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Abstract— We study synchronization conditions for distributed
dynamic networks with different types of leaders. The role of
a “power” leader specifying a desired global state trajectory
through local interactions has long been recognized and modeled.
This paper introduces the complementary notion of a “knowl-
edge” leader holding information on the target dynamics, which
is propagated to the entire network through local adaptation
mechanisms. Different types of leaders can co-exist in the
same network. For instance, in a network of locally connected
oscillators, the power leader may set the global phase while
the knowledge leader may set the global frequency and the
global amplitude. Knowledge-based leader-followers networks
have many analogs in biology, e.g., in evolutionary processes and
disease propagation.

I. INTRODUCTION

Recent results in the theoretical study of synchronization
and group cooperation [10], [13], [22], [5], [24], [30], [32],
[28], [33] have greatly helped understand distributed networks
in the natural world and emulate them in artificial systems.
In these networks, each element only gets local information
from a set of neighbors but the whole system exhibits a
collective behavior. Examples of such networked systems
pervade nature at every scale, including for instance neural
networks, pacemaker cells, flashing fireflies, chirping crickets,
and the aggregate motions of bird flocks, fish schools, animal
herds and bee swarms. For diffusion-coupled networks with
arbitrary size and general structure, explicit conditions on
the coupling strengths can be derived for synchronization to
occur, based on network connectivity and uncoupled element
dynamics [28], [33].

In a network composed of peers, the phase of the collective
behavior is hard to predict, since it depends on the initial
conditions of all the coupled elements. To let the whole
network converge to a specific trajectory, a “leader” can
be added [10], [13]. Here the leader is an element whose
dynamics is independent from and thus followed by all the
others. Such leader-followers network occurs in natural ag-
gregate motions, with the leader specifying “where to go.”
We shall refer to this kind of leader as the power leader. A
synchronization condition for a dynamic network with a power
leader was derived in [28], [33] and will be briefly reviewed
here (section 2).

The main goal of this paper is to introduce a different type of
leader, which we shall refer to as a knowledge leader (section

3). In this case, the network members’ dynamics can all be
different. The knowledge leader is the one whose dynamics
properties are fixed (or changes comparatively slowly), with
the followers obtaining dynamic knowledge from the leader
through local adaptation mechanisms. In this sense, a knowl-
edge leader can be understood as the one who indicates “how
to go.” Such knowledge leaders may exist in many natural
processes. For instance, in evolutionary biology [21], [23],
the adaptive model we describe could represent genotype-
phenotype mappings. Similar mechanisms occur in infectious-
disease dynamics [16]. Knowledge leaders may also exist
in animal aggregate motion as a junior or injured member
with limited capacities. Using Lyapunov analysis, we shall
derive conditions of synchronization and also for dynamics
convergence for networks with knowledge leaders.

Both types of leaders may co-exist (section 4), and be
located anywhere in the network. In a circuit of electronic
oscillators, the power leader may be a local clock setting global
phase while the knowledge leader sets global frequency or
amplitude, for instance. Both types of leaders can be virtual
(as e.g. in [13] in the case of power leaders) and may be used
for instance to coordinate behaviors in groups of robots of
different types.

II. POWER LEADER

Consider the dynamics of a coupled network containing one
power leader and n power followers

ẋ0 = f(x0, t) (1)

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj − xi) + γi K0i (x0 − xi)

Here vector x0 ∈ R
m is the state of the leader whose

dynamics is independent, and xi the state of the ith follower,
i = 1, . . . , n. The vector function f represents the uncoupled
dynamics, which is assumed to be identical for each element.
For notational simplicity, the coupling forces are set to be
diffusive, where all coupling gains are symmetric positive
definite, and the couplings between the followers are bi-
directional with Kji = Kij if both i, j �= 0. Ni denotes the
set of peer-neighbors of element i, which for instance could
be defined as the set of the followers within a certain distance
around element i. γi is equal to either 0 or 1, representing the
connection from the leader to the followers. In our model, the



network connectivity can be very general. Thus N i and γi can
be defined arbitrarily. An example is illustrated in Figure 1(a).
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Fig. 1. The graphs illustrate networked systems with (a). a power leader (the
left-most node); (b). a knowledge leader (the hollow node); (c). both leaders.
The arrows indicate the directions of the couplings.

Since the dynamics of x0 is independent, it can be consid-
ered as an external input to the rest of the network. Therefore
it can be seen as an undirected graph with n nodes containing
only the followers. We further assume that it has τ inner links.

In the theorem given below, λ represents an eigenvalue and
subscript s the symmetric part of a matrix; notation In

γiK0i

denotes an n× n block diagonal matrix with the i th diagonal
entry as γiK0i; LK is the weighted Laplacian matrix [7] and

LK = D Iτ
Kij

DT

where the n × τ block matrix D is a generalized incidence
matrix by replacing each number 1 or −1 in the incidence
matrix [7] with identity matrix I ∈ R

m×m or −I. Note that
the incidence matrix here is obtained by assigning an arbitrary
orientation to the undirected graph which contains all the
followers. Iτ

Kij
is a τ × τ block diagonal matrix with the k th

diagonal entry Kij corresponding to the weight of the k th link
which connects the nodes i and j.

Theorem 1: The states of all the followers will converge
exponentially to the state of the leader if

λmin(LK + In
γiK0i

) >
n

max
i=1

λmax(
∂f
∂x

(xi, t))s uniformly.

The proof of Theorem 1 (Theorem 7 in [33]) is based on
Contraction Theory [14], [15], the details of which can be
found in [28], [33].
Remarks
• Theorem 1 can be extended to study networks with

unidirectional couplings between the followers, with positive
semi-definite couplings, or with switching structures [28], [33].
Moreover, the leader does not have to be single, but it can
be a group of leading elements, for instance, a synchronized
leaders’ group. In addition, in some cases it may receive
feedback from the followers as well. This is the case in syn-
chronization propagation, where the node density is unevenly
distributed through the network. Since the synchronization rate
depends on network connectivity, a high-density region will
synchronize very quickly despite disturbances from other parts
of the network. The inputs from these leaders then facilitate
synchronization in low-density regions, where the elements
may not be able to synchronize by themselves. A simple
simulation was given in [28], and [34] observed a similar
phenomenon by setting different interior connection weights
inside different subgroups. Note that the leaders group here is

very similar to the concept of core group in infectious disease
dynamics [16], which is a group of the most active individuals.
A small change in the core group will make a big difference in
whether or not an epidemic can occur in the whole population.
• Synchronization can be made to propagate from the center

outward in a more active way, for instance, through diffusion
of a chemical produced by leaders or high-level elements and
having the ability to expand the communication channels it
passes through, i.e., to increase the gains through diffusion.
Such a mechanism represents a hierarchical combination with
gain dynamics. By extending the state, the analysis tools
provided here can apply more generally to combinations where
the gain dynamics are coupled to each other (with arbitrary
connectivity) and to the xi .
• Different leaders xj

0 of arbitrary dynamics can define
different primitives which can be combined. Contraction of
the follower dynamics (i = 1, . . . , n)

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj−xi) +
∑

j

αj(t) γj
i Kj

0i (xj
0−xi)

is preserved if
∑

j αj(t) ≥ 1, ∀t ≥ 0.
• Besides its dubious moral implications, Theorem 1 also

means that it is easy to detract a group from its nominal
behavior by introducing a “covert” element, with possible
applications to group control games, ethology, and animal and
plant mimicry.
• Having a leader in a moving formation may yield other

advantages, such as energy saving in aerodynamics [2], [26].
• In the central nervous system, the recently recognized

pervasiveness of electrical synapses facilitates such bilateral,
diffusion-like mechanisms.

III. KNOWLEDGE LEADER

A knowledge-based leader-followers network is composed
of elements with non-identical but adaptive dynamics. A
knowledge leader may be located in any position inside a
network as we illustrated in Figure 1(b). Its dynamics is
fixed or slowly changing, while those of the followers are
learned from the leader through adaptation. If we consider the
power leader as the one which tells the rest of the network
“where to go,” a knowledge leader indicates “how to go.”
Synchronization or group agreement can still be achieved in
such a network with only local interactions.

Consider a coupled network containing n elements without
a power leader

ẋi = f(xi, ai, t) +
∑
j∈Ni

Kji(xj − xi) i = 1, . . . , n (2)

where the connectivity can be general. Assume that the uncou-
pled dynamics f(xi, ai, t) is continuous, smooth, and identical
to each element except the value of a parameter set a i, which
is different for knowledge followers but has a fixed value a for
all the knowledge leaders. Denote Ω as the set of the followers,
whose adaptation laws are based on local interactions

ȧi = PiWT (xi, t)
∑
j∈Ni

Kji (xj − xi) ∀ i ∈ Ω (3)



where Pi > 0 is constant and symmetric, and W(xi, t) is
defined as

f(xi,ai, t) = f(xi,a, t) + W(xi, t)ãi

with estimation error ãi = ai − a .
To prove convergence, we first define LKΛ as a symmetric

matrix with

LKΛ = D (Iτ
Kij

Iτ
Λij

)s DT = D Iτ
(KΛ)ijs

DT (4)

Here Iτ
Λij

is a τ × τ block diagonal matrix with the k th

diagonal entry

Λij =
∫ 1

0

∂f
∂x

(xj + χ(xi − xj),a, t) dχ

corresponding to the kth link which has been assigned an
orientation by the incidence matrix D. Iτ

(KΛ)ijs
is defined in

a similar manner with (KΛ)ijs the symmetric part of KijΛij .
We then define a Lyapunov-like function

V =
1
2

( xT LKx +
∑
i∈Ω

ãT
i P−1

i ãi )

where xT = [xT
1 ,xT

2 , . . . ,xT
n ], and

ẋ =


 f(x1,a1, t)

. . .
f(xn,an, t)


 − LKx

=


 f(x1,a, t)

. . .
f(xn,a, t)


 − LKx +


 W(x1, t)(a1 − a)

. . .
W(xn, t)(an − a)




so that

V̇ = xT LKẋ +
∑
i∈Ω

ãT
i P−1

i ȧi

= xT LK(


 f(x1,a, t)

. . .
f(xn,a, t)


 − LKx )

= xT ( LKΛ − L2
K ) x

Note that ai − a = 0 if element i is a knowledge leader.
To complete the proof, we use the following lemma, which

is derived in Appendix 1.
Lemma 1: Giving any xT = [xT

1 ,xT
2 , . . . ,xT

n ] where xi ∈
R

m, if
λ2

m+1(LK)
λn(L)

> max
k

λmax(KΛ)ijs (5)

xT ( LKΛ −L2
K ) x ≤ 0 and the equality is true if and only

if x1 = x2 = · · · = xn.
Note that for condition (5) to be true, we need a connected
network (otherwise λm+1(LK) = 0), an upper bounded
λmax(KΛ)ijs, and strong enough coupling strengths (to make
the inequality to be true). For an example, if m = 1 and all
the coupling gains are identical with value κ, condition (5)
turns to be

κ >
λn(L)
λ2

2(L)
max

∂f
∂x

(xi,a, t)

Theorem 2: For a knowledge-based leader-followers net-
work, the states of all the elements will converge together
asymptotically if condition (5) is verified and all the states are
bounded. Furthermore, ∀ i ∈ Ω, ai will converge to a if

∃ α > 0, T > 0, ∀t ≥ 0
∫ t+T

t

WT (xi, r)W(xi, r)dr ≥ αI

(6)
Proof: Condition (5) means V is non-increasing. Assuming all
the functions are smoothly differentiable, the boundedness of
V̈ can be concluded if all the states are bounded. According to
Barbalat’s lemma [27], V̇ will then tend to 0 asymptotically,
implying that all the states xi converge together. Hence,
W(xi, t)ãi will tend to zero. This in turn, using standard
persistency of excitation arguments [20], [27], leads to the
convergence of the followers’ parameters under condition (6).
✷

Theorem 2 implies that new elements can be added into the
network without prior knowledge of the individual dynamic
parameters, and that elements in an existing network have
the ability to recover dynamic information if temporarily lost.
Similar knowledge-based leader-followers mechanism may ex-
ist in many natural processes. In evolutionary biology, knowl-
edge leaders are essential to keep the evolution processes un-
invasible or evolutionary stable [21], [23]. In reproduction, for
instance, the leaders could be senior members. The knowledge-
based mechanism may also describe evolutionary mutation
or disease infection [16], where the leaders are mutants or
invaders. Knowledge-based leader-following may also occur
in animal aggregate motions or human social activities. In a
bird flock, for instance, the knowledge leader can be a junior or
injured member whose moving capacity is limited, and which
is protected by others through dynamic adaptation.

Note that in evolutionary biology, the adaptive model we de-
scribe may loosely represent a genotype-phenotype mapping,
where adaptation occurring in genotypic space is based on the
interactions of behavioral phenotypes.

Example 3.1: : Consider six neurons of FitzHugh-Nagumo type
(a well known spiking neuron model [6], [18], [19]), connected as
in Figure 1(b)

8<
:

v̇i = vi(αi − vi)(vi − 1) − wi + Ii +
X

j∈Ni

kij(vj − vi)

ẇi = βivi − γiwi i = 1, . . . , 6

Let the parameter set ai = [αi, Ii, γi, βi]
T be fixed for the

knowledge leader, and let those of the other neurons change
according to the adaptation law (3). Simulation results are plotted
in Figure 2. ✷

Remarks
• Leaders holding different parameters may exist in the

same network, a situation somewhat analogous to a human
society containing experts in different fields. For instance, con-
sider (2) again. Assume the dynamics f contains l parameter
sets a1, a2, . . . ,al with

f(xi, a1
i , . . . ,a

l
i, t) = f(xi, a1, . . . ,al, t) +

l∑
k=1

Wk(xi, t)ãk
i
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Fig. 2. Simulation results of Example 3.1. With initial conditions chosen
arbitrarily, the plots show that (a).states vi (i = 1, . . . , 6) synchronize in
the time space; (b).estimation error set ãi of any of the knowledge followers
vanish in the time space.

Denoting by Ω1, Ω2, . . . , Ωl the followers sets corresponding
to different parameters, the adaptation laws are, for k =
1, 2, . . . , l,

ȧk
i = Pk

i W
T
k (xi, t)

∑
j∈Ni

Kji (xj − xi) ∀ i ∈ Ωk

States and parameters will converge under the same conditions
as those given in Theorem 2.
• To further improve the convergence rate, the adaptation

law (3) may be refined as

âi = ai + QiWT (xi, t)
∑
j∈Ni

Kji (xj − xi)

where Qi > 0 is constant and symmetric, ai is defined by (3),
and âi is used in real dynamics, i.e., fi = f(xi, âi, t). Note that
in the theoretical analysis we should use a modified Lyapunov-
like function

V =
1
2

( xT LKx +
∑
i∈Ω

ãT
i P−1

i ãi ) +
∑
i∈Ω

∫ t

0

zT
i Qizidt

where ãi = ai − a and zi = WT (xi, t)
∑
j∈Ni

Kji (xj − xi).

• The number of leaders in a knowledge-based network
can be arbitrary. At the limit all elements could be adaptive,
i.e., there is no leader at all, in which case the system
may converge to any odd parameter set depending on initial
conditions. While all states will still converge together, the
desired individual behaviors (such as oscillations) may not be
preserved.
• Synchronization conditions derived in Theorem 2 are very

similar to those in [28], [33] for coupled networks without
any leader or adaptation. Note that if condition (5) is true, ∀
neighbored i, j, xi−xj are bounded. Thus the boundedness of
the states are simply determined by ẏ = f(y,a, t) + u where
the input u is bounded [12].
• Condition (6) is true if the stable system behaviors are

sufficiently rich or persistently exciting [27]. This is the case,
for instance, when the individual elements are oscillators,
where the possibilities that any component of xi converges
to zero can be excluded by dynamic analysis showing that

zero is an unstable state.
• Both power leaders and knowledge leaders could be

virtual, which is common in animal aggregate motions. For
instance, a landmark may be used as a virtual power leader.
Similarly, when hunting, an escaping prey could specify both
the where and the how of the movement.
• In a neural context, parameter changes in low order

models may lead to entirely different qualitative behaviors [9],
[25]. Thus, modifying the parameters of a single element,
the knowledge leader, can select radically different qualitative
properties for entire networks.

IV. PACIFIC COEXISTENCE

Different types of leaders can co-exist in the same network.
As illustrated in Figure 1(c), a power leader guiding the
direction may use state measurements from its neighbors to
adapt its parameters to the values of the knowledge leaders.
In addition, a power leader could be also a knowledge leader.

Consider the power-based leader-followers network (1)
again, assuming the dynamics f contains a parameter set a.
There are knowledge leaders holding the fixed value a and
knowledge followers using adaptation to learn. If 0 ∈ Ω, the
set of the knowledge followers, we have

ȧ0 = P0WT (x0, t)
n∑

i=1

γi K0i (xi − x0)

while if i ∈ Ω with i = 1, . . . , n,

ȧi = PiWT (xi, t)(
∑
j∈Ni

Kji (xj −xi)+γi K0i (x0 −xi) )

To prove state convergence, we first define several (ex-
tended) Laplacian matrices for a power-based network struc-
ture:
• LK, the weighted Laplacian of the followers network.
• �LK, the weighted Laplacian of the whole network, which
is non-symmetric since we have uni-directional links between
the leader and the followers. Thus,

�LK =
[

0 0
−b C

]
where b =




...
γi K0i

...


 , C = LK+In

γiK0i

C is positive definite if the whole network is connected.
• L̄K, the weighted Laplacian of the whole network which we
consider as an undirected graph. Thus,

L̄K = �LT
K +




n∑
i=1

γiK0i 0

−b 0




Define the Lyapunov-like function

V =
1
2

( xT L̄Kx +
∑
i∈Ω

ãT
i P−1

i ãi )



We can show that

V̇ = xT L̄K (


 f(x1,a, t)

. . .
f(xn,a, t)


 − �LKx )

= xT ( L̄KΛ − �LT
K

�LK ) x

where L̄KΛ is defined similarly to (4), except that here the
incidence matrix is based on the whole network. See Appendix
2 for the condition for L̄KΛ − �LT

K
�LK to be negative semi-

definite. Following the same proofs as those in Sections III,
this then implies that all the states xi, i = 0, 1, . . . , n
will converge together asymptotically. Parameter convergence
conditions are also the same.

Appendix 1: Proof of Lemma 1

For notational simplicity, we show the derivations for the
case m = 1.

Notice that 0 is always one of the eigenvalues of LKΛ −
L2

K, with one corresponding eigenvector v = [1, 1, . . . , 1]T .
According to Weyl’s Theorem [8],

λn−k+1(LKΛ − L2
K) ≤ λn(LKΛ) − λk(L2

K)

where k = 1, 2, . . . , n, and the eigenvalues λi are arranged in
increasing order for i = 1, 2, . . . , n. This implies that, ∀k > 1,
λn−k+1(LKΛ − L2

K) < 0 if

λn(LKΛ) < λ2(L2
K) (7)

Therefore, λn(LKΛ − L2
K) = 0, i.e., LKΛ − L2

K is negative
semi-definite.

Denote max
k

λmax(KΛ)ijs = λ̄. If λ̄ ≤ 0, we have

λn(LKΛ) ≤ 0 and both the conditions (7) and (5) are always
true; if λ̄ > 0,

λn(LKΛ) ≤ λ̄ λn(L)

where L is the graph Laplacian matrix. Considering the fact
that λ2(L2

K) = λ2
2(LK), condition (5) is sufficient to guarantee

(7).
The eigenvectors of real symmetric matrix form an or-

thogonal basis of the state space. Without loss of generality,
consider such an orthogonal eigenvector set, {v1,v2, . . . ,vn},
of LKΛ − L2

K , where vn = [1, 1, . . . , 1]T is the only zero
eigenvector. For any x, we have

x =
n∑

i=1

kivi and xT ( LKΛ − L2
K ) x =

n−1∑
i=1

λik
2
i v

T
i vi

Since the eigenvalue λi < 0 ∀i < n, xT ( LKΛ−L2
K ) x = 0

if and only if x = knvn, that is, x1 = x2 = · · · = xn.
In the case m > 1, we can follow the same proof except

that the zero eigenvalue now has multiplicity m, and the
corresponding eigenvectors {v1,v2, . . . ,vm} are linear com-
binations of the orthogonal set [I, I, . . . , I]T where I ∈ R

m×m

is the identity matrix.

Appendix 2: Network with Both Types of Leaders

Similarly to the proof above, L̄KΛ − �LT
K

�LK is negative
semi-definite if

λn+1(L̄KΛ) < λ2(�LT
K

�LK)

and its only eigendirection for the zero eigenvalue is thus v =
[1, 1, . . . , 1]T . Since

�LT
K

�LK =
[

bT b −bTC
−Cb C2

]

we have
λ2(�LT

K
�LK) ≥ λ1(C2) = λ2

1(C)

according to the Interlacing Eigenvalues Theorem for bordered
matrices [8]. Thus a sufficient condition to guarantee negative
semi-definite is

λ2
1(C) > λn+1(L̄KΛ) (8)

This condition is similar to the one we derived in Theorem 1
for synchronization of pure power-based leader-followers net-
work. Assuming all the coupling strengths are identical with
value κ, condition (8) becomes

κ >
λn+1(L̄)

λ2
1(L + In

γi
)

max
∂f
∂x

(xi, a, t)
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