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bUniversité Nice Sophia Antipolis, CNRS, Laboratoire Jean Alexandre Dieudonné, UMR 7351, 06100 Nice, France

Abstract

The traditional covariance estimator, the sample covariance matrix (which is also the MLE), is known to be a poor

estimator, unless the sample size is much larger than the dimension of the covariance matrix. Stein’s estimator has

often been regarded as a much better alternative to the MLE in small sample sizes and is traditionally used with an

isotonizing algorithm, the purpose of which is to retain positivity and the original order of the sample eigenvalues.

Despite the superior performance of Stein’s isotonized estimator in numerical investigations, its theoretical properties

have not been explored in detail, and important questions still remain unanswered. One particular question of interest

is to identify the regimes under which Stein’s estimator is guaranteed to perform well. A second goal is to determine

the extent to which the performance of Stein’s estimator depends on the isotonizing algorithm. The presence of the

ad hoc isotonizing algorithm, however, renders a theoretical analysis rather difficult, and consequently risk functions

are not easily quantifiable for comparison purposes. Hence formal decision theoretical results are difficult to obtain

and have been elusive ever since the estimator was introduced. Despite these hurdles, in this paper we show that an

analysis of Stein’s covariance estimator within the unbiased estimator of risk (UBEOR) framework can nevertheless

lead to important theoretical and methodological insights that are relevant for applications. Our analysis demonstrates

that Stein’s estimator may give only modest risk reductions when it is not isotonized, and when it is isotonized, the

risk reductions can be significant. In particular, three broad regimes are identified regarding the behavior of Stein’s

UBEOR. The theoretical insights are then affirmed at the level of risk functions via numerical simulations.

Keywords: Covariance estimation, Unbiased estimator of risk, Eigenvalues, Shrinkage, Steinian estimation

1. Introduction

The covariance matrix estimation problem arises in various applications ranging from genomics and environmental

sciences to geophysics and finance [3–5, 7, 11, 16]. The covariance matrix is a critical ingredient in many statistical

procedures such as principal components analysis, discriminant analysis, etc. and serves to provide estimates of the

spectrum and other statistical quantities. The sample covariance matrix S , which is also the maximum likelihood

estimator (MLE), is a poor estimator unless the sample size n is much larger than the dimension p. Many modern

applications are not always endowed with large sample sizes, and thus standard procedures can lead to highly non-

optimal estimates of the population covariance matrix, with possibly undesirable consequences. Obtaining good

estimates of the covariance matrix is a challenging problem for many reasons, not excluding the fact that (a) the

number of entries in the population covariance matrix is of O
(
p2
)
, and (b) covariance matrices lie in the open convex

cone of positive definite matrices. Research in many scientific fields have contributed to the body of work on this

important topic and various estimators have been proposed in the literature (see Refs. [5, 8, 9] for a comprehensive

summary). Several of these are in the traditional Steinian type framework (see [1, 2, 4, 5, 16] to name just a few)

and yield estimators which “shrink” sample quantities like the sample covariance matrix to a desired target covariance

matrix.

A method, proposed by Stein himself [13–15], takes an interesting approach that lies within the shrinkage frame-

work. Stein notes that the sample spectrum is severely distorted unless n ≫ p. In particular, Stein observes that

the larger sample eigenvalues tend to significantly overestimate their population counterparts, whereas the smaller

sample eigenvalues tend to significantly underestimate their population counterparts. This leads to a larger spread in

the sample spectrum as compared to the population spectrum. He notes that one possible way to address this problem
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is to “shrink” the sample eigenvalues close together. This modification could potentially serve to overcome the dis-

tortion of the spectrum. Stein therefore considers the class of orthogonally invariant estimators: such estimators only

modify the sample eigenvalues and leave the sample eigenvectors untouched. To this end, Stein derives the so-called

unbiased estimator of risk (UBEOR) for the covariance estimation problem. This approach allows Stein to choose an

optimal way to shrink the sample eigenvalues under the entropy loss function. The resulting estimator, often dubbed

Stein’s covariance estimator, has been considered a gold standard in the literature [1, 5, 6]. Though Stein’s estimator

requires n > p in order to be well defined, it has one important distinct advantage over many contemporary methods,

especially those inspired in the lasso framework. Stein’s estimator does not impose sparsity: a possibly restrictive as-

sumption which can be rather unrealistic in many applications. Numerical studies have demonstrated the superior risk

properties of Stein’s estimator. The modification of the sample eigenvalues in Stein’s estimator can however lead to

negative eigenvalue estimates or a different ordering from the original sample spectra. To mitigate this, Stein proposes

an isotonizing algorithm that pools sample eigenvalues together so that the original spectral ordering and positivity

are retained.

A numerical study of Stein’s estimator has been previously performed by Lin and Perlman [6]. However, to our

knowledge, the theoretical properties of Stein’s estimator have not been formally studied in detail because of the

presence of the isotonizing algorithm. This algorithm, which has no formal statistical basis, to a large extent prevents

a theoretical analysis of the estimator. In this paper we systematically study the theoretical properties of Stein’s

estimator by formally investigating the use of the unbiased estimator of risk (UBEOR) approach that Stein proposes.

The merits of the UBEOR approach can be seen from the following line of reasoning. According to Stein’s theory,

the expectation of the UBEOR is equal to the overall risk. The form of the population covariance matrix determines

which part of the domain of the UBEOR contributes mostly to this risk. By combining the knowledge of the values

that the population covariance matrix and UBEOR take, it is thus possible to better understand the behavior of the risk

in different parts of the parameter space.

The paper is divided into two main components to facilitate the ultimate goal of understanding the properties of

Stein’s isotonized estimator. The first component analyzes Stein’s “raw” estimator (that is without the isotonizing

algorithm), whereas the second component analyzes Stein’s estimator coupled with the isotonizing algorithm. We

first derive some basic properties of Stein’s raw estimator, formally characterize the regimes in which it does not yield

negative eigenvalue estimates, and compare it with the MLE within the UBEOR approach. More specifically, the

UBEOR of Stein’s raw estimator is lower in value than that of the MLE only when the eigenvalues are far apart. Our

theoretical analysis also reveals that the region within the set of ordered eigenvalues where the UBEOR of Stein’s raw

estimator is lower than the MLE is rather small. Thus, the UBEOR approach indicates that Stein’s raw estimator may

not yield significant risk reductions over the MLE. A formal analysis when p is large indicates that this phenomenon

is more pronounced in higher dimensions. This question then naturally leads to investigating Stein’s estimator with

the isotonizing algorithm, since reported results systematically use this order preserving procedure. First, a careful

analysis in small dimensions reveals that the isotonizing algorithm produces a significant drop in the UBEOR. Sub-

stantial reductions are mainly observed when the eigenvalues are close to each other or when the sample size is small.

In these cases, Stein’s estimator makes extensive use of the isotonizing correction because a large number of order

and sign violations would be obtained otherwise. However, there exists an intermediate regime in which the sample

eigenvalues are only moderately separated and simultaneously n/p is sufficiently large. In this regime, the UBEOR

of Stein’s raw estimator exceeds that of the MLE and Stein’s covariance estimator makes only moderate use of the

isotonizing algorithm; as a result, the performance of Stein’s isotonized estimator is poor.

Hence, the theoretical investigation in this paper allows us to explain how the performance of Stein’s isotonized

estimator depends on the eigenstructure of the theoretical covariance matrix and to explore the role of the ad hoc

isotonizing algorithm in risk reductions. These insights are then validated at the level of risk functions via Monte

Carlo simulations. The understanding that we establish is also useful in practical applications, since there are many

instances where broad prior knowledge of covariance regimes is available. Thus, our analysis lets a practitioner

understand when Stein’s estimator is expected to perform better than the MLE and what is driving the risk reductions.

The approach in this paper is not designed to lead to a traditional optimality or decision-theoretic result. Existing

numerical results already demonstrate that there are some settings in which Stein’s estimator gives slightly higher risk

than the MLE. Our primary objective rather is to demonstrate that the UBEOR approach yields a deeper theoretical

understanding of the behavior of Stein’s isotonized estimator.

The remainder of the paper is structured as follows. Sections 2 and 3 introduce Stein’s estimator and the UBEOR
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framework. Section 4 undertakes a detailed study of the risk properties of Stein’s raw estimator (that is without

the isotonizing algorithm). Section 5 undertakes a formal analysis of Stein’s estimator when used together with the

isotonizing algorithm. Section 6 validates the effectiveness of the UBEOR approach via risk calculations. Section 7

concludes by summarizing the work in the paper. A supplemental section with appendices, which is not a part of the

paper, is also provided and serves to give more detail on some of the results in the paper.

2. Preliminaries

In this section, we briefly recall the derivation of Stein’s raw estimator and of its isotonized version. Consider a

random sample, X1, X2, . . . , Xn, from a p-dimensional normal distribution Np(0,Σ) with n � p. The sample covari-

ance matrix S (up to a multiplicative constant) is defined as S =
∑n

i=1 Xi X
t
i
. Note that S ∼ Wp(Σ, n), where Wp(Σ, n)

denotes the p-dimensional Wishart distribution with scale matrix Σ and n degrees of freedom. The matrix S can be

written as S = HLHt, where H is orthogonal, and L = diag(l1, l2, ..., lp) with l1 � l2 � ... � lp > 0 being the ordered

eigenvalues of S . Stein considers the class of orthogonally invariant estimators of Σ of the general form [13–15]:

Σ̂ = HΦ(l)Ht, (1)

where Φ(l) = diag(ϕ1(l), ϕ2(l), ..., ϕp(l)) and ϕ j = ϕ j(l) estimates the jth largest eigenvalue of Σ, j = 1, 2, ..., p.

The maximum likelihood estimator S/n corresponds to the choice:

ϕ̂ml
j (l) := l j/n. (2)

The estimator ϕ̂ml
j

(l) is known to be biased upwards for larger eigenvalues and biased downwards for smaller eigen-

values. Hence, the sample spectrum “severely distorts” the population eigenvalues [6]. These biases can be significant

when p/n is not small or when Σ ≈ kI for some k > 0. Stein [13–15] proposes an approach to rectify this problem

by obtaining improved eigenvalue estimates and using them in estimators of the form in (1). Stein uses a fundamental

Wishart identity to obtain the risk of the estimator Σ̂ in (1) under the entropy loss function:

L1 (̂Σ,Σ) = tr(̂ΣΣ−1) − ln det(̂ΣΣ−1) − p.

Stein’s loss function above has several key advantages in that it is generally tractable, allows for the calculation of the

UBEOR, and has a functional form that is similar to the Gaussian likelihood. Under this loss function Stein obtains

the following expression for the risk:

R1(̂Σ,Σ) := EΣ[L1(̂Σ,Σ)] = EΣ[F(l)] (3)

with

F(l) =

p∑

j=1



n − p + 1 + 2l j

∑

i� j

1

l j − li

ψ j(l) + 2l j

∂ψ j

∂l j

− ln(ψ j(l))

 − cp,n, (4)

where ψ j(l) := φ j(l)/l j and cp,n is defined as follows:

cp,n = E

( p∑

j=1

ln χ2
n− j+1

)
+ p =

p∑

j=1

Γ′
( 1

2
(n − j + 1))

Γ
( 1

2
(n − j + 1)

) + p ln 2 + p. (5)

Stein observes that F(l) is an unbiased estimator of the risk (UBEOR) of Σ̂ [13–15], and notes that this formulation

can be used to choose ψ j = ψ j(l) in order to minimize F(l). When the derivatives ∂ψ j/∂l j are disregarded, minimizing

the UBEOR with respect to the ψ j for j = 1, 2, ..., p yields:

ψ̂ St
j (l) :=

1

α j(l)
, α j(l) := n − p + 1 + 2l j

∑

i� j

1

l j − li
, j = 1, 2, . . . , p. (6)

The modified eigenvalue estimator above (known as Stein’s covariance estimator) is therefore given as

ϕ̂ St
j (l) := l j/α j(l). (7)
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Note first that ϕ̂ St
j

(l) ≈ ϕ̂ml
j

(l) for large n, i.e., in such settings the improvements that Stein’s estimator can give over

the MLE should be modest. In a numerical study of Stein’s estimator, Lin and Perlman [6] also note that the modified

estimates ϕ̂ St
j

will differ most from the maximum likelihood estimates when some or all of l j are close together and

when p/n is not small. It is evident from (6) and (7) that Stein’s estimator uses adjacent eigenvalues estimates to

“shrink” or pull the sample eigenvalue estimates closer together. That said, there are two serious problems with

Stein’s estimator which do not allow for it to be used directly. First, the ϕ̂ St
1

(l), ϕ̂ St
2

(l), . . . , ϕ̂ St
p (l) can violate the

original ordering as given by l1 � l2 � · · · � lp > 0. Second, the ϕ̂ St
j

(l) can yield negative eigenvalue estimates. Stein

proposes using an isotonizing algorithm that pools adjacent estimators to eliminate order and sign violation [13–15].

The “pooled estimate” using ϕ̂ St
j

(l), ϕ̂ St
j+1

(l), . . . , ϕ̂ St
j+s

(l) is defined as:

ϕ̂ iso
j (l) = ϕ̂ iso

j+1(l) = · · · = ϕ̂ iso
j+s(l) :=

l j + l j+1 + · · · + l j+s

α j(l) + α j+1(l) + · · · + α j+s(l)
. (8)

Thus, Stein’s isotonized estimator is defined as follows:

ϕ̂ St+iso
j (l) :=


ϕ̂ St

j
(l) if

l1

α1(l)
�

l2

α2(l)
� · · ·

lp

αp(l)
> 0

ϕ̂ iso
j

(l) otherwise.

(9)

Accordingly, we also define new quantities which will be useful later as follows:

ψ̂ St+iso
j (l) := ϕ̂ St+iso

j (l)/l j. (10)

The isotonizing algorithm does not have a decision-theoretic basis and is simply a technique to preserve order and

positivity of the estimates. The reader is referred to [6] for more details. Despite the need for this isotonizing

algorithm, Stein’s estimator, when it is defined (i.e., when n � p), has been shown to consistently perform well in

comparison with other competing estimators, and is still widely regarded as the “gold standard”. In particular, newly

proposed estimators are often compared to Stein’s estimator as it has established itself as a benchmark [1, 5, 6]. To

distinguish between Stein’s original estimator and the version supplemented by the isotonizing algorithm, we shall

refer to the latter as Stein’s “isotonized” estimator and to the former as Stein’s “raw” estimator unless the context is

clear.

3. The unbiased estimator of risk (UBEOR): basic properties

Recall that the function F defined in (4) is an unbiased estimator of the risk of Σ̂. In this section, we study some

of the basic properties of F when ϕ j(l) corresponds to 1) the MLE, 2) Stein’s raw estimator, and 3) Stein’s isotonized

estimator. Let us define the domain of the function F as:

Dp := {l ∈ Rp : l1 � l2 � · · · � lp > 0}. (11)

The UBEOR of the MLE, denoted by Fml(l), can be obtained by replacing ψ j(l) in (4) with ϕ̂ml
j

(l)/l j as in (2):

Fml(l) = Kml
p,n, Kml

p,n := p(1 + ln n) − cp,n. (12)

Thus, the UBEOR for the MLE is a constant function. To obtain (12) we have made use of the following identity:

p∑

j=1

α j(l) = np ∀ l ∈ Dp. (13)

Likewise, the UBEOR of Stein’s raw estimator, denoted by FSt(l), is obtained by substituting ψ̂ St
j

(l) into (4):

FSt(l) =

p∑

j=1

[
1 +

4l j

α2
j
(l)

∑

i� j

li

(l j − li)2
+ ln(α j(l))

]
− cp,n. (14)
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Note that unlike Fml(l) the domain of FSt is not the whole set Dp, as FSt is defined only on the following subset:

Ep,n := {l ∈ Dp : li � l j ∀ i, j = 1, . . . , p and α j(l) > 0 ∀ j = 1, . . . , p} =
p⋂

j=2

{l ∈ Dp : α j(l) > 0},

where the equality follows from the fact that if l̃ ∈ Dp is such that l̃k = l̃ j for some 1 � k < j � p, then some

of the α j(l) must be negative in a neighborhood of l̃ (the condition α1(l) > 0 is not imposed because it is satisfied

for all l ∈ Dp). The fact that the domain of FSt is not the whole set Dp implies that the theoretical risk of Stein’s

raw estimator is not defined, i.e., the expected value of the UBEOR is either infinity or takes complex values. It is

also worth remarking that Ep,n depends not only on the dimension of the covariance matrix but also on the sample

size. Note also that the function α j diverges as two eigenvalues of S approach each other (see (6)), hence ϕ̂ St
j

(l) may

yield a zero estimate. Thus, Stein’s raw estimator does not give a meaningful value on the boundary of Dp. The

potential negativity of the α j(l) however (and hence of the ϕ̂ St
j

(l)) is a somewhat more serious concern with Stein’s

raw estimator, since the α j(l) take negative values on an open subset of Dp (vs. problems just on the boundary).

Consequently, any improvement to Stein’s raw estimator should focus on the violation of the positivity of the α j(l).

To study the behavior of Stein’s estimator, it is useful to observe that FSt depends on the l j only through their

ratios l j/li, j � i. This property can be checked by rewriting FSt(l) from (14) in the following form:

FSt(l) =

p∑

j=1

[
1+

4
∑ j−1

i=1

l j/li

(l j/li−1)2 + 4
∑p

i= j+1

li/l j

(1−li/l j)2

(
n − p + 1 + 2

∑ j−1

i=1

l j/li
l j/li−1

+ 2
∑p

i= j+1
1

1−li/l j

)2
+ ln

(
n− p+1+2

j−1∑

i=1

l j/li

l j/li − 1
+2

p∑

i= j+1

1

1 − li/l j

)]
− cp,n,

(15)

where the sums have been split in such a way that all the ratios of the type lk/lq are less than 1. Moreover, if i < j,

l j/li can be expressed in terms of the ratios of the adjacent eigenvalues through the following telescoping product:

l j

li
=

l j

l j−1

l j−1

l j−2

. . .
li+2

li+1

li+1

li
=

j−1∏

k=i

lk+1

lk
, 1 � i < j � p.

Thus, FSt can be regarded as a function of the p − 1 ratios of the adjacent eigenvalues of S , i.e.,

FSt(l) = f St(x) :=

p∑

j=1

1 +
4

a2
j
(x)

j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

+
4

a2
j
(x)

p∑

i= j+1

πi
j
(x)

[1 − πi
j
(x)]2

+ ln(a j(x))


− cp,n, (16)

where x = (x1, . . . , xp−1) with x j = l j+1/l j and

a j(x) := n− p+1+2

j−1∑

i=1

π
j

i
(x)

π
j

i
(x) − 1

+2

p∑

i= j+1

1

1 − πi
j
(x)
, j = 1, . . . , p and π

j

i
(x) :=

j−1∏

k=i

xk, 1 � i < j � p. (17)

Note that by construction π
j

i
(x) � 1 for all 1 � i < j � p. The function f St is defined on the set:

Ωp,n :=

p⋂

j=2

{x ∈ (0, 1)p−1 : a j(x) > 0}.

The study of FSt can therefore be reduced to the study of the function f St, where the latter explicitly represents the

dependence of the UBEOR on the ratios of the l j. In terms of the new variables x, the requirement that the order of

the l j is preserved by Stein’s raw estimator, i.e., ϕ̂ St
j

(l) � ϕ̂ St
j+1

(l), j = 1, 2, . . . , p − 1, can be rewritten in the form:

x j � a j+1(x)/a j(x), j = 1, . . . , p − 1. (18)

It is easily verified that the UBEOR of Stein’s isotonized estimator, FSt+iso, is also a function of the ratios l j+1/l j.

Hence the representation given by f St+iso (vs. FSt+iso) is more convenient to study, since the non-compact domain

involving ordered eigenvalues is now reduced to the unit cube.
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Figure 1: (a) Schematic representation of the sets Ωp,n , ∆p,n, ∆′p,n, Γp,n, and Λp,n; (b) Graph of the UBEOR for Stein’s raw estimator (solid line)

and for the MLE (dashed line) for p = 2 and n = 20;

In the rest of the paper, we shall also consider the following subsets of (0, 1]p−1:

∆p,n :=
{
x ∈ Ωp,n : f St(x) < Kml

p,n

}
, (19)

∆′p,n :=
{
x ∈ Ωp,n : f St(x) < Kml

p,n and x j � a j+1(x)/a j(x) ∀ j = 1, . . . , p − 1
}
, (20)

Γp,n := {x ∈ Ωp,n : x j � a j+1(x)/a j(x) ∀ j = 1, . . . , p − 1, f St(x) � Kml
p,n}, (21)

Λp,n := (0, 1]p−1 \
(
∆′p,n ∪ Γp,n

)
. (22)

∆p,n is the set where the UBEOR of Stein’s raw estimator, f St(x), is lower than that of the MLE (Kml
p,n is defined

in (12)). ∆′p,n is the set where f St(x) < Kml
p,n and, in addition, the order of the sample eigenvalues is preserved by

Stein’s raw estimator (see (18)); by construction ∆′p,n ⊆ ∆p,n ⊆ Ωp,n ⊆ (0, 1]p−1. In fact, we observe ∆′p,n = ∆p,n,

i.e., when f St(x) < Kml
p,n the order of the eigenvalues is preserved. On Γp,n, both the positivity and the order of the

sample eigenvalues are preserved by Stein’s raw estimator (and hence the isotonizing algorithm is not required), but

the UBEOR of Stein’s raw estimator is greater than that of the MLE. Finally, Λp,n is the set where the positivity or the

order of the sample eigenvalues are violated by Stein’s raw estimator, and hence the isotonizing algorithm is required.

Note that Ωp,n ∩ Λp,n � ∅. A schematic representation of the above sets is shown in Fig. 1(a).

4. A study of the UBEOR of Stein’s raw estimator

We first present a detailed study of the cases p = 2, 3, 4 to understand the UBEOR of Stein’s raw estimator (i.e.,

without the isotonizing correction) in small dimensions, so as to obtain intuition for the general case. The results

will then be extended to arbitrary dimensions. The study will focus on the characterization of the domain Ωp,n and of

the set ∆p,n where f St is less than the UBEOR of the MLE. Recall that the UBEOR comparison framework amounts

to contrasting two functions inside the expectation operator: the difference signals the quality of the type of risk

reductions that Stein’s estimator can yield.

4.1. The case p = 2

For p = 2, f St is a function of the variable x1 representing the ratio l2/l1:

f St(x1) = 2 + 4x1

{
1

[n + 1 − (n − 1)x1]2
+

1

[(n + 1)x1 − (n − 1)]2

}
+ ln

(
n +

1 + x1

1 − x1

)
+ ln

(
n − 1 + x1

1 − x1

)
− c2,n. (23)

The domain of f St is the interval Ω2,n = (0, x̃1) with x̃1 = (n − 1)/(n + 1); hence vol(Ω2,n) = x̃1. The graph of f St is

given in Fig. 1(b) for n = 20. The behavior of f St for an arbitrary n can be deduced from the following properties1:

1Although Ωp,n does not in principle contain the point x = 0, the function f St can be defined at the origin. Therefore, to simplify the notation

in the remainder of the paper, we shall write f St(0) instead of lim‖x‖→0 f St(x).
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Figure 2: (a) Graph of f St as a function of (x1 , x2) for p = 3 and n = 20; (b) Set I: f St(x) < Kml
2,n

, set II: f St(x) > Kml
2,n

. f St is not defined on set III;

1. f St(0) = 2 + ln(n2 − 1) − c2,n < 2 + ln n2 − c2,n = Kml
2,n

;

2. f St is monotonically increasing as a function of x1 (see Sect. A in the Supplemental Material);

3. As x1 → x̃−
1

, f St(x1) ∼ cn(x1 − x̃1)−2 with cn = 4(n − 1)/(n + 1)3. Thus, f St grows without bound.

As a consequence of the above properties, there exists one and only one x⋆
1
∈ Ω2,n such that f St(x⋆

1
) = Kml

2,n
, and the

set in which f St(x1) is less than Kml
2,n

is ∆2,n = (0, x⋆
1

). For a given n, x⋆
1

can be calculated by numerically solving the

equation f St(x⋆
1

) = Kml
2,n

from (23). Such a calculation shows that, as n→ ∞, x⋆
1

rapidly converges to an asymptotic

value (Fig. 3(a)), which can be formally determined by considering the large-n expansion of f St(x1):

f St(x1) − Kml
2,n = −

x2
1
− 6x1 + 1

(x1 − 1)2

(
1

n2

)
+ O

(
1

n4

)
, x1 ∈ Ω2,n. (24)

Solving the equation x2
1
− 6x1 + 1 = 0 and taking the solution less than 1 yield:

lim
n→∞

x⋆1 = 3 − 2
√

2 ≃ 0.172. (25)

As n → ∞, the domain Ω2,n tends to the whole interval (0, 1). In contrast, vol(∆2,n) = x⋆
1

tends to a value much less

than 1, as can be seen from (25). Therefore the region on which f St(x1) < Kml
2,n

is relatively small. Furthermore, (24)

shows that, as n → ∞, the convergence of f St(x1) to Kml
2,n

is not uniform in x1, since limx1→x̃−
1

[
f St(x1) − Kml

2,n

]
= ∞

∀ n � 2. Taking limits in the opposite direction (i.e., n approaching p = 2), the length of ∆2,n is much less than 1

(Fig. 3(b)). Furthermore, at x1 = 0, the percentage reduction in the UBEOR of Stein’s raw estimator relative to the

MLE is a decreasing function of n and attains its maximum when n = p = 2 (Fig. 3(c)), though the reduction is not

very large.

The above analysis suggests two competing phenomena when comparing f St and f ml as n increases: 1) the differ-

ence f St − Kml
2,n

at 0 decreases and 2) the size of the region ∆2,n on which f St < Kml
2,n

increases. We shall see from our

numerical work (see Section 6) that relative risk reductions compared to the MLE are higher for smaller n — indi-

cating that the former phenomenon outweighs the latter. This point also demonstrates that neither the function values

nor the volume of ∆p,n should be analyzed in isolation when studying Stein’s estimator in the UBEOR framework.

4.2. The cases p = 3 and p = 4

The graph of the UBEOR of Stein’s raw estimator when p = 3 and n = 20 is given in Fig. 2(a). The domain Ω3,n

is described by the inequalities a2(x) > 0 and a3(x) > 0 and corresponds to

n(1 − x1)(1 − x2) − 2(1 − x2) + 2(1 − x1) > 0 and (n + 2)(1 − x1x2)(1 − x2) − 2(1 − x2) − 2(1 − x1x2) > 0. (26)

These inequalities correspond to the union of the sets denoted by I and II in Fig. 2(b). In Fig. 2(b), the set ∆3,n, where

f St(x) < Kml
3,n

, is denoted by I: it is a connected set and contains a neighborhood of the origin in the first quadrant. The
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Figure 3: (a) Volume of Ωp,n as a function of n for p = 2 (solid line), p = 3 (�), p = 4 (�); (b) Volume of ∆p,n as a function of n for p = 2 (•),

p = 3 (�), p = 4 (�); (c) Percentage reduction in the UBEOR at x = 0, 100 × κ0 := 100 × [Kml
p,n − f St(0)]/Kml

p,n , as a function of n for p = 2 (•),

p = 3 (�), p = 4 (�). The dashed straight line is proportional to 1/n. Both the vertical and horizontal axis are scaled logarithmically.

function f St is not defined on region III. Figures 3(a) and (b) report the volumes of Ω3,n and ∆3,n as a function of n;

the behavior is similar to the one observed for p = 2.

The function f St diverges positively when a2(x) or a3(x) goes to zero, but, unlike in the p = 2 case, f St is

not monotonic in x2 for all fixed x1. Thus a simple characterization of Ω3,n and ∆3,n for the p = 3 case is not

available. Note also that f St is neither convex nor concave (see Sect. B in the Supplemental Material). At x = 0, the

percentage reduction in the UBEOR of Stein’s raw estimator relative to the MLE decreases approximately linearly

with increasing n, as in the p = 2 case (Fig. 3(c)). Moreover, for all x ∈ Ωp,n, the difference f St(x) − Kml
p,n is O(1/n2)

as n → ∞. This property will be derived directly for arbitrary p in the next section. The p = 4 case yields results

which are similar to the p = 3 case. The reader is referred to Sect. C in the Supplemental Material for details.

4.3. Summary of the cases p = 2, 3, 4

The comparison of the UBEOR of Stein’s raw estimator vs. that of the MLE for p = 2, 3, 4 is summarized below:

1. The UBEOR of Stein’s raw estimator is not defined for all values of the l j, since it contains logarithmic terms

whose argument can be negative. This occurs in an open subset of the domain of the UBEOR. Furthermore, the

UBEOR of Stein’s raw estimator diverges positively as the argument of one of the logarithmic terms approaches

zero. The implications of the above are threefold: (a) the risk of Stein’s raw estimator is either infinite or

complex-valued; (b) it provides compelling evidence that Stein’s raw estimator needs to be rectified or modified

in such cases, and thus motivates the isotonizing algorithm (the UBEOR of which is studied in the second part

of this paper); (c) it motivates the need to characterize the region over which the UBEOR diverges in order to

assess the severity of the problem.

2. When the UBEOR of Stein’s raw estimator is rewritten in terms of the ratios of the adjacent eigenvalues of S ,

the domain of definition of the estimator, Ωp,n, is a strict subset of (0, 1)p−1. For a given p, the volume of Ωp,n

increases with increasing n and tends to 1 as n→ ∞. The volume ofΩp,n decreases with increasing p when n is

held constant (Fig. 3(a)). Hence the problem that the UBEOR of Stein’s raw estimator may not even be defined

is alleviated as n increases, but is exacerbated as p increases.

3. The UBEOR of Stein’s raw estimator takes lower values than that of the MLE only when the adjacent eigen-

values of S are sufficiently separated, i.e., when the ratios xi are close to zero. The set ∆p,n, where Stein’s raw

estimator is less in value than the MLE, is connected and contains a neighborhood of the origin. The volume

of ∆p,n increases with n and tends to an asymptotic value less than 1. For a given n, the volume of ∆p,n decreases

as the dimension p increases (Fig. 3(b)).

4. Although f St(x) < Kml
p,n in the neighborhood of x = 0, the percentage reduction at the origin in the UBEOR

of Stein’s raw estimator relative to the MLE is modest and decreases linearly with increasing n (Fig. 3(c)).

Hence Stein’s estimator is not expected to yield substantive gains over the MLE when either the population

eigenvalues are well separated and/or when the sample size is very high. The latter is consistent with the fact
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that Stein’s estimator tends to the MLE as n→ ∞. We also note that despite diminishing reductions in UBEOR

as n increases, there is a dimension effect: the modest reduction in UBEOR at x = 0 for fixed n is higher for

larger p (see Fig. 3(c)).

5. We note here for completeness that the comparison between f St(x) and Kml
p,n in the space of the sample eigen-

values yields similar results.

6. For n → ∞, the UBEOR of Stein’s raw estimator tends to that of the MLE as follows: f St(x) − Kml
p,n =

O(1/n2) for all x ∈ Ωp,n. Moreover, the convergence is not uniform in x. We shall see in the Supplemental

Material (see (D.11)) that the leading order of the UBEOR of the MLE is O(1/n). This point indicates that

in an asymptotic sense the difference in the UBEOR of the two estimators is relatively small, which points to

possibly only modest risk reductions when using Stein’s estimator instead of the MLE. We shall see later in the

paper that this will no longer always be the case when the isotonizing algorithm is invoked (see Subsect. 5.3).

7. The function f St(x) is not convex in general, nor is it monotonic in each of the variables when the other variables

are held constant. The exception to the above behavior is the p = 2 case (see Subsect. 4.1). The lack of

convexity/monotonicity in the p > 2 cases implies that the region in which the UBEOR of Stein’s raw estimator

takes lower values than that of the MLE is not easily characterizable.

4.4. The arbitrary p case

Several observations reported in Subsect. 4.3 for small p can be proved for any general p > 1. We shall maintain

the formulation of Stein’s UBEOR in terms of the ratios x j = l j+1/l j. The results proved for f St(x) can be easily

translated into analogous properties of FSt(l). The proofs of the lemmas and propositions in this subsection are

provided in Sect. D in the Supplemental Material.

We have already noted that f St may have singularities at those points at which the argument a j(x) of one of the

logarithmic terms vanishes. For j � 2, a j(x) is the sum of two terms of opposite sign (see (17)):

a j(x) = n − p + 1 + 2

p∑

i= j+1

1

1 − πi
j
(x)

>0

+ 2

j−1∑

i=1

π
j

i
(x)

π
j

i
(x) − 1

<0

, (27)

Thus, if one of the products π
j

i
(x) for i < j is sufficiently close to 1 (i.e. l j is sufficiently close to li for some i < j),

then a j(x) may vanish or become negative. Indeed, the following Lemma shows that there exists some x ∈ (0, 1)p−1

such that at least one of the a j(x) is equal to zero.

Lemma 1. For all n � p > 1, there exists x̃ ∈ (0, 1)p−1 and M ⊂ {2, . . . , p}, |M| > 1, such that a j(x̃) = 0 for all j ∈ M

and a j(x̃) > 0 for j � M.

Remark 1. The points x ∈ (0, 1)p−1 such that a j(x) = 0 for all j ∈ M for some M ⊆ {2, 3, . . . , p} and a j(x) > 0 for

all j � M belong to the boundary of Ωp,n. Owing to the continuity of the a j, such points are accumulation points

of Ωp,n.

The following proposition asserts tha f St becomes unbounded as x approaches one of the points where at least one of

the a j vanishes.

Proposition 1. Let n � p > 1 and M ⊆ {2, . . . , p}. If x̃ ∈ (0, 1)p−1 is such that a j(x̃) = 0 for all j ∈ M and a j(x̃) > 0

for all j � M, then limx→x̃ f St(x) = +∞.

Recall that in order to obtain the estimator ψ̂ St
j

, Stein disregards the derivative terms 2l j∂ψ j/∂l j in the UBEOR. The

proof of Proposition 1 (see Sect. D in the Supplemental Material) demonstrates that these derivative terms determine

the behavior of the UBEOR near the boundary of its domain and are therefore not negligible.

The large-n behavior of the UBEOR of Stein’s raw estimator is described by the following proposition.
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Proposition 2. For any p > 1 and x ∈ Ωp,n,

f St(x) = Kml
p,n +

(
1

n2

) p∑

j=1


4

j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

+ 4

p∑

i= j+1

πi
j
(x)

[1 − πi
j
(x)]2

−1

2

1 − p + 2

j−1∑

i=1

π
j

i
(x)

π
j

i
(x) − 1

+ 2

p∑

i= j+1

1

1 − πi
j
(x)



2
+ O

(
1

n3

)
(28)

as n→ ∞. Furthermore, the convergence is not uniform in x.

The analysis in the cases p = 2, 3, 4 highlighted an important property of f St: when the ratios l j+1/l j
are sufficiently

small (i.e., ‖x‖ is close to 0), f St < Kml
p,n. The next proposition proves this property for arbitrary dimension.

Proposition 3. For any n � p > 1, there exists an open ball Bδ(0) with radius δ > 0 and center x = 0 such that,

for all x ∈ Bδ(0) ∩ Ωp,n, f St(x) < Kml
p,n and the order of the sample eigenvalues is preserved by Stein’s raw estimator.

Moreover, for a given n, Kml
p,n − f St(0) is a monotonically increasing function of p for 1 < p � n.

Finally, the following Lemma describes the large-n behavior of the percentage reduction in the UBEOR of Stein’s

raw estimator relative to the MLE at x = 0 and asserts that the reduction of the UBEOR given by Stein’s raw estimator

is most pronounced for small sample sizes.

Lemma 2. For p > 1,

κ0 :=
Kml

p,n − f St(0)

Kml
p,n

∼ p − 1

3n
(n→ ∞). (29)

We observe from the analysis conducted in the previous sections that the domain on which Stein’s raw estimator

is defined diminishes as p increases (see, e.g., Fig. 3(a)). However, Proposition 3 and Lemma 3 demonstrate that,

for large n, the local behavior of Stein’s raw estimator at x = 0 improves with increasing p. The above comparisons

thus have two implications: 1) studying only the local behavior of the UBEOR of Stein’s estimator can lead to a

misinformed understanding of the potential overall risk gains of Stein’s estimator, i.e., Stein’s estimator does not

perform uniformly well in all parts of the parameter space. Hence the risk gains of Stein’s estimator seen in numerical

work in previous papers should be interpreted in this context, i.e., global statements have been inferred regarding the

performance of the estimator based on risk gains for specific parameter values. This is perhaps an unintended pitfall of

using only numerical risk experiments; 2) If prior information is known regarding how well separated the eigenvalues

are, Stein’s raw estimator can in fact be used effectively to yield risk gains.

A useful and perhaps equally interesting question is to understand the relative risk reduction in Stein’s UBEOR at

the origin when the dimension p is also allowed to grow. Further asymptotic calculations (not given here for the sake

of brevity), but this time as p is allowed to grow and n = p, show that the relative risk reduction at x = 0 is in fact

bounded, i.e., O(1) as p→ ∞. Hence in this regime the relative risk reduction at x = 0 does not increase with p.

5. A study of Stein’s isotonized estimator in the UBEOR framework

In practice, Stein’s “raw” estimator has been shown to perform very well when coupled with the isotonizing

algorithm. Recall that this algorithm pools adjacent eigenvalues together when positivity or order is violated (see (8)).

Therefore, a natural question that arises concerns the precise role played by the isotonizing algorithm in the risk

reductions enjoyed by Stein’s estimator. Note that the isotonizing algorithm is ad hoc and renders a decision theoretic

analysis of Stein’s estimator rather intractacble. Recall however that our goal is not to get a decision theoretic result

concerning Stein’s isotonized estimator, but rather to obtain a theoretical understanding of its behavior by exploiting

its UBEOR. Note also that when no order or sign violations are present Stein’s raw and isotonized estimators coincide.

10



0 x⋆
1

x⋆⋆
1 x̃1 1

∆2,n = ∆
′
2,n Γ2,n

Ω2,n

(a)

Λ2,n

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

(b)

x1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1

(c)

x1

Figure 4: (a) Schematic representation of the p = 2 case (we refer the reader to Sect. 3 for the definitions of the sets Ω2,n , ∆2,n, Γ2,n , and Λ2,n). The

function f St is defined on Ω2,n = (0, x̃1) only. The positivity of the sample eigenvalues is preserved by Stein’s raw estimator on Ω2,n and is violated

on (0, 1] \Ω2,n . The order of the sample eigenvalues is preserved on ∆′
2,n
∪ Γ2,n = (0, x⋆⋆

1
] and is violated on Λ2,n = (x⋆⋆

1
, 1]. The function f St(x1)

is less than Kml
2,n

on ∆2,n = (0, x⋆
1

) and greater than Kml
2,n

on (x⋆
1
, x̃1). (b) and (c) Graph of the functions f St (dashed line), f iso (dotted line), f St+iso

(thick solid line), and Kml
2,n

(thin solid flat line) for: n = 4 (b) and n = 20 (c). The thick solid line is superimposed on the graphs of f St and f iso

when they are the same as the graph of f St+iso.

5.1. The case p = 2

For p = 2, the set Λ2,n on which Stein’s raw estimator yields either sign or order violations thus invoking the

isotonizing algorithm (see (22) for the definition) consists of the points x1 ∈ (0, 1] such that

(n − 1)x2
1 − 2(n + 1)x1 + (n − 1) < 0 (order violation) or x1 � x̃1 (violation of positivity), (30)

where x̃1 = (n−1)/(n+1) is the highest value of x1 for which f St(x1) is defined (see Subsect. 4.1). It is easily checked

from (30) that order violation occurs for x1 > x⋆⋆
1

, where x⋆⋆
1

:= (n + 1 − 2
√

n)/(n − 1). Hence Λ2,n = (x⋆⋆
1
, 1].

Furthermore, recall that the value x⋆
1

is defined such that f St(x1) < Kml
2,n

for x1 < x⋆
1

and f St(x1) > Kml
2,n

for x1 > x⋆
1

(see Subsect. 4.1) and note that x⋆
1
< x⋆⋆

1
< x̃1 ∀ n � 2. Therefore, the set on which the UBEOR of Stein’s raw

estimator is greater than that of the MLE, but where the isotonizing correction does not apply, is Γ2,n = [x⋆
1
, x⋆⋆

1
] and

is non-empty (Fig. 6(a)). A schematic description of the p = 2 case is given in Fig. 4(a).2

The isotonized estimator thus takes the form ϕ̂ St+iso
j

(l) = l jψ̂
St+iso
j

(l2/l1) with

ψ̂ St+iso
1 (x1) =



1 − x1

n + 1 − (n − 1)x1

0 < x1 � x⋆⋆
1

1 + x1

2n
x⋆⋆

1
< x1 � 1

and ψ̂ St+iso
2 (x1) =



1 − x1

n − 1 − (n + 1)x1

0 < x1 � x⋆⋆
1

1 + x1

2nx1

x⋆⋆
1
< x1 � 1.

(31)

Correspondingly, the UBEOR of Stein’s isotonized estimator is given by:

f St+iso(x1) =


f St(x1) 0 < x1 � x⋆⋆

1

f iso(x1) x⋆⋆
1
< x1 � 1,

where the explicit expression of f St(x1) is given by (23) and where f iso(x1) is the UBEOR when the isotonizing

algorithm is used:

f iso(x1) = 1 − 1

n
+

x1

2
− 3x1

2n
+

n − 3

2nx1

− ln

(
1 + x1

2n

)
− ln

(
1 + x1

2nx1

)
− c2,n.

2In particular, the inequality x⋆
1
< x⋆⋆

1
< x̃1 ∀ n � 2 also implies that ∆′

2,n
= ∆2,n for all n � 2 (see (20) for the definition of ∆′

2,n
), i.e., the

original order of the sample eigenvalues is never violated when the UBEOR of Stein’s raw estimator is less than that of the MLE.
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Naturally, f iso is a well-defined function on the entire domain (0, 1] and can be regarded as an independent function

regardless of its use within Stein’s estimator. A study of the function f St+iso shows that f iso(1) = 2
(
1 − 2

n
+ ln n

)
−

c2,n < Kml
2,n

. Furthermore, for n = 2, 3, f iso(x1) < Kml
2,n

for all x1 ∈ (0, 1], while, for n � 4, there exists one and only

one x̄1 ∈ (0, 1) such that f iso(x1) > Kml
2,n

for 0 < x1 < x̄1 and f iso(x1) < Kml
2,n

for x̄1 < x1 � 1. The graph of f St+iso is

reported in Figs. 4(b) and (c) for n = 4, 20.

The comparison of the UBEOR of Stein’s isotonized estimator vs. that of the MLE in the two-dimensional case

therefore leads to the following insights:

1. There exists an interval on which the UBEOR of Stein’s isotonized estimator is greater than that of the MLE;

2. The isotonizing algorithm is invoked on a considerable portion of the domain containing the region where the

ratio of the sample eigenvalues is near 1. In the set in which the isotonizing algorithm applies, the reduction

in the UBEOR compared to the MLE is considerable and significantly greater than that observed in those sets

where isotonizing is not used (Figs. 4(b) and (c)). This observation can be made more precise by considering

the quantities

κ1 =
Kml

p,n − f St+iso(1, . . . , 1)

Kml
p,n − f St(0, . . . , 0)

and κ2 =
Kml

p,n − f St+iso(1, . . . , 1)

Kml
p,n

. (32)

The first quantity compares the difference between Kml
2,n

and f St(x) at the origin with the same difference at

x = (1, . . . , 1). At x = (0, . . . , 0) the reduction in the UBEOR comes from Stein’s raw estimator, whereas

at x = (1, . . . , 1) all the eigenvalues are pooled together and the reduction is a result of isotonization. The ratio

κ1, therefore, is one simple way to quantify the relative efficacy of the isotonizing algorithm in reducing the

UBEOR in comparison with Stein’s raw estimator. The second quantity is the relative reduction in the UBEOR

at x = (1, . . . , 1), where the reduction is entirely due to the isotonizing algorithm, and is analogous to κ0 (see

(29)). For p = 2 (see Figs. 6(b) and (c)):

κ1 = 4

[
n ln

(
n2

n2 − 1

)]−1

∼ 4n and κ2 =
4

n[2(1 + ln n) − c2,n]
∼ 4

3
− 26

27n
(n→ ∞). (33)

The expressions above affirm the fact that the relative reduction in UBEOR afforded by the isotonizing algorithm

is non-negligible and has a complex relationship with the sample size n.

3. There exist points x1 < x⋆⋆
1

such that f iso(x1) < Kml
2,n

but f St+iso(x1) = f St(x1) > Kml
2,n

. In particular, there exists

a subset of the domain in which: (a) the function f iso(x1) is considerably less than the UBEOR of the MLE and

simultaneously (b) Stein’s estimator does not require the isotonizing correction, though the UBEOR of the raw

estimator is greater than that of the MLE. For these points, although an isotonizing correction is not required,

using it will nevertheless reduce the UBEOR. In other words, the “shrinkage” given by the isotonizing correction

becomes useful even way before its originally intended purpose of order preservation. These insights can

potentially be useful for constructing new estimators which can combine the strengths of Stein’s raw estimator

and the isotonizing algorithm (see [10]).

4. From Figs. 4(b) and (c) we observe that the behavior of f St+iso in comparison to Kml
p,n starts to exhibit well defined

trends. In fact three distinct regimes start to emerge: 1) The first is near the origin where the eigenvalues are

well separated and the UBEOR of Stein’s isotonized estimator (which in this case is identical to the UBEOR

of Stein’s raw estimator) is less than Kml
p,n (though the reduction is small), 2) The second regime where the

eigenvalues are only moderately separated and the UBEOR of Stein’s estimator takes values higher than Kml
p,n,

and 3) The third regime where the eigenvalues are close to each other, thus invoking the isotonizing algorithm

due to sign/order violations. In this third regime, the UBEOR of Stein’s isotonized estimator is significantly

lower than that of the MLE.

5.2. The cases p = 3 and p = 4

The exact functional form of the isotonized estimator for the p = 3 case (analogous to (31) in the p = 2 case) is

described in detail in Sect. E in the Supplemental Material. Only the main properties of the UBEOR are presented

here. The UBEOR of the isotonized estimator, when rewritten in terms of the ratios x1 = l2/l1 and x2 = l3/l2, is a
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Figure 5: Left and center panels: Subsets AI , AII , AIII, and AIV for n = 3 (left) and n = 20 (center). The set ∆3,n is contained in AI . The set Γ3,n is

equal to AI \ ∆3,n, while Λ3,n = AII ∪ AIII ∪ AIV . The sets ∆3,n and ∆′
3,n

are numerically indistinguishable. Right panel: Graph of f St+iso for p = 3

and n = 20. Note that Kml
3,20
= 0.318.

function on (0, 1] × (0, 1]. The domain (0, 1] × (0, 1] is divided into four subsets, AI , AII , AIII , and AIV , on each of

which the estimator of the eigenvalues of Σ, and hence the UBEOR, takes a different form (see Fig. 5):3

1. in AI , all the estimated eigenvalues are positive, their order is preserved, and consequently the isotonized esti-

mator and Stein’s raw estimator coincide;

2. in AII , ϕ̂ St
2

(l) and ϕ̂ St
3

(l) are pooled together because of either order reversal or negative values, while the

estimator of the first eigenvalue is ϕ̂ St
1

(l);

3. in AIII , ϕ̂ St
1

(l) and ϕ̂ St
2

(l) are pooled together, while the estimator of the third eigenvalue is ϕ̂ St
3

(l);

4. in AIV , ϕ̂ St
1

(l), ϕ̂ St
2

(l), and ϕ̂ St
3

(l) are pooled together.

The set Λ3,n, where the isotonizing algorithm is required (see (22)), is thus Λ3,n = AII ∪ AIII ∪ AIV . We shall denote

by ψI
j
(x) Stein’s isotonized estimator on the set AI (the functions ψII

j
(x), ψIII

j
(x), and ψIV

j
(x) are defined analogously—

see Sect. E in the Supplemental Material for details).

The four subsets AI , AII , AIII , AIV are represented in Fig. 5 for n = p = 3 and for n = 20. As seen in Section 4,

the portion of the domain where the isotonizing correction applies is substantial, especially when n is close to p,

i.e., the isotonizing algorithm “kicks in” when the sample size is relatively small. The set AI contains ∆3,n, on

which f St(x) < Kml
3,n

. The set ∆′
3,n

, where f St(x) < Kml
p,n and there are no sign/order violations, was also computed

numerically. We note, similarly to the p = 2 case, that ∆′
3,n

and ∆3,n are indistinguishable, i.e., on the domain

on which f St(x) < Kml
3,n

Stein’s estimator retains positivity and the original order of the sample eigenvalues. The

difference AI \ ∆3,n is the set Γ3,n, in which Stein’s estimator is not isotonized, but its UBEOR is greater than that of

the MLE (see (21) for the definition of Γp,n). Figure 5 shows that, for n = 3 and n = 20, the set Γ3,n is non-empty.

The same results hold for other values of n, as demonstrated by the computation of the volume of Γ3,n (Fig. 6(a)).

Therefore, when the sample eigenvalues are moderately separated, the UBEOR of Stein’s isotonized estimator is

greater than that of the MLE. In fact, more than 40% of the total volume is covered by Γ3,n.

Given that the isotonized estimator takes different forms on different subsets of the domain, its UBEOR f St+iso

is a function defined piecewise that is continuous within each part (see Fig. 5, right panel, for n = 20). Clearly, in

subsets AII , AIII , AIV the isotonizing correction produces a significant reduction in the UBEOR. A similar behavior is

observed for other values of n, but is not reported here. Once again, as in the p = 2 case, we observe that the behavior

of the UBEOR of Stein’s estimator in comparison to that of the MLE is characterized by three distinct regimes. These

regimes correspond to the sets ∆p,n, Γp,n, and Λp,n.

Even in the p = 3 case, similarly to the p = 2 case, there exists a subset of the domain in which: (a) f iso(x)

is considerably less than the UBEOR of the MLE and simultaneously (b) Stein’s estimator does not require the

isotonizing correction, though the UBEOR of the raw estimator is greater than that of the MLE (see Sect. E in the

Supplemental Material).

3For the precise mathematical definitions of AI , AII , AIII , AIV , the reader is referred to Sect. E in the Supplemental Material.
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As in the p = 2 case, the magnitude of the effect of the isotonizing algorithm on the UBEOR can be quantified by

considering the quantities κ1 and κ2 (see (32) for the definition); they are plotted in Figs. 6(b) and (c) as a function of n

for fixed p. Both quantities increase with increasing n; the former one increases approximately linearly, while the latter

one tends to a finite value. The plots indicate that the reduction in UBEOR due to the isotonizing algorithm compared

to that ofStein’s raw estimator increases with sample size (see Fig. 6(b)). These increases are more pronounced for

lower dimensions. On the contrary, the reduction in UBEOR due to the isotonizing algorithm is quite robust and

actually seems to improve as p gets larger (see Fig. 6(c)). The asymptotic behaviors shown in Figs. 6(b) and (c) are

proved for a general p in the next subsection. Analysis of the p = 4 case continues the trends observed for the p = 3

case, as illustrated by Figs. 6(a), (b) and (c)).

5.3. The arbitrary p case

We now evaluate the impact of the isotonizing correction on the UBEOR using κ1 and κ2 as before (see Sect. D in

the Supplemental Material for the proof of the lemma):

Lemma 3. For p > 1,

κ1 ∼
6[p(p + 1) − 2]n

p(p2 − 1)
(n→ ∞) and κ2 = 2

[
1 − 2

p(p + 1)

] {
1 − 2[p(2p + 3) − 1]

12(p + 1)n

}
+ O

(
1

n2

)
(n→ ∞).

The behavior of κ2 demonstrates that when all the eigenvalues are pooled together the use of the isotonizing

algorithm can lead to a considerable reduction in the UBEOR relative to Kml
p,n. Moreover, the horizontal asymptotes

observed empirically when studying the small p case (see Fig. 6(c)) can now be theoretically explained. A surprising

phenomena emerges: the relative reduction in the UBEOR compared to the MLE persists even as the sample size

increases. In addition, the dimension effect seen in Fig. 6(c) is also apparent from the expression of κ2.

The behavior of κ1 shows that the reduction in the UBEOR of Stein’s estimator is orders of magnitude greater

when the sample eigenvalues are close to each other as compared to when they are well separated (i.e., the first regime

vs. the the third regime outlined at the end of the p = 2 section). In other words, the isotonizing algorithm reduces

the UBEOR much more than Stein’s raw estimator does. This suggests that some of the substantial risk reductions

seen in Stein’s estimator may actually be attributable to the isotonizing algorithm. It is also worth remarking that the

convergence of the UBEOR of Stein’s isotonized estimator to that of the MLE is not faster than O(1/n) (see (D.15)

in Sect. D in the Supplemental Material). This behavior differs from the analogous rate of O(1/n2) of Stein’s raw

estimator (see Proposition 2); the isotonizing correction has an effect of shifting Stein’s estimator away from the MLE

by an entire order of magnitude. The ratio of the two rates yields the linear function (of n) that was empirically

observed in the analysis of the small p case (see Fig. 6(b)).

Lemma 3 quantify the maximal reduction in the UBEOR that are potentially achievable because of applying the

isotonozing algorithm. Analyzing the UBEOR for the sample covariance structure which corresponds to the full-

multiplicity case (x = (1, 1, . . . , 1)) is convenient in this regard as the isotonozing algorithm is being used in this
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setting. Such an analysis can be regarded as corresponding to the case when the population structure is a multiple of

the identity, i.e., when all the population eigenvalues are equal. Considering this particular settings yields analytic ex-

pressions that can be theoretically examined (without resorting to numerical calculations). The effect of the isotonizing

algorithm can however also be examined under more general covariance structures. The study of the cases p = 2, 3, 4

addressed this issue broadly. The numerical study undertaken in the next section also provides further insights into the

role of the isotonizing algorithm in reducing the risk of Stein’s covariance estimator. This numerical analysis affirms

the insights from the UBEOR framework and quantifies the actual risks of Stein’s raw and isotonized estimators.

We also note that a theoretical analysis similar to the one above can be undertaken as both p(n), n→ ∞, and gives

qualitatively similar results. Such analysis has been omitted for the sake of brevity.

6. Validation of the UBEOR approach via risk calculations

Recall that the UBEOR approach entails comparing two or more functions in order to qualitatively understand

their respective expectations. The UBEOR approach asserts that EΣ[F(l)] = EΣ[L1(̂Σ,Σ)] (see (3)). The part of the

parameter space in which Σ lies determines which part of the domain of FSt+iso mainly contributes to the expectation

EΣ[F(l)]. It is thus possible to understand the behavior of EΣ[F
St+iso(l)] by combining the knowledge of FSt+iso and

Σ. It thus allows a better understanding of the regimes in which Stein’s estimator and its isotonized version perform

well.

The purpose of the numerical examples presented in this section is to demonstrate that the UBEOR approach

does indeed yield a useful theoretical tool for understanding the performance of Stein’s estimator globally over the

parameter space. The case p = 3 is examined first and has the advantage that the graph of the UBEOR can be

visualized. Thereafter a reference numerical study [6] on Stein’s estimator is revisited in order to assess if insights

obtained in the UBEOR framework also hold up in higher dimensions.

6.1. Validation of the UBEOR approach for the p = 3 case

In Sects. 4 and 5, the behavior of Stein’s raw and isotonized estimators is explored via ratios of the type l2/l1
and l3/l2. From Fig. 5 (left and center panels), it is evident that considering the case where l2/l1 = l3/l2 = r for

r ∈ (0, 1] corresponds to the straight line connecting (0, 0) and (1, 1). This parametrization will cover all three regions

∆′
3,n

(or equivalently ∆p,n), Γ3,n, and Λ3,n that correspond to the three different regimes relevant to the behavior of

Stein’s estimator in comparison to the MLE. Thus, we consider covariance matrices of the form: Σ(r) = diag(1, r, r2),

r ∈ (0, 1]. In particular, by varying r from 0 to 1, Σ(r) moves from the well separated case to the full multiplicity case.

For a given sample from the multivariate normal distributionN3(0,Σ(r)), the ratios of the adjacent sample eigenvalues

will of course not be exactly equal to r, but will be distributed around the point (l2/l1 = r, l3/l2 = r). The goal of the

study is to assess if the behavior of the UBEOR mirrors what is happening at the level of its expectation, the risk itself.

In the numerical simulations that follow, the risk is computed for both the MLE and for Stein’s isotonized estimator

for covariance matrices of the above form. The percentage reduction in risk with respect to the MLE is given by

γL1
=

R1

(̂
Σml,Σ

) − R1

(̂
ΣSt+iso,Σ

)

R1

(̂
Σml,Σ

) × 100, (34)

where Σ̂ml and Σ̂St+iso denote the MLE and Stein’s isotonized estimator of Σ respectively. The risk γL1
is reported in

Fig. 7(a) as a function of r for n = 3, 20, 100.

First consider the case when n is small. In this setting, the isotonizing correction is needed on a large portion of

(0, 1] × (0, 1], and thus it produces a significant reduction in the UBEOR (Fig. 5, left panel). The insight given by the

UBEOR approach is perfectly mirrored in actual risk calculations. In particular, for n close to p, Stein’s isotonized

estimator outperforms the MLE for all r (see Fig. 7(a) for n = p = 3). The percentage reduction in risk increases with

increasing r. Indeed, as r increases, the point (r, r) moves from (0, 0) towards (1, 1) and out of the region ∆′
3,n

where

Stein’s estimator does not require the isotonizing correction. It quickly moves into the region Λ3,n where at least two

of the eigenvalues are pooled together (Fig. 5, center panel).

For greater n, the area of the set ∆′
3,n

, where Kml
3,n
> f St, increases and converges rather rapidly to its asymptotic

value (Figs. 3(b) and 5, left and center panels). If (r, r) ∈ ∆′
3,n

, Stein’s estimator is expected to yield better results than
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the MLE, but given that the UBEOR is not modified by the isotonizing correction in ∆′
3,n

, the improvement is modest

and decreases with increasing n (see Lemma 3, Fig. 3(c), and Fig. 7(a) for n = 20, 100).

As n increases, the region Γ3,n also increases in size (although at a lower rate as compared to ∆′
3,n

) and includes

increasingly large values of r (Figs. 5 and 6(a)). We remind the reader that in Γ3,n Stein’s estimator does not require

the isotonizing correction despite the fact that f St > Kml
p,n. It is thus for (r, r) ∈ Γ3,n that the performance of Stein’s

estimator is expected to be the least satisfactory, and this effect is more pronounced for large n (Fig. 7(a) for n = 100).

While ∆′
3,n

and Γ3,n expand as n increases, the region where the isotonizing correction applies shrinks towards

values of r that are close to 1 (Fig. 5). Consequently, the larger the n, the closer r must be to 1 to be able to observe

the benefit arising from the isotonizing algorithm (Fig. 7(a)). Once r is sufficiently close to 1 the improvement with

respect to the MLE is much greater than the one observed for small r (see the behavior of κ1 in Lemma 3 and Fig. 6(b)

in the p = 3 case, as well as Fig 7(a)). Finally, for r = 1 and for large n, the value of γL1
does not vary appreciably

with n. This behavior is in accordance with Lemma 3 (see also Fig. 6(c)).

The above constitutes an analysis in which n is fixed and r is changing. We now proceed to a fixed r and changing

n analysis. For a fixed r, the dependence of the relative risk reduction γL1
upon n can once again be explained by

considering the properties of the UBEOR. For small and intermediate r (i.e., when the eigenvalues are well separated

or moderately separated), γL1
decreases with increasing n (see Fig. 7(b) for r = 0.1 and r = 0.5). This behavior

is due to the contraction of the set Λ3,n (Fig. 5) and the simultaneous decrease of the percentage reduction in the

UBEOR at x = (0, 0) (Lemma 2 and Fig. 3(c)). However, if (r, r) is well inside ∆′
3,n

, the relative risk reduction γL1

remains positive since f St(x) < Kml
3,n

. On the contrary, for intermediate values of r, the point (r, r) belongs to Γ3,n,

where f St+iso(x) = f St(x) > Kml
3,n

, and hence γL1
is negative (see Fig. 7(b) for r = 0.5). For r close to 1, γL1

is much

less sensitive to the value of n, in the sense that the point (r, r) lies in the region where the isotonizing algorithm

applies extensively (Fig. 5). The initial increase of the curve shown in Fig. 7(b) for r = 0.9 can be explained as

the combination of two competing phenomena: a) the percentage reduction in the UBEOR at x = (1, 1) rapidly

increases at small values of n (see Fig. 6(c) and Lemma 3), and b) although the set Λ3,n is contracting (Fig. 5), it is

not contracting fast enough to counter the preceding effect. The subsequent decrease of γL1
can be understood in the

context of the tapering off of the reduction in the UBEOR (see once more Fig. 6(c)). This tapering off as n increases

can also be seen theoretically from the behavior of κ2 in Lemma 3 and from the contraction of the set Λ3,n where the

isotonizing correction is used (Fig. 5).

To demonstrate the broad generality and relevance of the insights from our UBEOR approach for higher values

of p, an analogous investigation was performed for the p = 6 case with Σ(r) = diag(1, r, r2, r3, r4, r5), r ∈ (0, 1]. The

results shown in the Supplemental Material (Sect. F) for the p = 6 case confirm the explanation given in the p = 3

case.

In conclusion, Stein’s estimator yields significantly better results than the MLE when some of the eigenvalues are

close to each other, or when n is close to p, or when both these conditions are met (Regime III). It gives a modest

amount of risk reduction when eigenvalues are sufficiently separated (Regime I). If n ≫ p and the adjacent eigenvalues

are sufficiently separated, Stein’s isotonized estimator does not yield a significant improvement over the MLE, and
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can even yield slightly worse results (Regime II).

An analysis of the UBEOR of Stein’s raw and isotonized estimators is able to qualitatively explain the complex

risk reductions that are seen without explicitly computing the risk functions.

6.2. Validation of the UBEOR approach in the context of Lin and Perlman’s [6] examples

An important numerical study of the performance of Stein’s isotonized estimator is conducted by Lin and Perl-

man [6]. They study a variety of covariance matrices with structures that are important in both theoretical and applied

statistics. All the covariance matrices have dimension p = 6, and at a first glance seem small, though it is important to

note that there are 21 parameters in total. Moreover, the sample sizes that are considered, namely, n = 6, 15, 30, 60, 100

represent different finite-sample regimes, ranging all the way from when the estimator is barely defined to the moder-

ate sample size regime. Moreover, we also confirm the analysis of the p = 6 case carries over to higher dimensions

such as p = 100, 200 but is omitted here for brevity. In Ref. [6], Stein’s isotonized estimator is found to perform

significantly better than the MLE when the eigenvalues of Σ are close or can be divided into clusters of approximately

equal eigenvalues. The improvement, however, is modest when the eigenvalues of Σ are more dispersed. We show

below that the UBEOR analysis is able to give theoretical insight into Lin and Perlman’s results.

For the purpose of comparison, the same examples as in Lin and Perlman [6] are repeated here. Define the p-

dimensional vectorσ = (σ1, σ2, . . . , σp) and the p(p−1)/2-dimensional vector ρ = (ρ21; ρ31, ρ32; . . . ; ρp1 . . . , ρp(p−1)).

Let R denote the symmetric matrix with off-diagonal elements ρi j. The covariance matrices considered are of the form:

Σ = diag(σ)R(ρ)diag(σ). The following five 6 × 6 test matrices Σα (1 � α � 5) have been examined in Ref. [6]:

σ1 = (1, 1, 1, 1, 1, 1), ρ1 = (0; 0, 0; . . . ; 0, . . . , 0);

σ2 = (1, 1, 1, 1, 1, 1), ρ2 = (0.9; 0.9, 0.9; . . . ; 0.9, . . . , 0.9);

σ3 = (3.08, 2.66, 3.00, 2.55, 4.73, 2.93),

ρ3 = (0.60;−0.38,−0.45; 0.61, 0.43,−0.61; 0.09, 0.34,−0.51, 0.63;−0.36, 0.08, 0.36,−0.21, 0.20);

σ4 = (1, 1, 1, 1, 1, 1), ρ4 = (0.58; 0.61, 0.58; 0.60, 0.53, 0.94; 0.57, 0.53, 0.87, 0.88; 0.60, 0.55, 0.88, 0.88, 0.92);

σ5 = (1, 2, 3, 4, 5, 6), ρ5 = ρ4.

The ratios of the adjacent eigenvalues of the matrices Σα are given in Table 1. As mentioned earlier, the covariance

matrices considered above arise naturally in practice. The first matrix Σ1 corresponds to the well known case of

“sphericity” and is ubiquitous in hypothesis tests of covariance structure. The second matrix Σ2 describes collections

of random variables which are all highly positively correlated with each other. The corresponding population eigen-

value ensemble confirms that much of the variation in the random variables is explained by just one leading principal

component, which is indicative of the intrinsic “low dimensional” nature of the covariance matrix. The third matrix

Σ3 describes the setting where there are both positive and negative correlations and is typical of various applications

in genomics, environmental sciences, and finance. The population eigenvalue ensemble varies in such a way that the

eigenvalues increase by powers of two. The fourth covariance matrix Σ4 describes collections of random variables

with equal variances that are all moderately positively correlated with each other and have just one leading principal

component. Though Σ4 is similar to Σ2 in terms of correlations, the case where the correlations are only moderately

large is more typical in applications. The fifth covariance matrix Σ5 is similar to Σ4 except that the variances (i.e., the

diagonal terms) are increasing. This added flexibility in Σ5 (as compared to the homoscedastic assumption of Σ4) is

also more realistic and has the effect of increasing the variation explained by the largest principal component.

The risk of Stein’s isotonized estimator was computed for the matrices Σα, and the outcomes were compared with

those of the MLE. The percentage reduction in risk (see (34)) is reported in Table 1 for the five test matrices Σα
and for n = 6, 15, 30, 60, 100. Note that the very minor deviations from Lin and Perlman’s numerical results [6] are

essentially due to random variation (in addition, the number of simulations used here is one hundred times larger than

in Ref. [6]). We are now in a position to interpret the above numerical results in the UBEOR framework.

The adjacent eigenvalues of the matrices Σ1 and Σ2 have ratios equal or close to 1. In these cases, as suggested by

the UBEOR approach, Stein’s estimator makes extensive use of the isotonizing algorithm and yields excellent results.

As n increases, γL1
initially increases and eventually tapers off. This behavior is comparable to the one described in

Subsect. 6.1 for fixed r close to 1 and changing n (see, e.g., Fig. F.1(b) for r = 0.9). The significant risk reductions
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Σα Ratios of eigenvalues n = 6 n = 15 n = 30 n = 60 n = 100

Σ1 (1, 1, 1, 1, 1) 53.3 71.3 74.5 75.7 76.1

Σ2 (0.02, 1, 1, 1, 1) 47.0 54.2 53.4 52.5 52.0

Σ3 (0.5, 0.5, 0.5, 0.5, 0.5) 38.7 20.5 7.1 0.2 -0.9

Σ4 (0.16, 0.60, 0.40, 0.47, 0.75) 37.8 21.4 10.3 3.7 1.4

Σ5 (0.04, 0.86, 0.82, 0.29, 0.78) 39.5 26.5 19.4 15.3 12.2

Table 1: Percentage reduction in average risk, γL1
, for ϕ̂St+iso

j
. Note the small differences in the risks from those given in Ref. [6].

for cases like Σ1 and Σ2 have given much credit to Stein’s estimator, though it is clear from our investigation here that

such risk reductions are primarily attributable to the isotonizing algorithm.

For Σ3, the ratios of the adjacent eigenvalues are all equal to 0.5. Hence, for large n, they fall into the region where

Stein’s estimator does not require the isotonizing correction even though its UBEOR is greater than that of the MLE.

Accordingly, γL1
decreases rapidly with increasing n and becomes negative for n ≫ p (see also Fig. F.1(b) for r = 0.5).

A comparable decrease is observed for Σ4 and Σ5 owing to the contraction of the set where the isotonizing algorithm

applies; however, the effect is less dramatic since some of the ratios between adjacent eigenvalues are very small or

close to 1. The risk reduction in the cases Σ3 and Σ4 monotonically decreases as a function of n and is comparable to

the risk of the MLE for n = 60, 100. This suggests that when n increases the need to isotonize decreases. We conclude

by noting once more that the risk reductions observed mirror the UBEOR analysis conducted in earlier sections.

7. Summary and concluding remarks

In this paper a comprehensive theoretical investigation of Stein’s covariance estimator in the UBEOR framework

was undertaken, and three different regimes were identified regarding the behavior of Stein’s UBEOR FSt(l). These

findings provide a theoretical means to understand how the risk of Stein’s estimator depends on various covariance

structures Σ. In the first regime, when all the eigenvalues of Σ are sufficiently separated, the sample eigenvalues are

mainly distributed in the part of the domain in which the UBEOR of Stein’s raw estimator is smaller than that of

the MLE, with the latter taking a constant value Kml
p,n. Thus, EΣ[F

St+iso(l)] is less than Kml
p,n, and hence the risk of

Stein’s estimator is less than that of the MLE. In this case, the isotonizing correction is not required and the reduction

of the UBEOR (and hence of the risk) is to be attributed only to Stein’s raw estimator. The reduction, however, is

not very large and decreases as the sample size n increases. In the second regime, a) some of the eigenvalues of

Σ are close together or b) are moderately separated but n is close to p. In this regime, Stein’s estimator requires

extensive use of the isotonizing correction, and has the effect of considerably reducing the UBEOR. Here the risk of

Stein’s isotonized estimator is considerably less than that of the MLE. Our analysis shows that the size of the set in

which the isotonizing algorithm applies increases as the sample size n decreases and attains its maximum at n = p.

Lastly, in the third regime, that is when the eigenvalues of Σ are only moderately separated and the sample size n is

sufficiently greater than the dimension p, the UBEOR of Stein’s raw estimator is greater than that of the MLE. Here

the isotonizing algorithm does not apply, although were it to be applied, it would lead to a reduction in the UBEOR.

As a consequence, the risk of Stein’s estimator is comparable to that of the MLE (or even greater than it). These

theoretical insights have also been corroborated at the level of risk functions via Monte Carlo simulations. We note

that the UBEOR approach does not lead to a decision theoretic or optimality result: it is not meant to be, since it

is already known from numerical work that Stein’s estimator does not render the MLE inadmissible. The UBEOR

approach is nevertheless able to obtain important insights into the theoretical workings of Stein’s isotonized estimator.

Such results are valuable in the sense that a theoretical understanding of Stein’s estimator has been elusive since its

introduction about 40 years ago.
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[11] Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statist.

Appl. Genet. Mol. Biol. 4, 32 (2005).

[12] Stein, C.: Some problems in multivariate analysis. Technical report No. 6, Stanford University (1956)

[13] Stein, C.: Estimation of a covariance matrix. In Riesz Lecture. 39th Annual Meeting, IMS, Atlanta, GA (1975)

[14] Stein, C.: Lectures on the theory of estimation of many parameters (in Russian). In Studies in the Statistical Theory of Estimation, Part I (I.A.

Ibragimov and M.S. Nikulin, eds.), Proceedings of Scientific Seminars of the Steklov Institute, Leningrad Division 74, 4–65 (1977)

[15] Stein, C: Lectures on the theory of estimation of many parameters. J. Math. Sci. 34, 1373–1403 (1986)

[16] Won, J., Kim, S.J., Lim, J., Rajaratnam, B.: Condition Number-Regularized Covariance Estimation. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 75:427–450 (2013)

19



Supplemental Material

A. Monotonicity of the UBEOR for p = 2

The derivative of f St is given by:

d f St

dx1

=
4[n + 1 + (n − 1)x1]

[n + 1 − (n − 1)x1]3
+

4[(n + 1)x1 + n − 1]

[n − 1 − (n + 1)x1]3
+

4(x1 + 1)

(1 − x1)[n + 1 − (n − 1)x1][(n + 1)x1 − (n − 1)]
.

We want to show that d f St/dx1 > 0 for all x1 ∈ Ω2,n = (0, x̃1). The first and the second term on the right-hand-side are

strictly positive, whereas the third one is negative for all x1 ∈ Ω2,n. We focus on the sum of the second and the third

term:
4

(n + 1)x1 − (n − 1)

{
− (n + 1)x1 + n − 1

[(n + 1)x1 − (n − 1)]2
+

x1 + 1

(1 − x1)[n + 1 − (n − 1)x1]

}
.

In the above expression, the prefactor is strictly negative for all x1 ∈ Ω2,n. We thus need to consider only the terms

inside the curly bracket and show that their sum is negative. We note that since x1 > 0,

|(n + 1)x1 − (n − 1)| < n + 1 − (n − 1)x1,

and therefore
1

|(n + 1)x1 − (n − 1)| >
1

n + 1 − (n − 1)x1

.

To prove that d f St/dx1 > 0, it is then sufficient to show that

(n + 1)x1 + n − 1

|(n + 1)x1 − (n − 1)| >
1 + x1

1 − x1

.

This inequality is satisfied for all x1 ∈ Ω2,n since on Ω2,n it reduces to x1 > 0.

B. The UBEOR of Stein’s raw estimator for p = 3

Figure B.1 shows that for p = 3 the function f St is neither convex nor concave.
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Figure B.1: Behavior of f St(x1 , x2) as a function of x2 for x1 = 0.85, p = 4, n = 20 (solid line). The dashed line has been drawn to show that f St is

neither convex nor concave.
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Figure C.1: Left: the set Ω4,20 . Right: the set ∆4,20. The sets ∆4,20 and ∆′
4,20

are numerically indistiguishable.
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Figure C.2: (a) Volumes of the sets ∆4,n and Ω4,n as a function of n; (b) Volume ratios occupied by the preimages of the sets ∆4,n and Ω4,n under ν.

C. The UBEOR of Stein’s raw estimator for p = 4

For p = 4, the graph of f St cannot be visualized, but the sets Ω4,n and ∆4,n can be computed numerically (see

Fig. C.1). Once more, we observe that f St is less than Kml
4,n

when ‖x‖ is sufficiently small, and that ∆4,n is a connected

set. The volumes of the two sets are reported in Fig. 2(a) as a function of n. When the comparison between Stein’s

UBEOR and that of the MLE is undertaken in the original l-space, the volume of the set where FSt(l) is less than Kml
4,n

turns out to be very small as compared to the volume of Dp (see Fig. 2(b)).

The function f St is not monotonic in each separate variable xi, nor is it convex (Fig. C.3).

At x = 0, the percentage reduction in the UBEOR of Stein’s raw estimator relative to the MLE (see (29)) decreases

approximately linearly with increasing n (Fig. 3(c)).

As mentioned in Subsect. 4.2, the above properties are similar to those of the p = 3 case.

D. Proofs of Lemmas and Propositions

Proof of Lemma 1. We prove that for any n � p > 1 and for any q � 2, there exists x̃ ∈ (0, 1)p−1 such that aq(x̃) = 0

and a j(x̃) > 0 for all j = 1, . . . , p, j � q. The Lemma follows from a straightforward generalization of the following

proof.

2
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Figure C.3: Behavior of f St(x1 , x2 , x3) as a function of x2 for x1 = 0.88, x3 = 0.03, p = 4, n = 20 (solid line). The dashed line has been drawn to

show that f St is neither convex nor concave.

Let q � 2, ǫ ∈ (0, 1), and η ∈ (0, 1). Consider x̃ ∈ (0, 1)p−1 such that

x̃k = ǫ ∀ k = 1, . . . , p, k � q − 1,

x̃q−1 = 1 − η.

Then, for i < j,

π
j

i
(x̃) =



ǫ j−i if 1 � j < q

(1 − η)ǫq−i−1 if j = q and 1 � i < q − 1

(1 − η) if j = q and i = q − 1

(1 − η)ǫ j−i−1 if q < j � p and 1 � i < q

ǫ j−i if q < j � p and q � i < j,

whence the negative contribution to a j(x̃) (see (27)) behaves for ǫ, η→ 0 as follows:

s j(x̃) :=

j−1∑

i=1

π
j

i
(x̃)

π
j

i
(x̃) − 1

=



−ǫ + O
(
ǫ2
)

if 2 � j < q,

−1

η
+ 1 − ǫ + O(ǫ2) + O(ǫ)O(η) if j = q,

−2ǫ + O
(
ǫ2
)
+ O(ǫ)O(η) if j = q + 1,

−ǫ + O
(
ǫ2
)
+ O(ǫ)O(η) if q + 1 < j � p.

For j � q, |s j(x̃)| can be made arbitrarily small by reducing ǫ, and hence there exists ǫ ∈ (0, 1) such that a j(x̃) is

positive for all j � q. Simultaneously, η can be adjusted to increase |sq(x̃)| in such a way that aq(x̃) vanishes.

Proof of Proposition 1. Recall the definition of f St given in (16). It can easily be proved that if x belongs to a

neighborhood of x̃, then xk < 1 for all k = 1, . . . , p and hence π
j

i
(x) < 1 for all i, j. Thus, in a neighborhood

of x̃ the sums
j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

and

p∑

i= j+1

πi
j
(x)

[πi
j
(x) − 1]2

are bounded for all j = 1, . . . , p. The same holds for all the a j(x), j = 1, . . . , p. As a result, for all j � M, the j-th

summand in (16) satisfies:

∣∣∣∣∣∣∣∣
1 +

4

a2
j
(x)

j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

+
4

a2
j
(x)

p∑

i= j+1

πi
j
(x)

[1 − πi
j
(x)]2

+ ln(a j(x))

∣∣∣∣∣∣∣∣
< +∞ (D.1)
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for all x belonging to a neighborhood of x̃. By contrast, for j ∈ M, we have

lim
x→x̃


1 +

4

a2
j
(x)

j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

+
4

a2
j
(x)

p∑

i= j+1

πi
j
(x)

[1 − πi
j
(x)]2

+ ln(a j(x))


= +∞ (D.2)

given that a j(x) → 0 as x → x̃ and 0 < π
j

i
(x) < 1 in a neighborhood of x̃. Equations (D.1) and (D.2) imply that f St

diverges positively as x→ x̃.

Proof of Proposition 2. By using (17) and (16), we can rewrite f St in the form:

f St(x) =

p∑

j=1

{
1 +

g j(x)

[n + h j(x)]2
+ ln(n + h j(x))

}
, (D.3)

where

g j(x) = 4

j−1∑

i=1

π
j

i
(x)

[π
j

i
(x) − 1]2

+ 4

p∑

i= j+1

πi
j
(x)

[1 − πi
j
(x)]2

and

h j(x) = a j(x) − n = −p + 1 + 2

j−1∑

i=1

π
j

i
(x)

π
j

i
(x) − 1

+ 2

p∑

i= j+1

1

1 − πi
j
(x)
.

For all n � p > 1, (13) yields
p∑

j=1

a j(x) = np ∀ x ∈ Ωp,n, (D.4)

whence
p∑

j=1

h j(x) = 0. (D.5)

We have
g j(x)

[n + h j(x)]2
=

g j(x)

n2
+ O

(
1

n3

)
(n→ ∞) (D.6)

and

ln(n + h j(x)) = ln n + ln

(
1 +

h j(x)

n

)
= ln n +

h j(x)

n
−

h2
j
(x)

2n2
+ O

(
1

n3

)
(D.7)

as n→ ∞. Equation (28) can be obtained by substituting (D.6) and (D.7) into (D.3) and by using (D.5).

Furthermore, Proposition 1 implies that the convergence is not uniform.

Proof of Proposition 3. The value of f St at x = 0 is

f St(0) = p +

p∑

j=1

ln(n + p + 1 − 2 j) − cp,n.

The difference between the two unbiased estimators of risk can be written as

Kml
p,n − f St(0) =

p∑

j=1

[ln(n) − ln(n + p + 1 − 2 j)] = ln


p∏

j=1

n

n + p + 1 − 2 j

 . (D.8)
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Thus, proving that Kml
p,n − f St(0) is an increasing function of p reduces to showing that

p+1∏

j=1

n

n + p + 2 − 2 j
>

p∏

j=1

n

n + p + 1 − 2 j

or, equivalently,

n

n − p

p∏

j=1

n + p + 1 − 2 j

n + p + 2 − 2 j
> 1. (D.9)

The above inequality can be proved by induction. For p = 2 and p = 3, inequality (D.9) is trivially satisfied for

all n > 1. We now assume that inequality (D.9) holds for a given p (inductive hypothesis). For p + 2, the left-hand-

side of (D.9) is written

n

n − p + 2

p+2∏

j=1

n + p + 3 − 2 j

n + p + 4 − 2 j
=

n

n − p + 2

p+2∏

j=1

n + p + 1 − 2( j − 1)

n + p + 2 − 2( j − 1)

=
n

n − p + 2

p+1∏

k=0

n + p + 1 − 2k

n + p + 2 − 2k
=

n2 − (p + 1)2

n2 − (p + 2)2

n

n − p

p∏

k=1

n + p + 1 − 2k

n + p + 2 − 2k
,

whence

n

n − p + 2

p+2∏

j=1

n + p + 3 − 2 j

n + p + 4 − 2 j
>

n2 − (p + 1)2

n2 − (p + 2)2
> 1.

This argument holds ∀ 1 < p � n. The difference Kml
p,n − f St(0) therefore increases with increasing p. Since

Kml
p,n − f St(0) = 0 for p = 1, Kml

p,n − f St(0) is strictly positive for all p > 1.

As for the order of the estimated eigenvalues, the restriction l j/α j(l) � l j+1/α j+1(l) is equivalent to (see (18))

x j �
a j+1(x)

a j(x)
,

where x is such that x j = l j+1/l j. For x→ 0, the above inequality is written:

0 �
n + p − 1 − 2 j

n + p + 1 − 2 j
,

and is satisfied for all j = 1, . . . , p − 1.

The Proposition then follows from the continuity of f St and of the a j.

Proof of Lemma 2. Recall the asymptotic expansion of the psi function ( Abramowitz, M., Stegun, I.A.: Handbook of

Mathematical Functions. Dover Publications, 1964; formula 6.3.18):

ψ(0)(z) :=
Γ′(z)

Γ(z)
= ln z − 1

2z
− 1

12z2
+ O

(
1

z4

)
(z→ ∞). (D.10)

The asymptotic expansion of the constant cp,n, whose definition is given in (5), follows from those of ln z and of ψ(0)(z)

above:

cp,n = p(1 + ln n) − p(p + 1)

2n
− p[p(2p + 3) − 1]

12n2
+ O

(
1

n3

)
(n→ ∞).

Hence

Kml
p,n =

p(p + 1)

2n
+

p[p(2p + 3) − 1]

12n2
+ O

(
1

n3

)
(n→ ∞). (D.11)
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Furthermore, (D.8) yields:

Kml
p,n − f St(0) = − ln

p∏

j=1

(
1 +

p + 1 − 2 j

n

)
= −

p∑

j=1

ln

(
1 +

p + 1 − 2 j

n

)
∼

p∑

j=1

(p + 1 − 2 j)2

2n2
=

p(p2 − 1)

6n2
(n→ ∞).

(D.12)

The Lemma then follows from (D.11) and (D.12).

Proof of Lemma 3. The Lemma is more easily proved by using the original variables l rather than their ratios. When

all the eigenvalues are pooled together, ψ̂ St+iso
j

(l) is written:

ψ̂ St+iso
j (l) =

1

l j

∑p

k=1
lk∑p

k=1
αk(l)

=
1

l j

∑p

k=1
lk

np
j = 1, . . . , p, (D.13)

where the last equality follows from (13). Moreover,

l j

∂

∂l j

ψ̂ St+iso
j

∣∣∣∣∣∣
l

= − 1

l j

∑p

k=1
lk

np
+

1

np
j = 1, . . . , p. (D.14)

Substituting (D.13) and (D.14) in (4) yields:

FSt+iso(l) =

p∑

j=1


(n − p − 1)

np

p∑

k=1

lk

l j

+
2

np
− ln


1

np

p∑

k=1

lk

l j


 − cp,n

with the last equality following from:
p∑

j=1

∑

i� j

1

l j − li
= 0.

If l⋆ is such that l⋆
1
= l⋆

2
= · · · = l⋆p , then

FSt+iso(l⋆) = p(1 + ln n) − p(p + 1) − 2

n
− cp,n = Kml

p,n −
p(p + 1) − 2

n
,

and hence

f St+iso(1, 1, . . . , 1) = Kml
p,n −

p(p + 1) − 2

n
. (D.15)

The Lemma can then be proved by using (D.12) and (D.15).

The expansion of κ2 is a consequence of (D.11) and (D.15).

E. Stein’s isotonized estimator for p = 3

For p = 3 Stein’s isotonized estimator takes the form reported below. Different cases should be distinguished

depending on the point l ∈ Dp:4

1. if α2(l), α3(l) > 0 and

a)
l1

α1(l)
�

l2

α2(l)
�

l3

α3(l)
, then

ϕ̂ St+iso
j (l) = ϕ̂ St

j (l) =
l j

α j(l)
, j = 1, 2, 3;

4Note that α1(l) > 0 for all l ∈ Dp and hence the analysis of the isotonized algorithm needs to consider the sign of α2(l) and α3(l) and whether

the order is violated by the estimates (l1/α1(l), l2/α2(l), l3/α3(l)).
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b)
l2

α2(l)
<

l3

α3(l)
and

l1

α1(l)
�

l2 + l3

α2(l) + α3(l)
, then

ϕ̂ St+iso
1 (l) =

l1

α1(l)
and ϕ̂ St+iso

2 (l) = ϕ̂ St+iso
3 (l) =

l2 + l3

α2(l) + α3(l)
;

c)
l2

α2(l)
<

l3

α3(l)
and

l1

α1(l)
<

l2 + l3

α2(l) + α3(l)
, then

ϕ̂ St+iso
j (l) =

l1 + l2 + l3

α1(l) + α2(l) + α3(l)
=

l1 + l2 + l3

3n
, j = 1, 2, 3,

with the last equality following from (13);

d)
l2

α2(l)
�

l3

α3(l)
,

l1

α1(l)
<

l2

α2(l)
, and

l1 + l2

α1(l) + α2(l)
�

l3

α3(l)
, then

ϕ̂ St+iso
1 (l) = ϕ̂ St+iso

2 (l) =
l1 + l2

α1(l) + α2(l)
and ϕ̂ St+iso

3 (l) =
l3

α3(l)
;

e)
l2

α2(l)
�

l3

α3(l)
,

l1

α1(l)
<

l2

α2(l)
, and

l1 + l2

α1(l) + α2(l)
<

l3

α3(l)
, then

ϕ̂ St+iso
j (l) =

l1 + l2 + l3

3n
, j = 1, 2, 3;

2. if α2(l) > 0, α3(l) � 0, and

a)
l1

α1(l)
�

l2 + l3

α2(l) + α3(l)
> 0, then

ϕ̂ St+iso
1 (l) =

l1

α1(l)
and ϕ̂ St+iso

2 (l) = ϕ̂ St+iso
3 (l) =

l2 + l3

α2(l) + α3(l)
;

b)
l1

α1(l)
<

l2 + l3

α2(l) + α3(l)
or

l2 + l3

α2(l) + α3(l)
� 0, then

ϕ̂ St+iso
j (l) =

l1 + l2 + l3

3n
, j = 1, 2, 3;

3. if α2(l) � 0, α3(l) > 0, and

a)
l1 + l2

α1(l) + α2(l)
�

l3

α3(l)
, then

ϕ̂ St+iso
1 (l) = ϕ̂ St+iso

2 (l) =
l1 + l2

α1(l) + α2(l)
and ϕ̂ St+iso

3 (l) =
l3

α3(l)
;

b)
l1 + l2

α1(l) + α2(l)
<

l3

α3(l)
, then

ϕ̂ St+iso
j (l) =

l1 + l2 + l3

3n
, j = 1, 2, 3;

4. if α2(l) � 0, α3(l) � 0, then

ϕ̂ St+iso
j (l) =

l1 + l2 + l3

3n
, j = 1, 2, 3.

7



The UBEOR of the isotonized estimator is obtained by setting ψ̂ St+iso
j

(l) = ϕ̂ St+iso
j

(l)/l j, j = 1, 2, 3, and by substituting

the above expressions in (4). The result is thus a function defined piecewise.

As was noted in Section 5, ψ̂ St+iso
j

(l) can then be rewritten in terms of the ratios x j = l j+1/l j. Define the sets:

AI =

{
x ∈ (0, 1]2 : a j+1(x) > 0 and x j �

a j+1(x)

a j(x)
∀ j = 1, 2

}
,

BII
1 =

{
x ∈ (0, 1]2 : a2(x) > 0, a3(x) > 0, x2 >

a3(x)

a2(x)
, andx1(1 + x2) �

a2(x) + a3(x)

a1(x)

}
,

BII
2 =

{
x ∈ (0, 1]2 : a2(x) > 0, a3(x) � 0, and

1

a1(x)
�

x1(1 + x2)

a2(x) + a3(x)
> 0

}
,

BIII
1 =

{
x ∈ (0, 1]2 : a2(x) > 0, a3(x) > 0, x2 �

a3(x)

a2(x)
, x1 >

a2(x)

a1(x)
, and

1 + x1

a1(x) + a2(x)
�

x1x2

a3(x)

}
,

BIII
2 =

{
x ∈ (0, 1]2 : a2(x) � 0, a3(x) > 0, and

1 + x1

a1(x) + a2(x)
�

x1x2

a3(x)

}
.

Depending on the value of x ∈ (0, 1), ψ̂ St+iso
j

(x) takes one of the following four forms:5

ψ̂I
j(x) =

1

a j(x)
, j = 1, 2, 3, (E.1)

if x ∈ AI ;

ψ̂II
1 (x) =

1

a1(x)
, ψ̂II

2 (x) =
1 + x2

a2(x) + a3(x)
, ψ̂II

3 (x) =
1 + x−1

2

a2(x) + a3(x)
, (E.2)

if x ∈ AII = BII
1
∪ BII

2
;

ψ̂III
1 (x) =

1 + x1

a1(x) + a2(x)
, ψ̂III

2 (x) =
1 + x−1

1

a1(x) + a2(x)
, ψ̂III

3 (x) =
1

a3(x)
(E.3)

if x ∈ AIII = BIII
1
∪ BIII

2
;

ψ̂IV
1 (x) =

1 + x1 + x1 x2

3n
, ψ̂IV

2 (x) =
1 + x−1

1
+ x2

3n
, ψ̂IV

3 (x) =
1 + x−1

2
+ x−1

1
x−1

2

3n
, (E.4)

if x ∈ AIV = ((0, 1] × (0, 1]) \
(
AI ∪ AII ∪ AIII

)
. Thus, for j = 1, 2, 3, ψ̂ St+iso

j
(x) is written as:

ψ̂ St+iso
j (x) =



ψ̂I
j
(x) x ∈ AI

ψ̂II
j

(x) x ∈ AII

ψ̂III
j

(x) x ∈ AIII

ψ̂IV
j

(x) x ∈ AIV .

(E.5)

Finally, the UBEOR of the isotonized estimator can be rewritten in terms of the ratios x j = l j+1/l j by using the above

expressions for ψ̂ St+iso
j

(x).

Denote by f II (x) the UBEOR obtained by using the estimator ψII
j

(x) (see (E.2)) everywhere on (0, 1] × (0, 1].

If f St+iso
|AII denotes the function f St+iso restricted to the subset AII , then f II clearly represents the extension of f St+iso

|AII to

5With a slight abuse of notation, we continue to write ψ̂St+iso
j

to denote the estimator expressed in terms of the ratios l j+1/l j .
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Figure E.1: Left: the set where f II < f St+iso for n = 20. Center: the set where f III < f St+iso for n = 20. Right: the set where f IV < f St+iso

for n = 20.
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Figure F.1: Percentage reduction in average loss for p = 6: (a) n = 6 (�), n = 20 (�), n = 100 (•) and r ∈ (0, 1]; (b) r = 0.1 (�), r = 0.5 (�),

r = 0.9 (•) and p � n � 100.

the entire domain (0, 1]× (0, 1]. Likewise, denote by f III (x) and f IV (x) the unbiased estimators of risk corresponding

to the use of ψIII
j

(x) and ψIV
j

(x) (see (E.3) and (E.4)) everywhere in (0, 1] × (0, 1]. As the functions f II , f III , and f IV

are continuous on (0, 1]× (0, 1], it is possible to infer from Fig. 5 (right panel) that there are subsets of the domain on

which f II , f III , and f IV are less than f St+iso. A more precise illustration of this fact is reported in Fig. E.1 for n = 20.

We also note that the size of the region where at least one of the functions f II , f III , and f IV is less than f St+iso actually

increases with decreasing n. Thus, for small sample sizes, these functions suggest an approach to substantially reduce

the UBEOR. An analogous behavior is observed for other values of n. In conclusion, as in the p = 2 case, there are

parts of the domain on which the isotonizing correction does not apply, even though its use over these regions would

give a lower UBEOR.

F. Validation of the UBEOR approach for the p = 6 case

The percentage reduction in risk with respect to the MLE for p = 6 and Σ(r) = diag(1, r, r2, r3, r4, r5) is shown in

Fig. F.1(a) for fixed n as a function of r and in Fig. F.1(b) for fixed r as a function of n.
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