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Abstract

A model has been developed to assess the feasibility of reducing the frozen losses in

a hydrogen arcjet by adding very small amounts of easily ionizable cesium vapor. It is

found that within reasonable constraints on the constrictor geometry, and without allowing

the electron temperature to exceed about 7000K, both the ionization and the hydrogen

dissociation losses can essentially be eliminated, and a specific impulse of about 850 seconds

can be obtained.

A small perturbation analysis was performed on the nonequilibrium governing equations

with the intention of probing the physics of ionization instabilities that occur in both the

cesium and hydrogen ionization ranges. The results from this analysis show that the seed

ionization instability occurs at electron temperatures where Coulomb interactions are im-

portant. Its occurence in the system was found to result in driving the electron temperature

above its threshold value for near-full ionization of the seed. The hydrogen ionization in-

stability was found to occur when the ratio of electrons from hydrogen to the total present

is about 2%.
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Chapter 1

Introduction

1.1 Electrothermal Arcjets

Arcjets belong to the class of electric propulsion devices known as electrothermal thrusters.

In electrothermal thrusters, the propellant is heated electrically and then expanded in a

nozzle, where its thermal energy is converted directly into kinetic, thereby creating thrust.

The other member of this class is the resistojet. An arcjet differs from a resistojet in the

way heat is supplied to the working gas: in an arcjet, the propellant is heated through direct

contact with an electric discharge, while in a resistojet, the propellant is heated through

forced convective contact with electrically heated solid surfaces (coils, walls et cetera).

The performance characteristics of typical arcjets thrusters are displayed in Table 1.1 [17].

Arcjets, because of their high specific impulses at relatively low thrusts, are suitable for

space missions such as orbit transfer and station keeping of communication satellites.

The schematic diagram of a typical arcjet thruster is shown in Fig. 1-1. The thruster

consists of a cathode, a cylindrical rod with a conical tip; an arc chamber (or constrictor)

and nozzle. The constrictor and the nozzle together make up the anode. The electrodes

are normally made from tungsten (melting point 3680K), and are separated by a high

temperature dielectric, such as boron nitride. The role of the constrictor is to stabilize

the arc in a fixed, central position. Another method used in maintaining arc stability, is

by injecting the propellant with a swirl into the chamber. The central portion of the gas

(about 1 mm in thickness) is heated to very high temperatures through collisions with

high energy arc electrons, ionizes and then mixes with the cooler outer region. Expansion

of the gas is then carried out in a high expansion ratio nozzle . A direct result of the



Table 1.1: Performance of typical arcjet thrusters

Input Power, KW 1 30 30 30 30 AC 200
Propellant H2  H2  H2  NH 3  H2  H 2

Thrust, Newtons 0.044 3.35 1.77 2.37 2.26 6.80
Specific Impulse, sec 1100 1010 1520 1012 1020 2120
Thrust efficiency 0.35 0.54 0.44 0.39 0.38 0.35

mixing is the presence of a nonuniform temperature distribution, with temperatures ranging

from 30, 000K in the core of the constrictor to between 1000 - 2500K at the walls, hence

protecting the walls. The thruster walls are cooled regeneratively or through radiative

transfer to outer space. A light gas such as hydrogen or its compounds (e.g. hydrazine

or ammonia) is normally used as propellant to obtain a high specific impulse for a given

temperature. In addition to being light, they are also good coolants because of their high

specific heat capacity.

Figure 1-1: Schematic Diagram of an Arcjet Thruster

1.2 Frozen Losses

At very high temperatures, typical of the gas in an arcjet constrictor, substantial dissociation

of molecular hydrogen and ionization of atomic hydrogen (in the core) occur. However, due

to the very fast expansion that takes place in the nozzle, the species are unable to relax to

their equilibrium values, so that a fraction of the energy, that otherwise would have been

converted to kinetic, is tied up in ionization and dissociation modes. Losses of this type are



referred to as frozen flow losses. The magnitude of these losses is seen in the modeling work

of Miller [10] on a radiation-cooled hydrogen arcjet operating at .1 g/sec flow rate, 1.2 atm

chamber pressure, 100 A current and 11.5 kw power. The work shows that 17.5% of the exit

plane energy flux is in the form of ionization energy, and 30% in the form of dissociation

energy. Including thermal energy, this is leaves only 39% for the flow kinetic energy.

A mitigating strategy that has been employed is to operate the device at high pressure,

so as to lower the chamber dissociation level and increase the recombination rate in the

nozzle[5]. A useful performance index in characterizing the effect of frozen flow on nozzle

performance is the frozen flow efficiency, defined as the ratio of enthalpy converted to jet

kinetic energy to that imparted in the chamber assuming no recombination in the nozzle,

hc - he

= hc '

where he and he are the chamber and nozzle exit enthalpies respectively. Figure 1-2 shows

the effect of pressure on frozen flow efficiency calculated using a very simplified one dimen-

sional model [7]. The disadvantages of operating at high pressures are increased stress on

the hot chamber walls and erosion of the nozzle throat; also the requirement of smaller

orifices, leading to higher arc temperature and consequently to increase in arc radiation

losses.

100 otm
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Figure 1-2: Theoretical variation of frozen flow efficiency with specific impulse for hydrogen

at various pressures.



1.3 Alkali Seeding of Arcjets

A standard procedure used in MHD power conversion technology in obtaining good electrical

conductivity without ionizing the working gas is through the introduction of an easily

ionizable alkali seed (vapor) into the propellant stream[14]. The presence of small fractions

of the seed ions establishes a conductive path between the electrodes at temperatures below

ionizing temperature of the parent gas. Figure 1-3 shows the variation of the electrical

conductivity of hydrogen, seeded with 0.1% cesium by mole, with temperature (assuming

thermal equilibrium) at different pressures. Notice the relatively high values of conductivity

at temperatures as low as 3000K, which is well below the ionizing temperature of hydrogen

(Te > 7000K). The energy coupling between the gas and the electrons could also be weak

leading to thermal nonequilibrium, with the gas cooler than the electrons, resulting in gas

temperatures low enough to preclude H2 dissociation.

Exploitation of these effects in a hydrogen arcjet would lead to a significant reduction

in frozen losses, e.g. from 13.6eV + 2.3eV per ion (H) to 3.89eV per ion (Cs). In addition,

the device can be designed to operate at lower chamber pressures, leading to reduction in

heat fluxes and shorting risks. The presence of the easily ionizable alkali should also reduce

near-electrode losses.

1.4 Thesis Overview

The focus of this research is the development of a theoretical model to investigate the

feasibility of alkali seeding of arcjet thrusters. Cesium was chosen as the seed element,

because of its low ionization potential, and good electrical conductivity at low temperatures.

However, the analyses performed on hydrogen and cesium are easily extendable to other

parent-seed combinations as well.

The governing equations for a cesium-seeded hydrogen plasma are derived in chapter

two. The gas is assumed to be in nonequilibrium so that the ionization and dissociation

processes are modeled via rate equations. Included in the derivation are transport and other

important gas properties which are relevant to formulation of the governing equations.

In chapter three, a simplified analysis based on a steady solution of the equations for

an inviscid constrictor flow model is discussed. The goal of the analysis is to be able to

explore the performance characteristics of a seeded thruster without resorting to full scale



180

160

140-

0 1000 2000 3000

Temperature (K)

Figure 1-3: Conductivity of hydrogen, seeded with 0.1% cesium per mole

numerical modeling. The model bears resemblance to one developed at MIT by Sakamoto

and Martinez-Sanchez for a hydrogen arcjet thruster[9]. The electron temperature was not

allowed to exceed 7000K in order to prevent the ionization of hydrogen. A constraint was

also imposed on the channel length, so as not to incur excessive viscous losses.

At extreme operating conditions, the ionization of hydrogen can no longer be neglected.

The presence of hydrogen ions in the system could trigger ionization which in turn could lead

into transition to a conventional hydrogen arc. This possibility is investigated in chapter

four where a stability analysis is performed on the nonequlibrium governing equations about

a uniform background to determine for which values of parameters an instability occurs.

The achievements of this research and recommendation for future research are presented

in chapter five.
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Chapter 2

Governing Equations

In this chapter, the equations governing the flow in a cesium seeded hydrogen arcjet are

presented. These equations are basically the species mass, momentum and energy conser-

vation equations, and the electric potential equation. Also presented in this chapter are the

thermal and transport properties of the seeded gas.

2.1 Thermal Properties

The global density of the gas is defined as the sum of the densities of all the species present:

P = ps = msns, (2.1)
s 8

where m. and n, are the mass and number density of species s respectively. The species

accounted for in this research are H2 , H, H + , Cs, Cs+ and e; effects of molecular ions,

H+, and multiple ions of cesium are considered negligible.

The fraction of cesium seed present in the gas is

nc, + nc+a = (2.2)
2

nH 2 + nH + nH+

The electrons are assumed to be maxwellized at a different temperature from the other

species, designated as heavy, i.e TH = TH 2 = TH+ = TC = TC - T Te. This assumption

allows the electron to be treated as a separate fluid. The gas is assumed be quasi-neutral,

so that the electron number density equals the sum of the ion densities,



ne = n+ + nCs+. (2.3)

Assuming the gas is ideal, the total pressure is then defined as the sum of the partial

pressures of the all the species present,

P = EPs = psRT s. (2.4)
S S

where Rs = _ is the gas constant for species s. The quantity kB is the Boltzmann constant,

and equals 1.38 x 10- 2 3 JK -1 . Substituting the expression for Rs, and making use of the

quasi-neutrality and two-temperature assumptions, Equation 2.4 can be written as

p = (nH + nH
2 
+ ncs) kBT + nekB (Te + T). (2.5)

The above equation is also known as the equation of state.

The enthalpy of the gas is

h s nshs
h = (2.6)

P

where h. is the enthalpy per molecule of each species s present:

7 Evib
hH

2  
2kBT- Ed + 5 + A, (2.7)

ekBT - 1

5 A
hH = hH+ = kBT + (2.8)

2 2

and

hc = k= k (T - Tf). (2.9)
2 2

Here Ed and Evib are the dissociation and vibrational excitation energies per molecule re-

spectively, and A is a constant chosen so as to make the enthalpy of H 2 zero at the common

reference temperature, Tf = 298.16K. Since vibrational excitation is negligible at low

temperature,

7
A = Ed - 7Tf.2



The internal energy of the gas is

e=h - p (2.10)
p

2.2 Transport Properties

The transport coefficients of a multicomponent gas are generally obtained from the Chapman-

Enskog solution of the Boltzmann equation. A treatment of this solution is too lengthy and

mathematically involved to be included in this section; however, it can be found in excellent

texts by Chapman and Cowling [3], and Hirschfelder, Curtis and Bird [4]. In this research,

the effect of cesium on viscosity and thermal conductivity is considered negligible due to its

low mole fraction.

According to the Chapman-Enskog solution, the viscosity and thermal conductivity

coefficients for a species s are approximately given by

Is = 2.6693 x 10-6 kgm-s - ] (2.11)

TM 15 R J -K-1 (2.12)
s, = 8.3227 x 10 -5T/M = 15 Jm (2.12)0(2,2) 4 s [Jm Ms

where M is the molecular weight of species s and f( 2 ,2) is the average effective viscosity

collision integral.

Equation 2.12 is only valid for monoatomic species. For diatomic species, the Eucken

correction is applied to Equation 2.12 to account for internal degrees of freedom[4], so that

the conductivity equals

19 R
KS = s. (2.13)

Applying the mixture rule [11], the viscosity and thermal conduction coefficient of a

multicomponent gas are

S nipi (2.14)

~s nsKs (2.15)

s Er nrXsr



where

-(~22,2)
Xij - -2m (2.16)

V mi 2)'

The values of the effective average viscosity collision integrals used in this research are

given in Appendix A.

The electron thermal conductivity is calculated as [11]

2.4 k 2neTe(
Ke = + ee (2.17)

1 ve meve

In addition to the ordinary thermal conduction, which is due to the transport of kinetic

energy during collisions, heats of reaction (ionization and dissociation) are also transported

due to diffusion of species from regions of high concentration to regions of lower concen-

tration. This, in fact, is the dominant energy transfer mechanism at temperatures in the

dissociation and ionization ranges. Taking this into account, an effective thermal conduc-

tivity can be defined as

= Ig + Kreactzon. (2.18)

An approximate expression for reaction for hydrogen gas due solely to the diffusive transport

of heat of dissociation is [8]

n2mHXH (1 - XH 2 ) (2hH - hH2 )2
Kreaction = 

1
diss = 2 DHH2, (2.19)

p (1 + XH 2 ) kBT2

where

n= (2.20)
kBT

and

X, (2.21)
n

The quantity DHH2 is the diffusion coefficient,

3 3kBT 3

DHH2  16p (2.22)
16pir(0 1 ) mH

where 0(1,1) is the average effective collision integral for diffusion and is tabulated in Ap-

pendix A. The diffusive transport of ionization is considered negligible compared to that of



dissociation, due to the low C, fraction.

The electrical conductivity of a quasi neutral plasma is defined as[11]:

e 2rne

me Er Ver
(2.23)

Here e is the elementary charge (1.602 x 10-19). The quantity ver is the collision frequencies

of the electrons with heavy species r, and is defined as

Ver = nrgerQer, (2.24)

where ger and Qer are the mean relative speed and the average momentum transfer collision

cross section of the colliding species. Because the electron mass is much smaller than that

of the heavy species, the mean relative speed can be approximated as the electron mean

thermal speed given as

_ 8kBTe
Ce me

lme
(2.25)

The interaction between the electrons and ions are Coulombic. The collision cross section

for a Coulombic interaction is approximately given as[11]

Qei - 67rbo1nA (2.26)

where lnA is known as the Spitzer logarithm and is shown in 2.1.

Table 2.1: Values of InA

The constant bo is calculated as

5.56 x 10-6
bo = TTe

Te, K ne, m
- 3

1015 1018 102 1 1024

102  9.43 5.97 - -

103  12.8 9.43 5.97 -

104  16.3 12.8 9.43 5.97

105 19.7 16.3 12.8 9.43

(2.27)



The collision cross sections for relevant electron hydrogen interactions used in this re-

search are given in Appendix A, while those of electron-cesium interactions are shown in

Fig. 2-1, taken from Ref. [2].

Comparison of vec, to veH,

VeC, nc, Qec, Qec,

VeH 2  nH2 QeH2  QeH2

shows that the effect of e - C, collisions is negligible compared to that of e - H 2 collisions,

since the above ratio is always less than unity for all the cases treated in this research

(a< 1).

6E-16

5E-16

4E-16

E

' 3E-16

2E-16

1E-16

0

1 2 3

Electron velocity (ev1/ 2)

Figure 2-1: Electron-Cesium momentum transfer collision cross section



2.3 Flow Chemistry

2.3.1 Dissociation

The dissociation of molecular hydrogen occurs as a result of inelastic collisions with a second

body, whose energy is in excess of its dissociation energy (4.478eV or 7.174 x 10- 19 J per

molecule):

H 2 + M H + H + M (2.28)

The third body, M, can be any of the heavy species, electrons or photons (photodissociation)

present. In arcjets, the dominant collisional processes responsible for dissociation are mainly

by atomic and molecular hydrogen, and electrons; photodissociation is generally infrequent.

The inverse reaction is known as three body recombination. In typical arcjet flow regions,

the effect of electron impact molecular recombination is negligible[6]. The net dissociation

rate of molecular hydrogen due to heavy species collisions, based on a model developed by

Rogers et al.[13] is given by

'iHheavy = (5nH + 2nH2 ) (KfnH2 - Kbn2) , (2.29)

where Kf and Kb are the forward and backward rates respectively, and are related

through the equilibrium constant:

Kf
Kb = Kf (2.30)

Kn

The forward rate is defined as

K = ANA ( B (2.31)
Kf exp - -T RT

The equilibrium constant, K, (T), is calculated as:

Kn (T)= H (2.32)
qH

2

The atomic and molecular partition functions are defined respectively as:

qH = qe2kBT (2.33)



3 T e kBT

qH 2 =
2

2qi _
20r 1-e kT

(2.34)

where qt is the translational partition function,

3

qt= (2mHkT 2

Hi h2 .
(2.35)

Here Er = 87.5K is the temperature corresponding to rotational excitation of hydrogen

molecules.

The production rate due to electron impact is

n Helectron = KeH2 nenH 2 , (2.36)

where KeH2 is the reaction rate coefficient, and is taken from Janev et al.[6] and plotted in

Figure 2-2. Typically, the production rate due to electron impact is negligible to that due

to heavy impact at electron temperatures below 10000K.

O.OOE+00

-2.00E+01

-4.00E+01

-6.00E+01

-8.00E+01

-1.00E+02

-1.20E+02

-1.40E+02

-1.60E+02

5000 10000

Te(K)

15000 20000

Figure 2-2: Reaction Rate Coefficient for e - H 2 Dissociating Collisions



2.3.2 Ionization

The ionization reactions considered in this research are of the form:

A + e A + + e + e, (2.37)

where A = H and Cs. The net ion production rate of species A due to ionization and three

body recombination is[11]

AA+ = RShne (SAnA - nenA+) , (2.38)

where the recombination rate coefficient as modified by Sheppard[15]

In - 4.0833 (
Rsh = 6.985 x 10- 42 exp 0.800 /s . (2.39)

0.8179

is used, as opposed to the commonly used Hinnov-Hirschberg coefficient,

1.09 x 10- 20

RHH = 1.09 x 102 m3/s , (2.40)

Te2

which was shown by Sheppard to overpredict the recombination rates at high electron

temperatures. The Saha function, SA, is defined as

g A +  27xmekBTe2 -5 -- A
SA - 2 2 e kgBTe , (2.41)

gA h2

where gA is the degeneracy of species A, EiA is the ionization potential of monoatomic

species A and h is the Planck's constant.

2.4 Continuity Equations

The law of conservation of species requires that the rate per unit volume of species accu-

mulation be balanced by the rates of depletion or formation and the net outflow per unit

volume i.e.

S+ V . (psV) = msis. (2.42)
at



The volumetric rates of production (or depletion) of all the species, based on the discussions

of the previous section, are

RH+ S Rshne (SHril - nenH+) (2.43)

nt+ = Rshne (Sc.nc3  - nenc+) (2.44)

itc, = -t c+ (2.45)

u2 = -- K (5ni + 2ni 2 ) (H 2 - + KeHfe. H2  (2.46)

nH = --2H2 - H
+  (2.47)

he = hH+ + iC +  (2.48)

The global continuity equation is then obtained by summing Equation 2.42 over all

species present,

8p
-t + V. (p) = 0, (2.49)

where the total sum of net volumetric rate production,

Ehs = 0,
S

and definitions of global density and the mean flow velocity have been used.

2.5 Momentum Equations

The species momentum equation relates the rate of change of momentum of each species

to the different forces acting on it. The forces acting can be divided into two parts: body

forces, gravity and Lorentz (electromagnetic) forces; and surface forces, pressure and shear

forces. In plasmas generally, the effect of gravitational forces is negligible when compared

to those of electromagnetic and surface forces. Neglecting gravity, the momentum equation

for each species is given as

(mn ) + 
(  V) + msns Z u ( - ) = -V" + sZs ( V+ x ) (2.50)

S



Here Z, is the species charge and P. is the kinetic pressure dyad defined as

PS = PsI - Ts, (2.51)

where I is the identity tensor and 7, is the viscous stress tensor. The last term on the left

hand side of Equation 2.50 denotes the collisional rate of change of mean momentum for

species s.

A further simplification of the momentum equation for the electrons can be made by

neglecting inertial and viscous terms, and defining current density as j = ene (vi - v),

S+ x B) j+ x - (VPe (2.52)

The resulting equation is the generalized form of Ohm's law. The Hall parameter, 0, is the

ratio between the cyclotron frequency and the collision frequency,

S eB 
(2.53)

meve

The quantity ( is the electron mobility,

e 
(2.54)

meve

In low power arcjets, the effect of the magnetic field is generally negligible, so that the

generalized Ohm's law simplifies to

j = E+ (Vpe. (2.55)

A global momentum equation is then obtained by summing equation 2.50 for all the

species; if B = 0, this gives

t + V. (= + p) = 0. (2.56)

Where the equation of state and the definitions of global density and mean flow velocity have

been used. The collisional and Lorentz force terms all cancel out during the summation.



2.6 Energy Equations

Two separate energy equations are needed because of the two-temperature assumption

made: one for the electrons and the other for the heavy species.

Electrons

The electron energy equation is a balance between energy input to the electrons through

Joule heating, J , and losses via collisions with the heavy species, Ecou, heat diffusion

and convection, and volumetric radiation, R:

S k rT, eV + mv2 H s+ ic, ne + V [ kBTe + mev 2 + H + n

-V - (eVTe) = j E - Ecol - R, (2.57)

where eH and Ec, are the ionization energy per atom of hydrogen and cesium respectively.

The collisional energy transfer, Ecou1 is given as

Ecoll = 3menekB (Te - T) Y ves6s (Te) (2.58)
s ms

where 6, (Te) is the inelastic collision correction factor (6 = 1 for monoatomic species) and

is plotted for hydrogen and other polyatomic species in Fig. 2-3[16].

Heavy Species

The heavy species energy equation takes into account the energy imparted to the heavy

species through collisions with electrons, and energy transfer through conduction and con-

vection,

a + 2 + V (ph + 1pV2) - V - (KVT) = E 0 11. (2.59)

2.7 Electric Potential Equation

The electric potential equation is obtained from the generalized Ohm's law, Equation 2.55,

and Maxwell's equations of electromagnetism. Maxwell's equations for a quasi neutral
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Figure 2-3: Inelastic collision correction factor for some polyatomic species

plasma in the absence of magnetic field reduce to

V -E = 0,

Vx E = 0,

V j = o.

(2.60)

(2.61)

(2.62)

Equation 2.61 implies that the electric field can be written as the gradient of a scalar

potential:

E = -V¢ (2.63)



Substituting equations 2.55 and 2.63 into 2.62,the final expression for the electric potential

equation is obtained

V -((VPe) - V (Ve) = 0 (2.64)



Chapter 3

A Simplified Flow Analysis

In this chapter, a simplified model based on steady state approximations to the governing

equations for inviscid flow in the constrictor is presented. The electron temperature is not

allowed to exceed 7000K so as to exclude the presence of H + .A restriction was also imposed

on the length of the constrictor so as not to incur excessive viscous losses. The ionization

and dissociation processes are modeled in equilibrium. The model does not account for

near-electrode effects and nozzle flow, which is simply taken to be frozen isentropic with

the arc attaching at the constrictor exit. It was able, however, to explore the operation

of a seeded thruster without necessarily complicating the physics, and should serve as a

foundation for further advanced studies. The nonequilibrium treatment is given in the next

chapter on stability analysis.

In the absence of H + , Equations 2.2 and 2.3 respectively reduce to

nc, + nc +C = (3.1)
nH + 2nH2

and

ne = nc+ (3.2)

3.1 Ionizational and Dissociative Equilibrium

Implicit in the equilibrium assumption of steady state, is the dominance of collisional pro-

cesses over their radiative counterpart. This is generally valid at very high density, when

the gas can be considered to be optically thick. In equilibrium, the forward rate is exactly



balanced by the backwards rate of reaction, and as a result, for the ionization process, the

number densities of the electrons, cesium atoms and ions are related by the Saha equation:

3

nencs+ 2 (2 rmekTe 2 Z.Cs

ncs h 2 e kTe (3.3)

For the dissociation process at equilibrium, the law of mass action requires that the

number densities of hydrogen species be related by

2

nH = Kn (T) (3.4)
nH2

3.2 Steady Flow Equations

The analysis carried out in this section is focused on quasi one dimensional flow in a con-

strictor of cylindrical geometry. Quasi one dimensionality in this case implies that the radial

and azimuthal components of the velocity and electric field are negligible; however, the ra-

dial heat conduction is retained, and in fact is assumed to dominate over axial conduction.

In addition, pressure and the axial component of the electric field are assumed radially

uniform. A direct consequence of uniform pressure is the corresponding radial uniformity

in the momentum flux in the absence of viscous effects. This allows the definition of a

quantity q as

q(x) = pv2 , (3.5)

so that

pv = r (3.6)

For simplicity, all the heavy species are assumed to travel at the same velocity except for

the effect of ambipolar diffusion which has been incorporated into the transport mechanism.

At steady state, the continuity equation, Equation 2.49 reduces to

V. (p) = 0 (3.7)

Integrating over the volume of the cylinder gives:

fV V (p6) dV = 0 (3.8)



Converting to a surface integral by applying the divergence theorem:

V - (p) dV = p- idS = 0
JS

(3.9)

where n' is the normal to the control surface. The above equation implies that, at steady

state, the mass flow rate is a constant:

n = R v/p2rr dr = const, (3.10)

Similar operations on the momentum and potential equation yield an integral statement

of the conservation of momentum and current:

(p + pv 2)2Ir dr = J =const

0 E J 2wa dr = I = const.

(3.11)

(3.12)

where the constant J and I are the impulse and arc current respectively.

Differentiation of Equations 3.10, 3.11 and 3.12 with respect to x yields:

2rr vi dr dq

)dx

(foro dr)

+ qR 2rr ( ) dr + 27rRv =0

d 2d dR
d (p + q) 2rr dr + 2R (p + q) = 0

+ E r dr + 2rREo (R) = 0
dx Jo \x d

where the radial uniformity of pressure and momentum flux has been exploited. For a

constant area channel,
dR
d=
dz

(3.16)

As a result, Equations 3.13-3.15 become

+ Vf 2/rr - dr = 0

dp dq

dz dx

(3.17)

(3.18)

1

2 V
( R (3.13)

(3.14)

(3.15)

1 r d



ra dr x E  
r dr = 0 (3.19)

The electron temperature is related to the gas temperature through the electron energy

balance at steady state:

j2 me 6H2- = 3 enekB (Te - T) VeH + VeH 2  (3.20)
a mH 2

where ionization work has been neglected, since cesium is almost fully ionized at the temper-

atures considered. Neglecting electron pressure forces compared to electrical forces, Ohm's

law, Equation 2.55, reduces to

j= aE (3.21)

Substituting for j in Equation 3.20, after rearrangement, yields a quadratic equation in

T'

(T 2 e (E/p) 2  0 (3.22)
T T 8.00 x 1034 6 H2f1f2

where

neQei
fi = 1 + nsQe 2  (3.23)

nH eH2

mH 2 fl eQi
f2 = 1 + (3.24)

6H2mcsnH QeH2

An approximate 2-D steady state energy equation of the gas, neglecting radial convection

and axial conduction, is

Oht 10 ( OTpvh = -r r \ ) + aE 2  
(3.25)

ax r ir 4r

Because the thermal conductivity is generally a rapidly varying function of temperature, a

common practice is to introduce the heat flux potential defined as

p = T dT,

so that,
OT 9 o

Or Or

substituting the above expression into the energy equation and exploiting the radial



uniformity in momentum flux, leads to an equation of the form:

Oht 1

Ox v' r r rj J2

The governing equations are further simplified by expressing enthalpy, conductivity and

density as functions of T and P, so that their partial derivatives with respect to x are

O = K)T d-
ax ( T o 8 x
Op

-

(3.27)

(3.28)

(3.29)

+Oh) dp
+ OPT d

Bp\ dp
+ (, d

(p T dXp

Substituting the expression for ! in Equation 3.19, after rearranging gives:
ax5

dx

The total enthalpy, ht, is defined as

Differentiating with respect to x, leads to

Oht Oh

Ox Ox

(c) Tdr

(3.30)

Substituting for _h 22 and dx from Equations 3.27, 3.28 and 3.18 respectively, the above

equation becomes

Aht Ah T T

Oz T 8

Oh)

p T

1 dp

2p dx

Making f the subject of the formula, leads to

xT 0ht + 0d
S9x dx

q [ ad p T + p( dp
2p2 [5 ax Tdx

(3.26)

dE E jORr pd

fSo radr

v2  q
ht = h - = h+

2 2p
(3.31)

1 dq

2p dx

q Op

2p 2 Ox
(3.32)

(3.33)

(3.34)

dp dT

&T ax 8x
Oap) OT

= (a Be BTf
aT ax8z



where

2p (=T P 2 O (3.35)
2p 8p a 2p2 ( pT

( ) q p (3.36)

Substituting the above expression for T into Equation 3.28 gives

Op p + 8 N p dp

Ox = OTJ + p Tdx (3.37)

Substituting Equations 3.37 and 3.18 into 3.17, after rearranging, we obtain

dp [foR  ()T d rar(3.38)

Equations 3.38 and 3.30 are independent of the radius, while Equations 3.26 and 3.34

have to be evaluated at each axial and radial point. These equations are then integrated

downstream for a fixed constrictor geometry, seed fraction, current, and prescribed inlet

and boundary conditions, until the flow becomes choked. The choking point is taken to be

the end of the constrictor, since the flow undergoes rapid expansion after that. The physical

domain of interest is shown in Figure 3-1.

3.3 Method of Solution

3.3.1 Initial and Boundary Conditions

The quantities prescribed at the inlet are the total pressure, pt, the inlet Mach number,

M0 , and an arbitrary inlet radial temperature profile of the form:

T (r) = Tw + (Tc - Tw) 1- ( exp - (- , (3.39)
rcon rcat

where Tw and Tc are the wall and core temperatures respectively, rcon and rcat are respec-

tively the constrictor and cathode radii. Based on these prescribed quantities, Equations

2.5, 3.2, 3.1, 3.3, 3.4 and 3.20 are then solved to yield the species number densities, electron

temperature distribution and the electric field at the inlet.



L

Figure 3-1: Physical domain

A symmetry boundary condition is imposed at core of the arc,

( i) = 0 (3.40)

At the walls, an insulating boundary condition is imposed, so that

n aT = 0 (3.41)

A sonic condition is specified at the constrictor exit. This implies that the pressure

gradient at the exit is infinite, and is implemented by setting the denominator of Equation

3.38 to zero, i.e.

1 JR r( d r -  
R+ dr=0 (3.42)

3.3.2 Procedure

The gas is assumed to undergo isentropic expansion from its initial state (po and To) to

the Mach number specified at the inlet. As a result of electron heating at the cathode, the

temperature is then assumed to be distributed according to Equation 3.39.



At every radial station i, 9h (r) in equation 3.26 is computed as

(Oht 1 [ i + ( i + l - c i) - r i - 1 (p i - c i - 1 )

x i V i riAr
2  a E 2  (3.43)

In order to avoid the mathematical singularity associated with the above equation at

r = 0, the heat flux potential at this point is approximated by a cubic polynomial.

Substituting Equation 3.43 into Equation 3.38 and integrating numerically along the

radial direction, is obtained. This along with -9h, is used to determine 'T (Eq. 3.34),

which is then used to determine - (Eq. 3.30), through additional radial integration. The

step size is determined by local stability condition,

Ax <5(A) 2  (3.44)
- 2Nmax

where Ar is the radial grid spacing, and Rmax is the maximum of the counterflow heat

diffusion length

heat di f fusivity K

velocity 4

computed at every radial station i.

Once P, T and E have been determined at one grid point, enthalpy and other variables

can be computed as well. The above steps are then repeated until sonic conditions are

reached. Arc attachment is assumed to occur at the constrictor exit.

3.3.3 Performance

For the sake of simplicity, the gas is assumed to expand in the diverging nozzle which

follows the constrictor to a Mach number of 5, which is a reasonable assumption for arcjet

flows. The thrust and specific impulse for a frozen nozzle expansion can be calculated

approximately as

F = CthPtthroatAcon (3.45)

F
Isp = (3.46)

mg

where Ptthroat is the stagnation pressure at the sonic point, Acon is the constrictor cross

section area and Cth is the thrust coefficient, taken to be approximately 1.8(y = 1.3, Mexit =



Table 3.1: Typical Results

Case 1 2 3 4 5 6 7

Radius, mm 1.2 1.4

Input Mach No. 0.20 0.25 0.22 0.22 0.22 0.22 0.3

Current, A 10 10 14 19 17 17 17

Total Pressure, atm 3 2 3.3 3.3 3.3 3.3 3.3

Seed Fraction per mole, 10-4 3 3 3 3 4 3 3

Specific Impulse, sec 906 746 834 836 835 835 682

Voltage, V 792 379 724 537 597 595 425

Frozen Losses, % 4 0.03 1.3 0.9 1.3 1 0

L/D 17 8.7 13 6.8 10.5 8.7 6.3

Temax 6330 6765 5760 7623 5834 6800 6123

5). The frozen losses are defined as

Efrozen = nH ECAcon (3.47)

where c is the exit gas velocity, and nH is the radial mean density at the same point.

3.4 Discussion of Results

A numerical code in C was developed to solve the problem. Thruster parameters were

chosen based on previous results obtained from hydrogen arcjet thruster modeling. These

parameters were chosen in such a way as to maximize performance without violating the

temperature and geometrical constraints of the model. Typical results obtained for inlet

wall temperature of 400K and cathode tip temperature of 3500K are displayed in Table 3.1.

The cathode radius is taken to equal one-quarter of the constrictor radius. An important

observation made is the dependence of the exit conditions, hence performance, on the

inlet temperature distribution. Although this dependence is not strong, it is is one of the

limitations of the model, and can only be rectified by an advanced model, which takes into

consideration the physics around the cathode.

In order to identify operational trends, Case 6 in Table 3.1 was selected as a nominal

case. Computations were then made in a parametric fashion, varying only one of the major

parameters at a time (seed fraction, chamber pressure, current and inlet Mach number),

while keeping all else constant. The results are shown in Figures 3-2 through 3-9.

Most of the trends shown by these numerical results can be understood with reference



to a simple model of heat addition to a gas in a constant area duct. The conservation

equations for this situation, written between the duct inlet and its choked exit, are

P* = = POO PtoPMo (3.48)
RgTto

p, + p*u = Po + Pouo - Pto (3.49)

1 2
cpT, + 2u = c, (Tto + ATt) (3.50)

where cp ATt is the amount of heat added per unit mass. In addition u, = Rg,T and

P* = RgT,. The approximations in the right side of Eqs. 3.48 to 3.50 are valid for small

M0 . Solving the above system for ATt, gives

ATt 1
Tt 2 1)M - 1  (3.51)
Tto 2 (- + 1) MO2

which shows the exit total temperature to be directly proportional to the inlet temperature,

but inversely proportional to the square of the Mach number. Since the thruster specific

impulse scales as the square root of Tt., this implies that Isp should vary as -0, and be

independent of the other parameters. This is confirmed by the results in Figs. 3-2 to 3-9.

The overall power balance for the heated flow is IV = rhAht, which can be rewritten

as,

= puAhtA
V= (3.52)

With reference to Eq 3.51, the voltage must scale as the quantity

Pto 1 - Mo (3.53)
I/A 2 (7 + 1) Mo (3.53)

which is also confirmed by the numerical results. In particular as Fig. 3-3 illustrates, V is

independent of seed fraction. Noting that V = EL, and using Ohm's law, V = LA L, leads

to the conclusion that the constrictor length must scale as

Pto 1
(A) 2  +) -M0  Mo (3.54)

(I/Awhere 2 (is the seed fraction. It can be + 1) Equation 3.22 that, to a first approximation,

where a is the seed fraction. It can be seen from Equation 3.22 that, to a first approximation,



Te is proportional to E/p. Noting that E is (I/A) /a, an approximate scaling of the electron

temperature is
(I/A) Tto

apto M2 •

The dependencies on current and pressure are verified by Figs 3-5 and 3-6.

An important observation to be made is that, since the exit gas temperature depends

only on Mo, and the frozen losses are found to correspond mostly to dissociation (which

is governed by this temperature), these losses will become large below some critical value

of the inlet Mach no. Figure 3-9 shows this to occur below Mo 0.21. It is also to be

noted that, simultaneously, the channel is becoming excessively long (LID > 10, probably

leading to excessive viscous losses) as Mo is reduced, and so is the electron temperature

(Te > 7000, probably initiating H 2 ionization). Increasing pressure can alleviate the rise in

Te (Fig. 3-4), but it also aggravates the LID problem. On the other hand, reducing seed

fraction (Figs 3-2 and 3-3) has the opposite effect of alleviating the LID problem while

elevating the electron temperature further. This combination of effects limits the specific

impulse (Fig 3-9) to values not much higher than that for the baseline case.

Some sense of the two-dimensional degree of nonuniformity of the gas in the constrictor

can be obtained from Figs. 3-10, 3-11 and 3-12, which show contours of v, T and Te

respectively for the nominal case; there is less constriction than in a conventional arcjet.

Absent from the calculation are the wall boundary layers which would in actuality provide

a thin transition to the wall temperature.

3.5 Summary and Conclusions

The results from this model suggest that cesium seeding of hydrogen arcjets is a feasible

approach towards minimizing frozen losses efficiency, while maintaining an attractive specific

impulse. At the same time, the generally reduced temperature levels should lead to fewer

life time problems, and the presence of the easily ionizable alkali should also reduce near-

electrode losses (although these aspects have not been analyzed).

Further increase in specific impulse is possible by raising the gas temperature, thus

allowing more dissociation loss (but still avoiding the H ionization loss). However, operating

the thruster at high temperatures might trigger ionization instability which could lead to a

transition to a conventional hydrogen arc. There is a need to accurately model the physics



around the transition point. Quantitative treatment of this issue requires a more advanced

approach beyond the quasi one dimensional model. This is the goal of the analysis carried

out in the next chapter.
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Chapter 4

Stability Analysis

In the previous chapter, it was found that elimination of frozen losses in hydrogen arcjets via

alkali seeding is indeed feasible. One of the draw backs to operating the device at lower tem-

perature was found to be the corresponding decrease in specific impulse. A compromise that

was proposed was to operate the device at higher gas temperature, thereby allowing a little

bit of dissociation. However at higher degrees of dissociation, there is a concern that the

maximum electron temperature restriction imposed in the previous analysis may no longer

be valid, since the probability of electron impact ionization increases with greater atom

concentration. A direct result of this is the possibility of ionization instabilities appearing

in this regime. The presence of such instabilities could lead to a transition into conven-

tional hydrogen arc. It is of primary importance, therefore, to probe the physics around

this region. This is done, in this chapter, by performing a small perturbation analysis on

the relevant governing equations.

4.1 Governing Equations

The species considered in the current model are H 2 , H, H + , Cs, C + and e. Unlike in

the previous analysis, hydrogen dissociation and ionization are modeled in nonequilibrium

via rate equations. The analysis is carried out in a semi-infinite channel of width W. For

mathematical convenience, a Cartesian coordinate system is used. The flow velocity and

global pressure are taken to be uniform; their perturbations also assumed negligible. As

a result the global momentum equation reduces to the equation of state. For simplicity,

cesium atoms and ions are modeled in Saha equilibrium with the electrons. Neglecting



convective terms, the effect of electron impact dissociation, energy invested in ionization

and dissociation, and electron pressure gradients compared to Lorentz forces in the electron

momentum equation, the relevant governing equations are

8nH+-- = Rne (SHrH - nenH+)at

nenc= Sc (Te)
ncs

ncs + nc+ = a( 2 nH 2 + nH + nH+).

ne = nH+ C+ C+

a K (T) (5nH + 2nH2 ) nH 2 n - Rie (Se - nenH+)

=E

p = (nH + nH 2 ) kBT + nekB (Te + T) = const.

3 OTe j2
-nekB - V - (eVTe) = - Ecoll

2 at a

aT
pC, at - V (KVT) = Ecou

V (UV4) = 0

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.2 Linearization of the Governing Equations

The next step is to consider the response of the system to wave-like perturbations in den-

sities, temperatures and electric potential of the form:

and



n, = n. + 6ns (4.11)

Ts = To + 6T (4.12)

0 = 0 + 6(4.13)

for all the species, s, present. The zero superscript denotes the steady state (zeroth order

or background) values of the variables. The perturbations are assumed to be much smaller

than the background, e.g.

Sn
-1

The zero superscript is omitted hereafter. At steady state, the species conservation equa-

tions reduce to a system of nonlinear algebraic equations (equilibrium relations), which are

solved simultaneously, to obtain the background densities from prescribed values of pressure,

temperatures (Te and T) and seed fraction:

(nlH + nH2 ) kBT + nekB (Te + T) - p = 0, (4.14)

n2H - nH 2Kn =0, (4.15)

3

nenH+ 27rmekTe) 2 UL-

2 e kTe = 0, (4.16)

ne - nc+ - nH+ = 0, (4.17)

nenc+S= Sc (Te) (4.18)
nc,

and

nc+ + ncs - a (nH+ + nH + 2nH2) = 0, (4.19)

The background current density is then calculated from the electron energy balance at

steady state:

j = cEjj (4.20)

Substitution of the new expressions for densities, temperatures and potential into the

governing equations, after linearization, leads to expressions for the perturbed governing



6ne - 6 nH+ - nc+ = 0

at

nc+6 ne + neSnc+ = Ss [ncnc. + nc ( cicskBT2
+ )6Te

2Te U"

6
ne + 6nH+ nH2 + ( ) 6T + (e H + nH2 T = 0T (4.26)

3
-nekB (6Te) - KieV 2( Te)
2 at

= -2j

pCV (ST) - V 2 (6T) = 6Eco,

V26- j0 (6) = 0
a X
2

x

where perturbations in production rates, electrical conductivity, and collisional energy

transfer are

hH+ = -(RShnenH+) 6 ne - (Rsh n2) 6nH+ + (RShneSH)TnH

+ RshnenHSH eiH
L \kBTe

equations:

(4.21)

(4.22)

a (6 nH) = -H2 - 5il+

6
nc,, + nc+ = a (6nH+ + 6

nH + 2 6
nH 2)

(4.23)

(4.24)

( + 1)

(4.25)

j2
+ 6a - 6Ecou1

o"

and

(4.27)

(4.28)

(4.29)

(4.30)
3 )6Te

2Te e



6 1H 2 = -Kf (5nH + 2nH:

2T1
flH 2 T T2

6 =a[(1
V ei Sne

Ve ne

2) [-2 (nH) 6nH + 6nH2

T 2 exp (0,/T) - 1

VeH 
6
nH VeH 2 
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Here

V = VeH + Vei VeH 2 (4.
2 ni2

The derivatives and 8- are evaluated numerically.

Nondimensional Groups

For ease of analysis, the following group of nondimensional parameters are introduced:

t
7 =

toD

e =

LD

S= Y

LD

is =
ns

6T 8

_6q$

(4.605)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.31)

6Ecoll = Ecoll

(4.32)

.34)

(4.33)

p-,\
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Cv

C eiH +

G = C Eics +G kBTe

(2T
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._ _ Kf (5nH
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where the diffusive length and time scalTe

where the diffusive length and time scales are defined respectively as

The reference potential is arbitrarily chosen to be

jLD

a

As a result, the linearized perturbation equations can

nc+ )+ n'e
ne + Sc,

- H+ +H +Te)
OH+

n = Ri (- e
UT

(4.55)

now be expressed in the form:

(4.56)

(4.57)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

to= ekTe)
D 2 D

LD= et
2ueK

(4.53)

(4.54)
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ne ne(2nH2 + nH)

n G (1 - n Te

ne a(2nH2 + nH)
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where we have substituted for 6nc+ and 6nc, using Equations 4.23 and 4.25.

4.3 Dispersion Relations

As is usual in linear stability analysis, the disturbance is now decomposed into its Fourier

components:

fis = ifs ei(-~ '-  -) (4.63)

T = Ts ei(--) (4.64)

= ~ei(wr) (4.65)

where the hatted quantities are the complex amplitudes, Ic and ' are the wave and radius

vectors respectively. The quantity w is the complex frequency:

W = Wr + i Wi

Or

(4.58)

(4.59)

(4.60)

t -D 2T A 1
Vei\

V /

(4.61)

he - ( V

+ + C* Te

-Ca

(4.66)



The wave vector is set to lie at angle 0 with the background current (x-axis), so that

k . r= k ( cosO + y sin 6)

As a result,

-4 -iw

az -4 ikcos 9

-+ ik sin 0

-k
2

After Fourier decomposition, the linearized perturbation equations reduce to a system of

algebraic equation which can be expressed in matrix form as

All

A 21

A 3 1

A 4 1

A 51

A 61

A 71

A
1 2

A 22

A 32

A 42

A 52

A 62

A 72

A 13 A 14

A 23 A 24

A 3 3 A 3 4

A 4 3 A 44

A 5 3 A 54

A 6 3 A 64

A 73 A 74

A 15 A16

A 25 A 26

A 35 A 36

A 4 5 A 46

A 55 A56

A 65 A 66

A 75 A 76

A 17

A 27

A 37

A 47

A 57

A 67

A 77

n

Te

T

nH

=0 (4.72)

where the coefficients of the matrix, A, are

All

A 1 2

A 1 3

A 14

A 15

A 16

A 1 7

nc )
n. + Sc'

nH+

ne

nHnc+

ne(2nH2 + nH)
2

nH
2 nC+

ne( 2
nH 2 + nH)

nc+ (1- nc+

ne ao(2nH2 + nH)

= 0

= 0

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)



A 2 1 =-Ri (4.80)

A 22 = iw- i (4.81)

A 23 = ii (4.82)

A 2 4 = 0 (4.83)

A 25 = ~i (4.84)

A 26 = 0 (4.85)

A 27 = 0 (4.86)

A 31 = R i nH+ (4.87)
nH

A 32 = i -nH+ (4.88)
nH

A 33 = iw - 2(Rd - Ri n +) (4.89)
nH

A 34 = Rd (4.90)

A 35 = -Ri nH+ (4.91)
nH

A 36 = RdF (4.92)

A 37 = 0 (4.93)

A 41 = (E + 1) (4.94)
nH2

A 42 = 0 (4.95)

A 43  H (4.96)
nH2

A 44 = 1 (4.97)

A 45 = e (4.98)
nH

2

A 4 6 - ne + nH + nH 2  (4.99)
nH

2

A 47 = 0 (4.100)

A 51 = v
-e

i  Vei) (4.101)
(Ve Ve*

A 5 2 = 0 (4.102)

(\ Ve Ve

A 54  (VeH2  VeH 2  (4.104)( V ( * )
A 55  iw-k2 -  C +  + C* (4.105)

1(4.106)
As = , , (4.106)



A 57 = -i2k cos (9) (4.107)

A 61 = A 1+ (4.108)

A 62 = 0 (4.109)

A 63 = AVeH (4.110)
6 H2 V eH

A 64 = 6 H2 e(4.111)
2 ve

A 65 = A + C* (4.112)

A 66 = iw Dgk 2  A (4.113)
E0-1

A 67 = 0 (4.114)

A7 1  - (1 - veik cos 0 (4.115)

A72 = 0 (4.116)

vH
A 73  = ikcos 0 (4.117)

VHe

A 74 = H2 ik cos 0 (4.118)
Ve

A75  = ikC cos (4.119)

A7 6 = 0 (4.120)

A 77 = -k 2  (4.121)

The dispersion relation is then obtained by setting the determinant of matrix A to zero:

F (w, k, 0, Te, a, T, p) = det[A] = 0 (4.122)

The resulting expression for F is very complicated. It can, however, be written in the

form:

F = k2 [fl(w, k) + coS2 (0) f 2 (w, k)] (4.123)

where fl is a polynomial of degree 4 in both w and k, and f2 is of second degree in both

k and w. The roots of equation 4.122 represent the different modes of propagation of the

disturbance. The sign of wi indicates the development of the perturbation in time: positive

signifies growth, hence instability, while negative indicates a decaying stable mode. The

general requirement of system stability is for all wi to be negative (wi = 0 signifies marginal

stability). From mathematical analysis, the magnitude and orientation of the wave vector



at extrema of the function wi = wi(k, 0) are obtained from the conditions:

S = 0 (4.124)

and

S = 0 (4.125)

where a denotes imaginary part of the expression. Unfortunately an analytical expression

for wi(k, 9) is not possible. However, the above expression can be rearranged in the form:

_( F _i =0 (4.126)

and

( F ) = 0 (4.127)

A close inspection of Equation 4.123 shows that these conditions are satisfied by

k = 0 (4.128)

sin 0 cos 0 = 0 (4.129)

This result is supported by Figure 4-1, which shows the variation of wi with 0 at different

values of k for background values: T = 3000K, Te = 8000K, p = latinm and a = 10 - 4

where it can be seen that k = 0 and 9 = E (cos 0=0) correspond to the least stable mode,

while 0 = 0 (sin 0=0) is the most stable mode. Hence, it can be concluded that the least

stable mode occurs at an angle E between the wave vector and background current density,

and at the maximum possible wavelength of propagation, which in this case equals twice

the channel width.

4.4 Results

In this section, the behavior of the system on variation of each of the background parameters

is discussed. The analysis is confined to the wave vector corresponding to the least stable

mode (k = 0 and 0 = ').
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Figure 4-1: Nondimensional Imaginary Frequency versus wave vector



4.4.1 Stability Behavior as a Function of Electron Temperature

Figure 4-2 shows the variation of the imaginary frequency of the least stable mode with

electron temperature for T = 2000K, P = latm and a = 10-4. It can be inferred from

the plot, that there are two regimes of instability: Tei < 5630 and Te,, > 8380. These

instabilities are ionizational (or electrothermal) in nature. An ionization instability occurs

in regions of localized increase in electrical conductivity generally caused by fluctuations in

densities and temperatures. Accompanying this, is an increase in Joule dissipation, due to

current concentration in this region, which in turn fuels the electron temperature increase;

hence, an instability ensues. This is confirmed in Figure 4-3 which shows &5 (normalized

against Te) versus electron temperature.

In order to understand the mechanisms of these instabilities, consider a positive fluctua-

tion in electron temperature (Te > 0). From the gas temperature perturbation equation, it

can be seen that a positive fluctuation in electron temperature would lead to a correspond-

ing increase in the gas temperature, hence, a negative perturbation in the overall density

(from equation of state at constant pressure). This fluctuation in electron temperature will

also favor the ionization process in regions where the seed is not fully ionized. The direction

of electron density perturbation therefore depends on which the two effects (expansion and

ionization) is stronger: positive in regions of strong ionization (Te < Tei), and negative near

the threshold, Tej. At low electron temperatures, Coulombic interactions tend to dominate

because of the large electron ion collision cross section. Because the Coulomb collision

frequency is inversely proportional to Te, its partial derivative with electron temperature

will be negative in this region, hence the nondimensional parameter C < 0. From Equation

4.32, it can be seen that the combination of these two effects at low Te will lead to a positive

fluctuation in conductivity, causing the system to go unstable. This trend continues until

near full seed ionization where he becomes negative. This coupled with the corresponding

decrease in Coulombic interactions would result in stability being restored to the system.

This argument is supported by Figure 4-4 which shows the variation of ie and C with

temperature around the transition region.

As mentioned earlier, the perturbation in temperature of the gas goes in the same

direction as that of the electron. If the gas temperature is high enough, this positive

fluctuation in gas temperature would favor the dissociation process, so that nH2 < 0 and



nH > 0 (in the absence of H ionization). However, as the electron temperature approaches

Teji, nH decreases, because of the ionization process, and becomes negative at Te > Teii.

Figure 4-5 shows the variation of iH (normalized against Te) with temperature in this

region. As can be seen from Equation 4.32, this effect coupled with increase in he would

result in increase in conductivity.

4.4.2 Stability Behavior as a Function of Gas Temperature and Pressure

Illustrated in Figure 4-6 is a plot of background values of electron temperature against gas

temperature at different pressures near the stability threshold. The lower plots represent

the conditions below which the seed ionization instability occurs (mode I), while the second

group corresponds to conditions above which hydrogen ionization instability occurs (mode

II). It can be seen from the plots that the electron temperature at which instabilities occur

decreases with an increase in gas temperature. This is so, because an increase in dissociation

occurs as temperature increases, hence there are more atoms of hydrogen present for the

electrons to ionize. An important observation made in the region of H ionization instability

is that they typically occur when electrons from hydrogen atoms constitute about 2% of

total. As seen from the plot, an increase in pressure delays the temperature at which the

instabilities occur.

4.4.3 Stability Behavior as a Function of Cesium Seed Fraction

As mentioned earlier, the primary driving force for the first instability mode is due to

dominance of Coulombic interaction in this region. As a result, we expect this effect to

disappear at conditions where the coulombic interactions are not important. A comparison

of the Coulomb collision frequency to that of e - H 2 shows that an approximate threshold

condition is when

vei 1.17 x 10-9alnA
<< 1 (4.130)

VeH QeH2 (Te)

From the above expression, we can estimate the electron temperatures below which seed

ionization instability occurs for a given seed fraction, and vice versa. Some numerical exam-

ples are based on this estimation are displayed in Table 4.1. These results are approximately

confirmed by the lower plot in Figure 4-7 which shows the dependence of electron temper-

ature on seed fraction at stability threshold (p = latm. and T = 2000K). The upper plot



Table 4.1: Approximate values of electron temperature below which seed ionization insta-

bility occurs for a given seed fraction

a Te

10- 4  2936

3 x 10- 4  4707

5 x 10- 4  5821

10- 3  7710

1.2 x 10 - 3  8291

shows the dependence of Tej versus the seed fraction. The reason why the TeIj decreases

with a corresponding decrease in seed fraction has to do with the increase in the proportion

of electrons from atomic hydrogen with a decrease in seed fraction. It can be noticed, how-

ever, that the two temperatures, i.e TeI and Te,, approach each other at high seed fraction.

The value at which this occur is the upper bound on seed fraction, and results in a situation

where the system is always unstable.

4.5 Summary and Conclusions

The results from this analysis confirm our intuition about possible ionization instabilities

in the system. It was found that there are two regimes in which these instabilities occur.

The first regime, due to seed ionization, was found to occur at electron temperatures where

the seed is not fully ionized, and where Coulombic interactions are relevant. It was also

found that decreasing the seed fraction essentially reduces the temperatures at which this

instability occurs. However, due to the requirement for conductivity, such an approach for

curbing the instability is not practical. Furthermore, since this instability disappears after

full ionization of the seed, its direct effect will be simply to drive the electron temperature

above its threshold values to nearly full ionization of the seed. This will occur in the "core"

of the arc, which according to the nonlinear calculations of the previous chapter, is not

strongly constricted in any case.

Of major concern, however, is the second regime which corresponds to hydrogen ioniza-

tion instability. It was found that this instability occurs at temperatures above the range

investigated in the analysis of the previous chapter. Hence, we conclude that our previous

analysis is valid. The electron temperatures at which this instability occur was found to



be strongly dependent on degrees of dissociation and ionization. As a result, operating the

device at higher gas temperatures, hence higher specific impulse, reduces the maximum

allowable electron temperature.

Absent from the analysis are the effects of electron diffusion, radiation and convection

which otherwise would help in damping out the instabilities.
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Figure 4-2: Imaginary frequency vs electron temperature
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Chapter 5

Conclusions

5.1 Achievements

The feasibilty of alkali seeding as an approach toward reducing frozen losses in hydrogen

arcjets has been theoretically investigated. Results based on a quasi one dimensional equi-

librium steady model show that, with reasonable constraints on the constrictor geometry,

without allowing the electron temperature to exceed 7000K, and with cesium mass fraction

as low as 2%, a specific impulse of about 850 second is attainable with no frozen losses.

The constraint on electron temperature was imposed primarily to avoid ionization instabil-

ities associated with the presence of hydrogen ions in the system. The occurrence of this

instability could lead to a transition into conventional hydrogen arc or quenching of the arc.

Hence, it is of utmost importance to probe the behavior of the system in this regime.

A small perturbation analysis was performed to address this concern. Results from this

analysis suggest that there are actually two regimes in which ionization instabilites occur in

the system. The first, the seed ionization instability, was found to occur in regions where the

seed is not fully ionized, and where coulombic interactions are very important. It was also

found to dissappear after the seed is fully ionized. As a result, It was concluded that its effect

on the system would be to drive the electron temperature above its threshold values to near

full ionization of the seed. The other mode of instability was found to occur at temperatures,

where the dissociation and ionization of hydrogen are significant. The behavior of these two

modes of instability on background parameters; pressure, temperatures (both T and Te)

and seed fraction, was explained. A critical seed fraction at which the system is always

unstable was identified.



Based on the results from these analysis, it can be concluded that alkali seeding is indeed

a viable approach to eliminating frozen losses in arcjets.

5.2 Recommendation for Future Work

Because of the preliminary nature of this work, certain issues in the flow physics were

ignored for sake of simplicity. Foremost amongst these is the effect of viscosity. This

is the reason why in the quasi one dimensional analysis, a restriction was imposed on

the channel length. There is a need to also investigate effects of nozzle flow kinetics and

radiation on the overall performance. Also neglected in the analyses were near electrode

effects, especially around the cathode area, where a gaussian-like temperature distribution

was assumed. Unfortunately, the physics of the electrodes is one of the least understood

problems in arcjets, and is a subject of current research. Other concerns that also need to be

addressed are plume and contamination issues, since cesium mass fraction of 2% may begin

to approach the contamination levels due to electrode erosion. It would also be worthwhile

to investigate other parent-seed configuration e.g. helium seeded with pottasium or cesium.

In view of this, it is recomended that more detailed theorectical design studies be pur-

sued, and that plans be made for experimental work in this area.



Appendix A

Tables of Hydrogen Collision

Cross Sections and Integrals

Table A.1: Average Electron Collision Cross-Sections

Qij(10-20 m 2)

Te QeH 2  QeH

1000 10.1 31.18
2000 11.3 27.65
3000 12.6 26.01
4000 13.4 24.54
5000 14.2 23.20
6000 14.8 21.96

7000 15.5 20.83
8000 15.9 19.80
9000 16.4 18.86

10,000 16.9 17.99
11,000 17.3 17.18
12,000 17.6 16.44
13,000 17.8 15.76
14,000 18.0 15.11
15,000 18.2 14.52



Table A.2: Average Effective Collision Integrals

Sm)(10-20m2)

(2,2) 2,2) 2,2) (2 1,1) )1,1
Tg H2 H2  H 2 H HH H 2 H2  HH

1000 6.00 5.13 5.95 5.21 5.24
1500 5.59 4.52 5.22 4.66 4.57
2000 5.33 4.10 4.74 4.37 4.13
2500 5.02 3.79 4.39 4.04 3.82

3000 4.73 3.55 4.12 3.79 3.57
3500 4.50 3.35 3.90 3.59 3.37
4000 4.29 3.18 3.74 3.42 3.23
4500 4.12 3.03 3.61 3.27 3.12
5000 3.97 2.91 3.50 3.14 3.03
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