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Abstract Recent experimental evidence on the clustering of glutamate and GABA
transporters on astrocytic processes surrounding synaptic terminals pose the question
of the functional relevance of the astrocytes in the regulation of neural activity. In this
perspective, we introduce a new computational model that embeds recent findings on
neuron–astrocyte coupling at the mesoscopic scale intra- and inter-layer local neural
circuits. The model consists of a mass model for the neural compartment and an as-
trocyte compartment which controls dynamics of extracellular glutamate and GABA
concentrations. By arguments based on bifurcation theory, we use the model to study
the impact of deficiency of astrocytic glutamate and GABA uptakes on neural activ-
ity. While deficient astrocytic GABA uptake naturally results in increased neuronal
inhibition, which in turn results in a decreased neuronal firing, deficient glutamate
uptake by astrocytes may either decrease or increase neuronal firing either transiently
or permanently. Given the relevance of neuronal hyperexcitability (or lack thereof)
in the brain pathophysiology, we provide biophysical conditions for the onset iden-
tifying different physiologically relevant regimes of operation for astrocytic uptake
transporters.
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glutamatergic neurotransmissions · Excitability modulation · Neuronal
hyperexcitability

1 Introduction

Neural activity in the brain results from an interplay between neuronal excitation and
inhibition and is subjected to the supply of nutrients by the cerebral blood flow. At
the subcellular (microscopic) scale, neural activity propagates through axons and,
mostly, chemical synapses which transmit electrical signals from one (presynaptic)
neuron to another (postsynaptic) one, by release of neurotransmitters, like glutamate
and GABA for example, in the extracellular space (or synaptic cleft) between pre- and
postsynaptic terminals [1, 2]. These neurotransmitters diffuse in the synaptic cleft,
binding and activating postsynaptic receptors, which can regulate the depolarization
state of the postsynaptic neuron, triggering firing thereof. In parallel, spillout of these
neurotransmitters from the synaptic cleft to the perisynaptic extracellular space may
also activate receptors and transporters on perisynaptic astrocytic processes, with the
potential to trigger glutamate release by the latter glutamate into the extra-synaptic
space [3, 4].

The predominant expression of high affinity astrocytic glutamate and GABA trans-
porters in the proximity of synaptic terminals [5–7] raises the question of the func-
tional relevance of the astrocytic uptake in the regulation of synaptic transmission
and thus in the tone of neural excitability in the brain pathophysiology [8–11]. In
this perspective, computational modeling provides a key tool to aid diagnostic and
possible treatment of brain pathophysiology, providing a rationale to interpret elec-
trophysiological data when, at the current state of technology, dynamical recordings
of intracranial electroencephalography (EEG) cannot provide any information on un-
derlying concentrations of neurotransmitters. Over the past decade, modeling efforts
made in this regard have exploited several directions. There exists indeed a wealth
of published models for neuron–astrocyte interactions which consider neurotransmit-
ter and ion dynamics at different scales: subcellular [12–16], cellular [4, 17–19] and
supracellular, including a hemodynamic compartment [20–22], and network [23, 24].
Despite the different scales of analysis, consensus has grown from these studies as
to the existence of a plausible causal link between astrocyte activation and neuronal
(hyper)excitability [13, 15, 16, 23, 25]. With few exceptions [4, 16, 17], however,
a main limitation of these models is that they are hardly mathematically tractable
and the computational demand for scaling them up to meso/macroscopic scales re-
quires dedicated computing platforms. A possible alternative which brings together
computational portability with mathematical tractability is represented by neuron–
astrocyte mass modeling of dynamical interactions between neurons and astrocytes
populations. Indeed the mass approach is well suited to reproduce mesoscopic data
obtained by current EEG technology [26]. The aggregated yet biologically significant
parameters of a mass model can in fact efficiently be chosen so as to fit experimental
data [27]. Moreover, such models are usually low dimensional and thus amenable
to analytical treatment aimed at interpreting experimental observations as well as
identifying parameter sets for different dynamical regimes of the model [28, 29]. In
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particular, we benefit from the bifurcation analysis of the Neural Mass Model (NMM)
performed in [29] to characterize in this study, the impact of astrocyte on neuronal
activity. More exactly, our focus for the present study is on Noise Induced Spiking
(NIS), which is characterized by quiescent phases of neuronal activity separated by
isolated spikes resulting from synchronous neuronal activations. NIS typically mim-
ics local field potentials (LFP) recordings obtained during pre-ictal phases of epilepsy
as shown in [29] and may thus be used as a predictor for the insurgence of neuronal
hyperexcitability.

A novel computational model based on the neural mass approach that focuses on
astrocyte dynamics at the mesoscopic scale has recently been proposed [30]. This
model links the LFP signal representative of neural activity measured by intracranial
EEG to the cerebral blood flow dynamics measured by laser doppler recordings of
astrocyte activity. Although this model incorporates astrocytic recycling of glutamate
and GABA it does not take into account the modulation of neuronal excitability by
extracellular neurotransmitter concentrations. In the following, we present an exten-
sion of this model that includes such modulation in the context of bilateral neuron–
astrocyte interactions. In particular, we pursue an analytical characterization of the
impact of the key model parameters of astrocytic activity on neuronal hyperexcitabil-
ity.

Analytical investigation of our model allows us to make several predictions on the
effect of deficiencies of GABA and glutamate astrocytic uptake on neural activity.
In particular, we identify three possible neural regimes in the presence of deficiency
of astrocytic glutamate uptake, respectively, consistent with reduced activity, tran-
sient or permanent hyperexcitability. Such a spectrum of responses is substantiated
by the analysis of the dynamical structure of the model, which allows us to derive ex-
plicit conditions on the parameters involved in the astrocytic feedback corresponding
to each type of regime and put emphasis on the delicate balance between neuronal
excitation and inhibition and its sensitivity to extracellular concentrations of neuro-
transmitters.

2 Bilaterally Coupled Neuron–Astrocyte Mass Modeling

Physiologically, a pyramidal neuron (resp. an interneuron) releases glutamate (resp.
GABA) in the synaptic cleft from where it binds to receptors on the postsynap-
tic neuron, which stands for the main mechanism of synaptic transmission. In the
NMM, the role of neurotransmitter fluxes in this mechanism is implicit since the
neuronal activity is reproduced at the scale of populations. Henceforth, the tonic im-
pacts of neurotransmitters (GABA and glutamate) are embedded in conversion pro-
cesses from average pulse density into postsynaptic potentials. Uptake processes of
the neurotransmitters by the local astrocyte and presynaptic neuron regulates their
concentration in the extracellular space (Fig. 1). In the presynaptic neuron, the up-
take completes the stock whereas the uptake by the astrocyte triggers a cascade of
reactions linked with the modulation of synaptic transmission (differentially accord-
ing to the type of neurotransmitters) and the hemodynamics. This indirect mechanism
involves concentrations represented by explicit variables of the glial compartment of
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Fig. 1 Scheme of neurotransmission mechanisms and neurotransmitter uptake. Red circles: glutamatergic
vesicles. Blue circles: GABAergic vesicles. Red arrows: exchanges of glutamate. Blue arrows: exchanges
of GABA. A: astrocytes

our neuron–astrocyte mass model. Hence, feedbacks from the glial compartment onto
the neural dynamics stand for the modulations of excitability (or more precisely the
activation threshold of each population) by the extracellular concentration of each
neurotransmitters.

In the following, we set to describe our mass modeling approach to account for
the effect of extracellular glutamate and GABA concentrations on neural activity.
With this aim, we start by recalling the NMM setup originally studied in [29, 30], its
properties and time-series pattern that it produces. We then introduce our modeling
arguments to develop bilateral coupling between the astrocytic and neuronal com-
partments of the model. Finally, we leverage on the novel dynamical features brought
forth by inclusion of this bilateral coupling with respect to the original model in
[29, 30].

2.1 Neural Mass Model

The NMM represents the dynamical interactions between two neural populations at
a mesoscopic scale: a main population of pyramidal neurons (P ) and a population
of inhibitory interneurons (I ). For the excitatory feedback of pyramidal neurons, two
approaches have been considered in the literature: a direct link from their output to
their input and an indirect track through synaptic coupling with distant neurons. The
latter way of modeling amounts to considering an intermediary population of pyra-
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Fig. 2 Two schematic representations of the NMM with double excitatory feedbacks. P : main popula-
tion of pyramidal neurons. I : interneuron population. P ′: secondary population of pyramidal neurons.
Red (resp. green) arrows in (a): excitatory (resp. inhibitory) interactions. Box hE (resp. hI ): second-order
process converting action potentials into excitatory (resp. inhibitory) postsynaptic potential. Box Ŝ : pro-
cess converting average membrane potential into average action potential density discharge by neurons
of populations P , P ′ , and I , respectively. Ci for 1 ≤ i ≤ 4: coupling gain parameters depending on the
maximum number C of synaptic connections between two populations. G: direct feedback coupling gain.
p(t): external input. y0 , y1 , y2: state variables. x0 , x1, x2: intermediary variables

midal neurons P ′ interacting with P through synaptic connections. Both direct and
indirect approaches model the excitatory synaptic interaction between neighbor prin-
cipal cells, usually named collateral excitation. From the modeling perspective, we
cannot privilege one type of feedback over the other, since both these couplings are
physiologically relevant and can co-exist, a very local one and a more or less dis-
tant one. The NMM used in this article, proposed and studied in [29], includes both
feedback circuits. Hence, it includes three feedback loops on population P activity:
an inhibitory feedback through the interneuron population I , a direct excitatory feed-
back of P onto itself (referred to as “direct feedback”) and an indirect excitatory
feedback (referred to as “indirect feedback”) involving the population P ′ (Fig. 2(a)).

The conversion process of average pulse density into excitatory and inhibitory
postsynaptic potential, respectively, are based on the following α-functions intro-
duced by Van Rotterdam et al. [31]:

hE(t) = Aate−at ,

hI (t) = Bbte−bt .

These are fundamental solutions (also known as Green’s functions) for the differential
operators FE and FI , respectively, defined by

FE(hE) =
1

A

(

1

a

d2hE

dt2
+ 2h′

E + ahE

)

, (1a)

FI (hI ) =
1

B

(

1

b

d2hI

dt2
+ 2h′

I + bhI

)

. (1b)
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In this framework, the parameter A (resp. B) stands for the average excitatory (resp.
inhibitory) synaptic gain and tunes the amplitude of excitatory (resp. inhibitory) post-
synaptic potentials. Additionally, 1

a
(resp. 1

b
) represents the time constant of ex-

citatory (resp. inhibitory) postsynaptic potentials representative of the kinetics of
synaptic connections and delays introduced by circuitry of the dendritic tree [31–
33]. Following Freeman’s work [32], the functions converting the average membrane
potential into an average pulse density can be approximated by sigmoids of the type

S(x, xth, rsl) =
1

1 + ersl(xth−x)
.

Yet, for the sake of compactness of the NMM presentation, we introduce an auxiliary
parameterization after [32]:

Ŝ(x, v) = 2e0S(x, v, r) =
2e0

1 + er(v−x)
,

where 2e0 represents the maximum discharge rate, v the excitability threshold and
r the sigmoid slope at the inflection point. Finally, the NMM receives an excitatory
input p(t) standing for the action on population P of neural populations in other
areas through long-range synaptic connections. This input can be either deterministic
or stochastic, and in this case, being modeled for example by a Gaussian process.

Now we can write the dynamics for the intermediary variables x0, x1 and x2, which
represent the outputs of the population P , the sum of population P ′ output and the
external input p(t), and the population I , respectively (Fig. 2(b)):

d2x0

dt2
= AaŜ(x1 + Gx0 − x2, vP ) − 2a

dx0

dt
− a2x0, (2a)

d2x1

dt2
= AaC2Ŝ(C1x0, vP ′) − 2a

dx1

dt
− a2x1 + Aap(t), (2b)

d2x2

dt2
= BbC4Ŝ(C3x0, vI ) − 2b

dx2

dt
− b2x2. (2c)

Parameters Ci (i ∈ {1,2,3,4}) represent the average number of synapses between
two populations. Following [34], each Ci is proportional to the maximum number C

of synapses between two populations. The excitation of P by its own output, resulting
from the intra-population synaptic connections, is weighted by the coupling gain G.

For the sake of comparison, we use a variable change to obtain the same state
variables as in the Jansen–Rit model [35]: the excitatory output (y0 = x0) and the
excitatory (y1 = x1 +Gx0) and inhibitory (y2 = x2) inputs of the main population P .
The output y0 acts on the secondary pyramidal neuron population P ′ and on the
interneuron population I . To analyze the model, we write the dynamics of the state
variables y0, y1, and y2 as a system of first order differential equations:

dy0

dt
= y3, (3a)

dy1

dt
= y4, (3b)
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dy2

dt
= y5, (3c)

dy3

dt
= AaŜ(y1 − y2, vP ) − 2ay3 − a2y0, (3d)

dy4

dt
= AaC2Ŝ(C1y0, vP ′) + AaGŜ(y1 − y2, vP )

− 2ay4 − a2y1 + Aap(t), (3e)

dy5

dt
= BbC4Ŝ(C3y0, vI ) − 2by5 − b2y2. (3f)

In this study, we consider the local field potential LFP(t) = y1(t) − y2(t) [33] as the
main output of the model. It is important to note that, generally, studies of neural mass
models, such as Jansen–Rit model, only considered the case with the same constant
excitability thresholds for all populations, i.e.

vP = vP ′ = vI = v0.

2.2 Astrocyte Model: Glutamate and GABA Concentration Dynamics

For reproducing the astrocyte activity, we use the model introduced in [30]. It focuses
on the dynamics of glutamate and GABA concentrations, which are the main neuro-
transmitters of the central nervous system. In [30], the neuron–astrocyte coupling is
feedforward: the astrocyte dynamics is driven by the neural activity, generated by
the Jansen–Rit model, but it does not impact the neural compartment. The model
considers the dynamics of glutamate and GABA concentrations, locally to the main
population P of pyramidal neurons, at different stages of the recycling mechanism.
The local nature of this interaction implies that the firing rate of the secondary pop-
ulation P ′ of pyramidal neurons does not impact the astrocyte dynamics associated
with the neighboring astrocytes of the main population P . The mechanism is as fol-
lows (Fig. 3): excited pyramidal neurons (resp. interneurons) release glutamate (resp.
GABA) in the extracellular space (synaptic cleft). Astrocytes and presynaptic neurons
uptake the neurotransmitters. Astrocytes recycle or consume the neurotransmitters,
while the presynaptic neurons capture them to complete their stock.

Following [30] the astrocyte compartment is built on the firing rate of the pyra-
midal neuron population and the firing rate of the interneuron population. The state
variables are (i) JG and Jγ : the fluxes of glutamate and GABA from neurons to ex-
tracellular space, (ii) [Glu]e and [GABA]e: the neurotransmitter concentrations in the
extracellular space, (iii) [Glu]a and [GABA]a: the quantity of neurotransmitters recy-
cled and consumed by the astrocytes. The dynamics governing JG and Jγ is driven
by second-order differential operators similar to those for synaptic transfer dynamics
introduced in (1a)-(1b) [31, 36], i.e.:

FG(hG) =
1

W

(

1

w1

d2hG

dt2
+

w1 + w2

w1

dhG

dt
+ w2hG

)

,

Fγ (hγ ) =
1

Z

(

1

z1

d2hγ

dt2
+

z1 + z2

z1

dhγ

dt
+ z2hγ

)

.
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Fig. 3 Neuron-astrocyte model with astrocyte feedback. P and P ′: main and secondary populations of
pyramidal neurons. I : interneuron population. p(t): external input on population P . [Glu]e and [GABA]e:
glutamate and GABA extracellular concentrations. [Glu]a and [GABA]a: glutamate and GABA astrocyte
concentrations. Red arrows: P → P , P → I and P → P ′ couplings. Orange arrow: P ′ → P coupling.
Green arrow: I → P coupling. Cyan arrows: glutamate and GABA release by populations P and I into
extracellular space (fluxes J en

γ and Jγ ). Purple arrows: astrocyte and neural uptakes of neurotransmitters.
Red dashed arrows: glutamate feedbacks on populations P and I . Brown dashed arrow: GABA feedback
on population P

Like for the synaptic transfer functions in (1a)-(1b), the parameter W (resp. Z)
tunes the peak amplitude of glutamate (resp. GABA) concentrations and the param-
eters w1 and w2 (resp. z1 and z2) tune the rise and decay times of glutamate (resp.
GABA) release transfer function. This dynamics is well suited to reproduce qualita-
tive and quantitative properties of rise and decay of neurotransmitter concentrations
as shown in [30].

Astrocytic uptake of glutamate and GABA from the extracellular space may be
modeled by Michaelis–Menten kinetics [30], using the following function:

H(x, k) =
x

x + k
. (4)

The dynamics of the extracellular concentrations ([Glu]e and [GABA]e) result from
neurotransmitter fluxes JG and Jγ originating from synaptic release fluxes as just
described. Intracellular concentrations of glutamate and GABA in the astrocyte in-
stead mirror uptake dynamics and a nonspecific first order (linear) kinetics degrada-
tion [27].

To summarize, the feedforward model obtained by coupling the neural mass model
defined by (3a)-(3f) with astrocytic dynamics introduced in [30] reads

d2y0

dt2
= AaŜ(y1 − y2, vP ) − 2a

dy0

dt
− a2y0, (5a)
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d2y1

dt2
= AaC2Ŝ(C1y0, vP ′) + AaGŜ(y1 − y2, vP )

− 2a
dy1

dt
− a2y1 + Aap(t), (5b)

d2y2

dt2
= BbC4Ŝ(C3y0, vI ) − 2b

dy2

dt
− b2y2, (5c)

d2JG

dt2
= Ww1Ŝ(y1 − y2, vP ) − (w1 + w2)

dJG

dt
− w1w2JG, (5d)

d[Glu]e

dt
= JG −

(

V ae
G + V ne

G

)

S
(

[Glu]e, sg, rg
)

, (5e)

d[Glu]a

dt
= V ae

G S
(

[Glu]e, sg, rg
)

− V c
G[Glu]a, (5f)

d2Jγ

dt2
= Zz1Ŝ(C3y0, vI ) − (z1 + z2)

dJγ

dt
− z1z2Jγ , (5g)

d[GABA]e

dt
= Jγ − V ae

γ H
(

[GABA]e,K
ae
γ

)

− V ne
γ H

(

[GABA]e,K
ne
γ

)

, (5h)

d[GABA]a

dt
= V ae

γ H
(

[GABA]e,K
ae
γ

)

− V c
γ [GABA]a. (5i)

In the sigmoidal functions for [Glu]e dynamics (5e), parameters V ae
G and V ne

G are the
maximum rates of glutamate uptakes by the astrocytes and the neurons, respectively,
sg represents the activation threshold and rg the sigmoidal slope at the inflection
point. Parameters V ae

γ and Kae
γ (resp. V ne

γ and Kne
γ ) in Eq. (5h) are, respectively,

the maximum rate and concentration for astrocyte (resp. neural) GABA transporter.
Finally, V c

G and V c
γ are the glutamate and GABA degradation rates in astrocytes. We

refer the reader to [30] for a detailed explanation of the dynamics.
System (5a)-(5i) is built as a feedforward coupling of the neural compartment onto

the astrocyte one. Hence, in this model, the neural compartment is not impacted by
the neurotransmitter concentrations in the extracellular space. As mentioned in the
introduction, these concentrations have been proven to modulate the local neuron ex-
citability and this feedback has been identified in recent studies [1] to be an essential
mechanism of several pathologies triggered by astrocytic uptake deficiencies. Conse-
quently, our aim is to include such feedback in the model in order to study the effects
of different astrocyte dysfunctioning on the neuronal activity.

2.3 Astrocytic Feedback and Neuron–Astrocyte Mass Model

The concentrations of neurotransmitters in a synaptic cleft act on the excitability
threshold of the postsynaptic neuron. In the neuron–astrocyte model (5a)-(5i) the al-
teration of this neural excitability threshold can be reproduced by dynamical changes
in vP , vP ′ and vI . In the following, we describe how we model the modulation of the
neuron excitability in each population by the neurotransmitter concentrations in the
extracellular space basing ourselves on biological knowledge.
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Extracellular concentrations of neurotransmitters have a thresholded impact on
neural activity [1]. Precisely, on one hand, the impact of neurotransmitter concentra-
tions on neural activity is implicitly taken into account in the neuronal compartment,
thus the astrocyte feedback steps in only when the concentrations become larger than
physiological ones. On the other hand, the postsynaptic neurons are saturated when
these concentrations become too large and, consequently, the neural excitability re-
mains bounded. As explained in the introduction, quantitative experimental data of
the impact of neurotransmitter concentrations on neural excitability do not exist up to
now. For fixing ideas, we consider sigmoidal functions to model the astrocyte feed-
back on neural excitability which is a natural choice for aggregating the qualitative
experimental knowledge. Yet the upcoming mathematical analysis can easily be ex-
tended to any bounded increasing functions with a unique inflection point.

We introduce three sigmoidal functions to model the components of the astrocyte
feedback:

(a) mP
GS

(

[Glu]e, vG, rG
)

for glutamate feedback on pyramidal neurons,

(b) mI
GS

(

[Glu]e, vG, rG
)

for glutamate feedback on interneurons,

(c) mγS
(

[GABA]e, vγ , rγ
)

for GABA feedback on pyramidal neurons.

Note that glutamate binding mechanisms are the same for both pyramidal neurons
and interneurons since both cell types express the same type of transporters [10, 37].
Thus, only parameters mP

G and mI
G representing the maximum coupling gains of

the glutamate-dependent component of the astrocyte feedback discriminate between
the coupling functions mP

GS([Glu]e, vG, rG) and mI
GS([Glu]e, vG, rG), insofar as the

number of transporters is cell-specific and so is the ensuing uptake rate. Model pa-
rameters are summarized in Table 1 and their values used in the simulations of this
study were chosen to qualitatively reproduce typical physiological data.

We previously mentioned that astrocyte feedback acts on the excitability thresh-
olds of neurons. More specifically, if there is an excess of neurotransmitter in a
synapse from a neuron n1 of population N1 to a neuron n2 of population N2, the
extracellular concentration of neurotransmitter acts on the postsynaptic neuron n2 by
changing its excitability threshold. In system (5a)-(5i) the excitability threshold of
neurons, that is, a parameter at the single cell scale, does not appear explicitly. How-
ever, when the excitability of the population N2 neurons changes at the individual
scale, the number of neurons activated in this population by a given input changes as
well and so does the output of this population. Following the mass approach, we scale
this feature to the population, and, consequently, we choose to change parameter vN2

in the equation corresponding to the output of population N2 since this parameter
represents a modulation of the threshold of the sigmoidal function Ŝ .

Let us now describe how we build the feedbacks on the dynamics of the neural
compartment using the sigmoidal functions of the neurotransmitter concentrations.
The dashed arrows in Fig. 3 illustrate these feedbacks. We need to consider separately
each type of synapse in the NMM, and the variables x0, x1, and x2 for the feedbacks
building. The NMM embeds five types of synaptic connections between populations:
(i) P ′ → P , (ii) P → P ′, (iii) P → I , (iv) I → P , (v) P → P . In the following
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Table 1 Descriptions and values of the neuron–astrocyte mass model parameters

Parameter Interpretation Value

Neuronal compartment

A Average excitatory synaptic gain 3.25 mV

B Average inhibitory synaptic gain 22 mV
1
a Time constant of excitatory postsynaptic potentials 1

100 s
1
b

Time constant of inhibitory postsynaptic potentials 1
50 s

e0 Half of the maximum discharge rate of a neuronal population 2.5 s−1

v0 Basic excitability threshold for neurons 6 mV

r Stiffness of neuronal excitability 0.56 mV−1

C1 Strength of the synaptic connections from P to P ′ 135

C2 Strength of the synaptic connections from P ′ to P 108

C3 Strength of the synaptic connections from P to I 33.75

C4 Strength of the synaptic connections from I to P 33.75

G Gain of the direct excitatory feedback from P to itself 40

Glial compartment

W Tunes the peak amplitude of glutamate concentrations 53.6 µM · s−1

Z Tunes the peak amplitude of GABA concentrations 53.6 µM · s−1

w1 Tune the rise and decay times of glutamate release transfer function 90 s−1

w2 33 s−1

z1 Tune the rise and decay times of GABA release transfer function 90 s−1

z2 33 s−1

V ne
G

Maximal rate of glutamate uptake by neurons 0.5 µM · s−1

V ae
G

Maximal rate of glutamate uptake by astrocytes 4.5 µM · s−1

sg Activation threshold of sigmoid glutamate uptakes 6 µM

rg Stiffness of sigmoid glutamate uptakes 0.9 µM−1

V ae
γ Maximal rate of astrocyte GABA uptake 2 µM · s−1

Kae
γ Maximal concentration for Hill dynamics of astrocyte GABA uptake 8 µM

V ne
γ Maximal rate of neuronal GABA uptake 5 µM · s−1

Kne
γ Maximal concentration for Hill dynamics of neuronal GABA uptake 24 µM

V c
G

Rate of glutamate degradation by astrocytes 9 µM · s−1

V c
γ Rate of GABA degradation by astrocytes 9 µM · s−1

Neuron excitability modulations by neurotransmitter concentrations (feedbacks)

vG Excitability threshold of glutamate feedback function 30 µM

rG Stiffness of sigmoid glutamate feedback function induced by glutamate 0.15 µM−1

mP
G

Maximal coupling gain of glutamate feedback on pyramidal neurons 2.5 mV

mI
G

Maximal coupling gain of glutamate feedback on interneurons 1 mV

vγ Excitability threshold of GABA feedback function 25 µM−1

rγ Stiffness of sigmoid GABA feedback function 0.12 µM−1

mγ Maximal coupling gain of GABA feedback 1 mV
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we detail the modulation of neural intermediary variables for each kind of synapse
separately, then we gather these changes to specify the coupling terms reproducing
the astrocyte feedback.

In the framework of the local neuron–astrocyte mass model, the astrocyte feedback
does not impact the synaptic connections of type P ′ → P or P → P ′. As a matter
of fact, the astrocyte compartment only takes into account neurotransmitters released
locally by neurons of populations P and I , whereas population P ′ is nonlocal to
population P . Hence, extracellular concentrations of neurotransmitters in the vicinity
of P ′ have no impact on the neuronal activity of P and the concentrations in the
neighborhood of P and I do not influence the postsynaptic neurons of population P ′.

A synaptic connection of type P → I concerns the variable x2. As shown in [1,
38], in the case of glutamate excess in the extracellular space, the postsynaptic neu-
ron is more excitable. Consequently, more neurons are activated in the population I .
We model this mechanism at the mesoscopic scale by introducing a dependency of
population I excitability threshold vI on the extracellular glutamate concentration
and set in Eq. (2c):

vI = v0 − mI
GS

(

[Glu]e, vG, rG
)

.

While experiments have evidenced impacts of extracellular glutamate concentra-
tions on the excitability of GABAergic neurons [38], we lack experimental data and
conclusions on the way GABA acts on the excitability of each subtypes of GABAer-
gic neurons. In particular, observations raise the question of whether all subtypes are
subject to mechanisms of GABA-mediated excitability modulation in the same way
[39, 40]. Since our model is not subtype-specific for the sake of compactness, we
chose not to embed any GABA feedback on interneuron population dynamics.

On the one hand, a synaptic connection of type I → P is concerned by extracel-
lular concentrations of GABA since it involves GABAergic interneurons. In case of
a GABA excess in the extracellular space, the inhibition of the postsynaptic neuron
is strengthened (see e.g. [1]), i.e. less neurons are activated in population P , which is
translated in the NMM by an increase of the threshold of the sigmoidal term in the
x0 dynamics. On the other hand, a synaptic connection of type P → P is impacted
by the extracellular concentration of glutamate implying a modulation of variable
x0 dynamics as well. In the case of an excess of glutamate in this kind of synapse,
the postsynaptic neuron is more excitable [1]. Hence, more neurons are activated in
population P which can be reproduced by a decrease in the threshold parameter ap-
pearing in (3d). Gathering both modulations impacting the excitability of population
P , we set in Eq. (3d)

vP = v0 + mγS
(

[GABA]e, vγ , rγ
)

− mP
GS

(

[Glu]e, vG, rG
)

.

The new neuron–astrocyte mass model embedding the astrocyte feedback is ob-
tained from model (5a)-(5i) by considering the dynamical entries vI and vP men-
tioned above. Accordingly, the sigmoidal functions appearing in Eqs. (5a), (5b), (5c),
(5d), and (5g) become

Ŝ(y1 − y2, vP ) = Ŝ
(

y1 − y2, v0 + mγS
(

[GABA]e, vγ , rγ
)

− mP
GS

(

[Glu]e, vG, rG
))

,
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Ŝ(C1y0, vP ′) = Ŝ(C1y0, v0),

Ŝ(C3y0, vI ) = Ŝ
(

C3y0, v0 − mI
GS

(

[Glu]e, vG, rG
))

.

2.4 Bifurcation-Based Characterization of the Neural Activity: The Case of

Noise-Induced Spiking

The behavior of NMMs can be deduced from the bifurcation diagram according to
the value p(t) = p considered as a parameter, as it has been performed in [28] on
the Jansen–Rit model. In [29], we have classified the types of time-series patterns
generated by model (3a)-(3f) and the associated bifurcation structures according to
the strengths of the different excitatory inputs to population P . Let us recall the bi-
furcation diagram underlying the predominant type of generated time series, which
we will consider in this article.

Model (3a)-(3f) has the following useful features [29]. First, for a fixed value of
parameter p, the y0 value of a singular point suffices to have explicit expressions of all
the other components. Second, for a given y0 value, there exists a unique value of p

such that y0 corresponds to a singular point. In other terms, the set of singular points
obtained for the different values of p is a graph over y0. Hence, we can visualize
the shape of the singular point locus in the plane (p, y0): in the case presented here
(see top panel of Fig. 4), this curve of singular points is S-shaped. In the following
description, for a given bifurcation “X” according to parameter p, we denote by pX

the bifurcation value and, if the bifurcation involves a singular point, we denote by
yX the corresponding y0 value.

Two saddle-node bifurcations SN1 and SN2 split the curve of singular points into
three branches. We name “lower branch”, “middle branch”, and “upper branch” the
sets of singular points, respectively, satisfying y0 < ySN1 , ySN1 < y0 < ySN2 , and
y0 > ySN2 . Singular points on the lower branch are stable (blue) and those on the
middle branch are unstable (cyan). Singular points on the upper branch are unstable
(green) for p < pH1 and stable (blue) otherwise. At p = pH1 the system undergoes a
supercritical Hopf bifurcation H1 giving birth to a stable limit cycle for p < pH1 that
persists until p = pSN1 = pSNIC where it disappears by a saddle-node on invariant
circle (SNIC) bifurcation (dashed orange line). The existence of the SNIC bifurcation
is essential because it implies the appearance of a large amplitude stable limit cycle
with large period. Hence, according to the value of p, the system alternates between
oscillatory phases (for p > pSNIC) and quiescent phases (for p < pSNIC). In other
terms, pSNIC plays the role of an activation threshold for the neural compartment.

This means that, given a constant input p(t) = p̄ such that p̄ < pSNIC, we expect
the NMM to reproduce quiescent neuronal activity. On the other hand, if we consider
Gaussian noise as input that is normally distributed with p̄ as mean value and large
enough variance σ , the NMM output results instead in an alternation of quiescent
phases and isolated LFP spikes (see Fig. 4), consistent with emergence of Noise-
Induced Spiking (NIS) [29]. Importantly, NIS frequency depends on the input noise
statistics (i.e. mean and variance in the case of Gaussian noise) as reflected by the
confidence interval [p̄ − σ, p̄ + σ ] reported by the gray bar above the bifurcation
diagram on the left panel of Fig. 4.
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Fig. 4 Bifurcation diagram according to p (left) and associated LFP and y0 time series (right). Blue

curves: stable singular points. Cyan (resp. green) curves: singular points with one (resp. two) eigenval-
ues with positive real parts. Black curves: y0 extrema along stable limit cycles. Black points (SN1 and
SN2): saddle-node bifurcations. Red point (H1): supercritical Hopf bifurcation. Dashed orange line: Sad-
dle-Node on Invariant Circle (SNIC) bifurcation. Horizontal gray bar: confidence interval of the Gaussian
variable p(t) used to generate the time series i.e. [p̄ − σ, p̄ + σ ] where p̄ and σ are the mean and the
variance of the associated normal distribution, respectively

Such LFP activity, i.e. sparse large amplitude spikes, corresponds to episodic syn-
chronization of the neuron activities among the populations. This pattern of activity
is symptomatic of a strong excitability of the neuronal system that can turn into hy-
perexcitability during pathological crisis. In [29] we have fitted the NMM parameter
values for reproducing interictal and pre-ictal spiking activities by tuning the coupling
gain of the indirect excitatory feedback. We have compared these outputs to exper-
imental data recorded from epileptic mice (Mesial Temporal Lobe Epilepsy mouse
model). It appeared that the NIS behavior is well suited for reproducing the high am-
plitude sharp waves characterizing the activity pattern recorded between pathological
crises. For these fixed parameter values of the NMM, the activity is stable in the sense
that the oscillation frequency does not change much with time. The values of the pa-
rameters associated with the NMM used in this study and given in Table 1 have been
chosen so as to reproduce NIS behavior using the analysis in [29]. In the following,
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Fig. 5 Comparison of the effects of a GABA bolus on the feedforward and bilaterally coupled neuron–as-
trocyte mass models. Bifurcation diagrams according to p (top panels) computed for the model without
feedback for all t (a1) and for the model with feedback at t = 0 s (b1) and t = 30 s (b2). Time series (bot-

tom panels) corresponding to LFP, glutamate and GABA extracellular concentrations and time variations
of pSNIC generated by the models without feedback (left) and with feedback (right). The purple lines on
the bifurcation diagrams materialize the fixed value of input p. The dark red arrows above each time series
materialize the time of GABA bolus injection

we study the variations of the activity when the neural dynamics is altered by the
surrounding activity, i.e. the astrocyte feedback.

2.5 NMM Dynamics: Example from GABA Injection

To illustrate the impact of the astrocytic feedback on neural excitability and intro-
duce the dynamical tools that we are using in the remainder of the article, we set to
study LFP dynamics generated by our model both with and without astrocytic feed-
back, leveraging on the role of the SNIC bifurcation occurring at p = pSNIC on the
emergence of different regimes of neuronal firing.

With this aim, we simulate injection of GABA (20 AU) into the extracellular space
at t = 0. Assuming p(t) = p � pSNIC (Fig. 5, panels (a1) and (b1)). Either in the
presence of astrocytic feedback or lack thereof, the model generates low-frequency
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NIS right after injection time. Nonetheless it may be noted that, in the presence of
astrocytic feedback, even if extracellular GABA concentration is low—and the corre-
sponding sigmoidal feedback is consequently very weak—this is sufficient to affect
neural activity—as reflected by the difference in spike frequency between the two
LFP time series.

In the time series generated by the model without feedback (left panels of Fig. 5),
the neural activity and the glutamate concentration dynamics remain unchanged
(Fig. 5(a)) after the instantaneous increase of [GABA]e at t = 0, which mimics
GABA injection. In contrast, in the model with astrocyte feedback (right panels of
Fig. 5), the strong increase of [GABA]e halts neuronal activity, which, in turn re-
duces synaptic release of glutamate. Once [GABA]e has become sufficiently low,
neural activity re-emerges and both glutamate and GABA concentrations come back
to their respective basal values, oscillating with neural activity.

These phenomena can be well accounted by arguments based on bifurcation anal-
ysis (top panels of Fig. 5). In the model without astrocytic feedback, neural dynam-
ics is decoupled from astrocytic dynamics. Hence, the bifurcation diagram of the
NMM remains unchanged during all simulated time (Fig. 5(a1)). In this fashion, the
excitability threshold pSNIC of the neural compartment is constant in time (Fig. 5,
bottom panel). On the other hand, in the system with feedback, vP , vP ′ and vI de-
pend on GABA and glutamate concentrations. Consequently, the bifurcation diagram
for the neural compartment is time dependent, and so is the value of pSNIC, which
changes along with the astrocytic variables. Thus, right after GABA injection, pSNIC
is larger than the input value p (Fig. 5(b2)), and because pSNIC plays the role of ac-
tivation threshold for the neural population, then as long as GABA concentration re-
mains high, the neural population remains quiescent. One may easily see by a simple
algebraic calculation (not shown) that the astrocytic compartment admits a unique
singular stable point for any neural state. Hence, starting from a high extracellular
GABA concentration, this concentration decreases toward the attractive state slowly
decreasing pSNIC, as shown in the bottom panel of Fig. 5, case (b). Once, GABA is
low enough, pSNIC becomes smaller than p, and the system oscillates again.

This analysis shows how the model with feedback can take into account changes
in glutamate and GABA dynamics to modify all the dynamics of the system and il-
lustrates the interest of embedding the astrocyte feedback in such neuron–astrocyte
model. Our model allows us to study the effects of variations in glutamate or GABA
dynamics on neural activity. In the following, we study the effects of deficiencies in
the uptake of neurotransmitters by the astrocytes both on extracellular concentrations
and neural activity. For both types of deficiency (GABA and glutamate uptake), we
first describe the biologic context and mechanisms and their outcomes, then we pro-
vide a mathematical analysis of the underlying dynamical mechanisms to explain the
effects that can be expected in a biological system.

3 Deficiency of Astrocytic GABA Uptake

We now set to investigate some predictions of our model, starting from the consid-
eration of the scenario of deficiency of astrocytic GABA transporters whose exper-
imental correlate is a low capacity by astrocytes to uptake extracellular GABA [7].
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Because a single astrocyte may ensheath hundreds of thousands of synapses [41, 42],
the increase of extracellular GABA resulting from slow, defective astrocytic uptake
is expected to promote neuronal inhibition and thus reduces synaptic release in line
with what is elucidated in the previous Sect. 2.5. Thus, once we consider many de-
fective astrocytes, all neurons in the proximity of these astrocytes are likely to be
inhibited [43].

To simulate deficiency of astrocytic GABA uptake in our model, we decrease the
maximum (saturated) rate of astrocytic GABA uptake from the extracellular space
(V ae

γ ) as this parameter directly depends on the uptake efficiency of astrocytic GABA
transporters. At the neuronal population level we are interested instead in deriving
the dependence of pSNIC on astrocytic feedback. With this aim, because glutamate
binding by neuronal receptors is independent of cell types, we may set:

mI
GS

(

[Glu]e, vG, rG
)

≡ v1,

mP
GS

(

[Glu]e, vG, rG
)

≡
mP

G

mI
G

v1,

mγS
(

[GABA]e, vγ , rγ
)

≡ v2,

where v1 and v2 are defined within the boundaries of mI
GS([Glu]e, vG, rG) and

mγS([GABA]e, vγ , rγ ), that is, 0 ≤ v1 ≤ mI
G and 0 ≤ v2 ≤ mγ .

With these new notations, the dynamical excitability thresholds vP , vP ′ , and vI of
populations P , P ′, and I become

vP = v0 + v2 −
mP

G

mI
G

v1,

vP ′ = v0,

vI = v0 − v1.

By these new parameters, an increase (decrease) of extracellular GABA or gluta-
mate are represented by an increase (decrease) of v2 or v1, respectively. Accordingly,
because a deficiency of astrocytic GABA uptake increases extracellular GABA con-
centration, then we aim at characterizing the dependency of pSNIC on the value of v2.
In particular we formalize our first model prediction in Proposition 3.1 and exem-
plify it by numerical continuation of the SNIC bifurcation for varying v2 in Fig. 6
(left panel). In carrying out our following analysis, we assume v1 constant, leaving
justification of such assumption a posteriori at the end of the section.

Proposition 3.1 The threshold for neuronal activation, pSNIC, linearly increases

with the GABA-induced modulation of neural excitability v2.

Proof The set of the system singular points obtained for the different values of pa-
rameter p can be explicitly expressed according to y0, v1, and v2 all other parameters
being fixed. Using system (3a)-(3f), a singular point satisfies y3 = y4 = y5 = 0. Un-
der these conditions, annihilation of the r.h.s. of Eq. (3f) allows expressing y2 with
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Fig. 6 The dependency of the SNIC value on v2 explains the impact of an alteration of the GABA as-
trocytic uptake on the neural activity. Variation of pSNIC value according to v2 (left). Time series corre-
sponding to LFP, [GABA]e , [Glu]e and v2 = mγ S([GABA]e, vγ , rγ ) (right from top to bottom) for p(t)

a Gaussian variable. At t = 40 s, the GABA astrocytic uptake is artificially altered by setting V ae
γ = 0 for

any subsequent time. The gray time window highlights the transient toward the new behavior

respect to y0. Then annihilation of the r.h.s. of (3d) provides y1 as function of y0.
Finally, by annihilation of Eq. (3e), we find that the y0 components of the singular
points for given values of p, v1 and v2 are characterized as solutions of

p = f (y0, v1, v2), (6)

where

f (y0, v1, v2) =
a

A

(

v0 −
mP

G

mI
G

v1 + v2

)

−
a

Ar
ln

(

2Ae0 − ay0

ay0

)

−
aG

A
y0

− C2Ŝ(C1y0, v0) +
aB

bA
C4Ŝ(C3y0, v0 − v1). (7)

All the other components of a given singular point can be explicitly expressed as
functions of the y0 component. The calculation is straightforward from the annihi-
lation of the vector field (5a)-(5i) as explained above. Since these components are
not needed for the following analysis and are only minor calculus details, we do not
specify these heavy expressions. We rewrite Eq. (7) as follows:

f (y0, v1, v2) =
a

A
v2 + q(y0, v1). (8)

Obviously the two saddle-node bifurcation values pSN1 and pSN2 are relative extrema
of f (y0, v1, v2). In particular pSN1 = pSNIC coincide with the local maximum of
f (y0, v1, v2) and, as such, is of the solution of

p = f (y0, v1, v2), (9a)

∂f

∂y0
(y0, v1, v2) = 0, (9b)

∂2f

∂y2
0

(y0, v1, v2)� 0. (9c)
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Since ∂f
∂y0

(y0, v1, v2) is independent on v2, so is ySNIC and it can be considered as a
parameter in Eq. (9a). From (8) and (9a)-(9c) we obtain the following expression for
pSNIC:

pSNIC =
a

A
v2 + q(ySNIC, v1). �

Let us consider the model generating an oscillatory output with a fixed value of
p (pSNIC < p). If the extracellular concentration of GABA increases (e.g. by an in-
jection of GABA as in Fig. 5), the value of v2 increases and Proposition 3.1 asserts
that the value of pSNIC also increases. As already explained, the closest pSNIC is to
p, with pSNIC < p, the largest is the limit cycle period, thus the oscillation frequency
of the outputs decreases. If pSNIC increases enough such that pSNIC > p, the stable
limit cycle of the system disappears, and the neural compartment becomes quiescent.

In the case of deficiency of GABA uptake, the extracellular concentration of
GABA increases, and we can use Proposition 3.1 to explain the following effects.
For that purpose, we use the following in silico protocol: we initialize the neuron–
astrocyte model in an oscillatory phase with a low oscillation frequency and consider
p(t) a Gaussian input. At t = 40 s, we turn off the GABA astrocyte uptake by setting
V ae

γ = 0 (Fig. 6). The result is an increase in GABA extracellular concentration im-
plying an increase in pSNIC. As pSNIC increases, the probability for p(t) to overcome
pSNIC along the associated Brownian motion decreases, and also does the oscillation
frequency (Fig. 6). Consequently, we observe a decrease in the oscillation frequency
after t > 40 s. In the time series, the oscillation frequency decreases gradually during
a transient (40 s < t < 60 s) until reaching its minimum. This can be explained by
the slow increase of GABA extracellular concentration that reaches its new baseline
at t = 60 s.

To summarize, our hitherto analysis reveals that a deficiency of astrocytic GABA
uptake causes a decrease of neural firing, leaving extracellular glutamate concentra-
tion close to its baseline. This emphasizes that, under such conditions, changes in
glutamate-induced modulation of neuronal excitability (v1) are overall negligible in-
sofar as neural activity is sufficiently inhibited by high extracellular GABA.

4 Deficiency of Astrocytic Glutamate Uptake

We now focus on the impact of deficient astrocytic glutamate uptake on neuronal
activation. This scenario results in an increase of extracellular glutamate which in
principle is expected to make neurons more excitable and thus more prone to fire.
However, such increase in excitability may be (at least partly) counteracted by the re-
sulting boost in interneurons firing which triggers synaptic release of GABA, overall
increasing extracellular levels of this species and promoting, in turn, neural inhibi-
tion. This suggests that the possible balance between glutamatergic neuronal excita-
tion and GABAergic inhibition may lead to nontrivial dynamics regimes for neural
activity. Considering the rationale outlined in the previous section, we now set out
to characterize the changes in the SNIC bifurcation value pSNIC (i.e. the threshold
for neural activation) with v1 value. The latter variable, introduced in the beginning
of Sect. 3, quantifies the instantaneous impacts of glutamate-induced modulations on
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both interneuron and pyramidal neuron excitabilities. Hence, it depends directly on
the astrocytic glutamate uptake. We therefore analyze the various consequence on the
neural activity of a deficiency of astrocytic glutamate uptake simulated by choosing
small values for the maximum uptake rate V ae

G .
We note in this regard, however, that, for certain parameter sets of the whole

model, the SNIC bifurcation may be lost as v1 changes. Due to the high dimension-
ality of our parameter space, it is difficult to estimate the region of existence of the
SNIC for any value of v1, yet by the arguments exposed in [29] we may safely state
that this region is large enough to be always found for our choice of parameters (see
Table 1). Accordingly, in the following, we assume that pSNIC always exists and the
associated saddle-node bifurcation is not degenerate for any v1 such as 0 ≤ v1 ≤ mI

G,
that is the maximum interval of values taken by v1 = mI

GS([Glu]e, vG, rG).
We recall that pSNIC can be written as follows:

pSNIC = f (ySNIC, v1, v2), (10)

where f is given by (7). Since we consider v2 fixed we introduce the function

g(y0, v1) ≡ f (y0, v1, v2)|v2=const.

As explained above, for each v1, there exists a unique bifurcation value pSNIC oc-
curring at the non-hyperbolic (saddle-node) singular point characterized by ySNIC,
which is defined by

∂g

∂y0
(ySNIC, v1) = 0,

∂2g

∂y2
0

(ySNIC, v1) < 0.

This value satisfies pSNIC = g(ySNIC, v1). We cannot find the explicit expressions of
ySNIC(v1) and pSNIC(v1). Thus, for characterizing the variations of pSNIC with v1, we
take advantage of the implicit definitions above and focus on localizing the extrema
of pSNIC(v1).

Proposition 4.1 Assume that, for all v1 such that 0 ≤ v1 ≤ mI
G, pSNIC exists and the

associated saddle-node bifurcation is not degenerate. Note χ = Be0rC4
2b

. Then:

1. if
mP

G

mI
G

� χ , pSNIC(v1) has no local extremum,

2. if 0 <
mP

G

mI
G

< χ , pSNIC(v1) may admit two local extrema: a minimum at v∗
1 and a

maximum at v∗∗
1 . If both exist, then v∗

1 < v∗∗
1 .

Proof Let us search for local extrema of the function pSNIC(v1), which is implicitly
defined by (9a)-(9c). Hence, we are interested in the following constrained optimiza-
tion problems:

max

{

g(y0, v1)

∣

∣

∣

∂g

∂y0
(y0, v1) = 0

} (

min

{

g(y0, v1)

∣

∣

∣

∂g

∂y0
(y0, v1) = 0

})

. (11)
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We introduce the associated Lagrangian function

L(y0, v1, λ) = g(y0, v1) − λ
∂g

∂y0
(y0, v1).

The necessary condition for the existence of an extremum of g under the constraint
∂g
∂y0

= 0 is

−→
∇ L(y0, v1, λ) = 0,

that is,

∂g

∂y0
(y0, v1) − λ

∂2g

∂y2
0

(y0, v1) = 0, (12a)

∂g

∂v1
(y0, v1) − λ

∂2g

∂v1 ∂y0
(y0, v1) = 0, (12b)

∂g

∂y0
(y0, v1) = 0. (12c)

By assumption, the saddle-node bifurcation associated with the SNIC bifurcation is

not degenerate, i.e. every solution of (11) such as 0 ≤ v1 ≤ mI
G satisfies ∂2g

∂y2
0
(y0,

v1) 	= 0. Thus, system (12a)-(12c) reads

λ = 0, (13a)

∂g

∂v1
(y0, v1) = 0, (13b)

∂g

∂y0
(y0, v1) = 0. (13c)

Therefore, if the problem under constraint admits an extremum, at this extremum it is
∂g
∂v1

= 0. Following the assumption that a SNIC bifurcation occurs for any value of v1

between 0 and mI
G, then Eq. (13c) admits a solution for any v1 as well. Hence, if our

constrained problem admits an extremum, this corresponds to the SNIC bifurcation
occurring at (y0, v1) such that

∂g

∂y0
(y0, v1) = 0.

From (7), we obtain

∂g

∂v1
(y0, v1) = −

a

A

(

mP
G

mI
G

+
B

b
C4

∂Ŝ

∂v
(C3y0, v0 − v1)

)

.

Using the facts that, for any fixed value of y0, function v1 →
∂g
∂v1

(y0, v1) is bell-
shaped and its maximum value does not depend on y0 (see Fig. 7), one finds that the
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Fig. 7 Interval of mP
G

/mI
G

values corresponding to a
realized local minimum of
neural excitability threshold.
Graphic representation of the
function h defined by (19) and
interval [I1, I2] for which
v∗

1 ∈ [0,mI
G

]

function ∂g
∂v1

(y0, v1) vanishes in v1 if

0 <
mP

G

mI
G

< χ. (14)

If
mP

G

mI
G

� χ , the function ∂g
∂v1

(y0, v1) admits no zero, which proves the first item of

Proposition 4.1.
Now, we assume that condition (14) is fulfilled and we search the values of v1

satisfying ∂g
∂v1

(y0, v1) = 0, i.e.

mP
G

mI
G

+
B

b
C4

∂Ŝ

∂v
(C3y0, v0 − v1) = 0.

Noting X = er(v0−v1−C3y0) = (S(C3y0, v0 − v1, r))
−1 − 1, this equation reads

mP
G

mI
G

X2 + 2

(

mP
G

mI
G

− 2χ

)

X +
mP

G

mI
G

= 0. (15)

Setting

V± = 2χ
mI

G

mP
G

− 1 ± 2

√

χ
mI

G

mP
G

(

χ
mI

G

mP
G

− 1

)

, (16)

we obtain the two solutions v∗
1 < v∗∗

1 of ∂g
∂v1

(y0, v1) = 0:

v∗
1 = v0 − C3y0 −

1

r
ln(V+), (17)
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v∗∗
1 = v0 − C3y0 −

1

r
ln(V−). (18)

Note that v∗
1 (resp. v∗∗

1 ) corresponds to the extremum when the saddle-node SN1

(resp. SN2) crosses the fold of the surface g(y0, v1) = p. We consider v1 = v∗
1 and

we note y∗
0 the value of y0 corresponding to the SNIC connection for this value of v1,

i.e. the solution of

∂g

∂y0

(

y0, v
∗
1

)

= 0,

∂2g

∂y2
0

(

y0, v
∗
1

)

< 0.

To prove that pSNIC reaches a local minimum at v1 = v∗
1 , we introduce the bor-

dered Hessian matrix H associated with the Lagrangian function at its singular point
(y0, v1, λ) = (y∗

0 , v∗
1 ,0) (solution of system (13a)-(13c)):

H
(

y∗
0 , v∗

1 ,0
)

=

⎛

⎜

⎜

⎜

⎝

0 ∂2g

∂y2
0

∂2g
∂v1 ∂y0

∂2g

∂y2
0

∂2
L

∂y2
0

∂2
L

∂v1 ∂y0

∂2g
∂v1 ∂y0

∂2
L

∂v1 ∂y0

∂2
L

∂v2
1

⎞

⎟

⎟

⎟

⎠

|(y∗
0 ,v∗

1 ,0)

=

⎛

⎜

⎜

⎜

⎝

0 ∂2g

∂y2
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The determinant of H(y∗
0 , v∗

1 ,0) is given by

detH
(

y∗
0 , v∗

1 ,0
)

= −
∂2g

∂y2
0

(

y∗
0 , v∗

1

)

[

∂2g

∂y2
0

(

y∗
0 , v∗

1

)∂2g
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1

(

y∗
0 , v∗

1

)

−

(
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∂v1 ∂y0

(

y∗
0 , v∗

1

)

)2]

.

On one hand, the saddle-node associated with the SNIC bifurcation is not degenerate

and is a local maximum of g(y0, v1), thus ∂2g

∂y2
0
(y∗

0 , v∗
1) < 0. On the other hand, for

any y0, v1 →
∂g
∂v1

(y0, v1) is increasing at (y0, v
∗
1) (see Fig. 7), thus ∂2g

∂v2
1
(y∗

0 , v∗
1) > 0.

Finally

detH
(

y∗
0 , v∗

1 ,0
)

< 0

and (y∗
0 , v∗

1) corresponds to a local minimum of pSNIC. A similar argument proves
that (y∗∗

0 , v∗∗
1 ) corresponds to a local maximum of pSNIC (where y∗∗

0 is the y0 value
corresponding to SN2 bifurcation for v1 = v∗∗

1 ). �
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The above proposition can be interpreted as a necessary condition for having a
change in the sense of variations of pSNIC when v1 varies in [0,mI

G]. We now derive a
necessary and sufficient condition so that v∗

1 actually lies in [0,mI
G]. Since v∗

1 satisfies
∂g
∂v1

(y∗
0 , v∗

1) = 0, one obtains, from Eq. (15),

mP
G

mI
G

= 4χ
(

1 − S
(

C3y
∗
0 , v0 − v∗

1 , r
))

S
(

C3y
∗
0 , v0 − v∗

1 , r
)

= 4χh
(

v∗
1

)

. (19)

For any y0, function h : v1 
→ (1 −S(C3y0, v0 − v1, r))S(C3y0, v0 − v1, r) is strictly

increasing over [0,mI
G], and 0 ≤ v∗

1 ≤ mI
G if and only if I1 ≤

mP
G

mI
G

≤ I2 where

I1 = 4χ
(

1 − S
(

C3y
∗
0 , v0, r

))

S
(

C3y
∗
0 , v0, r

)

, (20a)

I2 = 4χ
(

1 − S
(

C3y
∗
0 , v0 − mI

G, r
))

S
(

C3y
∗
0 , v0 − mI

G, r
)

. (20b)

Figure 7 gives an illustration of the function h as well as how I1 and I2 are built.
In conclusion, for a fixed value of v2, pSNIC reaches a local minimum at a value

v∗
1 such that 0 ≤ v∗

1 ≤ mI
G if and only if

mP
G

mI
G

∈ (0, χ) ∩ [I1, I2].

Moreover, in Sect. 3 about the astrocyte GABA uptake deficiency, we proved that, for
a fixed value of v1, pSNIC is linear and increasing with v2. Both results allow us to

predict that there exist three shapes of pSNIC(v1, v2) according to the value of
mP

G

mI
G

.

(a) If
mP

G

mI
G

< I1 then v∗
1 < 0 and pSNIC strictly increases with v1 and v2.

(b) If
mP

G

mI
G

> I2, then v∗
1 > mI

G and pSNIC strictly decreases when v1 increases (for v2

fixed) and strictly increases with v2 (for v1 fixed).

(c) If I1 ≤
mP

G

mI
G

≤ I2, then 0 ≤ v∗
1 ≤ mI

G and pSNIC decreases when v1 increases in

[0, v∗
1 ] and increases with v1 > v∗

1 (for v2 fixed).

In the following we illustrate the three qualitative types of neural activity resulting
from an astrocyte deficiency to capture glutamate using the following values:

(a)
mP

G

mI
G

= 1.7 < I1,

(b)
mP

G

mI
G

= 3.2 > I2,

(c)
mP

G

mI
G

= 2.43 ∈ [I1, I2].
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For each case, we provide simulations representing the value of pSNIC in (v1, v2)

space and time series generated by the model when the glutamate astrocytic uptake
is altered (Fig. 8).

For
mP

G

mI
G

= 1.7 < I1 (panel (a) of Fig. 8), v∗
1 is negative and thus pSNIC increases

with v1. Hence in this scenario, when v1 increases as a consequence of the astro-
cytic glutamate uptake deficiency, we expect to observe a decrease in the oscillation
frequency in the neural activity. This is possible because, although a reduction of as-
trocytic glutamate uptake is paired with a strong decrease of neural activity, it limits
synaptic glutamate release allowing deficient astrocytic uptake to still stabilize extra-
cellular glutamate levels and thus neural activity.

Panel (b) of Fig. 8 is obtained with
mP

G

mI
G

= 3.2 > I2. Since v∗
1 > 1, pSNIC decreases

as v1 increases. Thereby, an astrocyte glutamate uptake deficiency triggers an in-
crease of the v1 value, and we observe an increase in the oscillation frequencies in the
neural time series. Since the astrocytic uptake is reduced, glutamate accumulates in
the extracellular space and the corresponding concentration baseline increases dras-
tically.

Finally, the intermediate scenario where
mP

G

mI
G

= 2.43 ∈ [I1, I2] is shown in panel (c)

of Fig. 8. In this case pSNIC decreases for v1 < v∗
1 and increases otherwise. Therefore,

in the presence of deficient astrocytic glutamate uptake, we observe only a transient
increase of the frequency of LFP spikes. This is the scenario presciently mentioned
at the beginning of the section where the effect of increased extracellular glutamate
levels on neuronal excitability are counterbalanced by increased extracellular GABA
levels resulting from increased interneurons firing and accounts for the delay ob-
served in our simulations in reaching steady frequency of LFP oscillations.

This scenario is physiologically relevant insofar as it is conceivable that an ex-
cess of extracellular glutamate concentration is regulated after a delay, triggering a
decrease of neural activity after the initial increase. Moreover, the frequency after the
regulation delay can be greater or lower than the initial one, depending on the value

of the ratio
mP

G

mI
G

. Note that this value can be tuned to obtain v∗
1 small enough and

pSNIC large enough so that the frequency after regulation is equal or lower than the
one before uptake deficiency. This property offers the possibility of fitting the model
outputs to experimental data and allows us to propose hypotheses about physiological
and pathological mechanisms.

5 Discussion and Conclusions

We have introduced a novel neuron–astrocyte mass model, which combines two pre-
viously studied models [29, 30] by bidirectional neuron–astrocyte coupling based on
astrocytic uptake-mediated modulations of extracellular glutamate and GABA con-
centrations and their effect on neural activity in agreement with experimental obser-
vations [10, 37, 44, 45].

Using analytical arguments of bifurcation theory and contained optimization, we
have characterized different types of change in the neural activity behavior under the
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Fig. 8 Alteration of astrocytic glutamate uptake: (a) lessening the excitability, (b) resulting in sustained
hyperexcitability, (c) resulting in transient hyperexcitability. In each case, the colormap on the left displays
the value of pSNIC in (v1, v2) plane, and the time series on the right correspond to LFP, [GABA]e , [Glu]e
and v1 = mI

G
S([Glu]e, vG, rG). The black curves on the colormap are the trace of (mI

G
S([Glu]e, vG, rG),

mγ S([GABA]e, vγ , rγ )) along the associated orbits of the model. At t = 20 s, we alter the glutamate

astrocytic uptake by setting V ae
G

= 0. The three cases are obtained with: (a)
mP

G

mI
G

= 1.7, (b)
mP

G

mI
G

= 3.2,

(c)
mP

G

mI
G

= 2.43. All other parameters are the same in the three cases and given in Table 1
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impact of the neurotransmitters-mediated modulation of neuron excitability. Based on
the interpretation of the aggregated—yet biophysically significant parameters of our
model—we have reproduced in silico both glutamate and GABA uptake deficiency
in astrocytes and illustrated by numerical simulations the different types of change in
the neural activity resulting from such deficiency.

Our study leads to several predictions. First is the observation that deficiency of
GABA uptake by astrocytes increases the threshold for neuronal activation in a linear
fashion. In other words, neurons tends to fire more the slower astrocyte GABA uptake
is, or equivalently, the larger extracellular GABA concentration is, which is consis-
tent with experimental findings [46, 47]. The second prediction comes instead from
the analysis of the neuronal response in the presence of deficient astrocytic glutamate
uptake. In this case, neural activity may either be reduced or enhanced or, alterna-
tively, may display a transient of high activity before stabilizing around a new regime
whose firing frequency is close to the one measured in the absence of astrocyte de-
ficiency. A prominent feature of our model is its mathematical tractability, despite
the fact that, differently from the sole neural mass model in [29], an explicit for-
mula for the SNIC bifurcation underpinning the rise of neural activity in the presence
of bilateral neuron–astrocyte coupling cannot be obtained. It is nonetheless possible
to recast the characterization of variations of neuronal excitability upon astrocytic
uptake as an optimization problem under an equality constraint resulting from the
implicit characterization of the SNIC bifurcation. In particular, we identify by the
quantity mP

G/mI
G, which denotes the ratio between maximally affecting concentra-

tions of extracellular glutamate impacting on excitability of pyramidal neurons and
interneurons, respectively, the biophysical conditions for the occurrence of different
neural activity regimes caused by deficient astrocytic glutamate uptake. In this regard,
our analysis suggests that a neural population may counteract the effect of excess ex-
tracellular glutamate resulting from deficient astrocytic uptake only if the value of
mP

G

mI
G

lies in a well-defined interval [I1, I2] which depends on inherent biophysical and

cellular properties of the population under consideration. Outside this interval, for

values of
mP

G

mI
G

< I1, the frequency of neural activity decreases and may enter quies-

cence while for values of
mP

G

mI
G

> I2, neural firing drastically and persistently increases

leading to epileptiform activity in agreement with experiment [48]. On the other hand,

for I1 <
mP

G

mI
G

< I2 neural activity may recover to close-to-baseline levels after a high

frequency transient, regardless of large extracellular concentrations of glutamate and
GABA. We note that while both I1 and I2 depend on the strength of inhibition of
pyramidal neurons by interneurons only I2 further depends on mI

G. Hence, one might
interpret the latter dependence as an estimator of the balance between glutamatergic
astrocytic feedbacks on pyramidal neurons and correlated interneuron hyperexcitabil-
ity that the system should seek to recover from astrocytic uptake deficits and avoid
hyperexcitability.

A further interesting prediction of our model is that, when
mP

G

mI
G

> I1, an increase of

extracellular glutamate due to deficits in astrocytic uptake develops in parallel with
an increase of extracellular GABA which may even be larger than the one expected
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in an alternative scenario of faulty GABAergic uptake by astrocytes. Dynamically,
this GABA increase is necessary for the system to reach a steady low-frequency ac-
tivity but it may not be sufficient to properly counterbalance the positive feedback on
neuronal activation exerted by the faulty astrocytic glutamate uptake. This suggests
GABA increases induced by excess extracellular glutamate and the related neuronal
activity as a putative biophysical correlate to distinguish between different mecha-
nisms for rise of neural hyperexcitability. In light of the current technological limits
whereby monitoring of extracellular neurotransmitters dynamics in humans is not
available, these results could have important translational implications, helping to
design either new experimental protocols to characterize and identify epileptogenic
foci as well as to define more accurate treatments of neuropathogenic states associ-
ated with neuronal hyperexcitability or lack thereof.
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