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C O N T E N T S  
P A G E  

1. INTRODUCTION 638 

A model is proposed for the description ofglacier sliding which includes the nonlinearity 
of the flow law for ice. The model describes c o u ~ l e d  flow ~rob lems  in the basal ice and a 

I 

thin water film, together with a temperature problem in the underlying bedrock. To 
determine the sliding law relating basal velocity to basal stress, the sliding theory should 
be formulated as a boundary layer to the larger-scale bulk ice flow. 

Dimensional analysis indicates that the regelative component of ice velocity may be 
neglected, provided roughness is absent at the smallest wavelengths, and then the ice 
flow effectively uncouples from the other problems. I n  this case, with the crucial (but 
unrealistic) assumption that the flow law for temperate ice is independent of the 
moisture content, there exist complementary variational principles that describe the 
functional form of the sliding law and give bounds on the magnitude of the 'roughness' 
coefficient. These principles are valid for nonlinear stress-strain rate relations and for 
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non-vanishing bedrock corrugation, and indicate how the basal velocity is determined 
by two parameters that together describe the degree of roughness of the bed. Specific 
estimates are then given. 

Finally, the main weakness in the model as a predictor of quantitatively accurate 
results is pointed out: that is, that the variation of moisture within the basal layer, and 
the resultant effect on the flow law, are neglected. A valid description of this pheno- 
menon does not yet appear to be available. 

I. INTRODUCTION 

I t  is a well known fact that the basal ice of a temperate glacier can slide over the underlying bed- 

rock. This is achieved by means of a lubricating water film at the ice-rock interface, which is 

maintained there by pressure melting on the upstream faces of protruding obstacles. In this case 

an  appropriate boundary condition at the bedrock for the ice flow is that the tangential stress in 

the ice is zero (since the viscosity of water is, by comparison, negligible) but, from the point of 

view of the motion of the bulk of the ice mass, a more relevant 'boundary condition' is to pre- 

scribe the 'basal velocity' as a function of the effective drag due to the resistance offered to the 

motion by corrugations in the bedrock. Such a 'boundary condition' is usually called the 'sliding 

law ', and much effort has gone into determining its form since the pioneering work of Weertman 

(1957). 
Many of the important physical processes have been identified, in particular the (possibly 

crucial) phenomenon of cavitation (Lliboutry 1968)) but many of the theoretical models pre- 

sented Lave not been properly formulated, and in many cases mathematical procedures have been 

abandoned in favour of apparently arbitrary assumptions; in view of this, the validity of the 

results should be treated with some caution. The only process that can be said to be properly 

understood is the sliding of a Newtonian fluid over a wavy bedrock, incorporating regelative 

effects (Nye 1969, Morland 1976 a). Non-Newtonian effects and cavitation have only been 

considered previously in an empirical manner. 

In  this paper the sliding theory is considered from the point ofview of determining an effective 

boundary condition for the bulk ice flow. This can be done formally by using the ideas of matched 

asymptotic expansions (Cole 1968); the problem then becomes one of determining the flow of ice 

in a basal 'boundary layer' adjacent to the bedrock, and there are associated problems for the 

flow in the water film, and for the temperature in the bedrock. 

I n  $ 3  (nomenclature is included as $2)  the detailed physics in these regions is discussed and a 

brief review of the literature is given; in $ 4  it is specified how the ice flow problem is to be form- 

ulated in terms of the large-scale glacial flow. This makes precise what we mean by such ill- 

defined terms as 'basal velocity' and 'basal shear stress'. Furthermore, the sliding law we seek to 

establish will be in terms of the appropriate dimensionless units for the 'outer' flow, and thus we 

shall be able to see at  a glance how the magnitude of the basal velocity is determined by the 

various dimensionless parameters that occur. 

I n  $5the complete set of equations and boundary equations to be solved is set out; these are then 

scaled, and it is shown how the problem in the water film is uncoupled from those in the ice and 

the rock, which are coupled by the regelation process. Much of this scaling procedure is not new, 

but it is retained in full here, since (i) it gives the appropriate scalings when the nonlinear flow 

law due to Glen (1955) is considered, and (ii) it provides the basis for an explicit description of 

the water film. 
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For convenience, the coupled set of scaled and non-dimensionalized equations describing the 

flow and temperature problems in the basal ice and bedrock, respectively, is repeated at  the 

end of $ 5. With the stated physical assumptions, this set is a valid model in the absence of cavita- 

tion (when the ice separates from the bedrock). 

An exact solution for this problem is beyond our means, even in the (possibly dubious) asymp- 

totic limit ofsmall bedrock roughness (which has been considered for a Newtonian flow by others, 

e.g. Nye (1969)). However, all that we require is a relation between the basal velocity and the 

resistance to the motion offered by the bedrock, and hence it is not necessary to obtain explicitly 

the complete solution. We can obtain estimates for this relation by examining a variational 

principle, and, accordingly, an  appropriate principle for the model equations given in $ 5  is 

stated in $ 6. Since the principle is actually an  equality when the trial functions are the,solution, 

we immediately obtain a dimensionless estimate for the magnitude of the velocity. One then sees 

that this magnitude is crucially dependent on the mean slope of the (rough) bedrock; furthermore 

(in contrast to the results of other authors), steady-state velocities of any magnitude can be pre- 

dicted merely by varying this slope within realistic limits. 

The specific estimates we obtain for the sliding law are based on the assumption that the 

regelative component of the bedrock resistance is negligible. This assumption is motivated by the 

scalings in $ 5, which suggest that the normal velocity at the ice-water interface, due to regelation, 

is very small, except past obstacles of dimension less than about 1 mm. (This compares with a 

value for the 'controlling wavelength' in Newtonian flow of 7 . 7  cm (Morland 1976a).)  The 

analysis in $ 6  is therefore based on the supposition that roughness is absent at  wavelengths of 

less than about 1mm. This seems a reasonable hypothesis. 

I n  $ 7  it is shown how to construct trial functions for the variational principle, and explicit 

bounds are obtained in a very simple example. 

In  $8we reconsider our previous neglect ofregelation; this is only justified if bedrock roughness 

is absent on a sufficiently small scale. Since the regelative length-scale (controlling wavelength) is 

much smaller than the dimensions of the overall bedrock corrugation, we could model the regela- 

tive effect as a tangential drag imposed at  the bedrock on a non-regelative flow of ice. I n  this 

model, we can still use the bounds obtained in $ 6  for the drag, and we find that inclusion of such 

a regelative traction combines (to lowest order) additively with the basal stress produced by the 

ice flow over the bedrock. No obvious method of determining the magnitude of such a regelative 

drag suggests itself. 

I n  $9, we compare the results of the model with certain experimentally observed features. 

I t  becomes evident that the proposed model requires a certain amount of modification. In  par- 

ticular, the effect of moisture contained in the ice on its viscosity may be of crucial importance, 

but it is unclear at present how such effects should be satisfactorily modelled. 

The conclusions of the investigation are presented in $ 10. 
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Sufixes 
properties of ice 

'outer' flow variables 

Symbols 

proportionality factor in temperate ice flow law, ( 5 . 4 6 )  

constant defined by ( 7 . 18 )  

constant in sliding law, ( 3 . 1 )  (also ( 6 . 7 4 ) )  

typical glacier depth 

strain rate tensor, ( 5 . 4 b )  

second strain rate invariant, ( 5 . 4 6 )  

scaled form of e, ( 5 . 87 )  

scaled form of eij 

scaled form of e, ( 6 . 61 )  

component of gravitational force, ( 6 . 7 )  

defined by ( 7 . 7 )  

defined by ( 7 . 13 )   

temperature-dependent sliding law, ( 9 . 2 )   

acceleration due to gravity  

component of acceleration due to gravity normal to mean bedrock slope  

geothermal heat flux  

defined by ( 7 . 9 )  

smooth component of bedrock profile 

rough component of bedrock profile 

actual dimensional bedrock profile 

functionals for stress variational principle, ( 6 . 2 2 )  

second variation of Z7,( 6 . 44 )  

dimensionless glacier depth 

equals h,  

scaled mean quadratic bedrock slope 

dimensional depth measured perpendicularly to the line of mean bedrock slope 

( 9 . 1 )  

functional defined by ( 6 . 12 )  

functional for stress principle, ( 6 . 4 0 )  

value of J at  solution to ice flow problem, ( 6 . 26 )  

second variation of Jv,( 6 . 4 1 )  

curvature, ( 5 . 70 )  

thermal conductivity, ( 5 . 12 );constant in trial function, ( 7 . 15 )  

thermal conductivity of rock 

constants in trial function, ( 7 . 1 )  

defined in ( 7 . 11 )  

glacier length scale 

latent heat of melting of ice 
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period of the rough bedrock h 

constants in flow law, (6.28) 

exponent in Glen's flow law for temperate ice, (5.4b) 

unit normal vector at  the ice-bedrock interface 

pressure 

pressure within the water film 

atmospheric pressure 

scaled pressure within basal ice flow, (5.20) 

scaled pressure within water film, (5.47) 

ice flow velocity 

roughness parameter, (6.86) 

ratio of ice and rock thermal conductivities, (5.80) 

Nye's water film space variable, (5.70) 

bedrock boundary 

boundary of basal ice flow, located in the matching region between inner and 

outer flows 

dimensionless ice-water interface 

temperature; dimensionless water film thickness, (5.70) 

dimensionless, scaled ice temperature, (5.48) 

temperature scale in ice and bedrock 

unit tangential vector at ice-rock interface 

melting temperature of ice at  atmospheric pressure 

basal sliding velocity 

x-component of ice velocity 

components of prescribed velocity on S,, (6.13) 

velocity scale for outer flow, (5.16) 

dimensionless outer x-velocity component 

dimensionless scaled inner 2-velocity, (5.20) 

water film velocity scale, (5.38) 

dimensionless water film X-velocity 

dimensionless, scaled, O(1) sliding velocity, (6.53) 

scale of velocity change in the outer flow due to shearing 

y-component of ice velocity 

bounding volume for variational integral; dimensionless, scaled water film 

velocity, (5.38) 

components of ice velocity 

dimensionless, scaled inner y"-velocity, (5.20) 

dimensionless, scaled melting velocity, (5.35) 

bedrock volume beneath Sb 

coordinate along line of mean bedrock slope 

dimensionless outer x coordinate 

x-scale of rough bedrock boundary 

averaging length for constructing h,, (4.4) 

point where basal ice reaches the pressure melting point 

point where melting surface 'breaks away' from basal flow layer 
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dimensionless inner flow x-coordinate  

dimensionless, scaled x-coordinate in water film; Nye's lateral space variable,  

(5.70) 

coordinate perpendicular to x coordinate 

scale of undulations in h, 

melting surface 

ordinate of matching region, (6.3) 

dimensionless outer y-coordinate 

dimensionless inner y-coordinate 

dimensionless, scaled water film y-coordinate, (5.29);equals y -vh, (7.2) 

dimensionless measure of the regelative component of ice velocity, (5.35); Nye's 

tangential angle (5.70) 

defined in (6.69) 

Lliboutry's (1976) regelation parameter 

flow law functions defined by (6.9) and (6.21) 

Kronecker delta (equals unity if i =j and zero if i #j) 

variations of the stated variables from the solutions for the basal ice flow 

first variation of J 

parameter measuring the shallowness of the glacier 

parameter measuring the thickness of the water film 

mean bedrock slope 

Clausius-Clapeyron constant, (5.13);stress trial function, (7.2) 

thermal diffusivity of water, (5.7) 

Morland's transition wavelength, (5.59) 

dimensionless geothermal heat flux, (5.84) 

dimensionless parameter measuring the deviation of the surface slope from the 

mean bedrock slope, ( 5 . 2 4 ~ )  

viscosity of water 

bedrock corrugation, (5.17) 

density of ice 

density of water 

stress tensor 

bedrock asperity, (5.18) 

dimensionless, scaled water film thickness, (5.31) 

basal stress 

stress deviator tensor 

longitudinal and tangential components of stress deviator tensor, ( 5 . 4 ~ )  

second invariant of stress tensor, (5 .4b) 

scaled form of r, (5.87) 

scaled form of rVj  

tangential traction at  bedrock, (6.11) 

stress scale for outer flow 

scaled forms of 7 ,  and r, for inner flow 

scaled form of r, (6.62) 

average traction, (6.76) 
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7; scaled form of r,, (6.80)  

?,* scaled form of ?,, (6.81)  

4 Airy stress function defined by (6.56)  

$* scaled form of 4, (6.59)  

X angle of inclination of glacier surface to horizontal  

11. stream function defined by (6.57); Nye's dimensionless constant (5.70) 

$* scaled form of $, (6.58) 

11.1 defined by (6.67) 

We shall consider the flow of temperate ice (that is, ice at  the pressure melting temperature) 

over a rough bedrock. As the ice flows round a typical protuberance, its pressure melting tem- 

perature changes according to the Clausius-Clapeyron law (we neglect any effects of shear stress 

on the melting point) and, since the pressure is greater on the upstream side of the obstacle, the 

ice temperature is correspondingly lower there. This temperature difference induces a heat flux 

in the bedrock that is sufficient to melt a thin film of water adjacent to the bedrock. The heat 

flux in the bedrock towards (away from) the upstream (downstream) side of the obstacle is 

reinforced by a heat flux in the ice, due to the variation of melting temperature with pressure, and 

the fact that the pressure in the ice increases (decreases) as the bedrock is approached upstream 

(downstream) of the obstacle. 

The reason for assuming the ice is everywhere temperate is discussed below. I n  this case, the 

temperature is described fully by the Clausius-Clapeyron equation, and the role of the energy 

equation is to describe the amount of moisture present in the ice (Lliboutry 1976). If the viscosity 

of ice is considered to be a function of its moisture content (Lliboutry 1976), then a description 

of the moisture content is a necessary constituent of the solution. The equations to be solved are 

then much more difficult, and will not be considered in this paper. 

Now although the bedrock heat flux must cause a thin lubrication film to form, owing to 

regelation, there is ofcourse no guarantee that such a film will cover the entire bed; in fact it would 

be rather surprising if it did. We may therefore expect there to be, in general, patches of basal ice 

where there is no lubrication film; it is not clear in this case what the appropriate kinematic 

boundary conditions should be. One is, of course, that there be no normal velocity, but the other 

is not necessarily that there be no tangential stress on the ice. We might suppose that the ice at 

such patches would require a small but finite traction to be applied in order that asmall temporary 

film appear so that the ice there could slide briefly before equilibrium was restored. Such patches, 

though not 'cold', would correspond to the cold patches of Robin (1976), would contribute to 

stick-slip ('stictional') motion, and as explained by Robin, would appear to offer one possible 

mechanism for the formation of roches moutonntes. Note also that such patches would be cold in a 

zone of 'sub-temperate' sliding (explained below; see also Fowler (1979)). Stick-slip motion 

due to such frictional patches could be satisfactorily modelled over the time scales of interest 

by the application of some mean traction applied a t  the bedrock. (This may also be a valid 

method of incorporating additional drag due to basal debris (Morland 1976 b) and also of model- 

ling regelative effects, see § 8.) 

The problem of description of the water film is known to cause inconsistencies in the theory of 

regelation (Nye 1973), and a similar difficulty besets the sliding of glaciers. A more complete 
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discussion of this inconsistency (which has not yet been resolved) is included below (p. 655). In  

this paper, we will choose to ignore this aspect of the problem, thus assuming that the bedrocks 

considered are permissible in Morris's (1976) sense. In  essence, this means that the (periodic) bed- 

rock is 'nearly' sinusoidal, in the sense that its Fourier components decrease rapidly in amplitude. 

A more realistic treatment would include a solution of this aspect of the problem, but our point 

of view is that it is more profitable (and possible) to analyse first the different aspects of sliding 

separately, before attempting to conjoin different results. As we show, we can to some extent 

interpret the lubrication film inconsistency as representing a form of cavitation. 

Weertman (1957) was the first to give a quantitative theory of glacier sliding. He considered 

the flow ofice over an idealized bed consisting of a regular array ofcubic obstacles on a flat plane. 

For a given shear stress r b  applied to an ice flow over such a bedrock, he estimated the velocities 

due to pure regelation and pure viscous flow (we avoid the use of the phrase 'enhanced plastic 

flow' since the flow is not plastic), and found them to be proportional to rb and 7;respectively, 

where n is the exponent in the well known flow law for ice (Glen 1955). He was led to the concept 

of a controlling obstacle size, and thence to an  approximate intermediate law for the basal 

velocity u b :  ub = C T ~ ( ~ + ~ ) ,  
(3.1) 

Weertman later refined his ideas (for example, Weertman 1964) by considering a more realistic 

bedrock with obstacles of varying size, and introduced the idea of cavitation behind obstacles. 

However, his basic approach remains non-mathematical, and numerical values of C in (3.1) 

should be treated with some caution; nevertheless, Weertman has since defended his ideas (1971). 

Lliboutry is the other major exponent of sliding theory. I n  a long paper (Lliboutry 1968) he 

reviews previous work and proposes his own theory. In  this he envisages ice sliding over a two- 

dimensional bedrock (of small slope), and introduces the effect of cavitation. His method is, like 

Weertman's, semi-theoretical (there is much use of physically motivated approximation), but 

nevertheless it represents a useful first attempt. In  particular, he found that inclusion of cavitation 

led to a multivalued function for the velocity ub in terms of the stress r b .  Such a result, ifjustified, 

would have a profound influence on the large-scale dynamics of glaciers; indeed, it is the feeling 

of the author that such multivaluedness may be an essential constituent of the mechanism of 

surges (Meier & Post 1969). 

Nye (1969, 1970) and Kamb (1970) independently took a more mathematical viewpoint. 

They considered the slow flow of a Newtonian fluid over a slowly varying bedrock, with a suction 

velocity at the bed due to melting and refreezing that may be found from a calculation of the 

temperature fields in ice and bedrock. 

(Actually, if the ice is considered to be fully temperate, only the bedrock temperature problem 

need be solved, since then the ice temperature is already prescribed by means of the Clausius- 

Clapeyron relation. As already explained, the temperate ice energy equation is then used to 

determine the moisture content. However, both Nye and Kamb, and later Morland (1976a), 

solve an  energy equation for the ice of the form 

8 2 T = 0, (3.2) 

justifying neglect of convective terms by the statement that they are generally small, although this 

is not usually true, except for relatively small sliding velocities (less than about 5 m a-I). In  fact, 

(3.2) is correct for temperate ice in the Newtonian case (only), since then the pressure p also 

satisfies Laplace's equation; however, this is not so when the fluid is non-Newtonian.) 
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Nye's and Kamb's theories are subject to the criticism of not being properly mathematically 

formulated, as the induced resistance on the bedrock is not balanced by an imposed stress at  

infinity (upwards into the ice). I n  fact, the results are valid by virtue of the fact that the bedrock 

roughness slope (here called v) is taken to be small, so that the velocity perturbation about the 

basal velocity (a first-order effect) induces a stress at  infinity as a second-order effect. If v were 

taken to be 0 ( I ) ,  no solution would exist of the problem as formulated by Nye. Morland (1976 a) 

recasts Nye's theory using the methods of complex variables, and includes the glacier depth 

explicitly. This eliminates previous errors, but it is felt that his approach, which essentially 

involves solving the equations of motion in the entire ice mass, is not appropriate for the formula- 

tion of the sliding law as a 'boundary condition' for the main glacial flow. He develops his ideas 

in a further paper (Morland 1976 b) in which he includes a tangential traction a t  the bedrock as a 

model for the additional resistance due to basal debris transported with the ice. 

In  his paper, Kamb (1970) developed an approximate solution for a non-Newtonian flow on 

the basis that the ice viscosity was a function of the vertical coordinate only. With this apparently 

arbitrary assumption, he obtains Weertman's intermediate law (3.1) for a white bedrock, that is, 

one which has the same aspect at  all wavelengths less than the roughness scale. A similar law has 

been obtained by Lliboutry (1975, 1976), who also claims that the numerical value of C in (3.1) 

is too small to account for sliding velocities larger than about 10 m a-l. Kamb obtains 

for a 'truncated' white bedrock (one with roughness absent at  the smaller wavelengths). 

Lliboutry's (1976) argument is worth commenting on. He states that the only dimensional 

parameters occurring in a bedrock ice flow are ub, r b ,  A (constant in Glen', flow law) and a 

regelation parameter F. From this he deduces by dimensional similarity that the flow law must 

be of the Weertman form 
u b  = C(A/r)  T$~+'). (3a4) 

This simple and attractive argument would be correct if the properly formulated problem indeed 

depended only on the four stated constants. Unfortunately, the notion of a 'basal' ice flow 

requires some specification of 'where' the base is, and we shall see that this involves the glacier 

depth din  the problem formulation. If we consider d, there is then no such thing as a completely 

'dimensionless' bedrock, since there must be a maximum amplitude [y] in its variation about the 

'mean' bedrock (and we require [y] < d). Thus a proper formulation involves more parameters, 

and Lliboutry's conclusion is untenable. 

The aim of this paper is to formulate the sliding law as a dimensionless boundary condition for 

the equations of motion of a large-scale flow of ice over some 'mean' bedrock: a model for such 

a flow is presented elsewhere (Fowler & Larson 1978, hereafter referred to as I ) .  Let us therefore 

turn to a consideration of how best to formulate the problem from this point of view. 

We shall suppose that the bedrock profile is composed of a smooth component hs and a rough 

component h, (cf. Nye 1970). I t  is intuitively obvious how such a decomposition can be made in 

reality, though the mathematical process is slightly more subtle. We then expect that the bulk 

flow of the glacier follows the mean profile hs (changes in h, affect the whole depth of the glacier), 

whereas the rough component hB only affects the flow in a thin basal layer close to the bedrock. 

With these ideas, it is clear that the total flow may be represented by two components, in the 

manner of boundary-layer theory (Batchelor 1967). The 'outer' flow satisfies dimensionless 

equations scaled with large scale parameters; in particular the natural height and length scales 

67 Vo1. 298. A. 
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for this problem are d and I, where d is a typical depth and I may be taken as the length of the 

glacier (I) .  O n  the other hand, the 'inner flow' near the bedrock follows the contours of the 

local bedrock roughness h,, and has a natural length scale of the dimension of the roughness. The 

formal procedure of relating these two solutions is obtained by requiring that they 'match' into 

each other in some intermediate region (which is 'far' from h, on the inner scale, but 'near' hs 

on the outer scale). This matching procedure (described by Cole (1968)) suffices to determine an 

effective boundary condition on h, for the outer flow, which is precisely the sliding law. 'The' 

basal velocity u b  is then defined as the (apparent) limiting value of the tangential velocity in the 

outer flow at h, and the basal stress is similarly defined. The details of this process are described 

by Fowler (1979). 

4. F O R M U L A T I O NO F  T H E  P R O B L E M  

Following I, we consider a two-dimensional glacial ice flow down an inclined bedrock surface 

of mean slope e; and we take axes (x, y) along and perpendicular to the line of mean slope. Now 

let us suppose that the dimensional bedrock surface h, may be written as the sum of two com- 

ponents, 

Here, d and I (as already mentioned) are the height and length scales of the outer flow problem, 

and similarly [x] and [y] are appropriate length scales for the inner flow problem. We assume 

these scales are such that the dimensionless bedrock profiles h, and h, satisfy 

where a prime denotes differentiation with respect to the argument of the function. The con- 

straints on hR motivate the choice of [x] and [y], and the first constraint on hs follows from the 

second provided the origin is chosen accordingly. Choosing hk 5 O(1) is the criterion under 

which the scaled model presented in I remains valid, and this assumption will be adopted for 

convenience in this paper, although in fact we only require the scales d and 1 in (4.1) to be such 

that 
[XI,[!/I < d, [XI ,  [YI < 1, (4.3) 

and thus the present theory would be formally valid for sliding in ice-falls, or over relatively 

rough patches of h,. 

We may formally define hs by constructing a running average of h, (actually h,/d) over a 

distance Xav such that [XI< Xav < 1. (4.4) 

For example, with 1 = 10 km, [x] = 5 m, a suitable averaging distance would be X,, z 200 m. 

This procedure is described by Nye (1970). There is no unique choice for hs, but it is clear that 

h, is (formally) uniquely defined as Xav/I -+ 0 and [x]/Xav -+ 0. I n  practice, hs is only affected 

by O(Xav/I) and hR by O([x]/Xav) if Xa, is allowed to vary within the prescribed limit (4.4). 

I t  should be clear that such variation will have a negligible effect on the sliding law. 

I t  was shown by Fowler (1977,1979) that there is a basal region (there denoted by (xZ, x,)) in 

which the ice is at  the pressure melting point (and the full temperate sliding law is supposed to 

hold) but the ice above (in the outer flow region) is cold. At x,, the melting surface y, dividing 

cold and temperate ice 'breaks away' from the bedrock h, into the outer flow. From the point of 

view of our boundary-layer ideas, this means that the melting surface within the basal layer tends 
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to infinity (i.e. leaves the basal layer) at  x,,. Since the bedrock is temperate in (xZ, x,), the melt- 

ing surface leaves the bedrock at  xZ, and thus, as x increases from xZ to x,, it gradually rises 

through the basal layer, as shown in figure 1. I n  x > x,, y, 'emerges' into the outer flow, and 

then, formally, the basal layer is entirely temperate, and the Clausius-Clapeyron relation holds 

everywhere. 

With the foregoing physics in mind, let us now consider the specific model equations for the 

sliding of ice within the basal layer. 

outer flow 

matching region _ _ - - - ----- /
/ I  

I
basal layer 1 

FIGURE1. Matching surface within the basal layer. 

ice flow -

u  
heat flow  

FIGURE2. Basal flow geometry.  

We consider the geometry shown in figure 2. Since we are interested in flow on the [XI-scale, 

h, is effectively constant, and without loss of generality we take the local coordinate system 

such that h, = 0. We also suppose that the roughness h, is a periodic function. This is an  arti- 

ficial device introduced so that the mean stress induced at y = oo by the flow does not vary with 

x, and is a legitimate construction since the basal stress ~b and velocity u b  (being outer flow 

variables) are considered to change negligibly over distances of o(1 ) .  

The equations of motion for the ice are 
0.q = 0, 
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where subscripts x and y indicate partial derivatives, s is the mean bedrock slope (arctan s is the 

angle of inclination of the x-axis to the horizontal), p is the density of the ice, g' = g(1 +s2)-4, 

g is the acceleration due to gravity, q = (q,, q,) E (u,  v)  is the velocity, p is the pressure, and 7, 

and 7 2  are the longitudinal and tangential stress deviators, defined for an incompressible fluid by 

where aijis the stress tensor, Jij is the Kronecker delta, and subscripts 1 and 2 refer to x and y 

components respectively. We further suppose that the ice behaves according to Glen's flow law, 

that is, 

where, for temperate ice, A may be expected to be a function of the moisture content (Lliboutry 

1976),but will here be considered to be a constant. The usual summation convention is employed 

in (5.4 b) and hereafter. 

The equations of motion and energy in the water film are 

V . q  = 0, (5.5) 

P(Q.V)q +V ~ P++gly-EPP~XI = PW v2qY (5.6) 

q . V T  = K ~ V ~ T ,  (5.7) 

where pWis the viscosity of water, K~ is its thermal diffusivity, T is the temperature, and q and p 
are, as before, the velocity and pressure respectively. 

Finally, the temperature T i n  the rock satisfies Laplace's equation -

V2T= 0. (5.8) 

The boundary conditions are as follows. 

I n  the ice, 

the velocity and pressure must satisfy an  appropriate matching condition as y +co; since this 

condition requires a dimensionless formulation of these variables, this will be specified later. 

On the ice-water interface, y = S(x), 

(i) the traction is continuous: Sx(p-rl)+ 7 2  =PwSx, 

SZ7 2  +p +71 =pw, 

where p represents the ice pressure, and pwthe water pressure, at  the interface; 

(ii) mass is conserved: pq  is continuous; (5.11) 

(iii) the rate of melting is determined by a Stefan condition: 

Pr L(VT - u ,  ST)= Ck(SZTZ-T,,)ICEte", 
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where k represents thermal conductivity, the suffix I refers to ice values at  the interface, and the 

square-bracket notation is used to refer to the jump in the indicated quantity across the interface; 

(iv) the temperature is at the pressure melting point: 

T = TM-O(P-PA), (5.13) 

where TMis the melting point at  the (constant) atmospheric pressure PA, and B is a constant 

(0.0074 K bar-lt ) . Note that, additionally, (5.13) holds throughout the ice region if x > xJl, and, 

by assumption, holds in the region y < y, if xZ < x < x,. We will neglect the effect of solutes 

present in the water film (Hallet 1976), and that of the finite freezing rate (Nye 1973), on the 

melting temperature. (See 5 10 for a discussion of these assumptions.) 

On the water-rock interface, y = [y] hR(x/[x]), 

where k and T are the conductivity and the temperature on either side of the interface and 

a T/an is the normal derivative. We here suppose that the bedrock is impermeable (but see fj10). 

In the rock, 

where G is the geothermal heat flux (ca. 0.05 J m-2 s-l), and k ,  is the thermal conductivity of the 

bedrock. 

Periodicity and continuity requirements 

The foregoing discussion outlines the boundary conditions in y which the solution must 

satisfy. The boundary conditions in x are periodicity ones: particularly, since we expect (and will 

assume) that a solution exists in which the velocity field q is twice continuously differentiable 

in the closure of the periodic domain V (see (6.2)) of the ice flow, we expect that the ice velocity q 

and its first and second derivatives should be periodic. Now in terms of a stream function + 
(introduced in (6.57)), the ice-flow equations are offourth order: hence we expect four periodicity 

conditions, and if we take these to be that the third derivatives of $-are periodic, it is easy to see 

that q and its first and second derivatives are then periodic. I t  follows from this that we require 

the ice pressure p, the stress tensor aij,and indeed all the other variables in the problem to be 

periodic as well. 

To  specify the matching condition in the ice as y+co, let us now consider an  appropriate 

scaling for the model. We shall assume that there are certain scales representative of the 'outer 

flow': specifically we suppose Uo, [rI0, d and I (5.16) 

are typical longitudinal velocity, stress, depth and length scales for this flow. These parameters 

are defined in I, where it is shown that typical values of these constants are respectively 100 m a-l, 

1 bar, 100 m, 10 km. 

We now define V = [Y]/[x], (5.17) 

and CT = [x]/d. (5.18) 

The parameter v is the bedrock-roughness slope, also considered by other authors. The para- 

meter a ,  not generally mentioned explicitly, may be considered to represent a measure of the 

bedrock roughness from the point of view of the bulk flow. Both parameters (as will be seen) are 

essential in obtaining an estimate of the magnitude of the basal velocity. 

'I bar = 10Va .  
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We will assume that 1 v < 1 ;  (5.19) 

we shall later find that it is an additional mathematical requirement that we consider also 

v < 1, to obtain physically significant sliding velocities; however, this restriction does not affect 

the method of solution. Since the dimensional basal stress (asymptotically equal to [TI,) must 

balance the pressure variation over the bedrock, it is natural to scale the pressure (minus its 

hydrostatic component) in the basal layer with [7lo/v, and similarly for the other stress 

components. We therefore define the following dimensionless variables in the basal layer: 

P = P a +~g 'dH-~g ' [x l!I+ ([7lo/v)F. I 
The parameters in (5.20) have been defined already, except for H, which is the dimensionless 

(scaled with d) ice thickness, measured in the y-direction; also, the stress [r], is given by its 

definition in I, 

The matching condition is now obtained by seeking asymptotic expansions for the outer 

solution in the form 
uo = udO)(xo,yo)+ Q(a) ,  

720 = ~$ ; ) (XO,  YO)+ 0(c ), 

where uo is the longitudinal velocity and 72, is the tangential stress. I t  is then shown by Fowler 

(1979) that by defining 
Ub = ~ & O ) ( X O ,  hS), 

7b = 72(:)(~0, hg ) , 1 
the appropriate matching conditions for ii and T2 are 

as -too.Here ub and ~b are the (dimensionless) basal velocity and basal shear stress. Note that, 

from equations (4.8) and (4.11) of I, we can write 

7 b  = H [ l  -p(H, + h,)], 

p = S/E, S = d/l, 

where the suffix x denotes partial differentiation with respect to a scaled (with I) x-variable, 

h ( = h,) is the dimensionless bedrock, ,u is a parameter that measures the deviation of the ice 

surface from the mean bedrock slope, and S measures the shallowness of the glacier. The expres- 

sion in (5.24a) follows from the scalings of I, and is a transformation to dimensionless form of 

Nye's classical formula 7 = pgh, sinx, where h, is the dimensional depth and x is the angle of 

inclination of the surface to the horizontal. This follows by using 7 = [7]07b, [rI0 = pg'sd, g' = 

g/ ( l  + e2)4,h, = dH, and x = arctan E -arctan [S(H, + h,)]. The last relation follows from the 

geometry of the surface, since the equation of the surface is y = H+h; the scale factor S = d/l 

arises from the non-dimensionalization of x and y with I and d respectively. Substitution of the 

above relations into Nye's formula reproduces (5.24a) with an error of 0(S2), which is the order 

of approximation to which (5.24a) is in any case valid. From I, we find that typically, if 
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arctans = lo0, d = 100 m, 1= 10 km, say, then ,u - 0.06. In  this case, it is reasonable to 

neglect ,u in (5.24a) and identify the basal stress r b  with the depth H. Neglect of ,u in (5.24a) is 

equivalent to treating the ice (locally) as a slab of constant thickness. 

The first condition in (5.24) is valid provided ub = O(1). We shall assume this latter condition 

to be true, since if ub - a ,  then the sliding velocity is negligible, and of little interest. Aposteriori 

conditions for the validity of this assumption are given later. Note that (5.24) is the same as 

Nye's (1969) and Kamb's (1970) boundary condition on the ice flow at  co,but is here placed 

formally in the context of an  asymptotic expansion; we see how, dimensionlessly, a non-zero stress 

v r b  at  infinity does not induce any shearing to first order in a (provided ub = O(1)). 

Applying the scalings in (5.20) to the ice flow equations, we obtain 

where in (5.26) we have used the definition of [TI, in (5.21). 

The boundary conditions for large i j  may be written 

The last two conditions are obtained as follows. From I, equation (3.10), we have that the 

dimensionless outer pressure - S[T],; from the scaling in (3.2) of I for the vertical velocity, 

and equations (3.3) and (3.4) of I ,  the vertical velocity - SU,. Thus (denoting dimensionless 

outer variables by a suffix o), vo - po - 6. Matching then requires iJ -8 = 0(6),  but since 

typically 6 - we let 6+0;  this does not affect the accuracy of our later estimates. 

Furthermore we only really require that the average value (in x") of 8 should be zero as i j  -+ co. 

A similar statement is true of the limiting shear stress ?, as y" -+ a,and we shall use these weaker 

conditions as required below. 

Note that if v - I,  the two expressions in (5.24) are incompatible, since a n  O(1) stress has no 

corresponding form in the velocity, and we must have ub a. T o  consider non-trivial sliding 

velocities ub >) u,it is thus formally necessary to consider the associated limit v +0: a more precise 

condition is given below. 

To  continue our scaling, let us consider the flow in the lubrication film. We non-dimensionalize 

the geometry by writing 

so that S* is the dimensionless film thickness, as yet undetermined. We also define the dimension- 

less ice-water boundary by 
S(x) = [Y][ h ~ ( X )+s*z(x)l 

For the remainder of this paper we will omit the R on h,. From (5.31), 
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From (5.29) and (5.30)) 

& =[Xlax-w[xl3 

a 1 a -=--
ay & * [ ~ l a ~ .  

The equation of continuity (5.5) therefore becomes 

1 v
ux+--i(--Uh')t! = 0, (5.34)8 

Y 
u and v being still dimensional. 

Now let us suppose that the (unknown) melting velocity given in (5.12) is written in the form 

where the dimensionless parameter a! is at  present unknown, but is to be chosen so that the un- 

known dimensionless velocity is an O(1) function. For convenience, we make the inessential 

assumption that 
PI = Pw; (5.36) 

that is, the densities of ice and water are equal. Then, from (5.11), q is continuous across S(x), 

and the water velocity (u, v) satisfies the following equation on S(x), where we have used (5.32): 

We now scale q in the water with a velocity [u] (to be determined), by writing 

u = [u] U, v = v [u] Uh' +vS* [u] V; 

then (5.34) is Ux +Vy = 0, 

and the boundary condition (5.37) is 

provided we choose [u] = aUo/vS*. (5.41) 

The other kinematic condition on Y = Z may be written as 

where 72, denotes the dimensionless ice velocity in the x-direction at Y = Z. By using (5.41)) this is 

If we assume for the moment that v&*/a < 1, then (5.43) may be replaced by 

U = O  on Y = Z ;  (5.44) 

in which case (5.40) is V=-VM(X) on Y = Z .  (5.45) 

The boundary condition on Y = 0 is the usual no-slip one, 

I n  the water, it remains to nondimensionalize the temperature and pressure. For the pressure, 

we follow the ice scaling in (5.20)) and write 

P =p, +pg'dH- pgf[x] vh + ([T]O/V)P; (5.47) 
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guided by the Clausius-Clapeyron law (5.13), we then write 

T = T31-0[pg'dH -pg' [x] vh] + (8 [T],/v) T * . (5.48) 

I t  follows from these definitions that Pand  T * are O( l ) ,  and furthermore the Clausius-Clapeyron 

relation (5.13) becomes 
T * = - P  on Y = Z .  (5.49) 

We shall use (5.48) as the scaling for the temperature in the bedrock ij < h also. 

We now anticipate that 6* will be so small that (p(q.V) ql < (,uV2ql in (5.6) so that the 

equations reduce to those of lubrication theory (for example, Batchelor 1967). This assumption 

must be checked aposteriori .  I n  this case, we must as usual balance the terms 

P s  m PWUVV (5.50) 

in the first momentum equation of (5.6). From (5.47) and (5.41), this requires that we choose 

--[?lo PW auo 
[x] v VS*~[Y]~ '  

We secondly assume that the temperature change across the film is negligible, in which case 

(5.49) is approximately valid on y = 0. Since the heat flux at  Y = 0 is continuous, we must then 

balance the heat absorbed by the melting ice at Y = Z with that supplied from the bedrock at  

Y = 0; this requires that we choose, from (5.12)) (5.35) and (5.48)) 

where k,  is the thermal conductivity of the bedrock. These relations serve to determine the as 

yet unknown parameters a and 6". Multiplying (5.51) by k ,  8, we obtain from (5.52) 

which gives the dimensionless film thickness. A similar result is given by Nye (1967) and 

Lliboutry (1968). In  (5.53) we have tacitly assumed that the conductivity of ice, k,, is less than 

or of order k,; this is generally true. We have also used the fact that the relevant length scale 

in the bedrock is [x]. With the values given in I,  and using p ,  = g cm-l s-l, we obtain 

6* z [x]*[~]-~, (5.54) 

when [x] and [y] are expressed in metres. I t  follows that 6* < I, and a typical dimensional film 

thickness 6*[y] is of the order of 1 pm. 

From (5.52) we find a = pLUo.kR ~ [ T ] ~ / V [ X ]  (5.55) 

If we take Uo = 100 m a-l, and a typical stress [TI, = 1bar, then, with the values of I, we find 

when [y] is expressed in metres. This implies that a is negligible except for the very smallest 

obstacles, even if Uo is as small as 1 m a-l, and is the basis of the statement that regelation may 

be neglected in the flow except over the smallest obstacles. 

Since the ice velocity satisfies, from (5.35) and (5.32)) 

v" = viih' -al&(x") on 9 = vh, (5.57) 

where we have neglected terms of 0(6*),  it follows that the criterion for neglect of regelation is 

that 
a 6 11. (5.58) 

68 Vo1. 298. A. 
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As stated, (5.58) is valid for all but the smallest obstacles, and it is convenient to define a transition 

wavelength A, (in Morland's notation), at which a: = v. From (5.55)) this is given by 

This cannot be immediately compared with Morland's (1976a) equation (39)) since Uo in 

(5.59) should not, strictly speaking, represent the outer velocity scale, but rather the inner 

velocity scale, which we are for the moment assuming is of the same order. With Uo = I0 m a-I 

and v = 0.2, (5.59) gives A, = 5 mm, as opposed to a value of 77 mm given by Morland. This 

difference is to a certain extent due to the nonlinearity of Glen's flow law for ice. 

Thus generally A, < [x], and the bulk flow of the ice in the basal layer may be represented as 

having zero normal velocity at  the bedrock. Such a theoretical conclusion appears to be in con- 

flict with certain experimental evidence, and some comments on this are made in $9. However, 

from our point of view, we can proceed on the basis that the above results are valid, since the 

physical assumptions they imply have been deduced from a rational dimensional analysis of the 

model. 

We now justify aposteriori the various assumptioris made in the derivation of a: and S*. Since the 

temperature flux is continuous across Y = 0, one easily sees that the temperature jump across the 

film is of order 
--- Nk ~ [ T I S * r y l  4S*v[ TI < [TI ,

[XI kw 

where [ T I  is the typical variation of temperature in the bedrock (or ice). This justifies the 

assumption stated after (5.51). The assumption stated before (5.50) is justified by observing that 

- 1 0 - ~ ~ [ x ] ~ / [ ~ ]  (5.61)< 1, 
[x] and [y] being measured in metres. 

The final assumption, that vS*/a < I (after (5.43))) is not essential, since it only affects the 

boundary conditions, but it does partially decouple the lubrication-layer equations from the 

solution for the ice flow. We have, from (5.55) and (5.54)) 

where Uois in metres per year, and [x] is in metres. For example, if Uo = 100 m a-I, v = 0.2 and 

[x] - 1, then vS*/a: N 10-2. 

We will now derive the lubrication equation for the liquid film. By neglecting inertia terms 

(by (5.61))) and by using (5.47)) (5.33) and (5.38), the first component of the momentum 

equation (5.6) is 

or, by using (5.21) and (5.51), 

The second component is 
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or, by using (5.21) and (5.51)) 

Multiplying (5.64) by h', and adding it to (5.63)) we find, on neglecting terms of 0(6*) ,   

whereas neglecting terms of O(S*) in (5.64) gives the usual independence of P on Y,  

We neglect terms of O(v) in (5.65)) and integrate the equation twice with respect to Y, using the  

boundary conditions for U in (5.44) and (5.46). This gives  

Finally, using the equation of continuity (5.39), we have that  

whence S X v M ( x ' )  dX', U ~ Y1: = (5.68)  

and the constant of integration is arbitrary, for the moment. 

Integrating (5.67) and using (5.68)) we obtain the lubrication equation for the film, 

the constant of integration X, is chosen so that the left side of (5.69) vanishes when P' = 0. 

Provided the dimensionless film thickness 2, as given by (5.69), remains O(1) and positive, the 

complete water-film flow is given in terms of2 .  Thus, with this apriori assumption, the description 

of the water film uncouples from the temperature and flow problems; in other words, the regela- 

tion velocity V, and film pressure P are determined from the solution to the temperature and 

ice-flow equations. However, it has been known for some time (Nye 1973; Morris 1976) that this 

uncoupling is not self-consistent if either <I or P' becomes zero at  a point X where the other is 

finite. In  the first case, the predicted 2becomes negative, in the second it becomes infinite. Morris 

(1979) showed that, for a particular geometry, the ice flow problem with the usual regelative 

boundary conditions had no physically meaningful solution, and thus we are led to reconsider the 

formulation of the problem. 

The derivation of Z in (5.69) is valid so long as 2 > 0 and Z - O(1): thus there is no incon- 

sistency so long as the film is indeed thin: however if P' = 0 when KOGf f 0, then Z+m,  and 

the derivation of (5.69) using the scalings of this section is invalid when 2 - 0(1/6*). But 

2 - O(l/S*) corresponds exactly to situations in which the ice-water interface leaves the neigh- 

bourhood of the bedrock, and thus a cavity forms. 

68.2  
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I t  is instructive to compare this notion with that of Nye (1973) in the comparable regelation 

theory. Nye derives an equation for the water film thickness in the form (his equation (6)) 

- T3(dT/dS) sina = K T 4 c o s a +  T3cosa-@X, 
where 

a is the angle that the tangent to the cross section of the wire makes with the direction of the flow, 

S is the dimensionless distance along the circumference of the cross section, made dimensionless 

with a typical scale of the cross-section size, and T is the film thickness, made dimensionless in a 

similar manner. The symbols T, X, a, @ used here in Nye's sense until equation (5.76) should 

not be confused with their use elsewhere in this paper. We thus have a, S, da/dS - 1; @ is a 

dimensionless parameter which is easily seen, by comparison with (5.53), to be O(S*3). Without 

any loss of generality, we define $ = 6*3 and put T = S*Z, to correspond to the scaling of the 

present paper. Then (5.70) is 

Thus as long as 2 = 0(1) ,  (5.72) gives Z as 

to 0 (6*) ;  this is the analogue of (5.69). Nye's argument proceeds to show that the actual equation 

(5.72) has a bounded solution, since 2 automatically adjusts itself at points where a = 0 in such 

a way that the right side is zero; if X = Xo and K = KO at  such a point, this requires C to be a root 

where KO> 0 if the cross section is locally convex outwards, and KO < 0 if it is locally 

concave. If KO - 0(1) ,  KO < 0, then (5.74) has two positive roots, 2 - X$ and &, - 1/I KoJ 6 * ;  

the pertinent point here is that the second is 0(1/6*), and thus, if the film thickness attains this 

second value, Nye's corrected theory, incorporating the temperature drop across the water film, 

would be invalid. I n  fact, so long as X > 0 and cos a > 0 (i.e. a E ( - i n ,  i n ) ) ,  (5.73) should 

remain valid. This is so in regelation past irregular cross sections, until a = i n  (point B in Nye's 

figure 3), where if X = Xo > 0 then (5.72) implies that 

so that Z 9 1 (in fact 2 - 6"-4). If then a increases further, we have cos a < 0, da/dS > 0, so 

(5.72) is 
d a

S * Z 4 ( - C O S ~ )- + L 3 ( - C O S ~ )  , (5.746)
dS 1  

which shows that 2 continues to increase without limit. As long as 1 < Z < 0(1/6*), the largest 

term on the right side is Z3(-  cosa); thus for a - i n  - 0(1),2 increases to 0(1/6*) over dis- 

tances S N O(1). While Z - 0(1/6*), i.e. T N 0(1) ,  (5.746) is, approximately, 

d T
sina- = -cosa

dS 
with solution 
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If (5.76) and (5.73) are to match, we must require a(&)= ix .  Provided a remains less than 

x, (5.76) remains valid until a = $x again, when the thin-film approximation is resumed. 

Thus, at  least in principle, it seems that the formation of a cavity in regelation flow by means of 

'separation' of the ice-water boundary from the ice-bedrock boundary is a serious possibility. I n  

such conditions, the water film flow equations become invalid, and a water-filled cavity can 

exist. A proper formulation of the problem would then include the possibility of unknown portions 

of the flow where cavities existed. O n  the (unknown) ice-water boundary of such cavities, the 

water pressure would be constant, and this extra boundary condition should be sufficient to 

determine the cavity boundary. A similar analytic treatment of glacier sliding when cavitation 

occurs owing to the water pressure decreasing to the triple-point pressure has been presented by 

Fowler (1977)) and is currently being prepared for publication. 

The other possibility in (5.69) is that Z+O when P' # 0. Clearly, the water film thickness 

cannot be negative. However, there seems no reason why Zshould not vanish, and one would then 

have a region in which the water film was absent, and an alternative boundary condition (for 

example, no-slip or, probably better, frictional sliding) would have to be prescribed. Such cold 

patches might be feasible in regelation experiments past asymmetrically cross-sectioned wires, 

but this is not certain, since the film thickness must be single-valued at  a point whether the solution 

is obtained going clockwise or anti-clockwise round the wire. Since the existence of cold patches 

for simple regelation is not confirmed, it is consequently not clear whether their existence is 

possible in the sliding of fully temperate ice; note that these cold patches are not to be confused 

with those which must occur in sub-temperate sliding (Fowler 1977)) which are due to the slight 

cooling of the ice below the melting temperature. 

I n  the subsequent analysis we shall implicitly assume that neither regelative cavitation nor cold 

basal patches occur. This restricts the class of bedrock for which the analysis is self-consistent, but 

we justify this on the basis that we are principally interested in the nonlinearity of the flow law of 

ice, and its effect on the magnitude of the sliding velocity. Furthermore, the type of mathematical 

inconsistency that Morris (1979) describes will not be found here, since (as we show subse- 

quently) the effect of the entire regelative mechanism can (apart from the lubrication of the bed) 

be neglected for the roughness scales considered. 

Our point of view is that glacial sliding is a very complex phenomenon, and thus it is not 

realistic to try and conduct an analysis of all features of the problem. A treatment of cavitation 

occurring as the result of bedrock heat-exchange processes seems very difficult, except for the case 

of Newtonian flow over a slowly varying bedrock: it therefore seems reasonable to study other 

aspects of the problem separately, while bearing in mind the realistic limitations that this 

imposes on the results. 

Let us finally describe the temperature problem in the bedrock. By using (5.48)) the dimen- 

sionless temperature T * satisfies, from (5.8)) 

AT* = 0, (5.77)  

with boundary conditions obtained from (5.49) and (5.12)) by using (5.35), (5.55) and (5.60),  

T *  = - P  on i j=vh,  (5.78)  

[T$  - vh1T;]lh- - ( l / r )  [TZ-h1T;]ItL+ = -I&(.?) on ij = vh. (5.79)  

In  (5.78) and (5.79), we have used the same spatial coordinates (?,ij) as for the ice flow, (5.20))  

and we have scaled the ice temperature in the same way as for the water film, (5.48). Following 
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Morland's ( I976a, b) notation, we define the ratio, r, of ice conductivity to bedrock conductivity 

by r = kR/k,. (5.80) 

Typically 1 5 r 5 2. In  (5.79)) values taken on h+ and h- refer to the values the functions take 

(in the limit S* -+ 0) on ij = vh in the ice and the bedrock respectively. 

Note also that, by our assumption, we may write 

in a basal ice region near the bedrock (this being necessarily true if x > x,). Thus we can write 

(5.80) as 
T t  -vh'T; = -Kf(x")-r-l(P;- vhy;) on ij = vh, (5.82) 

where T * and p" are understood to take values in h- and h+ respectively. The boundary con- 

dition (5.15) is 
aT*/ai j-+-A* as ij+co, (5.83) 

where A* = G[x]/k,19[~]~. (5.84) 

If [x] is measured in metres, then typical values give A* - 2[x], which is not negligible (in 

apparent disagreement with other authors, for example, Morland 1976a). However, the bedrock 

temperature is only important in solving the ice flow when cr. N v, that is, for roughness scales for 

which [x] 5 A,, and when this is the case A* is indeed negligible. 

We have now completely scaled the equations and boundary conditions, except for the stress 

continuity conditions (5.9) and (5.10) and the flow law (5.4 b). The former are easily seen to be, in 

dimensionless form, from (5.20)) (5.32) and (5.47)) with S* -+ 0, 

both on y" = vh. Let us define, from (5.4b)) 

e = (Uo/2[x]) a, T = ([T]~/v)T 

(4. and Ti. are defined equivalently), so that (see I, equation (3.6)) 

Then we have, from (6.4 b),  e = A7n, 

whence 

L .4 

Also, from the definition of [TI, in I ,  
[TI! = Uo/2Ad. 

Eliminating A from (5.90) and (5.91), we obtain, using (5.18)) the dimensionless flow law 

relating d and T, defined by (5.88) and (5.89): 

For completeness, we here set out the complete coupled bedrock-ice flow problems to be 

solved. For convenience, we will omit the tildes on dimensionless variables, and the asterisk on 

T *. 
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In y > vh, 

I n  y < vh, 

Asy-tcc (ory >) I ) ,  

24 " ub + o(ay) ,  

v,P-tO, 

72 - v[7b + o(ay)]. 

(It is sufficient to take the average values of r2and p in (5.95).) 

On y = vh, 

(by eliminating P from (5.85) and (5.86)), 

T = -p, 

T,-vh'T, = -VM(x)-r-l(p, -vh'p,). 

As y + - a ,  
a ~ / a ~ + - - n * .  (5.97) 

The system (5.93)-(5.97) is to be solved to find TQ as a function of ub. I t  is based on the main 

assumptions that (i) the ice flow is independent of the moisture content; and (ii) either x > x,, 

or there exists a basal region next to the bedrock where the ice is temperate. 

If we suppose that h has period M, then we further constrain our solutions to be periodic in x 

with the same period. 

6. A V A R I A T I O N A LP R I N C I P L E  F O R  T H E  I C E  F L O W  

If we examine the system (5.93)-(5.97), we see that it is dependent on five dimensionless 

parameters: a, v, a, rand A*. Of these, a and v occur in the ice-flow equations; v, a: and r appear 

in the boundary conditions on the ice-rock interface; and A* represents the geothermal heat 

flux to the bedrock. The parameters a and v are crucial in determining the magnitude of the basal 

velocity ub, as should be clear from (5.93). The parameters r-l 5 I and A* - I are inessential: 

r-l merely reinforces the bedrock thermal gradient (since, for example, upstream, aT/an and 

C?p/an are both positive); it is unlikely to affect substantially the scale or effects of regelation, 

although it will increase GI. Similarly, although A* - I,  the rock-temperature problem only 

becomes of interest when regelation cannot be neglected; as already stated, this occurs over 

bedrock roughness on the scale of the transition wavelength A,  < [x], and over such scales the 

effect of A * will indeed be negligible. 
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The remaining parameter, a ,  is the crucial one in determining a solution of (5.93)-(5.97). I t  

represents the effects of regelation. We have shown that a < I ,  so that (provided KL5 1) it 

seems reasonable to neglect a in (5.96). The ice flow problem then uncouples altogether from the 

bedrock temperature field. However, we can only guarantee GI 5 I when the relevant length 

scale is [ x ] .  Over much smaller length scales, 8T/an increases and V, may become so large that 

aV, 1. Thus, neglect of a corresponds precisely to assuming that roughness is absent at wave- 

lengths less than about A,; such an assumption corresponds to Kamb's (1970) 'truncated white 

bedrock', and may often be valid. For the remainder of this section, we therefore assume that 

The effect of a small, but non-zero, a is briefly discussed in 5 8. 

We now consider a variational principle for the ice flow problem, (5.93), (5.95) and (5.96), 

with a = 0. Such a principle was first comprehensively put forward by Johnson (1960,1961). For 

certain stress-strain rate relations he stated a general variational principle that has as its Euler 

equations and natural boundary conditions the equations and boundary conditions of the steady, 

slow flow of a non-Newtonian fluid bounded by a surface on which appropriate velocity and 

stress conditions are given. Specifically, he considered the bounding surface S to be composed of 

non-overlapping components St and S, on which, respectively, the stress and velocity com-

ponents were specified. In this case, by also using natural admissibility conditions, velocity and 

stress principles may be deduced. For certain flow laws (of which the power-law model is one) 

these give a global maximum and minimum for the variational functional. For the power-law 

model, this functional is just a multiple of the drag. Hence, by finding appropriate trial functions, 

we can estimate the drag on the bedrock, i.e. the basal stress. 

Johnson's theory has been widely applied. Wasserman & Slattery (1964) used it to estimate the 

drag on a sphere moving slowly in an unbounded fluid, and, later, Hopke & Slattery (1970) 

obtained bounds on the drag on a sphere moving slowly in an Ellis-model fluid, which is similar 

to a power-law fluid at  large stresses, but which has finite viscosity at  small stresses. This suggests 

itself as a useful model for the rheology of ice (cf. Budd & Radok 1971). 

No correctly formulated variational principle for a problem, such as flow past a bubble, that 

requires mixed boundary conditions (no normal velocity, no tangential stress) seems to have 

been yet considered. A slight modification of Johnson's principle is necessary, by means of a 

method well known in linear elasticity. 

I t  is not surprising that all the work to date has been done on spherical geometries, since the 

well known Stokes paradox (for example, Proudman & Pearson 1957) does not appear explicitly 

in this case. Thus one can obtain a meaningful estimate for the drag even when the inertial terms 

are neglected everywhere in the flow; the same would not be true in a cylindrical geometry. The 

only work on non-Newtonian fluid flow that explicitly incorporates a description of the outer 

(Oseen) flow away from the inner (Stokes) flow is that by Caswell & Schwarz (1962) for a 

Rivlin-Ericksen fluid. 

To formulate properly a variational principle for a slow flow in an infinite expanse of fluid, it is 

necessary to solve the outer flow problem to first order, obtain the appropriate matching 

conditions for the inner flow, and prescribe these conditions on a 'boundary' in the matching 

region. This 'asymptotic variational principle' will give estimates for the solution that are 

accurate to the same order as the matching conditions. More formally, it provides estimates for 

the leading-order term in an asymptotic expansion of the inner flow. If complementary varia- 
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tional principles exist, then these provide upper and lower bounds for the variational functional 

to first order. 

This is essentially how the bounding surface is chosen in the problem considered here. I n  this 

case, however, the whole glacier is well within the region of Stokes flow since the expanse of 

fluid is bounded, and the Reynolds number is so small (ca. 10-13) that the inertia terms remain 

negligible throughout the flow. The inner and outer regions are simply the basal and main- 

stream regions of the flow, corresponding to expansions of the flow solutions in powers of u. With 

the dimensionless coordinates introduced in $5, we therefore choose the volume V of the basal 

flow to be 
V =  (O<x<M,vh(x) <y<y*) ,  (6.2) 

where M is the period of h, and 1 4 y* < 1 / ~ ,  (6.3) 

so that y = y* lies in the matching region between inner and outer flows (Cole 1968). The 

bounding surface S of the flow is therefore just the boundary of V; the geometry is shown in 

figure 3. 

FIGURE3. Bounding surface geometry for application of the variational principle. 

We will denote the bedrock portion of S, y = vh, as Sb, and the matching region part, y = y*, 

as S,. 

We may write the dimensionless equations of ice flow given in $5, with a = 0, as 

vi, i = 0, 

uij, j +j; = 0, 

where uij = -padj +rij 

and f = (UV, 0). 

The rate-of-deformation tensor is eij = vi, +vjPi, 

and we shall suppose that there is a function r(e,,) such that the flow law given in (5.93) may be 

written in the form rij= 2 a r / a e i j  = rji. (6.9) 

Equations (6.4)-(6.9) are to be solved subject to the conditions that the solutions be periodic in 

x with period M, vi is twice continuously differentiable on the closure of V, and, on S,, 

& ! = ~ b + o ( ~ y * ) ,  v =  0, I 
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I n  these equations, u = (v,, v,) is the velocity, suffixes i and j are used to denote components in 

cartesian geometry, n and t denote unit (outward) normal and tangential vectors to the bedrock 

Sb. Commas denote partial differentiation with respect to the indicated coordinate, and we 

employ the summation convention. If there is no tangential stress on Sb, then the traction T, = 0, 

but we retain T, in (6.11) in case we wish to model such effects as basal friction due to debris 

(Morland 1976 b) .  If a basal friction is applied, then T, > 0 in (6. I I ) .  

Let us consider the functional 

where u = (U1,U2)= ( u b +  O(flyr),O). (6.13) 

This is the equivalent of the functional considered by Johnson (1961), except that only the com- 

ponents corresponding to the terms that are known in the surface integral over Sb are included. 

The second integrand may be written more briefly as 

Now let v,, rij,aij,p, eij be a solution of equations (6.4), (6.5), (6.6), (6.8) and (6.9), with f given 

by (6.7), that satisfies the periodicity and differentiability requirements together with the 

boundary conditions (6.10) and (6.11). Also, let 6vi and 6rij, etc., be arbitrary variations of these 

functions such that 6v, is continuous, piecewise continuously differentiable and periodic, but 

60;~ need be neither continuous nor periodic. Denoting the first-order variation of the functional 

by 6J, we then find that 

ar 
6J = SV[+(v,, +v,, ,- eij) 6ri, + -*rij)6eij+rij6vi,, -f, Fv, -p6vi, -6pi ,i] d V 

where we have used the fact that ri, = rji. 

Using the equations (6.9), (6.8), (6.6) and (6.4), we may rewrite the volume integral in (6.15) 

and then using (6.5), periodicity, and Green's theorem on (6.16), we obtain from (6.15) 
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Using the boundary conditions in (6.11)) together with (6.10) and (6.13), we obtain 

Now, g,, nk n, n, +0-,, n, tj ti = vnnn, +cn,t, 

= win 

= g,, n,, (6.19) 

by the usual rules of tensor manipulation. Therefore, the integrand in (6.18) is zero, and so 

thus J is stationary a t  a solution of the problem. 

If, instead of (6.9), we can write the flow law in the form 

eii = = 2 (ali'(~v.9) eji Iarij) 9 

and then define a functional X by 

[4eij T,, - r(e,,) -f (T~,)] d V, 

it is easy to see that also 6 2 = 0  

at  a solution of the boundary value problem; furthermore (as is shown below), for a power-law 

fluid we have 
r(e,,) +P(rrS)= Beirrii (6.24) 

a t  a solution, and therefore, in view of (6.22), 

X = J =  Jo, (6.25) 

say, a t  such a solution, and from (6.12), the equations of motion (6.4) and (6.8), and the bound- 

ary conditions (6.10) and (6.1 I ) ,  

4 = r, vbdS.1 (I' -A v,) d v+Isb (6.26) 
v  

We will now show that the power law described by (5.93) may be written in the form (6.9) or 

(6.21). (Application of the variational principles for a more general class of flow law, such as an  

Ellis model or polynomial law, is discussed in Appendix B.) We have 

Let us define 

From (6.27), we have 28-, ae = e . .v, 2~-
a7 

= r(j9 

ar,, 
and therefore 

-ar = -n + l  
mel/n -ae = -l n + l-me-(n-l)/n eii. 

ae,, n ae,, 2 n 

From (5.93)) we can write the flow law in the form 

which is of the form (6.9) if, from (6.30), 

m = 5 (;)-lln. 
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Similarly, from (6.29) and (6.28), 
1 

- ( n +  1) firnGro 
arij 

and so e,Ljis of the form (6.21)) provided we choose, from (5.93)) 

We therefore define r a n d  f by (6.28)) with m and f f i  defined by (6.32) and (6.34). We can now 

evaluate the volume integral in (6.26). From (6.27) and (5.93) we find that 

Comparing (6.35) with (6.28), (6.32) and (6.34)) we find that 

a t  a solution. This confirms the relation (6.24)) and shows that 

by using (6.8), (6.6) and (6.4), and therefore, from (6.7) and (6.5), 

We note that on Sb uij vi nj = ginva = on,n, vi +an,ti v , ~  

-
- - 7 , V t ,  

using (6.11), and therefore from the boundary conditions (6.10) (or 5.95) we have, using the 

fact that u 5 ub +O(oy*) in V, 

Now let us construct complementary variational principles for the given functional 4,using 

the functionals J a n d  X. Firstly, we construct a velocity principle by considering variations of J, 

when the admissible functions are restricted so that equations (6.4)) (6.8) and (6.9), the first two 



665 G L A C I E R  S L I D I N G  

conditions in (6.10) and the first condition in (6.11) remain satisfied under the variation. De- 

fining the functional Jwith these restrictions to be Jv,we immediately see from (6.12) that 

The first variation 6Jv is zero at a solution (at which also Jv= J,),and the remainder can be 

written 
J, = SV[T(eii + 8eii) -F(eij)--6ei,I d V. (6.41)

ae,, 

I t  is shown by Johnson (1961) that the integrand in (6.41) is always positive, and therefore 

(since 6Jv = 0)we can write 
Jv= Jo + J22 Jo, (6.42) 

so that Joas defined by (6.39) provides a global minimum for the functional Jvin (6.40), when 

eii and vi satisfy the afore-mentioned conditions. 

I n  a similar manner, we define a stressprinciple by considering variations of 2,and restricting 

admissible variations so that (6.2 I ) ,  (6.5), (6.6), the third and fourth boundary conditions in 

(6.10) and the second one in (6.1 1) are satisfied. Defining this restricted functional to be Xi, we 

find, from (6.12), replacing r- heij by p, that 

We know that 3,= Joat a solution of the boundary value problem, and also that 6ST = 0. The 

remainder, S2,is given from (6.43) by 

and is less than zero in precisely the same manner that J, is greater than zero. I t  follows that we 

may write 

The inequalities in (6.42) and (6.45) are strict unless the variations are zero. These results 

incidentally prove that there can be at most one solution of the problem. 

We have obtained global bounds on Jo, 

and can now use (6.46) and the definition of Join (6.39) to obtain estimates for the basal stress ~ b .  

With realistic estimates, we can neglecthvi in (6.40), and then we find that the asymptotic 

complementary variational principles give, to first order, on letting u -+ 0, 

where we have used (6.35) and (6.36), and v: denotes the solution vt and not a trial function. 

At this point note that we have not assumed, in deriving (6.47), that v < 1. Thus these esti- 

mates would seem to be applicable to bedrocks with non-vanishing mean slope. However, our 

main assumption in deriving the first-order bounds above is that u b  % O(u);if uh 5 O(cr), then, 
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from the point of view of the large-scale ice dynamics, we could reasonably take u z 0 (cf. 

Richardson 1973).NOW we can at once establish the magnitude of ub by noting that, at  the (first- 

order) solution of the problem, the inequalities in (6.47) becomes equalities. Let us suppose that 

(no tangential stress at  the bedrock). Then, since 7, = V T ~on S,, we have, at  the solution, 

Ub a /vnf l ,  
and thus, formally, we do indeed require 

v < l  

for non-negligible sliding velocities. This assumption is that taken for granted by other authors. 

We stress the formality of this result: ifn w 3 and a - (for example, a roughness wavelength 

of 1m beneath 100 m ofice), then ub - 1if v - ~ l / ( ~ + l )0.3, which is hardly infinitesimal. How- 

ever, this is of little importance in (6.47), since no such approximation as (6.51) has been made 

there. We note that, as v+O, y* +a,but the right side of (6.49) does not converge since T +V T ~  

as y * -+m. This is easily remedied by writing 

rn+ld v = (rn+l-vn+lr;+l)d V +0(Mvvy*)
vn 

to first order as a + O .  With this adjustment we can extend the y-integral in (6.49) to y* = oo. 

Defining 

so that u$ = 0(1),  we have at a solution, from the second equality in (6.47) with T, = 0, 

and it follows from (6.54) that e is not scaled to be O(1) in (5.93)) but that 

e = O(a/vn), 
(as is also obvious from (5.92)). 

Now let us define the Airy stress function which satisfies 

when (6.5) is satisfied (neglectingf,). Also when (6.4) is satisfied, there exists a stream function $ 
satisfying 

u = $ ~ ,  v = - $  x' (6.57) 

Motivated by (6.53), (6.55) and the magnitude of the basal stress, we now rescale the dimension- 

less functions $ and #J by defining 
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Thus (6.55) is automatically satisfied, and we find that the inequalities in (6.47) become (still 

with T~ = 0), using (6.52), 

where e* and T* are defined by 

e* = [($zv -$zx) 2 +4@;;14 

I n  (6.60) we require only that $* be continuously differentiable and piecewise twice con- 

tinuously differentiable, 
$* - ylv as y+co, (6.63) 

$* = 0 on y =  vh, 

as conditions on $*,and /oM($zv+$:z)dx+O !/+a,as 

and, from (6.11), (5.96) and (6.56), 

(1- ~ ~ h ' ~ )$zv+ V ~ ' ( $ I / * ~  -$zx) = 0 on y = vh. (6.66) 

Since we have e* - 1, it follows from (6.63) that we may write the stream function in the form 

$* = Y/v+$L.,, $1 = 0(1) ,  (6.67) 

so that (if v < I ) ,  the basal velocity is unaffected, to first order in v, by the bedrock. 

The shear stress condition a t  y = co may be written as 

[-4z1F = Mv, 
and so we suppose that 4 *  satisfies 

4 2 v w  - v ~ x ) ,  Y+W, 

where a(x) is to be chosen such that it is periodic in x with period M and mean equal to one, i.e. 

I n  this case (6.68) and (6.65) are both satisfied, and the bounds in (6.60) become 

n 
(6.71)

n + l  
whence we obtain 

7 b  < ~ 'S~ e*(n+l)in~d V, - (6.72)g ~ 
M v 

where e* and T* are defined by (6.61) and (6.62), and $* and $* satisfy the constraints (6.69), 

(6.63), (6.64) and (6.66). (6.72) and (6.73) are valid to first order in cr, provided we have v < 1 

(so that cr/vn+l B cr). We emphasize that in practice the large value of n means that v may be 
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considered 'small ' for v 5 4. e* and r *  are O(1) quantities, and furthermore, the boundary 

conditions on $* and $* are independent of u z  and r b .  I t  follows (since (6.72) and (6.73) are 

equalities at a solution) that the precise sliding law in this case must be (to first order in (T) 

where C = O(1) and will depend on the bedrock topography. Note that, in estimating bounds 

in C, we may replace SVd v =SoM by dxSv; dy, since the integrands in both dx/Yy dy SoM 
(6.72) and (6.73) vanish at large y*. 

To include the effect of a tangential traction r,, we make use of the formal approximation 

v 4 1and (6.67), which implies that 
v; = ub [I + O(V)], (6.75) 

on y = vh. With this approximation, and defining the average traction by 

we find from (6.47)) using transformations (6.53)) (6.58) and (6.59) and the boundary condition 

(6.69)) that 
1 n 1 -

u$rb--rE+1- S [r*n+l-vn+l] dV g -rbu$+-r,u;
n + l  M V  n + l  n + l  

whence 

where $* must now satisfy (6.69), and 

( I  -v2hI2)$Zy +~ h ' ( $ , * ~$&) = rs /7b  on y = vh. (6.79)-

To make (6.79) independent of r b ,  we define 

and therefore 

so that we require ( I  -v2hf2)$&,+vhf($&, -$&.) 7: = on y = vh, (6.82) 

and 

u$(I-7:) 
-

67;- S (r*ntl-vn+l)dV. (6.83)
M v 

The second inequality is seen to be, from (6.77), 

where we require $* to satisfy (6.63) and (6.64). We may suppose 2 to be given in (6.83) and 

(6.84). The inequalities are formally valid as v -t0, but the term? can only be accurate to O(v). 

Note that, for a given basal stress, inclusion ofa bedrock traction has the effect ofreducing the basal 

velocity, as one would expect. Furthermore, we know that (6.84) is an  equality at  a solution 
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of the problem, and also, since @* satisfies the same constraints as when 7: = 0, e*(n+l)lnd Vmust 
S v   

have the same minimum when the solution is obtained as when 7: = 0.From (6.73) and (6.74))  

this implies that  Sv *in+l)/n = C-l/n, (6.85)  

and so the sliding law is of the form 

u; = C7:(1 -7Z)", 

where Cis a function of the bedrock topography. Equation (6.85) can be written in the form 

where R = C-lln is a measure of the bedrock roughness; this implies that the basal stress is 

additively dependent on the ice flow and the bedrock traction, as v -+ 0. Equation (6.85) implies 

that we must have 

for realistic results. This simply reflects the obvious physical fact that the friction on the bedrock 

cannot be greater than the applied basal stress. If we are able to impose a basal traction (for 

example, of frictional type) that is greater than 7b, then (6.86) is not valid, and we must simply 

have U$ = 0 as the proper boundary condition. Of course the above theory is strictly invalid when 

71, -Ts = 0(v),  or, more accurately, 0(vcn+l)In),since then (6.86) predicts that ub, given by (6.53)) 

is 0(v). 
If a / v n + l  1, (6.50) seems to imply a large (much greater than O(1)) basal velocity. Since the 

velocity of the outer flow was specifically scaled, in (5.20), with Uo so that it should be 0(1) ,  this 

appears to be contradictory. What in fact (6.50) implies is that H is small, or alternatively that 

we should not scale the outer flow with Uo, but rather the basal flow. If we then denote by Ushear 

the scale of the velocity change in the outer flow due to shearing, it is shown by Fowler (1977) 

that 

and hence the velocity can be written as 

u = ~b (x) +0[ ( ~ ~ + l / ( ~ ) ( ~ + l ) ' ~ ] .  

The flow is then effectively one-dimensional and in dynamical studies, the correction term to 

u ~ ( x )would be of less interest. The depth also must be rescaled according to 

For example, if v - and v - &,then Ushea,/U0 - 10-I. Certain glaciers do indeed appear 

to have a dominant basal velocity component; for example, eighty per cent of the motion of the 

Nisqually glacier appears to be due to sliding (Hodge 1974). 

7. TRIALE S T I M A T E S  F O R  T H E  R O U G H N E S S  P A R A M E T E R  R 

I n  this section, we obtain estimates for the roughness parameter R by considering particular 

trial stream and stress functions, @* and #*. Even the simplest of such functions involve much 

computation, and so we restrict ourselves here to the attainment of very crude bounds to illus- 

trate the sort of result that may be obtained. More accurate results would require a specific 

7 0  Vol. 298. A. 
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description of the bedrock topography, for example. In  view of the inadequacy of the model 

(discussed below in $9), it would be in any case premature to claim great accuracy for such 

results. 

A trial stream function $* that satisfies (6.63) and (6.64) is 

$* = y/v -h[1 +k,(y -vh)] e-ka(u-Yh), (7.1) 

and others may be simply written down. The form of $* in (7.1) is motivated by the flow solu- 

tion when n = 1 (Newtonian flow), and the form of q5* in (7.2) and (7.22) below is similarly 

motivated (Fowler 1977).An approximate estimate for R, by using (7.1) with k, = 0, is estab- 

lished in Appendix A. 

Unlike the trial stream function, it is a non-trivial matter even to define a function q5* satisfying 

the constraints (6.65), (6.66) and (6.69), as well as the periodicity of #&, #$, and q5&. The last 

constraint, in particular, motivates the choice of non-constant a satisfying (6.70), and not just 

a = 1. Although application of the stress variational principle does not require periodicity of the 

second derivativw of #*, we expect that satisfaction of this condition will give more accurate 

estimates, since the actual solution is periodic. We proceed as follows. Let 

so that 

the transformation (7.2) shifts the boundary to Y = 0. The zero shear stress constraint there, 

(6.66), becomes 

vh'(ey -8,.+2vh'Ozy +vh"BY-~ ~ h ' ~ 8 ~  (BXy -vh'ey y)  = 0,y)  + (1-~ ~ h ' ~ )  

1.e. 8, = (vh'/[l +v2hf2])[B, -vh18,], on Y = 0. ('7.4) 

The conditions (6.65) and (6.69) are satisfied by #*, provided 

Let us define 

so that 

substituting (7.7) into (7.4), we have 

f '(x) = [hl/(l +~ ~ h ' ~ ) ]-v2h'f(x)], on Y = 0.[8, ('3) 

Let g(x) be defined by f'(x) = h'gl(x)/(l + ~ ~ h ' ~ ) ;  (7.9) 

then (7.8) implies 8, = v2h'f(x) +g(x) on Y = 0, (7.10) 

and so (6.66) will be satisfied by 8 provided we choose 

O=k(x),  Oy=vf(x) on Y = 0 ,  

where k andf satisfy k'(x) = v2h'(x) f(x) +g(x), 

f '(x) = h'(x) g1(x)/(1 +~ ~ h ' ~ ) .1  
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A particular (and obvious) choice is to define 

where a! is to satisfy (6.70), and we require F ( Y )  to satisfy 

F(O) = 1, F'(O) = 0, F ( m )  = 0. (7. 1 4) 

Once again, motivated by the Newtonian solution (Fowler 1977), we put 

F ( Y )  = (1 +kY) e-kY, (7.15) 

which satisfies (7.14). In  addition, $zx, $zv and $&, are periodic if 

Nowf '  = -a: is periodic; therefore k'- v2(hf)', and hence k' -v2h'f (since hf' is periodic) must 

be periodic. From (7.12), we therefore require g to be periodic. A simple but useful choice of g is 

g(x) = ah(x) + c, (7.16) 

where a and c are constants to be chosen. From (7.12), 

whence we choose, from (6.701, 

Now we can write the first equation in (7.12) as 

whence 

(choosing the constant of integration as zero). We now ensure that k -v2hf is periodic by choosing 

(since h has zero mean) 
v2a hh'2 

C = 1 + v2h'2 dx'-&SoM-
so that k(x) is given by 

With this definition, and that of F ( Y )  in (7. 15), the trial function 13 in (7.1 3) is given by 

where h, is the scaled mean quadratic bedrock slope defined by 

The function I3 defined by (7.22) is used in Appendix A to determine a lower bound for the rough- 

ness parameter R (to O(1)). 
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The results are naturally critically dependent on the assumed form of the bedrock roughness 

profile. If we suppose only that I h"l < 1 (as well as I hl, I h'l < 1)) then we find that, to leading 

order in v, 
0.55(2h$)%< R < 2.76, (7.24) 

where we have taken n = 3 in Glen's flow law. This assumption on h is really one of physical 

smoothness, and implies essentially that (as already mentioned) bedrock roughness is effectively 

absent at short wavelengths; this condition is not met by the idealized 'white bedrock' for example 

(Kamb I 970).  

As a specific example, we consider a sinusoidal bedrock h = cos x ;  we then obtain (for n = 3) 

the leading-order bounds 
1.39 < R < 1.53, (7.25) 

which are as accurate as could be wished for in view of the defects of the present model. 

As previously mentioned, putting a = 0 in the ice flow model has the physical interpretation 

that regelation is negligible, except over the smallest obstacles; thus we expect a = 0 to be a valid 

approximation, provided roughness is typically absent at  wavelengths of the order of 1 mm. We 

can see this more clearly as follows. If we consider the functional J defined by (6.12) with T,  = 0, 

but with the integral on Sb replaced by 

where Vb is the bedrock volume below Sb, then it is easy to see from (5.96) (with r = co)that the 

first variation 6J = 0 at  a solution. Furthermore, the equivalent of (6.39) is (to leading order) 

and the regelation adds a (positive) component -&a T (a Tlan) dS to the functional. I t  is clear 

that regelation is only of importance if 

and the only way this can be achieved is if a T/an becomes of order vla, which is essentially if 

since if roughness is present on this scale then p (and hence T) may change by O(1) from the 

upstream to the downstream side of very small-scale obstacles. 

If such roughness is present (as seems unlikely), there is no obvious way in which to measure 

the regelative component of the drag (which would require a detailed knowledge of the bedrock 

over very small scales), although a n  estimated drag T,  could be incorporated, as in § 6. However, 

until the necessity for considering such a complication has been shown, it seems more sensible to 

proceed on the rational assumption that a = 0, and thus neglect regelation altogether. 



G L A C I E R  S L I D I N G  

9. PHYSICALE F F E C T S  

In  this section we consider some of the physical effects likely to hinder any sensible comparison 

between measured basal velocities and predicted ones. The intention is to fulfil Robin's (1976) 

hope that theoreticians will 'pause in developing more complex mathematical models of sliding 

in order to study whether or not the assumptions on which their theories are based involve an 

adequate description of conditions and processes in the basal layers of glaciers '.Robin's comment 

was concerned particularly with the possibility that cold patches could occur at  the ice-rock 

interface. In  the model presented here, such cold patches can arise naturally if the film thickness 

Z-t 0, or (necessarily) if the sliding is of subtemperate type. Similarly, although cavitation is not 

considered in this paper, it can easily be incorporated into the formulation of the problem. What 

is felt to be the most crucial quantitative assumption is that the flow law for temperate ice is 

independent of the moisture content, and that no consideration is made of the hydrology of the 

basal flow layer. As observed by Carol (1947)) basal ice can have a vastly different structure 

upstream and downstream of obstacles, and so i t  is likely that neglect of moisture effects is at  

the least a major source of inaccuracy in determining the sliding law. 

I t  is further not clear what the effect of the presence of moisture will be on the amount of 

regelation taking place. I n  one instance, Kamb (1970) observed 'massive amounts of regelation 

on a scale of about 35 cm'; there seems to be no obvious explanation of this. Robin ascribed it to 

the importance of convective heat transport at  larger velocities; this corresponds to taking a 

finite value of r in (5.96)) but there does not seem to be any alteration in the magnitude of a. I t  is 

not correct to say that neglect of temperature convection in the energy equation has an effect 

either: for temperate ice, the temperature is dejined by the Clausius-Clapeyron equation, and the 

energy equation determines the moisture content, not the temperature. 

Thus, to accommodate these observations, it is necessary to account for moisture transport 

through the ice, and also the effect of this on the flow law. Some discussion of this was given in I,  

but it would seem that incorporation of these features into a detailed mathematical analysis of 

sliding must await a satisfactory model of the processes involved. The provision of a suitable 

transport equation for moisture is precisely the quantitative description of the 'heat pump' 

effect called for by Robin (1976). 

Let us now turn to some practical considerations that should be of relevance to field studies. As 

shown by Nye (1952)) the dimensional basal stress is given by 

7 b  = pgh, sin X, (9.1) 

where h, is the depth measured perpendicularly to the line of mean slope, and x is the inclination 

of the surface to the horizontal. Since, in a dimensionless formulation (for example, I),the formula 

(9.1) implicitly assumes that x varies over length scales of the order of the glacier length, it 

follows that, as suggested by Hodge (1974), x should be measured by taking the slope between two 

points on the surface reasonably far apart (i.e. hundreds of metres) since, if estimated over smaller 

distances, errors may be introduced owing to relatively small-scale variations in the bedrock 

profile (in much the same way as Robin (1967) obtained corrections to the surface slope of the 

Antarctic ice sheet). I n  then attempting to correlate measured values of 7 b  and ub, it is most 

important to realize that in regions where subtemperate sliding is occurring, that is, where 
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(Fowler 1979)) and Tis close to, but not quite at, the pressure melting temperature, there will be 

no apparent correlation between 7 b  and ub. The difficulties of determining from temperature 

measurements alone the location of such subtemperate basal zones would seem at this time to 

be insuperable, and indirect observation may have to be sufficient. 

10. C O N C L U S I O N S  

In  this paper we have presented an analysis of glacier sliding that takes account of the non- 

linear dependence on stress of Glen's flow law. The analysis is made possible by a scaling of the 

problem that shows, for roughness scales of about I m, that regelation can be effectively neglected 

f rom thepoint o f  view oJ'the i c e j o w .  This analysis should thus be seen as an extension to nonlinear 

flow laws of Nye's earlier work (1969). While the nonlinearity has not been previously taken into 

account, it is worth noting some of the physical mechanisms that may in future work substan- 

tially alter the quantitative conclusions presented here. 

We have already discussed the possible effect of nloisture production within temperate ice; 

equally important might be the porosity of the bedrock material, which could substantially 

affect the degree of sliding by control of the basal melt-water rtgime (Chadbourne et al. 1975). 

This last article compared experimental measurements of sliding ice with theoretical results 

from Nye's regelation-based theory, and found large discrepancies. In  the related problem of 

regelating flow past cylindrical wires, Drake & Shreve (1973) found similar discrepancies, and 

suggested several physical mechanisms that might explain these. Most notably, the formation of a 

trace at  a driving stress of ca. 1bar is consistent with the formation of cavities when the triple-point 

pressure is reached, and is associated with a definite transition from low to high velocities. 

Secondly, the presence of solutes in the water film can affect the melting temperature. An analysis 

of the effect of these on glacial sliding was made by Hallet (1976). In  particular, he showed that 

the transition wavelength A, given by (5.59) is decreased by the presence of solutes; on the other 

hand, solutes may contribute to short-wavelength roughness components, for example so-called 

solutional furrows. 

Other phenomena discussed by Drake & Shreve (1g73), as well as by Nye (1973)' are the 

Frank (1967) instability of the ice-water interface, and the supercooling of ice that is necessary to 

freeze water at a finite rate. Additionally, there is the possibility of cavities and cold patches 

occurring when the water film thickness described by (5.69) becomes infinite or zero. 

None of these topics is included in the model described here. I t  will be seen that all of them are 

closely associated with the process ofregelation which, as we have said, is peripheral to the aim of 

this work. I t  is difficult to see how regelation could be combined with the nonlinear flow law in 

obtaining solutions. One possible way is to use the fact that a: < 1 to consider the 'microscopic' 

regelative flow as exerting a boundary-layer type effect on the 'macroscopic' nonlinear flow 

round the larger obstacles. I t  might then be possible to treat the flow as locally Newtonian if the 

longitudinal stress were small enough (and ice were Newtonian at  small stresses). There are of 

course grounds for arguing that the complexity of such a theoretical process is not justified in 

practice, but that is a different question. 

Having made a specific set ofphysical assumptions on the nature of the ice flow, our subsequent 

analysis is rational in the sense of I, i.e. no further arbitrary assumptions on the nature of the 

solution are made, and all approximations are carried out in a consistent, asymptotic fashion. 

I n  this case, there exist complementary variational principles for the ice flow, which determine 
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bounds on the drag induced by a non-zero basal velocity. I t  should be emphasized that these 

principles apply when n # 1 in Glen's flow law, and in addition the assumption is not made that 

the bedrock 'corrugation' v is vanishingly small. The nature of the obtained bounds indicates 

that the flow law is of the dimensionless form 

and we obtain bounds on R. The expression (10.1) is valid provided vn+l < 1, which formally 

requires v < 1, although v 5 & is quite sufficient to obtain a non-trivial sliding velocity. The 

constant R depends on the (scaled) bedrock topography h(x), and also on the corrugation v ,  but 

(by construction) has a finite limit of order one as v -t 0, and so we now seek bounds on R as v -t 0, 

as this will give us a reasonable estimate of its actual value. For the specific case of a sinusoidal 

bedrock h = cos x (for which R = 1when n = 1 as v -+ 0), we obtain 

1.39 < R < 1.53 (10.2) 
when n = 3, v -+ 0. 

In previous work, it has been questioned whether sliding without cavitation is capable of 

predicting basal velocities of the observed order of magnitude. We can state first that small 

sliding velocities may always be explained by supposing that the sliding is subtemperate. Larger 

(steady-state) velocities can be explained on the basis that v is sufficiently small (so that a/vn+l is 

large), since r / vn+l  really represents the proportion of the total motion due to sliding; in the 

steady state the total motion is governed by the surface accumulation rate, and is nothing to do 

with the sliding law. 

Much larger (non-steady-state) sliding velocities of the order of kilometres per year, associated 

with surging glaciers, can only be explained by a sliding law that changes rapidly with basal 

stress at some critical point, or which is even multivalued. The obvious (and apparently only) 

phenomenon capable of producing such a violent change of behaviour is sub-glacial cavitation 

(Lliboutry 1968), and preliminary work indicates that it may indeed have such a crucial effect 

(Fowler 1977). (This is not to say that cavitation is the only mechanism for generating surges. 

There is also the possibility that these are due to enhanced shearing in temperate ice zones due to 

'runaway' of the moisture content associated with a thermal instability of the glacier (Robin 

1955; Clarke et al. 1977).) With regard to large velocities, notice that if a/vn+l S 1, it is quite 

possible that the full temperate sliding velocity may never be reached, and all sliding is then 

of subtemperate type; this may be true even under an  otherwise fully temperate glacier, and in 

this case the title question of Robin's (1976) paper may be definitely answered: no. 

The model presented here is deficient in one major respect, and that is that no theoretical 

treatment of the moisture transport through the ice is offered. This is beyond the scope of the 

paper, but it is hoped that a satisfactory treatment of this will soon be forthcoming; until this is 

done, no real confidence should be placed in the precise numerical and analytical results given 

here. 

I should like to thank both referees for their comments and suggestions concerning this paper. 
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I n  this appendix we obtain explicit leading-order bounds for the roughness parameter R. In  

view of the complexity of the necessary calculations, we restrict ourselves to consideration of the 

particular limit v -t 0. Since a precise estimation of R could only be made if the bedrock profile h 

were accurately known, we here consider two types of bedrock. (i) We make no assumptions on 

the profile h, save that 
Ih"1 < 1 (A 1) 

(we can assume Ihl, Ih'l < 1 by choice of the scales [x] and [y]). (A 1) seems a fairly realistic 

assumption to make; it essentially means that roughness is absent a t  short wavelengths (as we 

implicitly assume) and is not compatible with the notion of a white bedrock, as defined for example 

by Lliboutry (1976)) which would have unbounded values of I h"l. 

(ii) We consider a sinusoidal bedrock y = v cosx, which shows that useful bounds can indeed 

be obtained. I t  should be emphasized that in each example the bounds obtained are by no means 

the best available. 
Type (i): 1h"l < 1. 

We define z j  -vh = Y, (A 2, 

and consider the trial function $* = ylv -h e-kY, (A 3) 

which satisfies the constraints of $6. We then find from (6.72) that, to leading order in v, 

=-
n 

[ ( I  +k2) +4k2] B(n+l)!n.
( n + l )  k 

(A 4) 

One easily finds that (A 4) is a minimum when 

k = (([n(n+2) +9]$-3)/(n+2))$, 
and therefore 

Putting n = 3, we find R < 2.76; (A 7 )  

for a Newtonian fluid, n = 1, and the result is 

We now use the trial function for the stress principle given by (7.22). To leading order in v, we 

then find that 
R-n < [K ' 2 F  '2 +f (KF"-K "F)2] &(n+l)dx d Y, (A 9) 

where K(x) = -T hdx, F ( Y ) = (1 +kY) e-kY. 
h* SX0 

Substituting (A 10) into (A 9), and using the assumptions on h, we find that 
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Unfortunately, the integral in (A 11) is non-trivial to evaluate: we obtain a crude estimate as 

follows. From (A 11) we have 

where T(a ,  x) is the incomplete P-function defined by 

(Abramowitz & Stegun 1968).The minimum value of (A 12) is when 

and after some algebra we find that (A 12) may be written as 

the equivalent result for a Newtonian fluid being 

Notice that the mean quadratic slope h, appears explicitly in this bound. Summing up, we have, 

for Ih"l Q 1, 

Type (ii): h = cos x 

We choose @ = y l v  -h( l  + Y) e-Y, 

so that to leading. order 

R Q (4hZy2 e-2Y +4hf2y2 e-2Y )"(n+l)lndx dY &/:/om 

where T(z)  is the gamma function. For n = 3, this gives 

whereas, for n = 1, we find R < 1. (A 21) 

(In fact it is known that R = 1 for v+O and n = 1 (Fowler 1977), and SO the choice (A 18) is 

optimal in this sense. This is, in fact, why the trial function was chosen in the form (A 18).) 

71 \ ro1 .2~8 .  A. 
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For the trial stress function, we similarly choose that given by (7.22)) with k = 1; then we 

obtain 

and thus (for integral n) R [(n + 1) h2,](n+1)/n/(n!)1'n; (A 23) 

putting n = 3 and h, = $ti, we find R > 1.39. (A 24) 

For n = 1,we find R 2 1so that (as expected) R = 1 when n = 1. For n = 3, the two inequalities 

combine to give 
1.39 6 R 6 1.53. (A 25) 

A P P E N D I XB  

Let us suppose that the flow law takes the general form  

rather than the Glen's law form (5.93). For Glen's law we would choose f (7) proportional to 7%. 

We also define g, the inverse off, as 

Consider the functions T(e)= (e) de, P(T) = (7) dr.Soeg loT 
Using (6.29)) we find 

--ar - --ls(e) eii = *rij, -af = -if(.)-rij = ieii. 
i3e,i 2 e a.4j 2 T 

Thus these choices o f r a n d  f satisfy the potential requirements (6.9) and (6.21). Furthermore, at 

a solution where (B 1) and (B 2) are valid, 

(we require that f (0) = g (0) = 0); also from (B 2) 

$rijeii = g (e) e = re. 

Hence, r+f= +riseij (B 5 )  

at a solution, thus satisfying (6.24). 

I t  follows that the choices of r and f i n  (B 3) provide variational principles for the functionals 

J and 2 given by (6.12) and (6.22), and that at a solution these functionals have the same value. 

If we further have r and f convex, in the sense that J2 defined by (6.41) is positive and X2 

defined by (6.44) is negative, then the functionals X7and Jvprovide upper and lower bounds for 

Jo, (6.46). 



679 G L A C I E R  S L I D I N G  

T o  obtain the equivalent of (6.47)), we must try to find S T d V  in terms of the drag. Specifi- 

cally, if we ignore inertia terms fiand set r, = 0, then (6.40) implies 

whereas (6.43) implies ST=- fdV+vrbubM.  
J v  

The bounds on J, can thus be written 

where the suffix soln indicates the value taken a t  the solution of the problem. 

Since for the power law (and also polynomial laws, see below), (Ivrd V) < v rb  UD M, these 
soln 

bounds give two bounds on ub, in the form 

T d V  TdV.S Is o n 

Here, both sides are positive; the right sides of (B 9) are trial estimates, and hence we wish to 

evaluate ( I v r d v )  in terms of the drag r b .  Observe that, at a solution, 
soln 

by using the same argument as in (6.37). Thus, it is equally useful to evaluate (IV .Now,Pd V) 

v ~ r b  = (Svl e u  7ij d V) soin = (Iv d V) 

soln 

ub T f  

= (1.PI(.) d V) . 

soln 

('3 11) 
V soln 

Thus, we wish to evaluate (Svf d V) in terms of (IvTP'd V) . For the particular case of a 
soln r oln 

power-law fluid, one is simply a multiple of the other. For more general models, we must seek 

reasonable bounds. For an Ellis model fluid (Hopke & Slattery 1970; Thompson 1979; Hutter 

1980)) we write 
e = K,r+K,rn, (B 12) 

where K, and K ,  are constants, and n is the flow-law parameter (n z 3). Then 

whereas r f  = K1r2+K, rn+ l .  (B la) 

I t  is clear that for a polynomial flow law with positive coefficients, bounds can easily be obtained. 

For example, the form (B 12) implies that 



680 A. C. FOWLER 

provided n > 1. I t  follows that 
[l/(n + I)]  r f l  < f G @ f l ,  

and hence, from (B l l ) ,  v = b ~ ( j v ~ d ~ )  <$vMq,ub.n + l  
soln 

From (B 10) we have (n/(n + 1))v M r b u b  2 (IvT d V) soln 2 ivMri, ub 

(thus confirming the statement after (B 8)) .  Hence, (B 9) gives 

as the two bounds for the sliding law. The only difference between these bounds and those for 

Glen's law is the factor & in (B 20), rather than the value n/(n + 1). 

For practical purposes, the correction of Glen's law is only ofuse if7 -t 0 in the flow. While this is 

so near the surface of an  ice flow, in the present case it is not so, since 7 2  is finite (non-zero) at 

y -t co,and r1is mostly non-zero near the base of the flow (although 7, -t 0 there). I n  any case, the 

change is not a large one. Notice that the bound (B 19) corresponds (see (6.73)) to an upper 

bound of the flow velocity, and this is unchanged by the Newtonian viscosity at smaller stresses. 

Also, it is clear that the bounds (B 19) and (B 20) are applicable to any polynomial law f (7) of 

highest degree n, provided all powers of r inf (7) are greater than or equal to one; this is a neces- 

sary condition that the viscosity is not zero at zero stress. Further, equation (6.3) of Johnson 

(1961) shows, after a little manipulation, that the convexity of T and f (and hence the validity 

of the maximum and minimum principles) is attained if 

i.e. if the strain rate increases with stress. This is certainly so for polynomials of degree greater 

than 1, with positive coefficients, as well as for other types of law, for example, f (7) proportional 

to sinh ar. One drawback, however, is that application of the second inequality (B 20) requires 

an inversion of the function f to determine g. This is not generally explicitly possible, even for 

the simple Ellis model. 
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