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Abstract

We study combinations of risk measures under no restrictive assumption on the set

of alternatives. We develop and discuss results regarding the preservation of properties

and acceptance sets for the combinations of risk measures. One of the main results is the

representation of resulting risk measures from the properties of both alternative functionals

and combination functions. We build on developing a dual representation for an arbitrary

mixture of convex risk measures. In this case, we obtain a penalty that recalls the notion

of inf-convolution under theoretical measure integration. We develop results related to this

specific context. We also explore features of individual interest generated by our frameworks,

such as the preservation of continuity properties and the representation of worst-case risk

measures.

Keywords: risk measures, combination, acceptance set, dual representation, continuity.

1 Introduction

The theory of risk measures in mathematical finance has become mainstream, especially since

the landmark paper of Artzner et al. (1999). For a comprehensive review, see the books of

Pflug and Römisch (2007), Delbaen (2012), Rüschendorf (2013) and Föllmer and Schied (2016).

Nonetheless, there is still no consensus about the best theoretical properties to possess, and even

less regarding the best risk measure. See Emmer et al. (2015) for a comparison of risk measures.

This phenomenon motivates the proposition of new approaches, such as in Righi and Ceretta

(2016) and Righi et al. (2020), for instance. Under the lack of a versatile choice of the best risk

measure from a set of alternatives, one can consider the common use of many candidates to

benefit from distinct qualities.

However, such a choice can lead to multidimensional or even infinite dimensional problems

that bring complexity that may make the treatment of risk measurement impossible to handle.

For example, in a portfolio optimization problem, to take into account this variety of features

from different risk measures, the agent may end up with a very complex multi-objective function

or even an exorbitant volume of constraints. Such a situation would lead to elevated computa-

tional costs or even the impossibility of a feasible solution. Hence, the alternative is to consider
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a combination of all the candidates instead of all them individually. In the context of portfolio

optimization, we would have a single constraint or objective with a larger feasibility space.

The drawback of considering such a combination is that we may end up without the main

characteristics that define risk measures. More precisely, the axiomatic theory of risk measures

strongly relies on a set of financial and mathematical properties related to dual representations

and acceptance sets. Thus, understanding how to preserve such properties in a general fashion

is crucial to guarantee the usefulness of combinations. In this sense, developing a theoretical

body for combinations of risk measures is pivotal. A general approach must deal with arbitrary

sets of candidates, even uncountable ones. Such a situation may arise when the parameter that

defines the candidates relies on a subset of the real line, such as the significance level for Value

at Risk or some probability of default in credit risk.

The main challenge relies on the generality needed to perform this kind of task since we

cannot rely on methods for finite-dimensional spaces that appear in the literature. For instance,

when dealing with some uncountable set of candidates, we cannot even consider the usual

summation, which is crucial for averaging, having to replace it with integration. However, in

this case, we have measurability issues to take into account that may become complex. Also,

set operations may not preserve topological properties, such as the uncountable union of closed

sets does not have to be closed. Even the choice of suitable domains for combination functions

in infinite dimensional spaces can be, per se, a source of complexity since there is no canonical

functional space.

Another source of difficulty and complexity is that combinations may assume any functional

form, such as averaging or supremum-based worst cases. Any function applied over the set of

candidate risk measures can be considered. Thus, studying the impact of such combinations in

properties, acceptance sets, and dual representations, among other features, is not straightfor-

ward. Since specific combination functions can be more suitable for distinct contexts, having a

general treatment is very beneficial. In this sense, a theory that provides a reliable and practical

manner to preserve desired properties and obtain acceptance sets or dual representations for a

general combination of risk measures can help improve other fields in mathematical finance.

Under this background, in this paper we study risk measures of the form ρ = f(ρI), where

ρI = {ρi, i ∈ I} is a set of alternative risk measures and f is some combination function.

We propose a framework whereby no assumption is made on the index set I, apart from non-

emptiness. Typically, this procedure uses a finite set of candidates, leading the domain of f

to be some Euclidean space. In our case, the domain of f is taken by a subset of the random

variables over a suitable measurable space created on I. From that, our main goal is to establish

general results on properties, develop dual representations, and study acceptance sets for such

composed risk measures based on the properties of both ρI and f in a general sense. For this

purpose, we expose results for some featured special cases, which are also of particular interest,

such as a worst case and mixtures of risk measures.

There are studies regarding particular cases for f , I and ρI , such as the worst case in

Föllmer and Schied (2002), the sum of monetary and deviation measures in Righi (2019), fi-

nite convex combinations in Ang et al. (2018), scenario-based aggregation in Wang and Ziegel

(2021), model risk-based weighting over a non-additive measure in Jokhadze and Schmidt (2020).
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Our main contribution is that we do not restrict the set of alternative risk measures and the

generality of combination functions we consider. Furthermore, none of such papers considers

all the features we take into account. It is worthy of mentioning that the well-known concept of

inf-convolution of risk measures as in Barrieu and El Karoui (2005) or Jouini et al. (2008) is not

suitable for the approach in this paper since even in the most simple case of two risk measures,

and we cannot write it as a direct combination as f(ρ1(X), ρ2(X)) = infY {ρ1(X −Y )+ ρ2(X)}

since it is not only a function of X. More precisely, the inf-convolution depends of every allo-

cation X1 +X2 = X. The work of Righi and Moresco (2022) is focused on inf-convolution and

optimal risk sharing for arbitrary sets of risk measures.

We have structured the rest of this paper as follows: in Section 2 we expose preliminaries

regarding notation, a brief background on the theory of risk measures in order to support our

framework and our proposed approach with some examples; in Section 3 we present results

regarding properties of combination functions and how they affect the resulting risk measures

in both financial and continuity properties; in Section 4 we develop and prove our results on

representations of resulting risk measures in terms of properties from both the set of candidates

and the combination for the general convex and law invariant cases, as well we address a

representation for the worst-case risk measure; in Section 5 we present results on how properties

of combination functions affect the resulting risk measures acceptance set and provide a general

characterization for the convex and coherent cases.

2 Preliminaries

2.1 Notation

Consider the probability space (Ω,F ,P). All equalities and inequalities are in the P-a.s. sense.

We have that L0 = L0(Ω,F ,P) and L∞ = L∞(Ω,F ,P) are, respectively, the spaces of (equiva-

lent classes under P-a.s. equality of) finite and essentially bounded random variables. We define

1A as the indicator function for an event A ∈ F . We identify constant random variables with real

numbers. We say that a pair X,Y ∈ L0 is comonotone if (X(w) −X(w′)) (Y (w)− Y (w′)) ≥ 0

holds P × P-a.s. We denote by Xn → X convergence in the L∞ essential supremum norm

‖·‖∞, while lim
n→∞

Xn = X means P-a.s. convergence. Let P be the set of all probability

measures on (Ω,F). We denote EQ[X] =
∫

ΩXdQ, FX,Q(x) = Q(X ≤ x) and F−1
X,Q(α) =

inf {x : FX,Q(x) ≥ α}, respectively, the expected value, the (non-decreasing and right-continuous)

probability function and its inverse for X under Q ∈ P. We write X
Q
∼ Y when FX,Q = FY,Q.

We drop subscripts regarding probability measures when Q = P. Furthermore, let Q ⊆ P be the

set of probability measures that are continuous concerning P with Radon-Nikodym derivatives
dQ
dP

.

2.2 Background

We begin with the definition of risk measures and the properties they may or not fulfill. We

focus here on the most used properties in the literature. For a detailed interpretation, we refer

to the books cited above.
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Definition 2.1. A functional ρ : L∞ → R is a risk measure. Its acceptance set is defined as

Aρ = {X ∈ L∞ : ρ(X) ≤ 0}. ρ may possess the following properties:

(i) Monotonicity [M]: if X ≤ Y , then ρ(X) ≥ ρ(Y ), ∀X,Y ∈ L∞.

(ii) Translation Invariance [TI]: ρ(X + C) = ρ(X)− C, ∀X,Y ∈ L∞, ∀ C ∈ R.

(iii) Convexity [C]: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀X,Y ∈ L∞, ∀ λ ∈ [0, 1].

(iv) Positive Homogeneity [PH]: ρ(λX) = λρ(X), ∀X,Y ∈ L∞, ∀ λ ≥ 0.

(v) Law Invariance [LI]: if FX = FY , then ρ(X) = ρ(Y ), ∀X,Y ∈ L∞.

(vi) Comonotonic Additivity [CA]: ρ(X+Y ) = ρ(X)+ρ(Y ), ∀X,Y ∈ L∞ with X,Y comono-

tone.

(vii) Fatou continuity [FC]: if lim
n→∞

Xn = X ∈ L∞ and {Xn}
∞
n=1 ⊆ L∞ bounded, then ρ(X) ≤

lim inf
n→∞

ρ(Xn).

We have that ρ is called monetary if it fulfills [M] and [TI], convex if it is monetary and

respects [C], coherent if it is convex and fulfills [PH], law invariant if it has [LI], comonotone if

it attends [CA], and Fatou continuous if it possesses [FC]. In this paper, we are working with

normalized risk measures in the sense of ρ(0) = 0.

Beyond usual norm and Fatou-based continuities, (a.s.) point-wise are relevant for risk

measures since they play a role in representations. Since their preservation is also important,

we now define the most used ones in the literature.

Definition 2.2. A risk measure ρ : L∞ → R is said to be:

(i) Continuous from above: lim
n→∞

Xn = X and {Xn} non-increasing implies in ρ(X) =

lim
n→∞

ρ(Xn), ∀ {Xn}
∞
n=1,X ∈ L∞.

(ii) Continuous from below: lim
n→∞

Xn = X and {Xn} non-decreasing implies in ρ(X) =

lim
n→∞

ρ(Xn), ∀ {Xn}
∞
n=1,X ∈ L∞.

(iii) Lebesgue continuous: lim
n→∞

Xn = X implies in ρ(X) = lim
n→∞

ρ(Xn) ∀ {Xn}
∞
n=1 ⊆ L∞

bounded and ∀X ∈ L∞.

For convex risk measures, [FC] is equivalent to continuity from above, while [FC] is implied

by continuity from below. Thus, for convex risk measures, continuity from below is equivalent

to Lebesgue continuity. We recommend the books mentioned in the classic theory to review

details regarding interpreting such properties.

The main core of the risk measures theory is the triplet composed of properties, acceptance

sets, and dual representations. Since this is the main focus of this paper, we need the following

results for direct implications regarding the interactions of these three structures. In fact, under

[C] and [FC], the well-known convex duality plays an important role.

Theorem 2.3 (Proposition 4.6 in Föllmer and Schied (2016)). Let Aρ be the acceptance set

defined by ρ : L∞ → R. Then:
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(i) If ρ fulfills [M], then X ∈ Aρ, Y ∈ L∞ and Y ≥ X implies in Y ∈ Aρ. In particular,

L∞
+ ⊆ Aρ.

(ii) If ρ fulfills [TI], then ρ(X) = inf {m ∈ R : X +m ∈ Aρ}.

(iii) If ρ is a monetary risk measure, then Aρ is non-empty, closed with respect to the supremum

norm, Aρ ∩ {X ∈ L∞ : X < 0} = ∅, and inf{m ∈ R : m ∈ Aρ} > −∞.

(iv) If ρ attends [C], then Aρ is a convex set.

(v) If ρ fulfills [PH], then Aρ is a cone.

Theorem 2.4 (Theorem 2.3 of Delbaen (2002), Theorem 4.33 of Föllmer and Schied (2016)).

Let ρ : L∞ → R be a risk measure. Then:

(i) ρ is a Fatou continuous convex risk measure if and only if it can be represented as:

ρ(X) = sup
Q∈Q

{

EQ[−X]− αmin
ρ (Q)

}

, ∀X ∈ L∞, (2.1)

where αmin
ρ : Q → R+ ∪ {∞}, defined as αmin

ρ (Q) = sup
X∈Aρ

EQ[−X], is a lower semi-

continuous convex function called penalty term. This is equivalent to Aρ be weak* closed,

i.e. σ(L∞, L1) closed.

(ii) ρ is a Fatou continuous coherent risk measure if and only if it can be represented as:

ρ(X) = sup
Q∈Qρ

EQ[−X], ∀X ∈ L∞, (2.2)

where Qρ ⊆ Q is non-empty, closed and convex called the dual set of ρ.

Example 2.5. Examples of risk measures:

(i) Expected Loss (EL): This is a Fatou continuous law invariant comonotone coherent

risk measure defined as EL(X) = −E[X] = −
∫ 1
0 F−1

X (s)ds. We have that AEL =

{X ∈ L∞ : E[X] ≥ 0} and QEL = {P}.

(ii) Value at Risk (VaR): This is a Fatou continuous law invariant comonotone monetary

risk measure defined as V aRα(X) = −F−1
X (α), α ∈ [0, 1]. We have that AV aRα =

{X ∈ L∞ : P(X < 0) ≤ α}.

(iii) Expected Shortfall (ES): This is a Fatou continuous law invariant comonotone coher-

ent risk measure defined as ESα(X) = 1
α

∫ α

0 V aRs(X)ds, α ∈ (0, 1] and ES0(X) =

V aR0(X) = − ess infX. We have AESα =
{

X ∈ L∞ :
∫ α

0 V aRs(X)ds ≤ 0
}

and QESα =
{

Q ∈ Q : dQ
dP

≤ 1
α

}

.

(iv) Maximum loss (ML): This is a Fatou continuous law invariant coherent risk measure

defined as ML(X) = −ess infX = F−1
X (0). We have AML = {X ∈ L∞ : X ≥ 0} and

QML = Q.
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Interesting features are present when there is [LI], which is the case in most practical appli-

cations. In this situation, we always assume that the probability space is atom-less.

Theorem 2.6 (Theorem 2.1 of Jouini et al. (2006) and Proposition 1.1 of Svindland (2010)).

Let ρ : L∞ → R be a law invariant convex risk measure. Then ρ is Fatou continuous.

Theorem 2.7 (Theorems 4 and 7 of Kusuoka (2001), Theorem 4.1 of Acerbi (2002), Theorem

7 of Fritelli and Rosazza Gianin (2005)). Let ρ : L∞ → R be a risk measure. Then:

(i) ρ is a law invariant convex risk measure if and only if it can be represented as:

ρ(X) = sup
m∈M

{

∫

(0,1]
ESα(X)dm − βmin

ρ (m)

}

, ∀X ∈ L∞, (2.3)

where M is the set of probability measures on (0, 1] and βmin
ρ : M → R+ ∪ {∞}, defined

as βmin
ρ (m) = sup

X∈Aρ

∫

(0,1]ESα(X)dm.

(ii) ρ is a law invariant coherent risk measure if and only if it can be represented as:

ρ(X) = sup
m∈Mρ

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (2.4)

where Mρ =

{

m ∈ M :
∫

(u,1]
1
v
dm = F−1

dQ
dP

(1− u), Q ∈ Qρ

}

.

(iii) ρ is a law invariant comonotone coherent risk measure if and only if it can be represented

as:

ρ(X) =

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (2.5)

where m ∈ Mρ.

2.3 Proposed approach

Let ρI = {ρi : L∞ → R, i ∈ I} be some (a priori specified) collection of risk measures, where

I is a non-empty set. We write, for fixed X ∈ L∞, ρI(X) = {ρi(X), i ∈ I}. We would like to

define risk measures as ρ(X) = f(ρI(X)), where f is some combination (aggregation) function.

When I is finite with dimension n, we have that f : Rn → R. This situation, which is common

in practical matters, simplifies the framework. However, as the introduction exposes, when I

is an arbitrary set, we need a more complex setup. Examples of such complexity are that, in

this case, we may have to deal with integration and measurability, some set operations may

not preserve topological properties, and the absence of a canonical functional space to be the

domain of f .

Consider the measurable space (I,G). We define K0 = K0(I,G) and K∞ = K∞(I,G) as

the spaces of finite and bounded random variables, respectively. In these spaces, we understand

equalities, inequalities, and limits in the point-wise sense. We define V as the set of finitely

additive measures µ in (I,G) such that µ(I) = 1. With some abuse of notation, we write
∫

I fdµ

for the usual bi-linear form. In order to avoid measurability issues, we make the following

assumption.
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Assumption 2.8. The maps RX : I → R, defined as RX(i) = ρi(X), are G-measurable for any

X ∈ L∞.

Remark 2.9. A possible, but not unique, choice is when G = σ({i → ρi(X) : X ∈ L∞}) =

σ({R−1
X (B) : B ∈ B(R),X ∈ L∞}), where B(R) is the Borel set of R. Another possibility is,

of course, the power set 2I . A situation of interest is when G is a Borel sigma-algebra and

i → ρi(X) continuous for any X. Other case of interest is I = [0, 1] and ρi composed by V aRi

or ESi, for instance.

We can associate the domain of f with X = XρI = span({R ∈ K0 : ∃X ∈ L∞ s.t. R(i) =

ρi(X), ∀ i ∈ I} ∪ {1}) = span({R ∈ K0 : R = RX ,X ∈ L∞} ∪ {1}). The linear span is in order

to preserve vector space operations. We can identify ρI(X) with RX by ρI : L
∞ → X . From

normalization, we have R0 = 0. When ρI(X) is bounded, which is the case for any monetary risk

measure since ρ(X) ≤ ρ(ess infX) = − ess infX < ∞, similarly for ρ(X) ≥ − ess supX > −∞,

we have that X ⊆ K∞. Under this framework, the composition is a functional f : X → R. We

use, when necessary, the canonical extension convention that f(R) = ∞ for R ∈ K0\X . We

consider normalized combination functions as f(R0) = f(0) = 0.

Example 2.10. The worst-case risk measure is a functional ρWC : L∞ → R defined as

ρWC(X) = sup
i∈I

ρi(X). (2.6)

This risk measure is typically considered when the agent (investor, regulator, etc.) seeks pro-

tection. When I is finite, the supremum is, of course, a maximum. This combination is the

point-wise supremum fWC(R) = sup{R(i) : i ∈ I}. If X ⊆ K∞, then ρWC < ∞. When I = Q

and ρQ(X) = EQ[−X] − α(Q), with α : Q → R+ ∪ {∞} such that inf{α(Q) : Q ∈ Q} = 0,

we have that ρWC becomes a Fatou continuous convex risk measure as (2.1) in Theorem 2.4.

Analogously, for a non-empty closed convex I ⊆ Q and ρQ(X) = EQ[−X], we have that ρWC

becomes a Fatou continuous coherent risk measure as (2.2) in this same Theorem 2.4. Analo-

gous analysis can be made to obtain law invariant convex and coherent risk measures as (2.4)

and (2.3), respectively, as in Theorem 2.7.

Example 2.11. The weighted risk measure is a functional ρµ : L∞ → R defined as

ρµ(X) =

∫

I
ρi(X)dµ, (2.7)

where µ ∈ V. This risk measure represents an expectation of RX regarding µ. Since i → ρi(X)

is G-measurable, the integral is well-defined. In addition, it is finite when X ∈ K∞. When I is

finite, ρµ is a convex mixture of the functionals which compose ρI . The combination function

is fµ(R) =
∫

I Rdµ. We have that |ρµ1(X) − ρµ2(X)| ≤ |ρWC(X)|‖µ1 − µ2‖TV , where ‖·‖TV is

the total variation norm. Hence it is somehow continuous (robust) regarding the choice of the

probability measure µ ∈ V. If I = (0, 1] and ρi(X) = ESi(X), we have that ρµ(X) defines a law

invariant comonotone convex risk measure as (2.5), which is Fatou continuous due to Theorem

2.6.
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Example 2.12. A spectral (distortion) risk measure is a functional ρφ : L∞ → R defined as

ρφ(X) =

∫ 1

0
V aRα(X)φ(α)dα, (2.8)

where φ : [0, 1] → R+ is a non-increasing functional such that
∫ 1
0 φ(u)du = 1. Any law invariant

comonotone convex risk measure can be expressed in this fashion. The relationship between

this representation and the one in (2.5) is given by
∫

(u,1]
1
v
dm = φ(u), where m ∈ Mρ. When

φ is not non-increasing, we have that the risk measure is not convex, and the representation

as combinations of ES does not hold. Let I = [0, 1], λ the Lebesgue measure, and µ ≪ λ

with φ(i) = F−1
dµ
dλ

(1 − i). Thus
∫

I φdλ = 1 and ρφ(X) =
∫

I ρ
i(X)φ(i)dλ. By choosing ρi(X) =

V aRi(X), we have that any spectral risk measure is a special case of ρµ.

Example 2.13. Consider the risk measure ρu(X) : L∞ → R defined as

ρu(X) = u(ρI(X)), (2.9)

where u : X → R is a monetary utility in the sense that if R ≥ S, then u(R) ≥ u(S) and

u(R + C) = u(R) + C, C ∈ R. In this case, the combination is fu = u. Note that u(R) can

be identified with π(−R), where π is a risk measure on X . For instance, one can pick π as EL,

VaR, ES, or ML. In these cases we would obtain for some base probability µ, respectively the

following combinations: fµ, F−1
R,µ(1− α), 1

α

∫ α

0 F−1
R,µ(1− s)ds, and ess supµR.

Example 2.14. For this example we denote F = {FX,Q : X ∈ L∞, Q ∈ P}. In this case,

uncertainty is linked to probabilities in the sense that I ⊆ P and we can define risk measurement

under the intuitive idea that we obtain the same functional from distinct probabilities that

represent scenarios. We then have a probability-based risk measurement as a family of risk

measures ρI = {ρQ : L∞ → R, Q ∈ I} such that

ρQ(X) = Rρ(FX,Q), ∀X ∈ L∞, ∀Q ∈ I, (2.10)

where Rρ : F → R is called risk functional. In this context, f can be any statistical map of

interest to deal with this probabilistic effect, such as median and mode. This setup can also be

utilized to deal with probabilistic issues and uncertainty. In fact, under a suitable choice for f

connected to dispersion, it is possible to use our approach to quantify model uncertainty.

3 Properties

3.1 Properties of combinations

In this section, we expose results regarding the preservation of properties for composed risk

measures ρ = f(ρI) based on the properties of both ρI and f . We begin by defining the

properties of the composition f .

Definition 3.1. A combination f : X → R may have the following properties:

(i) Monotonicity [M]: if R ≥ S, then f(R) ≥ f(S), ∀R,S ∈ X .
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(ii) Translation Invariance [TI]: f(R+ C) = f(R) + C, ∀R,S ∈ X , ∀ C ∈ R.

(iii) Positive Homogeneity [PH]: f(λS) = λf(S), ∀R ∈ X , ∀ λ ≥ 0.

(iv) Convexity [C]: f(λR+ (1− λ)S) ≤ λf(R) + (1− λ)f(S), ∀ λ ∈ [0, 1], ∀R,S ∈ X .

(v) Additivity [A]: f(R+ S) = f(R) + f(S), ∀R,S ∈ X .

(vi) Fatou continuity [FC]: If lim
n→∞

Rn = R ∈ K∞, with {Rn}
∞
n=1 ⊆ X bounded, then f(R) ≤

lim inf
n→∞

f(Rn).

Remark 3.2. Such properties for the combination function f are parallel to those of risk mea-

sures, exposed in Definition 2.1. Note the adjustment in signs from there. We use the same

terms indiscriminately for f and ρ with reasoning to fit the context. We could have imposed a

determined set of properties for the combination. However, we choose to keep a more general

framework where it may or may not possess such properties.

Proposition 3.3. Let X ⊆ K∞. We have that:

(i) fWC defined as in Example 2.10 fulfills [M], [TI], [PH], [C] and [FC].

(ii) fµ defined as in Example 2.11 fulfills [M], [TI], [PH], [C], [A] and [FC].

Proof. (i) Properties [M], [TI], [PH] and [C] are obtained directly from the definition of

supremum. Regarding [FC], let {Rn}
∞
n=1 ⊆ X bounded such that lim

n→∞
Rn = R ∈ K∞.

Then we have that

fWC(R) = sup lim
n→∞

Rn ≤ lim inf
n→∞

supRn = lim inf
n→∞

fWC(Rn).

(ii) From the properties of integration, we have that fµ respects [M], [TI], [PH], [C] and [A].

For [FC], let {Rn}
∞
n=1 ⊆ X bounded such that lim

n→∞
Rn = R ∈ K∞. Then we have from

Dominated Convergence that

fµ(R) =

∫

I
lim
n→∞

Rndµ ≤ lim inf
n→∞

∫

I
Rndµ = lim inf

n→∞
fµ(Rn).

Remark 3.4. Note that for any combination f with the property of Boundedness, i.e |f(R)| ≤

fWC(R), ∀ R ∈ X , we have ρ(X) ≤ ρWC(X). Consequently AρWC ⊆ Aρ. From Theorem 2.4

applied to functionals over K∞, we have that {fµ}µ∈V are the only combination functions that

fulfill all properties in Definition 3.1.

3.2 Financial properties

We now focus on the preservation of financial properties.

Proposition 3.5. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of risk measures, f : X → R,

and ρ : L∞ → R a risk measure defined as ρ(X) = f(ρI(X)). Then:
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(i) If ρI is composed of risk measures with [M], and f possesses this same property, then also

does ρ.

(ii) If ρI is composed of risk measures with [TI], and f possesses this same property, then also

does ρ.

(iii) If ρI is composed of risk measures with [C] and f possesses this same property in pair

with [M], then ρ fulfills [C].

(iv) If ρI is composed of risk measures with [PH], and f possesses this same property, then

also does ρ.

(v) If ρI is composed of law invariant risk measures, then ρ fulfills [LI].

(vi) If ρI is composed of comonotone risk measures and f fulfills [A], then ρ has [CA].

(vii) If ρI is composed of Fatou continuous point-wise bounded risk measures and f has [FC]

in pair with [M], then also does ρ.

Proof. (i) Let X,Y ∈ L∞ with X ≥ Y . Then ρi(X) ≤ ρi(Y ), ∀ i ∈ I. Thus, RX ≤ RY and

ρ(X) = f(RX) ≤ f(RY ) = ρ(Y ).

(ii) Let X ∈ L∞ and C ∈ R. Then ρi(X + C) = ρi(X) − C, ∀ i ∈ I. Thus, ρ(X + C) =

f(RX+C) = f(RX − C) = f(RX)−C = ρ(X) −C.

(iii) Let X,Y ∈ L∞ and λ ∈ [0, 1]. Then ρi(λX + (1− λ)Y ) ≤ λρi(X) + (1− λ)ρi(Y ), ∀ i ∈ I.

Thus, ρ(λX+(1−λY )) = f(RλX+(1−λY )) ≤ f(λRX +(1−λ)RY ) ≤ λρ(X)+(1−λ)ρ(Y ).

(iv) Let X ∈ L∞ and λ ≥ 0. Then ρi(λX = λρi(X), ∀ i ∈ I. Thus ρ(λX) = f(RλX) =

f(λRX) = λf(RX) = λρ(X).

(v) Let X,Y ∈ L∞ such that FX = FY . Then ρi(X) = ρi(Y ),∀ i ∈ I. Thus RX = RY

point-wisely. Hence, RX and RY belong to the same equivalence class on X and ρ(X) =

f(RX) = f(RY ) = ρ(Y ).

(vi) Let X,Y ∈ L∞ be a comonotone pair. Then ρi(X + Y ) = ρi(X) + ρi(Y ), ∀ i ∈ I. Thus

ρ(X + Y ) = f(RX+Y ) = f(RX +RY ) = f(RX) + f(RY ) = ρ(X) + ρ(Y ).

(vii) Let{Xn}
∞
n=1 ⊆ L∞ bounded with lim

n→∞
Xn = X ∈ L∞. Then ρi(X) ≤ lim inf

n→∞
ρi(Xn), ∀ i ∈

I. Since supn∈N ρI(Xn) ≤ supn∈N‖Xn‖∞ < ∞, we get that {RXn} is bounded. Thus

ρ(X) = f(RX) ≤ f(lim inf
n→∞

RXn) ≤ lim inf
n→∞

f(RXn) = lim inf
n→∞

ρ(Xn).

Remark 3.6. Converse relations are not always guaranteed. For instance, spectral risk measures

in Example 2.12 are convex despite the collection {V aRα, α ∈ [0, 1]} is not in general. Moreover,

The preservation of Subadditivity [SA], i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X,Y ∈ L∞, is quite

similar to the one for [C], obtained by replacing the properties. The same for Comonotone

Convexity and Comonotone Subadditivity, see Kou et al. (2013), which are relaxed counterparts

for Comonotonic pairs.
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For completeness, we now investigate the preservation of other properties in the literature

on risk measures.

Proposition 3.7. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of risk measures, f : X → R,

and ρ : L∞ → R a risk measure defined as ρ(X) = f(ρI(X)). Then:

(i) If ρI is composed of risk measures with [C] and f possesses [M] and Quasi-convexity [QC],

i.e. f(λR+ (1− λ)S) ≤ max{f(R), f(S)}, ∀ λ ∈ [0, 1], ∀R,S ∈ X , then ρ fulfills [QC].

(ii) If ρI is composed of risk measures with Cash-subadditivity [CS], i.e. ρi(X+C) ≥ ρi(X)−

C, ∀ C ∈ R+, ∀X ∈ L∞, and f possesses [M] and [TI], then ρ has [CS].

(iii) If ρI is composed of risk measures with Relevance [R], i.e. X ≤ 0 and P(X < 0) > 0 imply

ρi(X) > 0, ∀X ∈ L∞, and f has strict [M], i.e. R > S imply f(R) > f(S), ∀ R,S ∈ X ,

then ρ has [R].

(iv) If ρI is composed of risk measures with Surplus Invariance [SI], i.e. ρi(X) ≤ 0 and

Y − ≤ X− imply ρi(Y ) ≤ 0, ∀ X,Y ∈ L∞, and f has [M] together to f ≥ fWC, then ρ

possesses [SI].

Proof. (i) Let X,Y ∈ L∞ and λ ∈ [0, 1]. Then ρ(λX + (1 − λ)Y ) = f(RλX+(1−λY )) ≤

f(λRX + (1− λ)RY ) ≤ max{ρ(X), ρ(Y )}.

(ii) Take X ∈ L∞ and C ∈ R+. Then ρ(X +C) ≥ f(RX − C) = f(RX)− C = ρ(X)− C.

(iii) Let X ∈ L∞ such that X ≤ 0 and P(X < 0) > 0. Then ρI(X) > 0 point-wisely in X .

Thus, from strict Monotonocity of f we get ρ(X) = f(RX) > 0.

(iv) Let X,Y ∈ L∞ such that ρ(X) ≤ 0 and Y − ≤ X−. Thus, from hypotheses we get

ρi(X) ≤ fWC(RX) ≤ f(RX) ≤ 0 for any i ∈ I. This leads to ρI(Y ) ≤ 0 point-wisely in

X . Hence, ρ(Y ) = f(RY ) ≤ 0.

Remark 3.8. See Cerreia-Vioglio et al. (2011), El Karoui and Ravanelli (2009), Delbaen (2012)

and Koch-Medina et al. (2017) for details on [QC], [CS], [R] and [SI], respectively. Unfortu-

nately, [QC] of ρI is not preserved if f is monotone and quasi-convex (or even convex). The

proof of such a claim relies on the fact that X does not have a total order, in contrast to the

case of the real line where f ◦ ρ would be quasi-convex. Moreover, even in the case exposed in

item (i) of the last Proposition, in order to guarantee preservation for [CS], which is the typical

companion for [QC], we must assume that f possesses [TI]. Since it would imply [C], we would

be back at the original framework of the paper.

3.3 Continuity properties

In this subsection, the goal is to preserve continuity properties beyond [FC].

Proposition 3.9. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of point-wise bounded risk

measures, f : X → R, and ρ : L∞ → R a risk measure defined as ρ(X) = f(ρI(X)). Then:

11



(i) If ρI is composed of Lipschitz continuous risk measures, and f fulfills [M], [SA], and

Boundedness, then ρ is Lipschitz continuous.

(ii) If ρI is composed of risk measures that possess continuity from above, below, or Lebesgue

and f is Fatou continuous, then ρ is Fatou continuous for non-increasing sequences, non-

decreasing sequences, or any sequences, respectively.

(iii) If ρI is composed of risk measures that posses any property among continuity from above,

below or Lebesgue, and f is Lebesgue continuous, i.e. lim
n→∞

Rn = R implies f(R) =

lim
n→∞

f(Rn), ∀ {Rn}
∞
n=1 ⊆ X bounded and any R ∈ X ∩K∞, then ρ also does.

Proof. (i) From [M] and [SA] of f and RX ≤ RY +|RX−RY | we have that |f(RX)−f(RY )| ≤

f(|RX −RY |). Moreover, |ρi(X)− ρi(Y )| ≤ ‖X −Y ‖∞, ∀X,Y ∈ L∞, ∀ i ∈ I. Then from

the Boundedness of f , we get

|ρ(X)− ρ(Y )| ≤ f(|RX −RY |) ≤ fWC(|RX −RY |) ≤ ‖X − Y ‖∞, ∀X,Y ∈ L∞.

(ii) Let {Xn}
∞
n=1 ⊆ L∞ bounded such that lim

n→∞
Xn = X ∈ L∞ and ρi Lebesgue continuous

for any i ∈ I. Then we have {RXn} bounded and lim
n→∞

RXn = RX point-wise. Hence

ρ(X) = f
(

lim
n→∞

RXn

)

≤ lim inf
n→∞

f(RXn) = lim inf
n→∞

ρ(Xn).

When each ρi is continuous from above or below, the same reasoning which is restricted

to non-decreasing or non-increasing sequences, respectively, is valid.

(iii) Similar to (ii), but in this case f
(

lim
n→∞

RXn

)

= lim
n→∞

f(RXn).

Remark 3.10. Item (i) can be generalized to ρI uniformly equicontinuous, i.e. the δ− ǫ criteria

does not depend on i ∈ I, from which Lipschitz continuity is a special case. Moreover, let I = Q,

ρQ(X) = EQ[−X] and f = fWC. In this case, we have ρ = ML, which is not continuous from

below even ρQ possessing such property. However, ML is Fatou continuous. This example

illustrates item (ii) in the last Proposition. Moreover, fµ satisfies Lebesgue continuity as in (iii)

when X ⊆ K∞, which is the case for monetary risk measures, for instance.

4 Representations

4.1 General result

In this section, we expose results regarding the representation of composed risk measures ρ =

f(ρI) based on the properties of both ρI and f . The goal is to highlight the role of such terms.

We begin the preparation with a lemma for representation of f , without dependence on the

properties of ρI .
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Lemma 4.1. Let X ⊆ K∞. A functional f : X → R, posses [M], [TI] and [C] if and only if it

can be represented as

f(R) = sup
µ∈V

{
∫

I
Rdµ− γf (µ)

}

, ∀R ∈ X , (4.1)

where γf : V → R+ ∪ {∞} is defined as

γf (µ) = sup
R∈X

{
∫

I
Rdµ− f(R)

}

. (4.2)

Proof. The fact that (4.1) possesses [M], [TI] and [C] is straightforward. For the only if direction,

one can understand f(R) as π(−R), where π is a convex risk measure on K∞. Note that it is

finite. Thus, from Theorem 4.16 in Föllmer and Schied (2016) applied to K∞, and f(R) = ∞

for any R ∈ K∞\X we have that

f(R) = π(−R) = sup
µ∈V

{
∫

I
Rdµ− sup

R∈X

[
∫

I
Rdµ− f(R)

]}

= sup
µ∈V

{
∫

I
Rdµ− γf (µ)

}

.

Remark 4.2. When R = RX point-wisely for some X ∈ L∞, we have that the representation

becomes

f(RX) = sup
µ∈V

{ρµ(X)− γf (µ)} .

If f possesses [PH], then γf assumes value 0 in Vf = {µ ∈ V : f(R) ≥
∫

I Rdµ, ∀ R ∈ X} and

∞ otherwise. For instance, Vfµ = {µ} and VfWC = V. Note that inf
µ∈V

γf (µ) = 0 from the

assumption of normalization for f .

We need the following auxiliary result, which may be of individual interest regarding the

integration of probability measures.

Lemma 4.3. Let {Qi, i ∈ I} such that i → Qi(A) is G-measurable for any A ∈ F . Then

Q(A) =
∫

I Q
i(A)dµ, ∀ A ∈ F ,Qi ∈ Q µ − a.s. defines a probability measure. In this case,

EQ[X] =
∫

I EQi [X]dµ for any X ∈ L∞.

Proof. Let Q(A) =
∫

I Q
i(A)dµ, ∀ A ∈ F . It is direct that both Q(∅) = 0 and Q(Ω) = 1.

For countable additivity, let {An}n∈N be a collection of mutually disjoint sets. Then, since

i → Qi(A) is bounded ∀ A ∈ F we have

Q(∪∞
n=1An) =

∫

I

∞
∑

n=1

Qi(An)dµ =
∞
∑

n=1

∫

I
Qi(An)dµ =

∞
∑

n=1

Q(An).

Hence Q is a probability measure. Regarding expectation interchange we have for any X ∈ L∞

that x → Qi(X ≤ x) = FX,Qi(x) is monotone and right-continuous i ∈ I. Then (x, i) →
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Qi(X ≤ x) is B(R)⊗ G-measurable, indeed integrable. Hence we have

EQ[−X] =

∫ ∞

0

∫

I
(1−Qi(X ≤ x))dµdx +

∫ 0

−∞

∫

I
Qi(X ≤ x)dµdx

=

∫

I

(
∫ ∞

0
(1−Qi(X ≤ x))dx +

∫ 0

−∞
Qi(X ≤ x)dx

)

dµ

=

∫

I
EQi [−X]dµ.

By changing signs, we get the claim.

We also need an assumption to circumvent some measurability issues to avoid the indefi-

niteness of posterior measure-related concepts, such as integration.

Assumption 4.4. When ρI = {ρi : L∞ → R, i ∈ I} is a collection of Fatou continuous convex

risk measures we assume that i → αmin
ρi

(Q) is G-measurable for any Q ∈ Q.

Remark 4.5. Similarly to Assumption 2.8, as a single, but not unique, example for G, one could

consider the sigma-algebra generated by all such maps. Again, a situation of interest is when G

is a Borel sigma-algebra and i → αmin
ρi

(Q) continuous for any Q. This is the case when I = [0, 1]

and ρi composed by ESi, or even when I = (0,∞) and ρi entropic risk measures under penalty

αmin
ρi

(Q) = 1
i
E
[

log
(

dQ
dP

)

dQ
dP

]

.

The role played by ρµ becomes clear since it can be understood as the expectation under

µ of elements RX ∈ X . Thus, it is important to know how the properties of ρI affect the

representation of ρµ. Proposition 2.1 of Ang et al. (2018) explores a case with a finite number

of coherent risk measures while we address a situation with an arbitrary set of convex risk

measures.

Theorem 4.6. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of Fatou continuous convex risk

measures and ρµ : L∞ → R defined as in (2.7). Then:

(i) ρµ can be represented as:

ρµ(X) = sup
Q∈Q

{EQ[−X]− αρµ(Q)} , ∀X ∈ L∞, (4.3)

with αρµ : Q → R+ ∪ {∞} defined as

αρµ(Q) = inf













∫

I α
min
ρi

(

Qi
)

dµ, if i → αmin
ρi

(

Qi
)

∈ G

∞, otherwise
:

∫

I
Qidµ = Q, Qi ∈ Q ∀ i ∈ I







.

(4.4)

(ii) If in addition ρi fulfills, for every i ∈ I, [PH], then the representation is

ρµ(X) = sup
Q∈cl(Qρµ)

EQ[−X], ∀X ∈ L∞, (4.5)

with Qρµ =
{

Q ∈ Q : Q =
∫

I Q
idµ,Qi ∈ Qρi ∀ i ∈ I

}

convex and non-empty, where cl

means closure in total variation norm.
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Proof. (i) Note that αρµ is well-defined since the infimum is not altered for the distinct

choices of possible combinations that lead to
∫

I Q
idµ = Q. Non-negativity for αρµ is

straightforward. Also, from Assumption 4.4, we have that αρµ(Q) ≤
∫

I α
min
ρi

(Q) dµ, ∀Q ∈

Q. The measurability of i → ρi(X) = supQ∈Q

{

EQ[−X]− αmin
ρi

(Q)
}

for any X ∈ L∞

implies that the following is true for any Q ∈ Q:

ρµ(X) =

∫

I

(

sup
Q∈Q

{

EQ [−X]− αmin
ρi (Q)

}

)

dµ

≥ sup
{

∫

I
Qidµ=Q, i→αmin

ρi
(Qi)∈G

}

{
∫

I

(

EQi [−X]− αmin
ρi

(

Qi
)

)

dµ

}

≥ sup
Q∈Q

{EQ[−X]− αρµ(Q)} .

The last inequality is due to Lemma 4.3 and the fact that αµ(Q) = ∞ when
∫

I Q
idµ = Q

but i → αmin
ρi

(

Qi
)

is not G-measurable. For the converse, consider for each n ∈ N

the measurable (possibly empty) partition Pn of I as Pn = {tnk , k = 1, . . . , n}. Define

αtnk
(Q) = supi∈tnk α

min
ρi

(Q) for any Q ∈ Q, with the convention that sup ∅ = 0. Further,

for each n ∈ N define the map α
µ
n : Q → R+ ∪ {∞} as

αµ
n(Q) = inf

{

n
∑

k=1

αtnk
(Qtnk )µ(tnk) : Q =

n
∑

k=1

Qtnkµ(tnk), Q
tnk ∈ Q ∀ k ∈ {1, . . . , n}

}

.

It is clear that αµ
n(Q) ↓ αρµ(Q) for each Q ∈ Q. Define for each n ∈ N the map

ρµn(X) = sup
Q∈Q

{EQ[−X]− αµ
n(Q)} , X ∈ L∞.

We then have that ρµn(X) ↑ ρµ(X) for any X ∈ L∞. Thus, we get for any X ∈ L∞ that

ρµ(X) ≥ sup
Q∈Q

{EQ[−X]− αρµ(Q)}

≥ sup
n

sup
Q∈Q

{

EQ[−X]− αρ
µ
n
(Q)
}

= sup
n

ρµn(X) = ρµ(X).

Hence, ρµ(X) = sup
Q∈Q

{EQ[−X]− αρµ(Q)} , ∀X ∈ L∞.

(ii) We begin by showing that Qµ
ρ satisfies the necessary properties. Since every Qρi is non-

empty, we have that Qρµ posses at least one element Q ∈ Q such that Q =
∫

I Q
idµ,Qi ∈

Qρi ∀ i ∈ I. Let Q1,Q2 ∈ Qρµ . Then, we have for any λ ∈ [0, 1] that λQ1 + (1 − λ)Q2 =
∫

I

(

λQi
1 + (1− λ)Qi

2

)

dµ. Since Qρi is convex for any i ∈ I we have that λQ1+(1−λ)Q2 ∈

Qρµ as desired. To demonstrate that taking closure does not affect the supremum, let

{Qn}
∞
n=1 ∈ Qµ

ρ such that Qn → Q in the total variation norm. Then we have

EQ[−X] = lim
n→∞

EQn [−X] ≤ sup
n

EQn [−X] ≤ sup
Q∈Qρµ

EQ[−X].
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In view of [PH], it is enough to show that αmin
ρµ is a convex indicator function on cl (Qµ

ρ),

i.e. it assumes 0 on cl (Qµ
ρ) and ∞ otherwise. Note that αmin

ρi
(Qi) = 0, ∀Qi ∈ Qi

ρ. Thus,

αρµ = 0 in Qρµ and we have that 0 ≤ αmin
ρµ (Q) ≤ αρµ(Q) = 0, ∀Q ∈ Qρµ . Due to the lower

semi-continuity property, we have that αmin
ρµ (Q) = 0 for any limit point Q of sequences in

Qρµ . Let Q ∈ Q\cl (Qρµ), and assume toward contradiction that αmin
ρµ (Q) = 0. By the

Hahn-Banach Theorem, we can find, under some standardization, if needed, a X ∈ L∞

such that EQ[−X] > sup
Q∈cl(Qρµ)EQ[−X]. Note that αµ(Q) = ∞ for any Q ∈ Q\Qρµ

since µ
(

αi(Q) = ∞
)

> 0. Thus, αµ(Q) is a convex indicator function over Qρµ . We then

get,

αmin
ρµ (Q) ≥ EQ[−X]− ρµ(X)

> sup
Q∈cl(Qρµ)

EQ[−X]− ρµ(X)

≥ sup
Q∈Qρµ

EQ[−X]− ρµ(X)

= sup
Q∈Q

{EQ[−X]− αρµ(Q)} − ρµ(X) = 0.

This deduction is a contradiction. Then, we must have αmin
ρµ (Q) = ∞.

Remark 4.7. We have that αρµ , in this case, can be understood as some extension of the concept

of inf-convolution for arbitrary terms represented by theoretical and integral concepts. The sum

of finite risk measures leads to the inf-convolutions of their penalty functions. By extrapolating

the argument, such a result is also useful regarding available conjugates for an arbitrary mixture

of convex functionals.

Remark 4.8. Note that we could consider the families {Qi ∈ P, i ∈ I} that define both αρµ and

Qρµ by belonging to determined sets in terms of µ-a.s. instead of point-wise in I. This claim

is true because the criterion is Lebesgue integral concerning each specified µ ∈ V. We choose

the point-wise option in order to keep the pattern since we have not assumed fixed probability

on (I,G) alongside the text. Moreover, the integrals that define both αρµ and Qρµ may also

be understood in the sense of Bochner integral, see Aliprantis and Border (2006) chapter 11 for

details.

Remark 4.9. We have that αρµ is convex and lower semi-continuous if and only if it coincides

with αmin
ρµ . This because when αρµ is convex and lower semi-continuous, by bi-duality regarding

Legendre-Fenchel conjugates and the fact that ρµ = (αρµ)
∗, we obtain αρµ = (αρµ)

∗∗ = (ρµ)∗ =

αmin
ρµ . Thus, αmin

ρµ is the lower semi-continuous hull of αρµ in the sense that we can obtain the

first by closing the epigraph of αρµ in Q×R+∪{∞}. In the case of finite cardinality for I, Qρµ

is closed as exposed in Proposition 2.1 of Ang et al. (2018), which makes it possible to drop the

closure on (4.5) in such situation.

We now have the necessary conditions to enunciate the main result in this section, which

represents composed risk measures in the usual framework of Theorem 2.4.
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Theorem 4.10. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of Fatou continuous convex

risk measures, f : X → R possessing [M], [TI], [C] and [FC], and ρ : L∞ → R defined as

ρ(X) = f(ρI(X)). Then:

(i) ρ can be represented as

ρ(X) = sup
Q∈Q

{EQ[−X]− αρ(Q)} , ∀X ∈ L∞, (4.6)

where αρ(Q) = inf
µ∈V

{αρµ(Q) + γf (µ)}, with γf and αρµ defined as in (4.2) and (4.4),

respectively.

(ii) If in addition to the initial hypotheses f possesses [PH], then the penalty term becomes

αρ(Q) = inf
µ∈Vf

αρµ(Q), where Vf is as in Remark 4.2.

(iii) If in addition to the initial hypotheses ρi possess, for any i ∈ I, [PH], then αρ(Q) =

∞∀Q ∈ Q\ ∪µ∈V cl (Qρµ), where cl means closure in the total variation norm.

(iv) If, in addition to the initial hypotheses, we have the situations in (ii) and (iii), then the

representation of ρ becomes

ρ(X) = sup

Q∈Q
Vf
ρ

EQ[−X], ∀X ∈ L∞, (4.7)

where Q
Vf
ρ is the closed convex hull of ∪µ∈Vf

cl(Qρµ).

Proof. From the hypotheses and Proposition 3.5, we have that ρ is a Fatou continuous convex

risk measure.

(i) From Lemma 4.1 and Theorem 4.6 we have that

ρ(X) = sup
µ∈V

{

sup
Q∈Q

[EQ[−X]− αρµ(Q)]− γf (µ)

}

= sup
Q∈Q

{

EQ[−X]− inf
µ∈V

[αρµ(Q) + γf (µ)]

}

= sup
Q∈Q

{EQ[−X]− αρ(Q)} .

(ii) If f possesses [PH], then γf assumes value 0 in Vf and ∞ otherwise. Thus, we get

αρ(Q) = inf
µ∈V

{αρµ(Q) + γf (µ)} = inf
µ∈Vf

αρµ(Q).

(iii) When each element of ρI fulfills [PH], we have that αρµ(Q) = ∞ ∀ µ ∈ V for any Q ∈

Q\ ∪µ∈V cl(Qρµ). One gets the claim by adding the non-negative term γf (µ) and taking

the infimum over V.

(iv) In this context, the generated ρ is coherent from Theorem 3.5. Moreover, in this case
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from Lemma 4.1 and Proposition 4.6 together to items (ii) and (iii) we have that

ρ(X) = sup
µ∈Vf

sup
Q∈cl(Qρµ)

EQ[−X]

= sup
Q∈∪µ∈Vf

cl(Qρµ)
EQ[−X]

= sup

Q∈Q
Vf
ρ

EQ[−X].

In order to verify that the supremum is not altered by considering the closed convex hull,

let Q1,Q2 ∈ ∪µ∈Vf
cl(Qρµ) and Q = λQ1 + (1− λ)Q2, λ ∈ [0, 1]. Then

EQ[−X] ≤ max(EQ1
[−X], EQ2

[−X]) ≤ sup
Q∈∪µ∈Vf

cl(Qρµ)
EQ[−X],

thus convex combinations do not alter the supremum. For closure, the deduction is quite

similar to that used in the proof of Theorem 4.6.

Remark 4.11. Note that when f = fµ, we recover the result in Theorem 4.6. Moreover, Q
Vf
ρ ⊆

QρWC since f ≤ fWC for any bounded combination f . Furthermore, when αρµ is convex and

lower semi-continuous, we have that αρ coincides with the minimal penalty term because

αmin
ρ (Q) = sup

X∈L∞

{EQ[−X]− f(RX)}

= sup
X∈L∞

{

EQ[−X]− sup
µ∈V

{ρµ(X) − γf (µ)}

}

= inf
µ∈V

{

γf (µ) + sup
X∈L∞

{EQ[−X]− ρµ(X)}

}

= αρ(Q).

Hence, the reasoning in Remark 4.9 is also valid in here.

Remark 4.12. Under [CS] or [R], the supremum over Q can be replaced, respectively, by sub-

probabilities (measures on (Ω,F) with Q(Ω) ≤ 1) or probabilities equivalent to P. Under [QC]

for f and dropping its [C] and [TI] we get the representation ρ(X) = supµ∈V Rf (ρ
µ(X), µ),

where Rf : R × V → R is defined as Rf (x, µ) = inf
{

f(R) :
∫

I Rdµ = x
}

. See the papers in

Remark 3.8 for details.

Regarding the specific case of ρWC , Proposition 9 in Föllmer and Schied (2002) states that

it can be represented by, the non necessarily convex, αρWC (Q) = inf
i∈I

αmin
ρi

(Q), ∀Q ∈ Q. Under

coherence, Theorem 2.1 of Ang et al. (2018) claims that QρWC = conv(∪n
i=iQρi) when I is finite

with cardinality n. We now expose a result that states these facts under our approach, which

is more general.

Proposition 4.13. Let {ρi : L∞ → R, i ∈ I} be a collection of Fatou continuous convex risk

measures, and ρWC : L∞ → R defined as in (2.10). Then:
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(i) αρWC (Q) = inf
µ∈V

αρµ(Q) = inf
i∈I

αmin
ρi

(Q), ∀Q ∈ Q.

(ii) If in addition to the initial hypotheses ρi possess, for any i ∈ I, [PH], then QρWC = QV
ρ ,

which is the closed convex hull of ∪i∈IQρi .

Proof. From Propositions 3.3 and 3.5, we have that ρWC is a Fatou continuous convex risk

measure when all ρi also are. Moreover, from the fact that |ρWC(X)| ≤ ‖X‖∞ < ∞ we have

that ρWC takes only finite values.

(i) For fixed Q ∈ P, we have that for any ǫ > 0, there is j ∈ I such that

inf
i∈I

αmin
ρi (Q) ≤ αmin

ρj (Q) ≤ inf
i∈I

αmin
ρi (Q) + ǫ.

Recall that inf
i∈I

αmin
ρi

(Q) ≤ αρµ(Q) ≤
∫

I α
min
ρi

(Q)dµ for any µ ∈ V. Then it is true that for

any ǫ > 0, there is µ ∈ V such that

inf
i∈I

αmin
ρi (Q) ≤ αρµ(Q) ≤ inf

i∈I
αmin
ρi (Q) + ǫ.

By taking the infimum over V and since ǫ was taken arbitrarily, we get that αρWC (Q) =

inf
i∈I

αmin
ρi

(Q).

(ii) From Propositions 3.3 and 3.5 we have that ρWC is a Fatou continuous coherent risk

measure when all ρi also are. Thus, in light of Theorem 2.4, it has a dual representation.

We then have

ρWC(X) = sup
i∈I

sup
Q∈Q

ρi

EQ [−X] = sup
Q∈∪i∈IQρi

EQ[−X].

The fact that supremum is not altered by considering the closed convex hull follows similar

steps as those in the proof of Theorem 4.10. We have that ∪i∈IQρi is non-empty because

every Qρi contains at least one element. Hence, QρWC coincides to the closed convex hull

of ∪i∈IQρi . Regarding the equivalence with QV
ρ , note that for any i ∈ I we have that

Q ∈ Qρi if and only if Q ∈ clQρδi , where δi ∈ V is defined as δi(A) = 1A(i), ∀ A ∈ G.

Thus, we get that ∪i∈IQρi ⊆ ∪µ∈Vcl(Qρµ). By considering closed convex hulls we obtain

QρWC ⊆ QV
ρ . For the converse relation note that if Q ∈ ∪µ∈Vcl(Qρµ), then αmin

ρWC (Q) ≤

inf
µ∈V

αρµ(Q) = inf
i∈I

αmin
ρi

(Q) = 0. Hence, Q ∈ QρWC as desired.

4.2 Law invariant case

Under [LI] of the components in ρI , the generated ρ is representable in light of those formulations

in Theorem 2.7. We begin with an auxiliary result for the representation when ρµ is law

invariant. The next Proposition follows in this direction.

Proposition 4.14. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of law invariant convex risk

measures and ρµ : L∞ → R defined as in (2.7). Then:
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(i) ρµ can be represented as:

ρµ(X) = sup
m∈M

{

∫

(0,1]
ESα(X)dm− βρµ(m)

}

, ∀X ∈ L∞, (4.8)

with convex βρµ : M → R+ ∪ {∞}, defined as

βρµ(m) = inf













∫

I β
min
ρi

(mi)dµ, if i → βmin
ρi

(

mi
)

∈ G

∞, otherwise
:

∫

I
midµ = m, mi ∈ M ∀ i ∈ I







.

(4.9)

(ii) If in addition ρi fulfills, for every i ∈ I, [PH], then the representation is

ρµ(X) = sup
m∈cl(Mρµ )

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (4.10)

with Mρµ =
{

m ∈ M : m =
∫

I m
idµ,mi ∈ Mρi ∀ i ∈ I

}

non-empty and convex, where cl

means the closure in total variation norm.

(iii) If ρi also is, for every i ∈ I, comonotone, then the representation is

ρµ(X) =

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (4.11)

where m ∈ cl(Mρµ).

Proof. From the hypotheses and Proposition 3.5 together to Theorem 2.6, we have that ρµ is a

law invariant convex risk measure. Theorem 2.6 assures its [FC]. From Theorems 2.4 and 2.7,

we have for any m ∈ M there is Q′ such that

βmin
ρi (m) = sup

{

αmin
ρi (Q) :

dQ

dP
∼

dQ′

dP
,

∫

(u,1]

1

v
dm = F−1

dQ′

dP

(1− u),Q′ ∈ Q

}

= αmin
ρi (Q′).

Hence, from Assumption 4.4 the maps i → βmin
ρi

(m) = αmin
ρi

(Q′) are G-measurable for any

m ∈ M. From that, the proof follows similar steps to those of Theorem 4.6 with mi →
∫

(0,1]ESα(X)dmi linear and playing the role of Qi → EQi [−X]. For the comonotonic case in

(iii), the result is due to the supremum in (2.5) being attained for each ρi.

Remark 4.15. The representation in item (iii) on (4.11) is equivalent to the spectral one as

ρµ(X) =

∫ 1

0
V aRα(X)φµ(α)dα, (4.12)

where φµ(α) =
∫

I φ
i(α)dµ, and φi : [0, 1] → [0, 1] is as in Example 2.12 for any i ∈ I. The map

i → φi(α) is G-measurable to any α ∈ [0, 1]. To verify this claim, note that for each i ∈ I it

is true that φi(α) =
∫

(α,1]
1
s
dmi(s), mi ∈ M. Then dνi

dmi = 1
s
defines a finite measure on (0, 1].

Thus, from definition of Mρµ , i → νi(α, 1] = φi(α) is G-measurable for any α ∈ [0, 1].
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We can now propose a result for the dual representation under [LI]. The next Corollary

exposes such content.

Corollary 4.16. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of law invariant convex

risk measures, f : X → R possessing [M], [TI], [C] and [FC], and ρ : L∞ → R defined as

ρ(X) = f(ρI(X)). Then:

(i) ρ can be represented as

ρ(X) = sup
m∈M

{

∫

(0,1]
ESα(X)dm − βρ(m)

}

, ∀X ∈ L∞, (4.13)

where βρ(m) = inf
µ∈V

{βρµ(m) + γf (µ)}, with γf and βρµ defined as in (4.2) and (4.9),

respectively.

(ii) If in addition to the initial hypotheses f possesses [PH], then the penalty term becomes

βρ(m) = inf
µ∈Vf

βρµ(m), where Vf is as in Remark 4.2.

(iii) If in addition to the initial hypotheses ρi possess, for any i ∈ I, [PH], then βρ(m) =

∞, ∀m ∈ M\ ∪µ∈V cl(Mρµ), where cl means closure in the total variation norm.

(iv) If, in addition to the initial hypotheses, we have the situations in (ii) and (iii), then the

representation of ρ becomes

ρ(X) = sup

m∈M
Vf
ρ

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (4.14)

where M
Vf
ρ is the closed convex hull of ∪µ∈Vf

cl(Mρµ).

(v) If in addition to the initial hypotheses ρi possess, for any i ∈ I, [CA], then βρ(m) =

∞, ∀m ∈ M\ ∪µ∈V {mµ
c }, where

mµ
c = argmax

m∈cl(Mρµ )

∫

(0,1]
ESα(X)dm, ∀ µ ∈ V.

(vi) If, in addition to the initial hypotheses, we have (ii) and (v), then the representation of ρ

becomes

ρ(X) = sup

m∈M
Vf
ρ,c

∫

(0,1]
ESα(X)dm, ∀X ∈ L∞, (4.15)

where M
Vf
ρ,c is the closed convex hull of ∪µ∈Vf

{mµ
c }.

Proof. Direct from Theorem 4.10 and Proposition 4.14.

Remark 4.17. Since the comonotonicity of a pair X,Y does not imply the same property for

the pair RX , RY , the only situation where ρ is surely comonotone occurs, from Proposition 3.5

and Lemma 4.1, when {fµ}µ∈V . In this case, we have

ρ(X) = ρµ(X) =

∫

(0,1]
ESα(X)dmµ

c , ∀X ∈ L∞. (4.16)
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From (4.12), we have that φµ(α) =
∫

(α,1]
1
s
dm

µ
c (s), where φµ is as in Remark 4.15. It would be

possible also to investigate a situation where f possesses representation in terms of ES over X

as in Example 2.13, but we do not consider any base probability on (I,G). However, note that

those would be special cases of our framework.

5 Acceptance sets

5.1 Properties

In this section, we expose results regarding the acceptance sets of composed risk measures

ρ = f(ρI) based on the properties of both ρI and f . Of course, when f possesses [M] we have

AρI ⊇
{

X ∈ L∞ : ∃R ∈ f−1(0) s.t. ρI(X) ≤ R
}

,

where the inequality is in the point-wise order of X . If in addition f is injective function, then

from normalization, f(0) = 0, we have

{

X ∈ L∞ : ∃R ∈ f−1(0) s.t. ρI(X) ≤ R
}

= {X ∈ L∞ : ρI(X) ≤ 0} = AρWC .

However, since the point-wise order in X is not total, the set AρI can be much larger than

the positions that lead to elements in the non-positive cone of X . Thus, to provide a general

characterization for AρI is not trivial.

We begin by translating the role of financial properties preservation from section 3 for

acceptance sets.

Corollary 5.1. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of risk measures, f : X → R,

and ρ : L∞ → R a risk measure defined as ρ(X) = f(ρI(X)). Then:

(i) If ρI is composed of risk measures with [M] and f possesses this same property, then Aρ is

monotone, i.e. X ∈ Aρ, Y ∈ L∞ and Y ≥ X implies in Y ∈ Aρ. In particular, L∞
+ ⊆ Aρ.

(ii) If ρI is composed of risk measures with [TI] and f possesses this same property, then

ρ(X) = inf {m ∈ R : X +m ∈ Aρ}.

(iii) If the conditions in items (i) and (ii) are fulfilled, then Aρ is non-empty, closed with respect

to the supremum norm, Aρ ∩ {X ∈ L∞ : X < 0} = ∅, and inf{m ∈ R : m ∈ Aρ} > −∞.

(iv) If ρI is composed of risk measures with [C] and f possesses this same property in pair

with [M], then Aρ is a convex set.

(v) If ρI is composed of risk measures with [PH] and f possesses this same property, then Aρ

is a cone.

(vi) If ρI is composed of law invariant risk measures, then Aρ is law invariant in the sense of

X ∈ Aρ and X ∼ Y imply Y ∈ Aρ.

(vii) If ρI is composed of comonotone risk measures and f fulfills [A], then Aρ is stable for

sums of comonotonic pairs of random variables.
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(viii) If the conditions in items (i), (ii), and (iv) are fulfilled, ρI is composed of Fatou continuous

risk measures and f has [FC] and [M], then Aρ is weak* closed.

Proof. The claims are directly obtained by noticing that they are implications from Theorems

2.3 and 2.4 together to Proposition 3.5.

Corollary 5.2. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of risk measures, f : X → R,

and ρ : L∞ → R a risk measure defined as ρ(X) = f(ρI(X)). Then:

(i) If ρI is composed of risk measures with [C] and f possesses [M] and [QC], then Aρ is a

convex set.

(ii) If ρI is composed of risk measures with [M] and [CS] and f possesses [M] and [TI], then

{

ρ(X) ≥ inf {m ∈ R : X +m ∈ Aρ} , if ρ(X) ≤ 0,

ρ(X) ≤ inf {m ∈ R : X +m ∈ Aρ} , if ρ(X) ≥ 0.

(iii) If ρI is composed of risk measures with [R] and f has strict [M], then Aρ ∩ {X ∈

L∞
− : P(X < 0) > 0} = ∅.

(iv) If ρI is composed of risk measures with [SI] and f has [M] together to f ≥ fWC, then

X ∈ Aρ and Y − ≤ X− imply Y ∈ Aρ, ∀X,Y ∈ L∞.

Proof. Items (i), (iii) and (iv) are direct consequences from Theorem 2.3 and Proposition 3.7.

For item (ii), Proposition 3.7 implies ρ has [CS]. Note that it may be restated as ρ(X − C) ≤

ρ(X) + C, ∀ C ∈ R+, ∀ X ∈ L∞ or m → ρ(X + m) + m be non-decreasing in R+ for any

X ∈ L∞. With [M], Proposition 2.1 in Cerreia-Vioglio et al. (2011) assures ρ is Lipschitz

continuous. Fix X ∈ L∞. If ρ(X) ≤ 0, then ρ(X + ρ(X)) = ρ(X − (−ρ(X))) ≤ ρ(X) −

ρ(X) = 0. Thus, X + ρ(X) ∈ Aρ and ρ(X) ≥ inf {m ∈ R : X +m ∈ Aρ}. If ρ(X) ≥ 0, let

k = inf {m ∈ R : X +m ∈ Aρ}. Thus, k ≥ 0. For any m ∈ R with X+m ∈ Aρ, we obtain ρ(X+

k)+k ≤ ρ(X+m)+m ≤ m. Then, it is true that ρ(X+k)+k ≤ inf {m ∈ R : X +m ∈ Aρ} = k.

Thus, ρ(X + k) ≤ 0. Hence, k ≥ ρ(X + k) + k ≥ ρ(X).

Characterization of the acceptance sets can be made explicit for particular cases.

Example 5.3. We get the following examples for Af(ρI):

(i) For f(R) = supi∈I R(i) we obtain f(ρI) = ρWC . In this case we get

AρWC = {X ∈ L∞ : ρi(X) ≤ 0 ∀ i ∈ I} =
⋂

i∈I

Aρi .

(ii) For f(R) =
∫

I Rdµ we obtain f(ρI) = ρµ. We then have that

Aρµ =

{

X ∈ L∞ :

∫

{ρi(X)≤0}
ρi(X)dµ ≤ −

∫

{ρi(X)>0}
ρi(X)dµ

}

.

Note that from Assumption 2.8 both {ρi(X) ≤ 0} and {ρi(X) > 0} are in G for any

X ∈ L∞.
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(iii) We have that any spectral (distortion) risk measure ρφ(X) =
∫ 1
0 V aRα(X)φ(α)dα is a

special case of ρµ by choosing ρi(X) = V aRi(X) and µ ≪ λ with φ(i) = F−1
dµ
dλ

(1− i). Since

both α → V aRα and α → φ(α) are non-increasing, we can pick αX ∈ [0, 1] dependent of

X ∈ L∞ such that V aRα(X)φ(α) ≥ 0 for any α < αX and V aRα(X)φ(α) ≤ 0 for any

α > αX . In this case we get

Aρφ =

{

X ∈ L∞ :

∫ 1

αX

V aRαφ(α)dα ≤ −

∫ αX

0
V aRαφ(α)dα

}

.

From the properties of VaR in Example 2.5, Proposition 3.5 and Corollary 5.1 this set is

norm closed, monotone, law invariant, a cone and stable for addition of comonotone pairs.

If we also have that φ is non-increasing, the acceptance set is convex and weak* closed.

Nonetheless, direct general characterization of AρI is not so easy from the complexity that

arises from the combination. In the next subsection, we provide a general characterization for

the case of convex risk measures.

5.2 General result

We now explore a more informative characterization for the acceptance sets of f(ρI) for the

case of convex risk measures from section 4. In this sense, the next Theorem explores the role

of Aρµ in such a framework.

Theorem 5.4. Let ρI = {ρi : L∞ → R, i ∈ I} be a collection of Fatou continuous convex

risk measures, f : X → R possessing [M], [TI], [C] and [FC], and ρ : L∞ → R defined as

ρ(X) = f(ρI(X)). Then:

(i) The acceptance set of ρ is given by

Aρ =
⋂

µ∈V

{Aρµ − γf (µ)}. (5.1)

(ii) if in addition to initial hypotheses f fulfills [PH], then the acceptance set of ρ is given by

Aρ =
⋂

µ∈Vf

Aρµ . (5.2)

Proof. (i) We recall that the acceptance set of any Fatou continuous convex risk measure ρ

can be obtained through its penalty term as

Aρ =

{

X ∈ L∞ : sup
Q∈Q

{

EQ[−X]− αmin(Q)
}

≤ 0

}

=
{

X ∈ L∞ : EQ[−X] ≤ αmin(Q) ∀Q ∈ Q
}

.

Note that this is equivalent to

Aρ = {X ∈ L∞ : EQ[−X] ≤ α(Q) ∀Q ∈ Q}
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for any, not necessarily minimal, penalty term αρ that represents ρ. Thus, from Theorem

4.10 we obtain

Aρ =

{

X ∈ L∞ : EQ[−X] ≤ inf
µ∈V

{αρµ(Q) + γf (µ)} ∀Q ∈ Q

}

= {X ∈ L∞ : EQ[−X] ≤ αρµ(Q) + γf (µ) ∀µ ∈ V ∀Q ∈ Q}

=
⋂

µ∈V

{X ∈ L∞ : EQ[−X] ≤ αρµ(Q) + γf (µ) ∀Q ∈ Q}

=
⋂

µ∈V

{X ∈ L∞ : ρµ(X) ≤ γf (µ)} =
⋂

µ∈V

{Aρµ − γf (µ)}.

(ii) This is directly obtained from (i) since from Lemma 4.1 in this case we have γf (µ) = 0 if

µ ∈ Vf and γf (µ) = ∞ otherwise. Hence, we get

Aρ =
⋂

µ∈V

{Aρµ − γf (µ)} =
⋂

µ∈Vf

{Aρµ − γf (µ)} =
⋂

µ∈Vf

Aρµ .

Remark 5.5. It becomes clear that the pivotal role player by ρµ for dual representations of

section 4 is also present for acceptance sets. A financial interpretation is that in order for

a position X be acceptable for the combination f(ρI) it must be acceptable for all possible

weighting schemes µ adjusted by a correction, represented by γf . Without such adjustment,

the set would be too restrictive. In fact, for f with [PH], we can reduce the restriction to weight

schemes over Vf .

Remark 5.6. The results in the last Theorem agree with the four cases of Theorem 4.10. More

precisely, if ρI is composed as coherent risk measures, then

Aρ =

{

X ∈ L∞ : EQ[−X] ≤ inf
µ∈V

{αρµ(Q) + γf (µ)} ∀Q ∈ ∪µ∈Vcl(Qρµ)

}

.

Similar deductions as those for the general convex case lead to Aρ =
⋂

µ∈V{Aρµ − γf (µ)}.

Furthermore, when ρI is composed as coherent risk measures and f possesses [PH] we get

Aρ =
{

X ∈ L∞ : EQ[−X] ≤ 0 ∀Q ∈ clconv(∪µ∈Vf
cl(Qρµ))

}

=
{

X ∈ L∞ : EQ[−X] ≤ 0 ∀Q ∈ ∪µ∈Vf
cl(Qρµ)

}

=
⋂

µ∈Vf

{X ∈ L∞ : EQ[−X] ≤ 0 ∀Q ∈ cl(Qρµ)}

=
⋂

µ∈Vf

{X ∈ L∞ : ρµ(X) ≤ 0} =
⋂

µ∈Vf

Aρµ .

Remark 5.7. As examples from the last Theorem, it is worth exploring the particular cases of

ρµ and ρWC . For ρµ, note that f(R) =
∫

I Rdµ leads to γf assuming value 0 in µ and ∞ in

V\{µ}. Thus, Vf = {µ} and we indeed have Aρµ =
⋂

ν∈Vf
Aρν = Aρµ . Concerning to ρWC ,

f(R) = supR leads to γf = 0. Thus, we must have that AρWC =
⋂

i∈I Aρi =
⋂

µ∈V Aρµ . In

fact, it is straightforward that ρWC(X) ≤ 0 if and only if
∫

I ρ
i(X)dµ ≤ 0 for any µ ∈ V, which
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corroborates to the claim.
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