
( )

( )

( )
( )

( )

31

, 2

1111

31

, 2

1111

1

11

1

11

rr pzt rr pzt ZEE

pztpzt

pzt pzt rr ZEE

pztpzt

d
e e E

ss

d
e e E

ss

θθ

θθ θθ

σ υ
υυ

σ υ
υυ

⎧
= + −⎪ −−⎪

⎨
⎪ = + −

−−⎪⎩

( )
2 2

1 1

0
t t

e
t t

F T U W dt Wdtδ δ δ= − + + =∫ ∫

1

2
1

2
1

2

( ) ( )
pzt

T

V

T

V

e z z

V

T vv dV

U dV

W D E dV

W q t V t

ρ

σε

δ δ

⎧
=⎪

⎪
⎪ =⎪
⎨
⎪

=⎪
⎪

= −⎪⎩

∫

∫

∫

/v w t= ∂ ∂

p b pzt m

p b pzt

T T T T T

U U U U

= + + +⎧
⎨ = + +⎩

( , , ) ( , ) ( )w r t r X tθ φ θ= ⋅

( , )rφ θ



the displacement mode. 
Substituting the Eq. (9) into (8), the expressions of kinetic energy and elastic potential energy 

of the actuator are reformulated; hence the total kinetic energy (T) of the three layers is expressed 
as 

  (10) 
Likewise, total elastic potential energy (U) of the three layers is expressed as 

  (11) 
where Up, Ub and Upzt are the elastic potential energy for each layer calculated through Eq. (12); 
K, K1 and K2 are expressed as Eq. (13). 
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The electric potential energy (We) in the PZT layer is reformulated as 

2

2 2 2 2

1 ( )

2

1

2

p b pzt m

p b pzt m

T T T T

p b pzt m

V V V V

p b pzt m

V V V V

dX t
T dV dV dV dV M

dt

M dV dV dV dV

ρ υυ ρ υυ ρ υυ ρ υυ

ρ φ ρ φ ρ φ ρ φ

⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟= + + + = ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪ ⎝ ⎠⎨ ⎛ ⎞⎪ ⎜ ⎟= + + +⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

2 2

1 2( ) ( ) ( )p b pzt z zU U U U KX t K X t E K X t E= + + = + +

( )

, , , ,

2 22 2
2 2

2 2 2 2

, , , ,

2
2 2

2

2 2 2

1
( )

2

1
    2

2(1 )

1
( )

2

    2
2(1 )

p

p

b

p rr p rr p p p

V

p p

p V

b rr b rr b b b

V

p b

b

U e e dV

E vd d d d
z dV X t

v dr r dr dr r dr

U e e dV

E vd d
z

v dr r dr

θθ θθ

θθ θθ

σ σ

φ φ φ φ

σ σ

φ φ

= +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= + + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= +

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜

− ⎝ ⎠ ⎝

∫

∫

∫

( )

( )
( )

2

2

2

, , , ,

2 22 2 2
2

2 2 22

11

31

11

1

1
( )

2

1
      2

2 1

         
2

b

PZT

pzt

V

pzt rr pzt rr pzt p pzt

V

b

E

V pzt

d d
dV X t

dr r dr

U e e dV

vz d d d d
dV X t

dr r dr dr r drs v

d z

s

θθ θθ

φ φ

σ σ

φ φ φ φ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ ⋅⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎠⎣ ⎦

= +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= + + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

+

∫

∫

∫

( )
( )

( )
( )

2
2 31

2

111 2 1
pzt pzt

z zE E

V Vpzt pzt

d zd d
dV X t E dV X t E

dr rdrv s v

φ φ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ⎛ ⎞ ⎛ ⎞⎪ ⋅ ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎪ − − ⎝ ⎠⎝ ⎠⎩

∫ ∫

( )

2 22 2
2

2 2 2 2

2 22 2
2

2 2 2 2

2
2

22

11

1
2

2(1 )

1
      2

2(1 )

1
     

2 1

p

b

p p

p V

b b

b V

E

pzt

E vd d d d
K z dV

v dr r dr dr r dr

E vd d d d
z dV

v dr r dr dr r dr

d
z

drs v

φ φ φ φ

φ φ φ φ

φ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
+ ⎜

− ⎝

∫

∫

( )

( )

2 22

2 2

2

31

1 2

11

31

2

11

1
2

2 1

2 1

pzt

pzt

pzt

pzt

V

E

V pzt

E

V pzt

v d d d
dV

r dr dr r dr

d z d
K dV

drs v

d z d
K dV

rdrs v

φ φ φ

φ

φ

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎡ ⎤⎪ ⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎨ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎠ ⎝ ⎠⎪ ⎣ ⎦

⎪ ⎛ ⎞
=⎪ ⎜ ⎟

−⎪ ⎝ ⎠
⎪ ⎛ ⎞

=⎪ ⎜ ⎟
− ⎝ ⎠⎪

⎪⎩

∫

∫

∫



  (14) 
According to the Kirchhoff thin plate theory, there is a neutral plane that has no transverse 

strain in the multilayer structure, and the volume integration of each layer is relates to its location, 
which influences the diaphragm deformation. The volume integration of each layer is expressed as 

  (15) 
where h is the distance from the neutral plane to the bottom of the passive layer, and can be 
obtained based on the moment balance, 

   (16) 
Li and Chen [6] has approximately computed the neutral plane for the unimorph 

piezoactuator as 

 (17) 

The electric potential (φ) of the piezoelectric layer is usually supposed evenly distributed, 
thus the electric field strength (Ez) is calculated as 

  (18) 
Substituting Eqs. (10), (11) and (14) into (6) results in 

  (19) 
According to the variational principle, the functional derivative of X(t) is equal to zero, 

therefore governing equation concerning the vibrational piezoactuator is obtained. In order to 
prevent infinite deflections when the actuator is excited at its resonant frequency, the governing 
equation needs to account for the damping effect. After introducing the damping coefficient (C), 
the governing equation is expressed as 

  (20) 
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Fig. 2. The schematic of the piezoactuator with a mass load 

2.3 The primary resonance 

Introducing several none-dimensional variables: , , 
where ω is the frequency of the excitation signal. The Eq. (20) is rewritten as 

  (21) 

where , , , . 
To analyze the primary fundamental resonance, the λ can be expressed as, 

  (22) 
where θ is the detuning factor that describes the nearness of the excitation frequency to the 
resonant frequency; when θ=0, the resonance occurs and the nonlinear force and external force are 

small variables compared with the inertial force and linear force, therefore a small parameter  is 
introduced to the Eq. (21), resulting in 

  (23) 
The method of multiple scales is utilized to solve Eq. (23), and the first-order approximation 

is mainly considered [29]. Thus, X(τ) is expanded as, 

  (24) 
Substituting Eq. (24) into (23) results in 

  (25) 

where . 
The solution of Eq. (25) is, 

  (26) 

where , a(T1) is the amplitude, β(T1) is the phase,  is the conjugate of the A, and 
cc is the conjugate of the frontal terms.  

To eliminating the secular terms,  

  (27) 

For the steady solution: , , where . Separating the real part 
and imaginary part of Eq. (26), the amplitude and the phase of the resonant actuator are obtained, 

  (28) 

For the edge-clamped circular piezoactuator, its vibration function ( ) satisfies the boundary 
conditions as follows, 
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 , ,  (29) 
Therefore, the vibration function at the resonance can be expanded in the form of power 

series, shown as 

  (30) 
where R(n) is the remainder term of the series. According to the Rayleigh-Ritz method, the 

constants  in the power series are determined by equations: , , where 

L is the static potential energy of the piezoactuator expressed as: . 

Moreover, the  is investigated with different degrees (n), and the shape is stable when n≥3; 
we take n=4 in the analytical solution. 

3 Validation of the analytical solution 

The analytical solution on dynamic behaviors of the circular diaphragm-type piezoactuator 
was validated via both FEM simulations and experimental measurements. Three types of 
piezoactuators with different thicknesses were simulated in ANSYS and measured through a laser 
displacement sensor. Their geometric dimensions and material properties were summarized in 
Table 1 and 2, respectively. Furthermore, to investigate the effects of the added mass load, a 
cylinder mass was bonded at each piezoactuator center, and they were simulated and measured as 
well. The radius of the cylinder mass was 5 mm, and various weights were fulfilled through 
changing the height. Deduced from the experimental measurements, the average coefficient of 
damping ratio (μ) was 0.032 for the three piezoactuators without a center mass, and was 0.027 for 
the three piezoactuators with a center mass of 3.6 g. 
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Table 1 Dimensions of the three multilayer piezoactuators

Layers
Dimensions (radius×thickness)

Type A (t=0.24 mm) Type B (t=0.36 mm) Type C (t=0.48 mm)

PZT layer 12.5 mm×120 μm 12.5 mm×180 μm 12.5 mm×240 μm

Bonding layer 12.5 mm×20 μm 12.5 mm×20 μm 12.5 mm×20 μm

Passive layer 17.5 mm×100 μm 17.5 mm×160 μm 17.5 mm×220 μm

Table 2 Material properties of the three multilayer piezoactuators

Layer Mechanical properties Value

PZT layer 
(PZT-5A)

Piezoelectricity e (C/m)

Permittivity (F/m)
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3.1 Harmonic analysis through FEM simulations 

The harmonic analysis to the three types of piezoactuators both with and without a mass of 
3.6 g at their center was done with ANSYS. The coupled-field element Solid-226 with 20 nodes 
was chosen to model the PZT layer; the solid element Solid-186 with 20 nodes was chosen to 
model the brass layer, the epoxy resin layer and the center mass. The periphery of the passive 
layer was fixed, consistent with the boundary conditions for the analytical solution. The sinusoidal 
actuation voltage was imposed on the nodes belong to the upper and lower surfaces of the PZT 
layer. The actuation voltage kept constant at 20 Vpp with frequencies varying in steps of 2 Hz. The 
dimensions and the material properties of the actuators simulated in the finite element model were 
the same as those of the tested actuators given in Table 1 and 2. 

(a)  

Compliance S (m2/N)

Density (kg/m3) 7500

Passive layer 
(Brass)

Elastic modulus (GPa) 100

Poisson’s ratio 0.27

Density (kg/m3) 9500

Bonding layer 
(Epoxy resin)

Elastic modulus (GPa) 5.17

Poisson’s ratio 0.3

Density (kg/m3) 2000
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(b)  

Fig. 3. Elements plot of the piezoactuator (a) with and (b) without center mass 
According to the grid independence examination, over 28000 elements (3 division of the 

minimum length) are required to obtain stable and converged deflections. In our finite element 
models, illustrated in Fig. 3, there are around 79920 elements and 33720 elements, 4 division of 
the minimum length, for the piezoactuator with and without a center mass, respectively. Results of 
the harmonic analysis to the piezoactuators are presented in Fig. 4, suggesting that the amplitude 
is significantly amplified when the actuators are excited at their resonant frequencies, especially 
for the thinner actuators, such as type A, and the center mass load of 3.6 g effectively results in a 
decrease of the resonant frequencies by more than half. A comparison concerning resonant 
frequencies and amplitudes between the analytical calculations and the FEM simulations is shown 
in Table 3, and it indicates that offsets of the resonant frequency and amplitude are within 6.5% 
and 8.6%, respectively. 

 
Fig. 4. Center displacement response of the piezoactuators for varying driven frequency under sinusoidal voltage 

of 20 Vpp through FEM 

Table 3 FEM versus theoretical results for the three piezoactuators with and without 3.6 g mass

Type

Resonant frequency (Hz) Center displacement (μm)

FEM
Analytical 
modeling

FEM
Analytical 
modeling

Type A (t=0 24 mm)
Without mass 986 962 72.1 68.4



3.3 Experiments 

Vibrations of the three types of commercially available circular piezoactuators both with and 
without a mass load were measured through a laser displacement sensor. The main instruments in 
the experiments consisted of a piezoactuator clamper, a signal generator, an oscilloscope to 
display the excitation signal, and a laser displacement sensor (LK-G30, resolution of 0.1 μm) to 
measure the deflection. The photograph and schematic of the experiments setup were shown in 
Fig. 5. The clamper was comprised of an upper part with an extended lip and a lower part with a 
grove to fit the actuator, and was designed to provide an edge-clamped boundary condition to the 
piezoactuators. The effective clamped radius of the actuators is 17.5 mm. The laser sensor was 
mounted on an adjusted support allowed it to measure the displacement of any point on the 
piezoactuator. The cylinder mass of 3.6 g was tightly bonded to the piezoactuator center through 
AB adhesive. The piezoactuators were excited by sinusoidal electric signals with the frequency 
varied up to 2.5 kHz while keeping voltage constant at 20 Vpp. The center displacement of the 
piezoactuators was measured at various frequencies and the resonance frequency was taken when 
the driven frequency yielded the highest displacement. 

(a)  

Type A (t=0.24 mm)
3.6g mass 352 329 74 77.3

Type B (t=0.36 mm)
Without mass 1424 1431 35 32.3

3.6 g mass 562 577 41.8 38.2

Type C (t=0.5 mm)
Without mass 1864 1924 20.1 21.8

3.6 g mass 894 880 23.5 25.5



(b)  
Fig. 5 Photograph (a) and schematic (b) of the experiments setup 

The measured response of the center displacement, plotted in Fig. 6, highly agrees with the 
response from the FEM simulations, and also suggests that resonant excitation of the 
piezoactuators is effective in improving their vibration amplitude. Moreover, the resonant 
frequencies are significantly decreased due to the center mass load without weaken the amplitude; 
on the contrary the amplitude is slightly inched. The profiles of the three resonant piezoactuators 
are presented in Fig. 7, showing that the calculation ones match well with that from experimental 
measurements and the FEM simulations. The theoretical calculations are compared with the 
experimental measurements in details concerning the resonant frequencies and amplitudes, 
presented in Table 4, which indicates the deviations are within 10% and 7.6%, respectively. 

 
Fig. 6 Center displacement response of the tested piezoactuators for varying excitation frequency under sinusoidal 

voltage of 20 Vpp 



 
Fig. 7 Resonant profiles of the three piezoactuators without center mass 

4 Discussion of the resonant frequency 

The analytical solution for the vibration behaviors of the circular diaphragm-type 
piezoactuators is highly valuable because it enable to design the piezoactuators quickly for 
specific operational requirements, especially in fluidic handling systems. According to the 
validation above, the theoretical calculation is accurate to predict the resonant frequency of the 
piezoactuators with and without the mass load. In this section, the investigation is further extended 
to different mass loads, geometric dimensions, and material properties based on the proposed 
equations. 

4.1 Effects of the mass load 

As discussed above, the mass load of 3.6 g at the diaphragm center are effective to decrease 
the resonant frequency of the piezoactuators, hence avoiding too high resonant frequency in many 
MEMS devices. Effects of different mass loads on the resonant frequency of the three 
piezoactuators are further discussed, shown in Fig. 8. The resonant frequency of the type B 
without mass load is 1431 Hz, while it decreases to 550 Hz when a mass load of 3.6 g is fixed at 
the diaphragm center, and decreases to 454 Hz with a mass load of 5.7 g. For the three types of 
actuators, the resonant frequency decreases sharply with the increasing added mass load when the 
load is less than 3.6 g; and when the mass load is over 3.6 g, the resonant frequency continues to 
decease with the increasing mass load, but in a much lower slope. This phenomenon denotes that 
the increasing mass load has a limit in decreasing the resonant frequency. 

Table 4 Experimental results versus theoretical results

Type

Resonant frequency (Hz) Center displacement (μm)

Experiment
Analytical 
modeling

Experiment
Analytical 
modeling

Type A
Without mass 912 962 70.2 68.4

3.6g mass 341 329 75.6 77.3

Type B
Without mass 1399 1431 31.2 32.3

3.6 g mass 519 577 37.1 38.2

Type C
Without mass 1855 1924 23.4 21.8

3.6 g mass 878 880 27.6 25.5



 
Fig. 8. Resonant frequency of the three piezoactuators varies with the added mass loads 

4.2 Effects of the geometric dimensions 

The dimensions of the diaphragm piezoactuator, especially for the radius ratio of the PZT 
layer to passive layer (r2/r1) and thickness of the passive layer (tp), have significant impacts on the 
resonant frequencies as well. The piezoactuator of type B, both with and without a mass load, is 
employed to investigate the effects of r2/r1 and tp on the resonant frequency. As shown in Fig. 9, 
without the mass load, the r2/r1 starts to affect the resonant frequency when it is over 0.75, and 
then the frequency increases rapidly with the increase of r2/r1. After the mass load is added, the 
resonant frequency slightly increases with the increase of r2/r1, but in a higher slope when the r2/r1 
is over 0.83. Hence, a proper r2/r1 is helpful to avoid too high resonant frequency. As for the 
impacts of the passive layer thickness (tp), presented in Fig. 10, the resonant frequency of the 
piezoactuator with and without mass load both linearly increases with the thickness, but the slope 
for the actuator with mass load is slightly lower. 

 
Fig. 9. Radius ratio (r2/r1) vs the resonant frequency 



 
Fig. 10. Thickness of the passive layer (tp) vs the resonant frequency 

4.2 Effects of the passive layer material 

The passive layer material is extended to other materials that have different Young’s modulus 
and Poisson’s ratio based on the analytical solution. According to the results, the resonant 
frequency varies within 3% both for the actuator with and without mass load while the Poisson’s 
ratio ranges from 0.2 to 0.4, suggesting that the Poisson’s ratio slightly affect the resonant 
frequency. As for the Young’s modulus of the passive layer, shown in Fig. 11, the resonant 
frequency linearly increases with the increasing Young’s modulus, which changed from 0.4 to 2 
times that of the current one. Furthermore, the increasing slop for the actuator without the mass 
load is higher than that of the actuator with the mass load, indicating that the mass load on the 
diaphragm weakens the effects of the material Young’s modulus. 

 
Fig. 11. Young’s modulus of the passive layer vs the resonant frequency 

5 Conclusion 

An analytical solution on the vibration behaviors of the circular diaphragm-type 
piezoactuators is formulated based on the Hamilton principle and the Rayleigh-Ritz method, 
which enable to quickly analyze the piezoactuators resonantly working in the MEMS devices, 
such as the gas micropumps and ejectors. Moreover, a mass load has been fixed at the diaphragm 
center so as to avoid too high resonant frequency, and the method successfully decreases the 
resonant frequency by more than half. The solution can be applicable to the multilayer diaphragm-
type piezoactuators according to the validation through FEM simulations and experimental 



measurements. 
The equations are convenient to be used for resonant analysis where the resonant frequency 

of the actuator can be calculated as explicit functions of the loads, geometric dimensions and 
material properties. From the discussion, a proper mass load on the diaphragm is highly effective 
to decrease the resonant frequency but the effect has a limit. Furthermore, the radius ratio (r2/r1) 
significantly increases the resonant frequency when r2/r1 is over 0.83, which needs to be avoided. 
As for the thickness of the passive layer (tp), the resonant frequency linearly increases with the 
increase of tp for the actuator with and without mass load. The Yong’s modulus of the passive 
layer takes more important role than the Poisson’s ratio in determining the resonant frequency, and 
the effect is weakened when the mass load is added. 
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