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Variance of MAP Reconstructions from PET Data

Jinyi Qi,* Member, IEEE, and Richard M. Leahy,Member, IEEE

Abstract—We examine the spatial resolution and variance
properties of PET images reconstructed using maximuma poste-
riori (MAP) or penalized-likelihood methods. Resolution is char-
acterized by the contrast recovery coefficient (CRC) of the local
impulse response. Simplified approximate expressions are derived
for the local impulse response CRC’s and variances for each
voxel. Using these results we propose a practical scheme for
selecting spatially variant smoothing parameters to optimize
lesion detectability through maximization of the local CRC-to-
noise ratio in the reconstructed image.

Index Terms—Hyperparameter estimation, image resolution,
MAP estimation, variance analysis.

I. INTRODUCTION

PET image reconstruction algorithms based on maximum
likelihood (ML) or maximuma posteriori (MAP) prin-

ciples can produce improved spatial resolution and noise
properties in comparison to conventional filtered backpro-
jection (FBP) methods. It is often important to be able to
quantify this improvement in terms of the resolution (or bias)
and variance of the resulting images. These measures can be
used in comparing different reconstruction algorithms on a
particular imaging system or for comparing different system
configurations. Similarly, estimates of bias and variance from
a single data set in quantitative studies are important measures
of the reliability of a point estimate of tracer uptake.

Bias and variance for filtered backprojection images are
readily computed using a Poisson data model since the es-
timator is linear [1]. However, ML and MAP estimators
are nonlinear functions of the data that are computed using
iterative algorithms. Closed-form solutions are not generally
available. The situation is further complicated in the case
of ML methods, since the iterations are often terminated
before convergence [2]. Estimator performance can always be
evaluated using Monte Carlo techniques, but the computational
costs will often make this approach impractical. A great deal
of progress has recently been made in developing approximate
closed-form expressions for the bias and variance of these
estimators, as we briefly review below. In this paper we build
on this work by developing new approximations for the con-
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trast recovery and voxelwise variances of MAP reconstruction
algorithms.

Since the EM algorithm for ML reconstruction [3] is rarely
iterated to convergence, Barrettet al. [2] derived approximate
formulae for the mean and covariance of the reconstructed
image as a function of the iteration number. Monte Carlo val-
idations [4] showed that these theoretical predictions matched
Monte Carlo estimates for the earlier iterations at which the
algorithm is usually terminated. In high count situations, these
results were also accurate for larger numbers of iterations.
Wang and Gindi [5] extended this approach to two special
cases of MAP EM algorithms: a MAP EM algorithm incorpo-
rating an independent gamma prior [6], and the one-step-late
MAP-EM algorithm using a multivariate Gaussian prior [7].

This iteration-based approach is attractive for methods that
are terminated before convergence, as is common practice
for the EM algorithm and its ordered-subsets variants [8].
However, for the MAP algorithms in [5], the complexity
of these expressions gives little intuitive insight into the
effect of the smoothing parameter on bias and variance and
evaluation of the expressions for large numbers of iterations
is time consuming. These methods also require explicit update
equations, so that they are inapplicable to numerical optimiza-
tion methods such as gradient or coordinate-wise ascent that
involve line searches.

An alternative approach was proposed by Fessler and
Rogers [9], [10] who analyzed the mean, variance, and spatial
resolution at a fixed point of the objective function. The
resolution and noise properties are computed at the fixed
point using partial derivatives and truncated Taylor series
approximations. These results are independent of the particular
optimizing algorithm used and require only that the algorithm
be iterated to effective convergence. The derivation does not
account for positivity constraints, so the results are valid only
where the solution is strictly positive. These results show very
good agreement with Monte Carlo results, except in areas
where the activity is very low. By using the image estimated
from a single data set in place of the true image, a plug-in
form of the variance approximation can be used to compute
a surprisingly good estimate.

While closed-form equations are derived in [10], they in-
volve computing the inverse of a Hessian matrix or solving a
related set of linear equations. These expressions provide little
direct insight into the relationship between estimator bias and
variance and the parameters of the imaging system and recon-
struction algorithm. In addition, computational cost remains
high except for the case of MAP with a modified quadratic
prior, where a set of linear equations can be presolved [11].
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Here, we analyze the resolution and variance properties of
MAP reconstruction methods. Because several fast convergent
algorithms have been developed for MAP reconstruction [12],
[13], [14] and penalized weighted least squares [15]–[17], we
have adopted the approach in [9] and [10] and investigate
the properties of the MAP estimator at a fixed point of
the objective function, rather than as a function of iteration.
The resolution is characterized by the local impulse response
contrast recovery coefficient (CRC). We derive simplified
approximate equations for local impulse response CRC’s and
variance for each voxel. The approximations used are in the
spirit of previous studies of resolution and variance [9]–[11]
and in the design of preconditioners for conjugate gradient
methods [17]. However, the approximation used here results
in expressions that are rational polynomials of the eigenvalues
of matrices computed from the system geometric response
and the Gibbs energy of the prior. The eigenvalues are found
using a two-dimensional (2-D) Fourier transform by assuming
that the geometric response of PET is spatially invariant.
The rational polynomials are easily computed in comparison
to the iterative formulae, or those based on inverse Hessian
computations. We use these results to examine the relationship
of the CRC and variance to the hyperparameter and voxelwise
Fisher information.

Using the plug in approach, we can also use these CRC and
variance expressions to select the smoothing parameter. This
parameter controls the tradeoff between smoothing (bias) and
noise propagation (variance). Within the Bayesian framework,
the parameters of the prior, if unknown, should be treated as
random quantities for which a hyperprior density is specified.
The parameters can then either be marginalized out or esti-
mated directly from the data. In practice, these parameters are
more commonly chosen either using approximate maximum
likelihood methods [18]–[20] or cross validation techniques
[21], [22].

An alternative approach to parameter selection was pro-
posed by Fessler and Rogers [10] who noted that using a
constant parameter for a quadratic prior with Poisson data
results in a spatially variant resolution. This observation was
then used as the basis for defining a spatially variantwhich
compensates for this effect to produce uniform resolution
throughout the image. Here we describe an alternative means
of hyperparameter selection that may be more appropriate for
use in lesion detection tasks. The expressions developed for
CRC and noise variance can be used to compute a voxelwise
contrast to noise ratio (CNR) as a function of the data and
the hyperparameter. In computing these factors we use the
observed data in place of its expected value in the approximate
CRC and variance expressions. We show that the CNR has a
unique maximum so that can be specified to maximize CNR
at each voxel. The cost of computing these optimized param-
eters is small compared to that of reconstructing the image.
Since the prior in this case is an explicit function of the data,
the MAP method described here is not a true Bayesian estima-
tor. For consistency with our previous publications, however,
we will continue to refer to the general procedure of maximiz-
ing over the posterior probability as a MAP method, regardless
of the method by which the hyperparameter is selected.

The paper is organized as follows. In Section II we develop
approximate expressions for the CRC and variance of each

voxel. Although we focus here on PET image reconstruction,
these results are extendible to other linear image reconstruction
problems using photon limited data. In Section III we study
these approximations for the special case of Gaussian priors.
The method for choosing the smoothing parameters to maxi-
mize the CNR is described in Section IV. Simulation studies
which evaluate the accuracy of the approximations developed
in the paper are included in Section V.

II. THEORY

A. MAP Reconstruction

We use the standard Poisson model for the PET data with
log-likelihood

(1)

where is the image, is the measured
sinogram, and is the mean of the sinogram. The
mean sinogram is related to the image,, through an affine
transform

(2)

where is the detection probability matrix and
accounts for the presence of scatter and randoms

in the data. Here we assume that the data are not precorrected
for randoms and that an estimate ofis available. Randoms
corrected data are not Poisson so the following expressions
are not applicable. However, the shifted-Poisson model [23],
which accounts for the increased variance that results from
random subtraction, can be used as the basis for developing
analogous expressions to those below.

In our previous work [24], [25] we have used a factored
detection probability matrix to accurately model factors
such as depth-dependent geometric sensitivities and spatially
variant detector response. In the following we use the simpler
model where is a diagonal
matrix containing the product of the detector normalization,
dead-time, and attenuation correction factors.1 is the
geometric projection matrix representing the probability that
an emission from each voxel in the image produces, in the
absence of attenuation effects, a photon pair at each of the
detector pairs in the system. We will later assume thathas
the property that the operator produces a shift-invariant
blurring. This model cannot, therefore, directly include
shift-variant detector blurring, nor is it directly extendible to
fully three-dimensional (3-D) data acquisition. We address
these issues in a separate publication [26].

The results below apply to any prior with a Gibbs energy
that can be written in the form [17]

(3)

where is an arbitrary vector and
is a sparse neighborhood matrix whoseth row has nonzero

1D[ni] denotes a diagonal matrix with the(i; i)th diagonal element equal
to ni.
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elements corresponding to the voxels which form theth
clique. The specific values of these elements will in most
cases, including those considered here, correspond to the
weights necessary to compute approximate first- or second-
order spatial derivatives of the image. For example, in a simple
pairwise membrane model, and is equal to
the difference between theth pair of neighboring voxels.
The function is a convex function of its argument. The
number of terms depends on the size of the neighborhood and
the number of potential functions defined on cliques within this
neighborhood system [27]. As with the geometric projection
matrix, we later assume that is a shift-invariant operator.
This property will hold in the interior of the image, provided
that the neighborhood system and cliques are homogeneous
throughout the image. Behavior of near the image
boundary will depend on the boundary conditions used in
defining the cliques and clique potentials.

The MAP reconstruction is found as the maximizer of the
log posterior probability

(4)

where is the hyperparameter that determines the relative
influence of the prior and likelihood terms.

B. Resolution and Local Impulse Response CRC’s

In this and the following subsection, we develop approx-
imate expressions for the local impulse response CRC and
for the variance of each voxel of the MAP reconstruction.
The initial development follows the methods used in [9], [10],
and [17], however, diagonalization of an approximate matrix
inverse allows us to obtain simpler expressions in terms of the
eigenvalues of the matrices and .

The local impulse response [10] for theth voxel is defined
as

(5)

where denotes the expectation operator, is the recon-
struction from data is the projection data from tracer
distribution , and is the th unit vector. is dependent
on the object, the system, and the estimator.

Using a first-order Taylor series approximation and the chain
rule, one can approximate the local impulse response of
the MAP reconstruction as [10]

(6)

where is the Fisher information matrix,
and .

In the following, we will consider the local impulse response

CRC [28] crc as a measure of resolution where
is the th element of . While the measure does not

directly reflect the conventional measures such as full width at
half maximum (FWHM) and tenth maximum (FWTM), these
measures will tend to be highly correlated since a larger CRC
will produce a narrower FWHM by a simple conservation of
activity argument. For the task of lesion detection, the CRC

is also a measure that has been shown to be correlated with
lesion detectability [29]. The obvious advantage of working
with the CRC is that it is a simple function of the local impulse
response, while the FWHM is not.

We now adopt the approximations proposed in [10] and
[17] for the Fisher information matrix and the second-order
derivative of the prior

(7)

(8)

where with

(9)

with

(10)

Using (7) and (8), (6) can be simplified to

(11)

where

(12)

Using the local property of the local impulse response,
we can approximate the inverse of using

(13)

where . This approximation is essen-
tially the same as that used in (34) in [10]. Although the
approximation has no apparent optimal properties, note that
in the event that is a constant diagonal matrix, the
approximation becomes exact. Provided the diagonal elements
are smooth (see Section V) in the vicinity of theth voxel
(as determined by the spatial extent of ) then the
approximation should be reasonably accurate. Note also, that
rather than being a single approximation, this is in fact a
sequence of approximations, one per voxel, so that the CRC
can be computed using a different approximation for each
voxel.

Substituting (13) into (11) we can compute theth element
of as

(14)

Up to this point, the results are essentially a combination of
the development in [10] and [17]. Now we proceed by using
Fourier transform theory to analyze (14), which results in a
simplified expression for the local impulse response. We also
apply the same method to the variance analysis in Section II-C.

Since and correspond to shift-invariant blurring
operators, they have a block Toeplitz structure and can be
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approximately diagonalized using the 2-D discrete Fourier
transform (DFT) [17], [30], i.e.,

(15)

(16)

where and represent the Kronecker form of the 2-D
DFT matrix and its inverse, respectively [30]. The’s are
the eigenvalues of the system geometric response matrix
inner product , and the ’s are the eigenvalues of the
neighborhood matrix inner product .

Combining these diagonalizations with (14) and using the
unitary property of the DFT

(17)

The local impulse CRC can therefore be expressed in the
compact form

crc (18)

C. Approximation of the Variance

One can similarly show that the covariance of the MAP
reconstruction can be approximated as [9], [11]

Cov

(19)

Using the fact that , it can be easily verified
that the right-hand side of (19) is approximately equal to the
Cramer–Rao bound (CRB) for a biased estimator [31]

(20)

where is the gradient matrix
and denotes the Moore–Penrose pseudoinverse of the
Fisher information matrix.

Substituting (7) and (8) into (19) we have

Cov (21)

Here we are interested only in the variance at each voxel,
i.e., the diagonal elements of Cov . Using the approxima-
tion (13) in Section II-B, the variance at theth voxel can be
expressed as

var

(22)

Equations (18) and (22) are the key results of the paper.
These are simple and readily computed expressions for the lo-
cal contrast recovery and variances of individual voxels. Since
our starting points, (6) and (19), are first-order Taylor series
approximations involving derivatives of the objective function
up to the second-order only, we would expect the contrast
recovery and variance expressions to be most accurate for
near quadratic cost functions. The Poisson distribution is well
approximated by a Gaussian distribution for all but the smallest
mean count rates , so that we may expect the approxima-
tions to be fairly accurate for MAP estimates with Gaussian
priors. For non-Gaussian priors, accuracy will depend on the
degree of local nonquadratic behavior. In the following two
sections we consider the case where the prior is Gaussian,
which leads to further simplification of the results (18) and
(22). We return to non-Gaussian priors in Section II-C.

III. T HE CRC AND VARIANCE FOR GAUSSIAN PRIORS

Here we examine the case of Gaussian Markov random
field priors with the potential function . This class
includes a number of Gibbs energy functions popular in the
PET imaging literature, including the pairwise quadratic or
membrane energy function defined on first- (four-neighbor)
or second– (eight-neighbor) order neighborhoods [32] and the
thin-plate spline energy defined on a third-order (12-neighbor)
neighborhood [32], [33].

For these energy functions , so the factors
in (10) simplify to

(23)

The CRC and variances are then

crc (24)

var (25)

When , (24) and (25) simplify to

crc (26)

var (27)

In this case, the MAP estimate reduces to ML. The right-hand
side of (27) is the th diagonal element of the inverse of
the Fisher information matrix under approximation (7),
i.e. the CRB for an unbiased estimator.

Most priors, including those using membrane and thin-
plate energies, are based on balanced voxel differences so
that the matrix will have a zero eigenvalue, ,
corresponding to the DC component of the 2-D DFT. For these
priors, when , (24) and (25)
reduce to

crc (28)

var (29)
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(a)

(b)

Fig. 1. (a) CRC and (b) standard deviation versus� curves computed
using (24) and (25) with� = 1 for a quadratic prior with a second-order
neighborhood.

This case is of little practical interest since our experience is
that such a large value of is of no practical value.

When is between these two extremes
, which corresponds to the practical

operating range for MAP estimators, both CRC and variance
reduce monotonically with where the lower inflection point
is approximately and the higher

.
To illustrate these results, we first plot the CRC and standard

deviation versus curves keeping , in Fig. 1. The PET
system that was simulated to compute these curves is the CTI
EXACT HR+ scanner with a sinogram size equal to 288
288. The reconstruction voxel size was 2.3 mm2.3 mm.
The prior used was the membrane potential with a second-
order neighborhood. The and in
this case are 2.13 10 and 1.65 10 , respectively. Note
that these curves are dependent only on the system geometry,
the prior, and the voxel size, and are independent of the

(a)

(b)

Fig. 2. (a) CRC and (b) standard deviation versus� curves computed
using (24) and (25) with� = 1 for a quadratic prior with a second-order
neighborhood.

particular image. In Fig. 2 we show the CRC and standard
deviation versus curves, this time keeping . Equation
(24) shows that and have the same effect on the CRC.
Fig. 2(b), however, shows that the standard deviation remains
nearly constant for values ofin a middle range, and increases
linearly with on either side of this range.

Our experience has shown that the useful range of ,
i.e., that which produces generally reasonable reconstructions,
is approximately 0.1–10 (assuming ). The results
in Fig. 2(b) show that if a constant value is used across
the entire image, then in the range , the
reconstructions will have near constant variance and CRC’s
approximately proportional to . This result is consistent
with the examples of nearly constant variance in MAP recon-
structions reported in [5] and [11]. For different PET system
configurations, or different priors, the curves in Figs. 1 and
2 will change. It is interesting to note, for example, that for
the case of the thin-plate prior there is no constant standard
deviation range for .
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IV. M AXIMUM DETECTABILITY

HYPERPARAMETER SELECTION

One of the major problems in using MAP methods in prac-
tical applications is selecting an appropriate hyperparameter.
Fessler and Rogers [10] proposes using a spatially variant
that compensates for the spatially variant resolution properties
that result from using a quadratic penalty or prior. Here we
propose an alternative hyperparameter-selection scheme based
on the results derived above.

It is well known that detection of lesions, one of the
primary applications of PET, is affected by both the level
of background noise and by contrast of the lesion. Selecting
the hyperparameter effectively involves performing a tradeoff
between low background noise and good contrast recovery.
Although lesion detectability is affected by the correlation of
the noise in the reconstruction [34], empirical studies have
shown that human observer performance is reasonably well
correlated with measures of the ratio of contrast recovery to
background noise standard deviation [29]. Consequently, we
propose choosing to maximize this ratio. The CNR can be
computed in a straightforward manner using the results derived
above as

CNR
crc
var

(30)

Assuming that the reconstructions are locally ergodic (i.e., the
ensemble variances approximated using the expression above
are close to the spatial variances of a local region computed
from an individual reconstruction), then the CNR is equivalent
to the SNR used in [29] and [35], which has been shown
to be correlated with both human and machine observers for
cold-spot detectability.

From (18) and (22) we know that the CNR’s are different
for each voxel location so the hyperparameterneeds to be
spatially variant in order to maximize the ratio. The maximum
detectability hyperparameter for quadratic priors at theth
voxel can be computed as

crc
var

(31)

(32)

where

(33)

and is a function of only. This means that the optimal
is independent of the data. Consequently, we can first find

the optimal without knowledge of the data and then compute
the optimal for each voxel by computing from (9) and
using (23). When applied in practice, we need to replace
the mean data in (9) with its observed realization, but the
smoothing effect of the modified backprojection in (9) results
in estimated values which are very similar to those that
would be obtained using the true mean data.

Fig. 3 shows the CNR as a function of with for
the EXACT HR+ PET system with first- and second-order
membrane potentials and a third-order thin-plate potential.

Fig. 3. CNR versus� curves for three different priors (first- and sec-
ond-order membrane and third-order thin-plate spline energy functions). Note
the unique maximum for each prior and that the second-order membrane
prior produces larger maximum CNR.

These curves show unique global maxima, all at approximately
. The fact that the second-order neigh-

borhood shows the highest CNR among the three, indicates
that it may be most suitable for small lesion detection. The
thin-plate model does not work well here because the local
impulse response has relatively large second-order derivatives
and hence is highly penalized by the thin-plate model.

For quadratic priors, the hyperparameter can be com-
puted from using (23)

(34)

The analysis above assumes, when deriving the CRC and
variance for a particular voxel, that is constant across the
image. Since the that maximizes the CNR is a function of the

’s, which are in turn a function of a modified backprojection
of the data, we would expect the optimal’s to vary smoothly
across the image. The value used for each potential term
is computed as the geometric average of the optimal’s
computed for each of the voxels contributing to the clique on
which the potential is defined, i.e., we use for terms
involving the two voxels and and for terms
involving three voxels and .

From (24) and (25) we know that when using the optimal
’s, is constant and hence the local impulse response

CRC’s will be approximately constant across the field of view
and the voxel variances will be proportional to . This
uniform contrast recovery property may be helpful for lesion
detection by human operators.

To summarize the hyperparameter selection scheme for
maximizing CNR when using quadratic priors.

1) Compute from (9) using
in place of .

2) Compute from (34).
3) Find the MAP estimate using the spatially variant hy-

perparameters .
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V. SIMULATION RESULTS

A. Validation of Approximations of CRC
and Variance: Quadratic Priors

To test the accuracy of the approximate CRC and variance
expressions, we simulated data for the CTI EXACT HR+
scanner using a 2-D slice of the Hoffman phantom [36] (Fig. 4)
with activity ratios in grey matter, white matter, and CSF of
5:1:0. The attenuation factors were computed by assigning a
constant attenuation coefficient of 0.095cm to the support of
the phantom. A preconditioned conjugate gradient method [12]
was used in computing MAP reconstructions. For each recon-
struction we ran 100 iterations to ensure effective convergence.
Shown in Fig. 4(c) is an image of the value of at each
voxel. Note the smoothness of this function within the object,
which is essential for the approximation (13) to be accurate.

We first evaluated the CRC approximation. Three points
of interest were selected, as shown in Fig. 4(b). Since several
investigators have observed that the ensemble mean of ML and
MAP estimators is approximately equal to the reconstruction
that is obtained by applying the estimator to the expectation
of the data [2], [4], [5], [9], [37], we measured the CRC
from reconstructions of two noiseless data sets: 1) the original
phantom sinogram and 2) the sinogram of the phantom after
perturbation of a single voxel. Fig. 5 shows a comparison of
the measured and theoretically predicted CRC’s for each point
of interest. The approximations are in good agreement with
the measured CRC’s, with a maximum error of 6%. When the
true projection is unavailable, one can use the projection of
the reconstructed image, or even the noisy data, to estimate

. Fig. 5 also shows the CRC’s computed using a single
realization of the Poisson data. The theoretical predictions do
not show a significant increase in error.

We then computed the voxelwise variances from 8000
reconstructions from independent data sets, with
a total of 200 K mean counts per image. The reconstructed
activity in grey matter is about 100 count per voxel. Fig. 6
shows the comparison between the Monte Carlo variances and
the theoretically predicted variances. Again, the agreement is
good except in regions with zero activity. The reason for the
discrepancy in these regions is that the nonnegativity constraint
used in the reconstruction algorithm was not included in the
theoretical analysis.

B. Ergodicity: Ensemble Variance Versus Spatial Variance

In using the CNR as a figure of merit for choosing the
smoothing parameters, we are implicitly assuming ergodicity
in the noise in the reconstructions, i.e., we assume that the
ensemble variances computed from our theoretical analysis
reflect the spatial variance in images reconstructed from a
single data set. It is only if this assumption is correct that
optimizing CNR could be expected to lead to improved lesion
detectability in individual PET scans. We investigated this
issue using a uniform elliptical phantom. The total number
of counts was again 200 K. Several sets of images were
reconstructed from 50 independent noisy data sets, each set
corresponding to a different value of which, in each case,
was kept constant throughout the image.

(a)

(b)

(c)

Fig. 4. (a) Digital Hoffman phantom used in numerical evaluations. (b) The
three bright spots indicate the locations of the points used in evaluating the
accuracy of the CRC formula(24). (c) Image of��2 for this phantom.
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(a)

(b)

(c)

Fig. 5. CRC’s computed using (24) with the mean of the data and a
single realization of noisy data compared with CRC’s measured using direct
reconstruction of noiseless data, with and without perturbation: (a) center point
in grey matter, (b) off-center point in grey matter, and (c) off-center point in
white matter.

(a)

(b)

(c)

Fig. 6. Comparison of voxelwise variances computed using (a) Monte Carlo
method and (b) the theoretical approximation in (25). (c) The center profiles
through (a) and (b).
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Fig. 7. Comparison of the spatial and ensemble variance computed from
reconstructions of a uniform ellipse versus�. Spatial variances were computed
in ROI’s at the center and edge of the ellipse, ensemble variances were
computed at the center of the ellipse across 50 independent reconstructions.

Since a constant was used, the variance in the recon-
structions was approximately uniform inside the field of view
(FOV). We could therefore use large regions of interest (ROI’s)
to compute the spatial variance. Two ROI’s were selected:
one was a circular region at the center (1976 voxels), the
other a nonintersecting boundary region (1980 voxels). The
variance across the voxels in each ROI was computed for
each individual reconstruction. The mean spatial variance
was then computed by averaging the spatial variances across
the 50 independent reconstructions. Ensemble variances were
computed for each voxel as the variance of that voxel across
the 50 reconstructions. The voxelwise variances were then
averaged over the voxels in the center ROI. Fig. 7 shows a
comparison of the ensemble mean of the spatial variances and
the spatial mean of the ensemble variances of the reconstructed
ellipse using several different values of. The variances
of the center and boundary ROI’s are almost equal, which
supports the earlier observation that a constantwill produce
near uniform variance. More importantly, the spatial variances
agree well with the ensemble variances, both Monte Carlo and
theoretical, indicating that the implied ergodicity assumption
in our development is reasonable.

C. Approximations of CRC and Variance: Huber Priors

We used the Huber prior to study the accuracy of our
approximations for nonquadratic priors. The Huber potential
function is defined as

if

otherwise
(35)

where is a small constant.
We again used the Hoffman phantom in a simulated CTI

EXACT HR+ scanner. The parameter was chosen to be
1% of the grey-matter intensity, which makes the second-
order derivative of the prior highly spatially variant. Since
the Huber prior is nonquadratic, the measured local impulse
response CRC is dependent on the amplitude of the pertur-

(a)

(b)

(c)

Fig. 8. Comparison of measured and predicted CRC’s for small perturbations
at three points of interest using the Huber prior (a) center point in grey matter,
(b) off-center point in grey matter, and (c) off-center point in white matter.

bation. We studied the CRC’s with small and large
perturbations. The results are shown in Figs. 8 and

9, respectively. The approximate CRC works quite well with
the small perturbation, but breaks down when the perturbation
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(a)

(b)

(c)

Fig. 9. Comparison of measured and predicted CRC’s for large perturbations
of three points of interest for Huber prior: (a) center point in grey matter,
(b) off-center point in grey matter, and (c) off-center point in white matter.
In this case, a finite difference computation of the second derivative of
the prior produced reasonably accurate predictions of CRC where the true
second-derivative method fails.

is large. Since the local perturbation exceeds the threshold
in this situation, the corresponding second derivative becomes
zero and hence the CRC’s are predicted to be one. However,
we found that if we approximate the second derivatives of the
nonquadratic prior as the finite difference

(36)

the computed CRC’s show good agreements with the measured
results as indicated in Fig. 9. Note the (36) is anad hocchoice
that works for the Huber prior studied here. It may not work for
other nonquadratic priors. In general, the second derivative of
a nonquadratic prior may not be sufficient for analyzing large
perturbations. Higher order derivatives or other information
may be needed in these situations.

From the above CRC comparison, we can expect that the
accuracy of the variance estimate (22) for the Huber prior will
be dependent on and the variance in the reconstruction. If
the ratio of over standard deviation is large 3 , (22) will
be fairly accurate in uniform activity regions. When the ratio is
small, the estimate will become worse. Figs. 10 and 11 show
comparisons between theoretical variance estimates and the
results from reconstructions of 500 independent Monte Carlo
data sets (total count k) with and

, respectively. Reconstructions using these
two sets of prior parameters have the same CRC for small
perturbations . However, they have different variances.
In Fig. 10, the theoretical approximations match the Monte
Carlo results very well because is far greater than the
variance of noise, while there are noticeable errors in Fig. 11
since is comparable to the standard deviation.

D. Example Using Maximum Detectability
Hyperparameter Selection

Following the procedure described in Section IV, we re-
constructed the Hoffman phantom with the hyperparameter
selected to maximize CNR. One hundred iterations of a
preconditioned conjugate gradient MAP algorithm were used
with a second-order membrane prior. We added two 2-mm
diameter lesions in the grey matter with an activity ratio
relative to grey matter of 10 : 1. The total number of counts was
200 K. Fig. 12 shows an example of an image reconstructed
using this hyperparameter selection scheme in comparison
with images reconstructed using 0.5 and 2.0 times these values.
It is difficult to judge these single realizations, so a subsequent
Monte Carlo evaluation was performed.

We reconstructed 50 independent data sets, each with sev-
eral values which were kept constant over the entire image.
The background standard deviation was computed from a local
grey-matter region surrounding the lesion. The mean CNR
(averaged over the 50 realizations) versus thecurve for the
center lesion is plotted in Fig. 13. The CNR was normalized to
the optimal computed for the center of the lesion using the
CNR optimization technique described in Section IV. Fig. 13
shows that the optimal CNR was indeed achieved at the value
computed using (34).

These results are very promising although we know that the
simple measure, CNR, is not fully correlated with human ob-
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(a)

(b)

(c)

Fig. 10. Comparison of (a) Monte Carlo and (b) theoretical voxelwise
computations of variance for the Huber prior with�h = 30; � = 0:012

(total counts = 200 k). (c) Center profiles through (a) and (b).

server performance. Receiver operating characteristic (ROC)
studies comparing this method with other hyperparameter
selection schemes are needed to further evaluate this method.

(a)

(b)

(c)

Fig. 11. Comparison of (a) Monte Carlo and (b) theoretical voxelwise
computations of variance for the Huber prior with�h = 10; � = 0:004

(total counts= 200 k). (c) Center profiles through (a) and (b).

VI. CONCLUSION

We have derived simplified approximate equations for the
local impulse response CRC and variance of each voxel in im-
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(a)

(b)

(c)

Fig. 12. MAP images reconstructed from 200 K counts with� selected to
maximize CNR, then scaled as follows: (a) half of the optimal hyperparameter,
(b) optimal hyperparameter, and (c) double the optimal hyperparameter.

Fig. 13. The CNR versus the� curve averaged over 50 independent re-
constructions from 200 K counts, normalized to optimal� computed using
(34).

ages reconstructed using MAP estimators. These expressions
reveal how resolution and variance changes as a function of
the system geometry and the source image. They also show
the effect of the hyperparameter on these factors. Computer
simulations showed that the approximations agree reasonably
well with Monte Carlo results. Using the CRC and variance
results, we also proposed a hyperparameter selection scheme
that optimizes lesion detectability by maximizing the CRC-
to-noise ratio in the reconstructed image. Again, Monte Carlo
evaluation showed this technique can indeed maximize lesion
CNR ratios.
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