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Introduction

The application of the method of characteristics provides a use­
ful method for a study of -wave phenomena following the sudden release 
of gas in a tube. To obtain sufficient accuracy when using this 
technique, it is necessary to calculate values along the various 
characteristics on a position diagram rather than use the more convent­
ional graphical method employing an auxiliary state diagram. The 
step by step processes of calculating values, and determining result­
ing pressure vs time and pressure vs distance diagrams, is best done 
with the aid of a high speed digital computer. Storage within the 
computer eliminates the need to actually plot a position diagram, 
although such a plot is useful for a physical understanding of the 
problem.

The effect of wall friction and heat transfer on the propagation 
of waves in a mechanical shock tube has been studied by Bannister 
(Ref. 1) and Bonamy (Ref. 2). The resulting partial differential 
equations describing the flow were solved by both these authors using 
the method of characteristics, but the numerical method of integration 
required along the characteristics for accurate plotting of the posit­
ion diagram limited the work to the study of one pressure ratio only. 
This work was extended by Bonamy and Wheway (Ref. 3) by introducing 
computer programmes, which not only solved the network for any number 
of pressure ratios, but also provided a direct read-out of pressure 
and/or temperature vs time and distance histories. Comparison of 
these theoretical values with those obtained by experiment permitted 
an examination of the effects of heat transfer across the contact 
surface, or gaseous interface which is formed on the initiation of 
the shock and separates the "shocked" and "rarefied" gas. Insuffic­
ient information concerning boundary conditions prevented the inclus­
ion in the theory of heat and mass transfer effects across the contact 
surf ace.

The present paper is an expansion of the latter work describing 
in more detail the development of the characteristic equations and the



programming procedure used for their solution.

LIST OF SYMBOLS

A = w+ + S+ y+

A

H

w+  +  R S +

a = acoustic velocity

ao = local acoustic velocity if gas were brought isentropically
from P to P1 o

B = w_ - S y

B = w - R S y

D = pipe diameter

E = internal energy

F = body force

Ff as friction force at wall

f = steady state friction factor

G = ( - w - p ) a

=  W - a ] a  ro-788

e* a*
2 y*

h = convection heat transfer coefficient 

K f
2 D

thermal conductivity coefficient
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b

e
p

7

7

X

ratio of specific heats 
unit vector
temperature difference between gas and tube 
absolute viscosity 
stress tensor

density

co-ordinate directions
initial state 
shock
characteristic s 
vector

gas initially in high pressure region
gas initially in low pressure region
"shocked" gas between contact surface and shock front

Subscripts 
j, k c

Superscripts



5-

BASIC EQUATIONS

The bursting of a membrane initially separating a high and low 
pressure gas in a tube causes the propagation of a shock wave into the 
low pressure region and a rarefaction wave into the high pressure 
region. The contact surface, which is a discontinuity in temperature 
and density is propagated in the same direction as the shock wave. A 
boundary layer develops between the head of the rarefaction wave and 
the shock front as shown in Fig. 1.

Considering an elemental volume of this gas at time t, Fig. 2, 
continuity, momentum and energy equations can be established as 
follows :

Continuity

A well known form of the continuity equation (Ref. k) is

Following a similar technique to that for the continuity equation 
it can be shown (Ref. 4) that the resultant force acting on unit 
volume of fluid due to normal and shear stresses is given by

—  + p div V = 0.

Using repeated suffix notation, this may be modified to

• • (1)

Momentum

Applying Stokes' assumptions,
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“ “ P 6ij + TiJ " 3 ^ ̂  &ij 

Equating the resultant force to the rate of change of momentum
gives

dir., / du. \
8i pFi + 8i ^ -  = pU ^ r  + uj ^ J  . . .  (2)

Energy
The "total energy equation" may be written (Ref. k) as

I t  (E) + ^7  (E V  + f t  (  U + f  )  = + Q + I  div (k T) “

- i div (FV) + i V . (t 6  ̂ . v) - ~  V. grad (n div V)

. • • (3)

In equation (3) the term
^ div (k grad T) = heat loss by conduction ;

i div (PV) = work done by pressure forces ;
P

V. (t Bi 6j.V) ss work done by shear stresses; and

~  V. grad ( p. div V) = work done by dilation.
Equations (l), (2) and (3) apply to the general case where the flow 
comprises both a volume of fluid with constant property values across 
the core and the boundary layer where properties vary from freestream 
values to those at the wall. Their solution is prevented by the lack
of knowledge of the non-steady boundary layer and of the nature of heat
and mass transfer across the contact surface. However, it has been 
found that for tubes of 2 inches diameter and larger (Refs. 1 and 3)> 

the volume of the tube occupied by the boundary layer is insignificant.

2
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The fluid properties can therefore be treated as uniform across the 
tube and the problem is reduced to one in which the flow is one- 
dimensional. The effects of the velocity boundary layer and the 
thermal boundary layer may then be isolated to the tube wall as a 
frictional force opposite in direction to the flow and a flow of heat 
into or out of the fluid.

Using these assumptions and considering the contact surface as a 
plane discontinuity in density and temperature across which there is 
no flow of heat, equations (l), (2) and (3 ) may be modified as 
follows.

Continuity

dp p du . u dp . .
3 t  +  +  ^  =  ° *  * •  *  W

Momentum

After expanding and neglecting second order terms, equation (2) 
becomes

n v  +  dP +  pdu p u d u
"p F + ^ + 3 t + = °*

Considering the whole tube

Ff  + J-SF + J  ^  |S  + ^  = o,

vol. vol. vol. vol.

where F ,̂ the frictional force at wall = area x shear stress

= ( V D dx) .f

~jj~dx ) . Ku2p

Now as the body force is zero, I  -PF = 0.
vol.



Ener£E
Referring to equation (3) the terms V. grad div V, (V. grad M-) 

(div V) and ^ div (k grad T) are second order terms and may be 
neglected.
Also the term — V. ( t 6 6 . V ) = 0 for one dimensional flow,p \ ij i j ~ /
Therefore equation (3) becomes

+ p E ^  = P ^ | + P Q  - div (FV) .P dt
V2E + U + ~

Since F = 0 and U = 0, this reduces to

7?Tp + c u E ) l ; + c u ^  + '5£ru lj + ril35 + p<1 = 0-

Considering now a whole tube of thickness dx and isolating heat 
addition to the tube wall such that Q = h0 ( tt D dx)

7  v  r s  x .  ~  d u  7 d p  . 1  d p  4 h 0  _ /, v
^ P + p u ; ^ + p u 3t + 7^ T U ^  + ̂ T ^ t + "D" = 0 • (6)

The only known boundary conditions for the solution of equations 
( k ) , (5) and (6) are those at time, t = 0 and those along the rare­
faction wave-front where the velocity is equal to the local sonic 
velocity. Thus solution by finite difference methods is not possible 
and the problem lends itself to the application of the method of 
characteristics.
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Expressions for the three characteristic directions on a position 
diagram may be obtained and corresponding equations for finite 
differences in other properties along these characteristics developed 
from equations (4), (5) and (6). These are then transformed into a 
dimensionless form (Ref. 3) and extended to include the steady state 
values for the friction factor (Ref. 5) and the heat transfer co­
efficient (Ref. 6).

Finally, in order to obtain a characteristic network which is 
independent of tube diameter, initial pressure and temperature, two 
dimensionless parameters t  and X are introduced as co-ordinates of the 
position diagram.

The characteristics on the t v s X plane are then represented by 
the following pairs of equations; the first of each pair gives the 
slope of the characteristic and the second relates changes in 
properties along that characteristic. The characteristic equations 
and resulting curves are identified as C+ , C , and C* , the C+ and 
C_ corresponding to the propagation of points on rightward and left­
ward moving waves and the C* to the movement of a gas particle. Two 
sets of equations are used depending on the initial state of the gas.
Gas initially in High Pressure Region

• • (Ta)

dw. =s - 5 Sdy, + ( p - w) Q! dT • • (7b)T -r Hr

. . (8a)

C characteristic
dw = 5 Sdy - O  + w) a dT . . (8b)
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dX
dT

C* characteristic
I 6 a

= w . . .  (9a)

Q
dS* dT# . . .  (9b)

2y

Gas initially in Low Pressure Region

U  ) = w + SRy . . .  (10a)

{̂ dv =5 -
C , characteristic .

dw+ = -5 SRdy+ + ( a  .  w )a (R)°*788dT+

. (10b)

C characteristic

C* characteristic {

) = w - SRy . . . (11a)

dw_ = 5  SRdy - (a + w) a (R)°*788dT_

. . . (11b)

( - )  =»\ dT . . . (12a)

dS» = — -   dT, . . . (12b)
*  2y  r o .2  x z  *

Shock-front (Ref. j)

ax') = - ldT J< i
L . . .  (13a)

s

dw = - M dy . . .  (13h)s s

COMPUTATION TECHNIQUES FOR NETWORK

In order to compute a network a step by step integration of 
equations (9) -(13) is necessary. As a result of this, the various 
characteristic curves take on shapes as shown in Fig. 3 (from Ref. 3),
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which is a position diagram for an initial pressure ratio of U.00 to 1 . 
The diagram is seen to be developed from a series of triangular and 
quadrilateral elements; the general procedure involved is as follows.
1. Elements on Rarefaction Wave

Consider a typical quadrilateral element bounded by C+ and C 
characteristics and intersected by a C* characteristic as shown in 
Fig. U. The problem is one of determining values of X and t at the 
unknown points B(l+1) and D(l+l), values at other points being known 
from previous calculations. These must be found from the slopes of 
the various characteristics passing through the known points. The 
slopes depend upon average values of y, w, S along each line so that 
approximations of these at the -unknown points B(l+1) and D(l+l) must 
first be made to obtain the average values. Successive calculations 
are then made using equations (7 ) to (9) until the desired accuracy is 
obtained.

From the geometry of Fig. 4 points 801(1 D(j+i) can be
located from calculation of the finite increments dT+ , dX+ , dT#

and dX*. These in turn are dependent on y, w and S so that
increments in these quantities must be calculated concurrently. 
Simultaneous solution of expressions for d*r+ - dT and dX+ - dX from 
equations (7a) and (8a) gives

A -B

dX^ =  A d r  .

Similarly from equations (7b) and (8b)

5 S- ( yA(l+l) " yB(l) ( WA(I+1) " WB(I)) +
5 (s+ + SJ

+ CdT+ - GdT
. . .(16)5(S+ + SJ
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dw+ « -5  s+ dy^ + CdT+ . . . .  (17)

Rewriting equation (9b)

dS* = H dTe .
Also assuming a linear relationship along 
for example,

td (i-h ) ~ tb (i ) SD(I-H) ~ SB(I)
TB(I+D  - TB(D “ SB(I+1) - SBd) ' ' *

Computer programmes may be written to solve equations (1*0 to 
(19)> incorporating an iteration procedure to obtain a desired accuracy 
of averaging values of the variables along each characteristic and then 
by using equations such as

tb (i+i ) = tb + dT+
values of r , X, y, v and S at the various points of the network for the 
gas initially in the high pressure region can be obtained.

In starting the network off at the origin of Fig. 3 points A(l) 
and B(l), Fig. k, are coincident and the element is triangular.
Since heat transfer and friction effects have not taken place at the 
origin, a range of values of y and w can be calculated assuming a 
frictionless adiabatic process. The most suitable range is for equal 
increments of y and w between the head and tail of the rarefaction 
wave corresponding to values on the fan-shaped C+ characteristics at 
the origin. There is no movement of the gas along the head of the 
rarefaction wave, so that y = 1, w = 0 and S = 1 along this line. By 
choosing equal scales for r  and X the rarefaction wave front SM' becomes 
a sloping line inclined at ^5° to the t and X axes. An arbitrary 
increment is chosen along the X axis for location of starting points 
for the C and C* characteristics.

. . . (18) 

the C+ characteristic so that,
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2. Elements on Compression Wave
The compression wave, bounded by the shock front and the contact 

surface, applies to the gas initially in the low pressure region. To 
complete this region of the network, it is necessary to link up 
equations applying to either side of the contact surface so that the 
elements are best considered in strips bounded by two C+ characteristics. 
Beginning at the origin, the corner element is made up of two triangular 
elements separated by the contact surface as shown in Fig. 5- Symbols 
applying to the gas initially in the low pressure region are '‘barred" 
to distinguish them from those applying to gas initially in the high 
pressure region. The C*. and the C* characteristics are really co­
incident but are drawn as shown to facilitate examination of the 
elements. Conditions are the same along the two characteristics with 
the exception of S; the formation of the shock causes a change in 
entropy and therefore the parameter S on the "shocked" side of the 
discontinuity whereas the formation of the rarefaction wave is 
initially an isentropic process. Further changes in S occur on both 
sides of the discontinuity as the waves progress due to friction and 
heat transfer effects.

To solve the element it is necessary to locate the unknown points 
B(l), B(l+l) and E, conditions at point A(l+l) having been found from 
previous computations. The location is found from the slope of the 
various characteristics which again are dependent on average values of 
y, w and S along each line so that a trial-and-error approach must be 
made. Further, different equations apply to the characteristics on 
either side of the discontinuity requiring simultaneous solution, and 
since the path of the shock-front is not a characteristic different 
equations will apply to it also.

From the geometry of Fig. 5, simultaneous solution of express­
ions for dX+ + dX_ from equations (7a), (8a) and (9a) gives
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XA(I+1) " XA(I) \  ' Y  TA(I+1) ‘ TA(I)
dr. „ V ------------------ ■ B    • (20)

d\  = w-» dT* • . . .  (2 1)

Also since d’* * = dX + dX from Fig. 5> a combination ofs *
equations (10a), (12a) and (13a) gives

 ̂A - w( A ~ 1 _

\ Z----IT J dT* • • * (22)dT s
A + L

dX = -L dt . . .  (23)s s

Denoting A(l)E on the C* characteristic by the subscript ”0 ", 

dX = dX0 + d"̂  , so that from equations (Ha), (12a) and (13a),S

dr0 = L l -I dr . . .  (2)+)
B -  Wo S

dX0 = w 0 dT0 . . . .  (25)

The unknown points B(l), E(1+1) and E may be determined to a first 
approximation from Equations (20) to (25) by assuming the average
slopes of the various characteristics and the shock front to be the
same as at the known point6. Noting that the dimensionless
parameters X, t , y and w have the same values on either side of the 
contact surface along the C# characteristic, a geometrical, considerat­
ion of Fig. 5 and a combination of equations (7h), (8b), (9b), (10b), 
(11b), (12b) and (13b) allows the changes in y, w and S along the 
characteristics and shock front to be computed; a linear variation 
along the C* characteristic is assumed so that a proportionality 
constant can be introduced for determination of values at point E. 
More accurate values can then be used, for the slopes of lines and 
location of unknown points. The complete process is repeated until



the desired accuracy is attained.

Proceeding to the left of the corner element, the next strip is 
as shown in Fig. 6. This is made up of two C+ characteristics, two 
C characteristics, and two C, characteristics, together with the 
shock-front on one side of the contact surface and a C+, C_, and 
characteristic on the other. The additional C* characteristic 
represents the path of a gas particle originating from the shock-front 
at an arbitrarily chosen point. It is necessary to determine values 
of X , r, w and S at each of the points B(l-l), B(l), B(I+1), E and 
F(l), conditions at other points being known from previous computations. 
Thus simultaneous solution of equations as for the corner element, 
together with those for additional characteristics and consideration of 
the geometry of the figure enables computation of the -unknown conditions 
for progression to the next strip.

The general strip between the shock front and contact surface is 
shown in Fig. 7. A detailed analysis of this strip has been 
considered by Whew ay (Ref. 8).
3. Programmes developed for Network Analysis

In all, seven (7) computer programmes have been written to 
produce the characteristic network for any desired pressure ratio. A 
brief description of each of these programmes is given in the table 
below.

Programme Function

1

2

solves typical element between the head of the rare­
faction wave and contact surface (Fig. t.).
calculates the initial equalisation pressure and 
values of the five dimensionless parameters at the 
starting paint of the C+ characteristics on the 
rare~faction wave-front.
solves 16 elements (all of which are similar to 
Fig. *0 between the head of the rarefaction wave 
and the contact surface.
solves corner element (Fig. 5) between the shock 
front and the contact surface.
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Programme Function

5

6

7

solves column 2 (Fig. 6) between the shock- 
front and the contact surface.
solves column 3 onwards (between the shock 
front and the contact surface (such a column is 
shown in Fig. 7).
used with programme 6 to solve a column in which 
a gas particle has overrun the shock front 
(see Fig. 8).

A more complete description and listings of both the programmes 
and samples of their output have been given by Wheway (Ref. 8).

An appreciation of the procedure adopted for calculating the 
network and the use of each of the programmes can be gained from an 
examination of Fig. 9- The computation procedure shown diagrammat- 
ically is by no means the only one possible and minor modifications 
may be introduced. However, experience in calculating the network 
for the four pressure ratios considered by the authors has shown that 
the procedure is the most convenient and results in the most efficient 
computer usage.

Pressure and particle velocity variations with time and distance.

For any particular combination of pressure and temperature of the 
gas initially in the high pressure region and tube diameter, the 
parameters t and X are directly proportional to time and distance.
Thus for a fixed distance along the X axis on the position diagram of 
Fig. 3 a vertical line intersecting the network would enable values 
of t and, by interpolation, corresponding values of the dimensionless 
parameters and w to be computed. From these pressure and particle 
velocity variations with time at a fixed location in the tube are 
obtained. A horizontal line through the network shown in Fig. 3 
allows similar computations against distance at a fixed interval of 
time. Pressure vs time and distance diagrams obtained in this manner,



together with others for gas temperature variations have been 
illustrated by the authors in Ref. 3-

Three (3) computer programmes have been developed for the 
determination of the pressure and particle velocity histories outlined 
above. Listings of these programmes, together with sample output are 
given in Ref. 8.

As stated earlier the programmes developed eliminate completely the 
necessity of plotting positions diagrams, so that pressure and/or 
particle velocity variations with time or distance can be obtained in 
a minimum of time. Modifications to the parameters X and t enable the 
programmes to be used for any initial pressure ratio, initial temperat­
ure or tube diameter. For the 2-inch diameter shock tube used in the 
present work it was reasonable to assume that boundary layer growth was 
insignificant. Discretion must be used when applying this theory to 
tubes of smaller diameter.

17.
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FIG. I . -B o u n d a ry  L a y e r  G ro w th  in a 

Shock Tube a t  Time = t .
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CIG. 3.— C h a ra c te r is t ic  N e tw ork  

fo r  Pressure Ratio  4:1.

y . fooawr.'257̂ ro
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FIG. 4 .— Typical Element between C o n tac t 

Surface and Head o f R a re fac tion  

W ave.
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O

FIG. 5.— C orner Element between Shock F ront 

and C o n ta c t  S u rface .
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FIG. 6 .—  Elements on Column 2 between Shock 

Front and C on tac t Surface.
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FIG. 7.—  Elements on Typical Column between 

Shock F ron t and C o n ta c t Surface.
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FIG. 8 .— Column in which a Gas Partic le  has 

O verrun the Shock F ron t.
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FIG. 9.— Procedure f o r  Computing the C harac te r is t ic  Network.
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