A THEORY FOR NATURAL MODELISATION AND IMPLEMENTATION
OF FUNCTIONS WITH VARIABLE ARITY

Patrick BELLOT Véronique JAY
Centre Scientifique IBM-France LITP Paris 6. UA 248
36, Avenue Raymond Poincaré 2. place Jussieu
75116 Paris, France 75251 Paris Cedex 05, France

Abstract The aim of this article is to provide a new theorical framework based on
combinators for the study and implementation of applicative programming languages.
This formal theory can be viewed as a Computability theory where functions are defined
in a natural and usable way because Curryfication is abolished. This allows short
definitions of functions and fast graph reduction machines.

Resume: Cet article présente un nouveau cadre théorique basé sur les combinateurs pour
I'étude des langages de programmation applicative et leurs mises en cuvre. Cette théorie
formelle doit étre percue comme une théorie de la Calculabilité o0 les fonctions sont
definies de maniere naturelle et utilisable car 1a Curryfication a été abolie. Cela permet
des définitions réduites pour les fonctions et des machines de réduction de graphes
efficaces.

0 - Introduction

If we look at functional {anguages, their implementations and theories
supporting them, we must remark that pglyadicity is never a primitive
concept. It is carried out through Curryfication or structuration. Curryfication
is a mathematical method allowing the transformation of a polyadic function
into a monadic function {Curry 58]. A possible problem is that a single
application of a polyadic n-ary function is converted into n applications of
unary functions. That implies intermediate terms and reduction steps.
Nevertheless, it is a particulary clear and consequently safe method used in
numerous functional languages as a basic principte: KRC, ML [Cousineau 83},
SUGAR, [Glaser 84], SASL [Turner 791....

213

The other manner to get polyadicity from monadicity is structuration: one
gives a structure to the arguments of a function. Lisp systems [Chailloux 34]
use linked lists in order to provide tree binding. ML IML 84] provides cartesian
product as an alternative to Curryfication. FP systems [Backus 78] use the
sequence which has an ambiguous status: it can be viewed as an array when
accessed through projections or as a linked list when accessed with head and
tail functions. The main difficulty with these approaches to polyadicity lies in
the fact that structures must be represented in order to be coherent. If the
system talks about arguments lists (as in Lisp), they must be present, at least
virtually. On the other hand, we know that arrays are inadapted to dynamic
management and that lists are rather slow. Moreover, the best effective
representation of arguments sequences depends on their use. That is why it
seems better to ignore any structure,

Forseeable developments in hardware conceptions [Arvind 32, Dennis 79] let
us hope for a new deal in functional languages imple mentations. Nevertheless,
it must be taken into account that Von Neumann architectures are there for a
long time. Thus, the preceding problematic is still important.

The theory TG was first presented in [Bellot 87al. It allows to deal with
polyadic functions in a natural way: functions are not Curryfied. In opposition
with classical theones and pracnces it is not assumed any structure on
arguments. The task AgE :)

The theory T6 is 1ssued from Combmatory Loglc (CL) lCurry 58] and the Graal
programming language [Bellot 86b]l. The theory has been shown to satisfy
classical properties: CR-property, Completness, Consistency, definability of
Partial Recursive Functions and so on.

It has been pointed out that functjons with variable arity such as +:
+:X1X2..Xn = X1+X2+.+Xn for every n21 and natural numbers X1.X2...Xn

are not definable in T¢ whereas they exist in languages such as Lisp, ML and
FP where such functions are programmable thanks to the use of structures on
arguments. Therefore the theory is extended (the theory T6E) with two new
combinators. Classical properties remain true for TGE and it has been
conjectured that TGE is a conservative extension of T6. Some unformal
definitions of functions with variable arity are in [Bellet 87al.

This article gives a short presentation of the theories TG and TGE It proves that
we have the following conservative extension: T¢ ¢ T6E Then it is given a
formal definition of functions with variable arity (Fva). The problem of the
representation of Fva's in TeE is studied. Firstly, we use classical results of
Computability theory. Then we define computable and totally computable
Fva's and we prove that they are definable in TGe. The ideas of the proofs are
used to give methods for determining representations of totally computable
Fva's. A general abstraction algorithm is given.

214

The notion of Fva means a particular notion of partial recursive function which
was treated under the cover of coding the arguments sequences. That is a
mathematical well-founded method unfortunately not adapted to computer
science purposes. In Ter, Fva's and polyadic functions in general are defined
naturally: their definitions are Fva's and polyadic terms. It was stated in
[Bellot 87a] that such definitions are not possible in classical theories without
the use of an heavy machinery {an artefact) such as coding, pairing, lists...

The natural modelisation of functional programming concepts in TGe has
interesting consequences. The use of powerful uncurryfied combinators
provides abstraction terms (terms given by an abstraction algorithm) shorter
that thus provided with classical combinators. Shorter terms are faster
programs. Moreover, TGE is given with a fast graph reduction machine running
on classical computers. It is that of the Graal language [Bellot 36b} Its
execution time is among the best known on Von Neumann computers.
Therefore, TGk can be used very efficiently in Turner's like schemes of
implementation [Turner 791 Curryfied combinators lead to intermediate terms
and reductions which are not needed since they do not appear at human level
This work follows].W. Backus [Backus 78] when he remarks that combinatory
terms such as (B [) in CL are needless in practice.

i - TeE : the theory

This section describes briefly the theory and repeats fundamental theorems
given in [Bellot 87al. The theory is a formal system [Mondelson 641

Alphabet: K.5TLD constants
VO,VLV2,.... enumerable set of variables
% = reduction and equality symbols
: application symbol
{,) parenthesis

Terms: they are inductively defined using the auzxiliary notion of sequence,
- gvery atom {constant or variable) is a term
- every term is a sequence
-if ais aterm and s is a sequence, as is a sequence
-if aisaterm and 8 is a sequence, {a : s} isaterm
- closure rule

Remark: A sequence is the concatenation of a finite number of terms. Despite
of appearance, it is not structured. As a matter of fact, third formation rule
could have been written “if a is a term and s is a sequence, sa is a sequence’.
Sequence must be viewed as a syntactic notion only. For sake of readability, a
sequence which is the concatenation of terms xt,....Xa will be denoted x1..Xa
and conversely X1...Xa denotes a sequence composed with some terms xt,....Xa

215

Notations: As usual, application is "associative to the left” so that an application
(f : ai..an) : bi..bm may be written f : a1..an : b1..bm. Variables are denoted
using small letters x,y.z.. with possible indexes. Capital letters MNL...
{possibly indexed) denote terms. If M and N are terms, M = N denotes the
syntactic equality of M and N.

Formulas: A formuia may be P=» Q (P reducesio Q) or P =~ Q (P is equal to Q)
where P and Q are terms.

Axiom-schemes and inference rules:

(K) K:Xt.Xn:Yt.Ym= X1
(S) S:FGLGm:Xt.Xo= F:Xt.Xa:(Gt:Xt.Xa) ... (Gm: X1.Xn)
(T) T:GLGm:X1X2.Xn= Gt:X1X2.Xn:X2.Xn
(L) L:FGLGm:X1.Xo= F:X1.Xn:(Gt:Xt.Xn)Xt.Xn
(D) D:G1G2.Gm:X= G1: X
D:G1G2.Gm: X1X2. Xn = G2: X1X2.Xn
Xiw Y;i ltisn M= N
(a) (e)
F:Xt.Xom F:Y1.Yn M=N
F=G M=N
(f) (s)
F:Xt.Xn= G:Xt1.Xn N=M
Me N Nw=] M=-N, N-L
(t) (t")
M= L M-L
(r) M= M

Axjom-schemes are sets of axioms which all conform to a given pattern: (S},
(K), (T), (L) and (D) are axiom-schemes whereas others are inference rules.
Terminology is from [Curry 58, Hindley 861 A deductjon of a formula F from a
set of formulas {F1,..,Fa) is a tree with axioms and formulas from (F1,..,Fa) as
leafs and F as root. A node must be deduced from its sons using an inference
rule. We may write TeE, (F1...,Fa) |- F. If the set (F1,...Fn) is empty, Fis a
provable formula and we write TGt |- F.

Example of proof: (S)S:KK:x=»K:x:(K:x}) (®)K:x:(K:x)=»x
(t)

S:KK:xm™ x

thus: ToE|-S:KK:x= x

216

Definitions:

a) The notions of sybterm and occurrence are classical. It is assumed
that they are known (as usuall).

b} A combinator is a term which does not have a variable as a subterm.

c) A lhs of an axiom is a redex, the corresponding rhs is its contractum.

d) A garbage is any term corresponding to one of the following patterns:
(S:F:Xt.Xn) (T:G61.Gm:X), (L:F:Xt.Xn), (D:G:X1.Xa) Such terms
will never become heads of redexes.

e) A term which contains no redex and no garbage as a subterm is a
normal form (nf).

f} A term M equal to a nf N is said normalizable and N is its normal form.

The following thecrems are proved in [{Beliot 87al.

Diamond Lemma: If M= P and M= (), there exists L such that P=L and Qm L.
Proof: Adapted from Tait-Lof proof for CL and aA-calculus, 1981. It can be
deduced from the results of {Klop 80] on Combinatory Reduction Systems.

Church-Rosser (CR): If M = N, there exists L such that M= L and N= L.
Proof: Classical: the contraction-expansion path from M to N is reduced until it
becomes a two-steps path. The proof uses heavily the Diamond lemma.

Figures: M oy Q H] ‘l

N K
¥ K

P s L

Corollaries: The following properties are deduced from CR,
a)IfM=NandNisanf then M= N
b) The normal form of a term is unique

Consistency: TcE is consistent.
Proof: S and K are non equal normal forms since S cannot reduce to K.

Identity combinator: Let [=S : KK, then I : Xt.Xa = X1
Proof: 1:X1.Xaw S KK:Xt.Xom K:Xt.Xn:(KXt.Xn)= X1

Arguments selectors: Let us define the selectors family (Pk)k;i as follows:
P1=1 Pest=T:(K:Px)
then we have Pr:X1.Xo= Xr if 1<k and Px:Xt.Xa has no nf. otherwise.
Proof: Peet : XiX2.Xow T:(K:Px): Xt X2.Xn= (K:Pr: X1X2.Xn): X2.Xn
= Pr: X2 Xn
® Xn-1-k = Xo-(k+1)

Substitution: If M\Ni,. Nk are terms and x1,..Xk are variables, the parallel]
substitution of Ni,..Nx to xi.xt in M is denoted INLNg/x1.xxIM and is
inductively defined as follows:

INt.Ne/xt.xk]xi = Ni

[N1. Ne/xi.xklc = ¢ if c is an atom different from the variables xt,..xx
{NL.Ne/x1 3xJ(F : Yi.Ya) = [NL Ne/xe xeJF : INL N/ el [INL Ne/x0 260V

217

Combinatory Completness: Let M be a term and xt,..xk be variables, there
exists a term denoted (axt,..xx.MJ) such that none of the variables xi,.Xk
appears in it and (Axt,.xx . M) : Nt Ng = [N1.Ni/x1.3x]M.

Proof: (Axi.xk.xi} = Pi
(axt,..xx.y) = K:vy if v is an atom different from the xi
(xxt,..x2 . F: M1.Mn) = §:(ax1..2x . F) (ax1,..xe . Mt)..(ax1...xx . Mn)

Fixed-Point operator: There exists Y such that Y:Fw F:(Y:F).
Proof: Y = with Q=5:(K:8){(K:D(S: 1D

Normalizing extensional fixed-point family: There exists a family (Yn)at
such that for each n>1, we have the following properties:

a) Yo is normalizable

b) Ya : F is normalizable whenever F is normalizable

Yo :F:Xt.Xnw F:(Ya : F):X1. X

Proof: Ya=Gna:Cn withQa=2a .2 . axt.Xan. (f:{a:a:f): x1.Xn)

Numerals: They are defined as jterators following Church's idea for a-calculus,
j0]l=P2 In+11=1Isl:In] with {s]=S:(K:S)(K: D1

sothat we have [n]:fx= f°x with fPx=x and %! - fo(fx)

Proof: Recurrence on n.

Definabifity: Let [be a n-ary function on natural numbers, f is definable in
TGE if there exists a term [f] such that for all numbers mi....ms,r, we have:
f(mi,.,ma) =r iff Tee |- [f]: [mil.Ima) = [r]
f(mi,.ma) undefined iff {f]: [m1]l..Ima] is not normalizable

Definability theorem: Partial Recursive Functions are definable in TcE,
Proof: Ipersonail notes], facilited by polyadicity of terms.

The theory Te: Theory T6 is the same as theory TGE except that constants D
and L are not present.

It was conjectured in [Bellot 87a] that the theory TGE is a comservative
extension of Te. Let us prove this:

Lemma: If Pis a Te-term such that TGe|- Pw= Q, then TG|- P= (.

Proof: A contraction of a Te-term P in Tk consists of the replacement of a
TaE-redex in P by its contractum. Because P is a T6-term, the redex must be 2
T6-redex and so is the contractum. Thus the contraction and the resuiting term
are in T6. Now, by an elementary induction, we can prove the result because if
TGE |- P = Q, every contraction is done in T6,

Theorem: TGE is a conservative extension of Ta.
Proof: If TeE |- P = Q, there exists L such that Tee|- P= L and TeE|- Q= L. By
the lemma, TG |- P= L and T6 |- Q= L. Therefore, TG |- P = Q.

218

Conclusions on Tek: Te is a theory as powerful as similar theories. It has
been extended with constants L and D because it was unable to provide terms
such as B:

B:PGLGo: Xt Xm™ F:(Gi: X0.Xm)..{Gn : X1.Xm)

Thanks to Combinatory Completness, we are able to construct a Bam for given
n and m. Indeed, we can construct Ba which does not depend on m but it
seems impossible to construct a uniform B without D and L.

Functions such as B {or + in the introduction) are called Functions with variable
arity (Fva) in next sections. Fva's are definable in a-calculus and CL if we use a
powerful artefact such as coding argument sequences into lists. We introduce
the unformal notion of natural definability as definability without artefact. It
can be said that natural definability is definability without any construction
over the theory and its application. Partial Recursive Functions are naturally
definable in all theories but they are functions with fixed arity. Fva's are
Partial Recursive functions if we admit the coding of finite sequences of
natural numbers by natural numbers but yet it is an artefact.

It must be pointed out that natural definability for Fva's has no sense in a
Curryfied theory since functions cannot have a variable number of arguments
without an artefact: end marquer for arguments, sequence coding, structuring,
first argument as a counter and so on.

2 - Computability theory and Functions with variable arity

A function with variable arity (Fva) may have any enumerable domain of
definition. For sake of theorical purpose, we will consider only natural
numbers in this section. We assume that elementary notions of Computability
theory are known, they are to be found in [Cutland 80] or [Rogers 67] for a
very complete presentation. This section enters some results about
computability of Fva's which will help us to represent functions in TGE.

Notations: N is the set of natural numbers. For each k>1, N¥ is the cartesian
product of k times N. We define N® as UNK.

bt
Definition: A set § is effectively enumerable if there exists a bijective
function 3:S —+ N such that 3 and 3! are effectively computable.

Proposition: N® is effectively enumerable.
Proof: The bijectionis 3:N®° =+ N

(at,.,ag) = 281+ 2alna2el, -, galealssakekl g
This application is bijective because of unicity of binary representation of
natural numbers, and it is known how to compute it and its inverse. For a
complete proof, see [Ceiland 801

219

.

Definition: A (Fva) is a function f : N® = N. It can
be seen as a function which can be applied to any number of arguments.

Definition: A Fva f : N¥— N is an effectively computable (e.c.) Fva if there
exists an effectively computable function g : N— N such that f = g 0 @ where =
denotes extensional equality between functions on any implicit domain.

That is a normal definition for the effective computability of a Fva. We will try
some equivalent definitions for effective computability of Fva's.

Definitions: If f is a function from N*® into N, we note f /NEthe restriction of {
to NX. We note I¥ the canonical injection from N into N*® so that we have:

Ni———u-ﬂf! : N
canonical I; Q /
N

injection

Definition: A Fva f : N®— N is a computable Fva if there exists a family (ge)it
of effectively computable functions such that gr: NE + N is the restriction of f
to Nthat is to say: ge = f,yr=f o IX.

Remark: A computable Fva is not an effectively computable Fva unless we
can compute uniformly the gk from k. Let us choose gk such that gx(xt...xx)=1 if
the k-th P.R. function is total, 0 otherwise. Each function gr is effectively
computable since it is a constant function. Nevertheless, the Fva given by the
family (gx)i1 is not an e.c. Fva since the total property is not decidable.

The following definition of computability for Fva's is easily shown to be
equivalent to the preceding one since @ and 3! are effectively computable.

Definition: A Fva f:N®—= N isa computable Fva if there exists a [amily
(he)wi of effectively computable functions such that he: N + N and such that
we have: hrodolI¥= f/yr=folk

As a matter of fact, we just have the following commuting diagram:
il
N—i,¥2% N
Iil &C‘ V

220

Definition: - Gode| numbering and Universal Program - (Godel 31, Cutland 80}
Every effectively computable function f : N -+ N has a number denoted (f)
associated with it, it is its Godel number. Moreover, there exists a (k+1}-ary
function A¥ on natural numbers such that AX((f}ni..nk) = m if and only if
f(ni,..nk)=m. AF is called the Universal Program and is effectively computable.

The following notion is introduced as a substitute to effective computability:

Definition: A Fva f : N®— N is totally computable if there exists a family
(h)en of effectively computable functions such that (hx o @ o I¥) is the
restriction of f to N¥ and such that the Godel numbers ({hx))i:1 are given by an
effectively computable function h, ie: h(k) = {hxk).

Theorem: An effectively computable Fva is a totally computable Fva.

Proof: There exists an e.c. function g : N —+ N such that { ~ g 0 & Thus restriction
of f to N is fx = g 0 30 I¥. On the other hand, we search for hk such that

hx o 3o I¥ is the same as g 0 30 IX. We just have to take hk - g independently
of k. Therefore, the Godel numbers of the (hkJx:t are given by the constant
function h(k) = {g} which is effectively computable.

Theorem: A totally computable Fva is an effectively computable Fva.

Proof: The Fva C such that C(xi,..xx)-k is easily shown to be effectively
computable, Thus, there exists an ec. function ¢: N - N such that; C~co 2
Now: f(x1,..xk) = he(3(x1,..xx)) = Al((he), a(x1,..xx)) - Al(h(k),d(xL,..xx)).

But k is C(z1,..3x),

thus: f(x1,..xx) = AUB(C(x1,..Xk)),3(x1,..x8)) = Al(h(c(dl(x1,..xx))),d(x1,..3x))

The function g(x) = A'(h(c(x)),x) is e.c. since its subcomponents are e.c. and it is
built using substitution only. Therefore, f = g 0 @ with g being e.c.

Conclusions: The aim of the introduction of total computability was partly to
show that effective computability of Fva must be considering through the
coding 8 Whatever the notion that we choose (effective or total computability),
we always need the coding. Another solution would have to require the Godel
numbers ({gx))kt to be effectively computable in the first definition of
computability for Fva's. We would have: f(xt,..xx) - g&(x1,..,.xx) - A{{gk),x1....x%)
Thus: f(xt,.xx) - AX(g(k)x1,..xk) = AKG(C(x1,...XK)),X1,..,XK)

The problem is to extract A¥ from k=C(x1..xx). Therefore, this definition of
total computability cannot be proved equivalent to effective computability. An
effective computable Fva is a totally computable Fva in the present sense but
the converse is not easily provable (if it is reallyt).

3 - The theory TGE and functions with variable arity

Let T be the set of Tee-terms, T¥ is the cartesian product TxTx xT where T

appears k times and T* is the union UT¥.
kat

221

A function with variable arity (Fva) in Tar is a function f : T® -» T.

Definition: A Fva [: T® — T is representable in TcE if there exists a term [f]
such that f(ti,..ta) =t iff [f]: ti..ta = t. The term [f] is called a representative of
the Fvaf,

The rest of this section is devoted to the search for representatives of Fva's in
the theory TGE. We know that ordinary functions (with fixed arity) are
definable and therefore representable in TeE (cf. §1). Thus, we restrict our
attention and do not consider this particular kind of Fva.

3.a) Using fixed-points

Given a Fva f : T® - T to represent, it is sometimes possible to define it
recursively. The recurrence must be done on the length of the arguments
sequence and will be handled with the D combinator which allows a
discrimination on arguments count.

For instance, let us consider the Fva: d: ™®— T
{t1,..tx) — [k]

d is an argument counter. It could be expressed with a recursive scheme:
d(tt) = [1]
d(tit2,..tx) = 1 + d(t2,..tx)

Therefore, we must have:
gl =K:{1]: 11
[dl:tetz otk =[+]:[11(0d]:t2 .)
=S (KD KIIDId] 12 .tk
=T (K:(S: (KD KD IAD) -t t2 .. 1k

Using D, we obtain the following recursive equation:
{dl=D: (K:[1D (T:K:(S: (KD KI1D [dhy

which is solved using the extensional fixed-point operator of section | and the
abstraction algorithm (this could be done manually too):

[dl=Y : d.D : (K:[1D (T:(K:(S: (KL«]) (KL1]) d))))

Remark: It can be proved that combinator D could be replaced by [d]. We can
construct [d] from D as above. The converse is quite easy to show.

3.b) Using Church's iterators

The scheme of this method is quite similar to the fixed-point method but
conclusion is different. It uses basically the representation given for total
computability in section 2. Let f : T®* - T be a Fva to represent, we try to
determine the [fx] which represents f restricted to TX and to express [fx] from
{fe-1]. In this sense, it is very close to recursivity in 3.a.

222

For instance, let us search for a such that:
a([nil,...[nk}) = [ni+.+nk} where nt,..,nx are natural numbers

We have: ai(ini]) = [n1] therefore we can take: {ai} = I
And: ax(inil,. . Ingd) = [+] : [n1]} ak-1(fnz],... Ink])

Thus: fax] : [nt] .. [nx]

(+1: Indd (ax-1] ; In2] .. [nxl)

=[] (1 [} Ing]) (T (K:lag-1]) : [nd] .. [ne))
=S ¢ (KD T (T:K:{ax1])) : Int]. Ing]

i

Then: fat} = 1
lak]l = A :[ax-1] with A=(aa.S : (K:[+D) I (T: (K :[aD)
Such a recurring family of combinators is in canonical form [Robinet 82} and

can be easily computed with Church's iterators, ie: those taking their places in
the theory TGE The result is:

fag] = [k-1]: A1

But we know how to compute [kl with the combinator [d] of section 3.a. We
have: [k-1]=1[-]: (Id]: [n1].[ne}) [1]

={-1:(d]: T [nil.Ink]) (2]

=S (K:-DIdl K : 2D : 1 [n1].nk]

Let us define: {d'] = S:(K:[-D[d] (K :[2}), we have: [k-1]=[d]: 1 [nt]l.Ink]

Thus: fal: Ini] .. [ng]
= [akl : [n1] .. {ng]
={k-11: A 1:ind .. ng]
={d1: 1 intlng}: A1:[nd.. [nkl
=S [d] (KAYEKD : @intlnkd : Intl . Ingl
=T:(8 : [d] (KA) (K:D) : 1 [m]. {nk]
=L (K (T:(S : [d] (KAYEKD)M K: 1) : [ml]. [nxl

Therefore: lal = L (K:(T:(S : (S:{K:[-DIdV (K [2D) (KA) KIN) (K: D

Property: If we know {fi} and if [fz.1] = F : [fx], a representative of the Fva f
is: Fl=L:(K:AT: (8 (S:K:[-DId K : [21) (KF) K: D)) K: D
Proof: As above,

3.c) Direct intuition

The following example is that of a uniform composition operator. It emphasizes
on the fact that general abstractions are not feasible without difficulty. The
definition of B is: B:FG1.Gm:Xt.Xn =F:(Gt: Xt.Xn) .. (Gn: Xt. Xn)

B could be called a functional with variable arity. The difficulty is that we have
two variable arguments sequences. We have:

F:{G1:Xt.Xn) . (Gm: Xt.Xa)

=K:F:Xt.Xe 1 (Gt:X1.Xn) .. (Gm: Xt.Xn)
=S:(K:F)Gt.Gm: Xt.Xn

223

and: S:(K:F)Gi.Gm
~K:8:G1.Gm: (K:(K:F):G1.Gm) G1.Gm
=L:(K:8) (K:(K:F)):G1.Gm
=K:L:FG1Gm:(K:(KS):FGtGn) (§:(KK)(S:(KK)I):FGtGam):Gt.Gm
=8 : (KL) (K(K:S)) (5:(KK)(S:(KK)I)) :FGL.Gm:GL.Gm
=T:(8 : (KL) (K:AK:S) (S:(KK)(S:(KK)I1))):FGi1Gm

Therefore, we canchoose: B = T : (S : (KL) (K:(K:S)) (S:(KK)(S:(KK)I))

This example sets the problem of an abstraction algorithm which embodies
unspecified arguments sequences and returns a result which does not depend
on the iength of the arguments sequences. Such an algorithm would have been
useful to find B such that: B:FGt.Gm=S:(K:F)GLGn

3.d) General Abstraction algorithm

We call general abstraction the fact of abstracting an unspecified arguments
sequence in a term which can contain part of this argument sequence. It is
strongly different from the notion of abstraction in the Completness theorem.
This later abstraction deals only with finite and known arguments sequences
and terms such as (Ax,y. x : x y).

In the following, we use x1.Xa as the denotation for the unspecified arguments
sequence. We just know that n»1 and that the sequence is composed with
variables x with numerical indexes. The purpose of the general abstraction
algorithm is to compute (ax1.xn.M) for a certain class of A-terms so that the
result does not depend on n (which always remains unknown). A complete
algorithm is possible. First at all, we must define the set of A-terms on which
the algorithm applies. We must admit that variables xi are no more ordinacy
variables since they appear in the arguments sequence. Moreover, it is
intuitively clear that a A-term may contain subsequences like x2.Xn-3 Which
implies that m>5. Therefore, for each A-term we have a least bound for the
valu hs of admissibl ts ces. This minimal value
for n is included in the definition of A-terms as an indexe to A as follows:

Ax-terms and Ax-sequences: they are inductively defined,

-every atom (constant or variable) is an Ai-term

-if i is a natural number and i>1, then xi is an Ai-term

-every Akx-term is an Ak-sequence

-if k1,k2 are natural numbers such that k1>1, xx1..Xa-x2 is an Ari«x2-sequence

- if s is an Ap-sequence and t is an Aq-term, then st is an Ax-sequence
with k = max(p,q).

-if s is an Ap-sequence and ki.k2 are natural numbers such that ki1,
S Xki..Xn-k2 is an Agq-sequence with q - max(p,k1+k2)

- if f is an Ap-term and s is an Aq-term, then (f : s) is an Ar-sequence
with k - max(p.q)

-closure rule

224

Examples: {§:K8) isan Ai-term ,
(S:x1:%2.%0-3K X3 X4 X1.Xn) is an As-term

Remark: There is no need to introduce formally subsequences like xp.xq with p
and q being natural numbers since such a sequence can be written
extensionally. For instance, x3..X7 is exactly the same as X3 X4 X5 X6 X7.

Property: Subterms and subsequences of an Ap-term are respectively
Ag-subterms and Ag-subsequences with some q<p.

Substitution in Ax-terms and Arx-sequences: Let Xi1.XN be an ordinary
sequence and M be an Ak-term with k < N, we note n{X1.XnN){M] the result of
the substitution of the sequence X1.XN to the unspecified sequence x1.xa in M.
This substitution is inductively defined:

-mXi.XnN)al =a if aisan atom (constant or variable)

-m(X1.XN)xil = Xi if iis a natural number

(X XN xet..x0-22} = Xr1. XN-k2 if k1 and k2 are natural numbers
such that k1>1

-n(Xe. XN)st] = o{X1. Xn)[s] m{X1. Xn)t] if s is an A-sequence and t an A-term

(X XN){s xe1..Xn-22] = m(X1. XnN)Ms] Xe1. XN-z2 if k1 and k2 are natural
numbers such that k121 and k2,0

-n(X XNE - s} = n(Xe XN)IF) - m(X1.XN)[s] if [is aterm and s is a sequence

Examples:
mabcdef)lS : xi : ¥2.x0-3K ¥3%4x1.Xn]=S:a:bcKcdabcdef
mabcde)lS : xt: x2.30-3Kx3x4x0.30]=S:a:bKcdabcde

Now, we have the toois for expressing the main theorem of this section:

General Compietness theorem: Let M be an Ax-term for some natural
number k > 1, there exists a term denoted A[M] such that for every sequence
Xi.XN with k < N, we have: aAM]: Xt.Xn= o{X1. XN)IM]. Moreover, AlMl is given
by an abstraction algorithm.

Using a cumbersome syntax, this theorem establishes that we are able to
uniformly abstract an unspecified arguments sequence in any A-term. For
instance we are able to find B in 3.cas B = alS : (K : x1) x2.xa}. The term
between brackets is an A2-term. The proof of the theorem is done
constructively: we describe an algorithm which computes M. In order to do
this, we need some technical lemmas (U,V and W) proved in the appendix.
They set the existence of particular combinators used in the description of the
General Abstraction algorithm.

Lemma A: There exists a combinator A such that for every term F and every
sequence Xi.XN, we have:

A:F:XuXN = F:XtXN:Xt.XN

225

Proof: we have:

F:Xt.XN:XLXN
e (K:F:IXLXN): Xt XN:Xt.XN
e T:(K:F):IXtLXN:Xt.XN
e T:(T:(K:F)):1X1LXN
e K:(T:(T:(K:F))):Xt.XN:(K:T:Xt.XN)X1.XN
e L:K:(T:(T:(K:F)K:1I):XrXN

Thus, we just have toset: A=(f . L:(K:(T:AT:(K:fDNK:1I))

Lemma U: There exists a combinator U such that for all terms F and M and
every sequence X1.XN, we have:

U:FM:XLXN =» F: XL XN M

Lemma V: There exists a family (Vpg)pt.q0 of combinators such that for all
natural numbers p>1 and 0, every term F and every sequences Xt.XN and
Yi.YMwith M > p+q, we have:

Vpag:F:XtL.XN:Y.YM = F:X1.XNYp.YM-q

Lemma W: There exists a family (Wp.q)p:1.q0 of combinators such that for all
natural numbers p>1 and @0, every term F and every sequence X1L.XN of
length N: p+q, we have:

Wpq:F:Xt.XN = F:Xp . XN-g

Generalized Abstraction Algorithm: In the computation of AlM], we must
take into account cases where M is an atom or a single xi and cases when M is
an application (f : s). In these last cases, we make an induction on the
sequence s.

a) If M =a and a is an atom, then aAlM] = X : a, since we have:

AIM]: X1 XN
K:a:Xt.XN
a

m(X1.XN)a
o(X1. XN)M

QY

b) If M = xi and i is a natural number, then alM] = P4, since we have:

AIM] : X1.XN
Pi: X1.XN
Xi
m(X1.XN)xi
n{X1. XN)M

3L

c) If M =F:xp.xa-q with p and q being natural numbers (p>1,9>0) and F being
an A-term, then AlM] = A : AlWpq: F], since we have:

f)

226

AM]: X1.XN
A:AlWpq:Fl: Xi.Xn
AlWpq: Fl:Xo.XN: Xt Xn
Xt XN Woaq:Fl: Xt.XN
Wo.q: o(Xt. XN)F): X1.XN
n(Xt. XW){F] : Xp.XN-q
(X1 XN)[F : ¥p.Xn-q]
o(X1. XN)M

IR ju j_“‘ln

e

fM=F: MMt with k being a natural number and F, M1,.. Mk being
A-terms, then AlM] = S : AIF] alMi].. AlMk), since we have:

AM]: X1.XN

S : AlF) aAlMul.. AlMg] : X1. XN

(AIF] : X0.XN) : (alM1]: Xo.Xn) ... (AlMg] : X0 Xn)
mXe XNIF] 0 o(Xe XM - o(X. XN)[Mk]
m(XL. X0F] - (X XN) M1 Mk]

(X0 Xn)F : Mt. Mgl

m(Xt. XN)[M]

[EENLNET I T Sl

If M=F:st with s being an A-sequence and Ft being A-terms,
then AlM] = AlU:F1t:s], since we have:

AIM) : X1.XN

AU:Fi:s]: XX

n(Xe. XNIU:F1:s]

m{Xe. XNU] : n(Xe XOIF] olXe Xl o(Xe.XN)s]
U m(Xe XWIF] of X0 XN0t : n(Xe. XN)ls]

r(Xe. XNF] : n(Xe Xw)ls) (Xt Xw)it]

wXt. XWIF] (X1 XN)s t]

(Xt XN)HF : s t]

m(Xt. XN)M]

38 8830

If M =F:s xp.Xn-q With p21,920 being natural numbers, s being
an A-sequence and F being an A-term, then aAM] = A:AlVpq:F:s], since:

AM]: X1.XNn

A:AlVpg:F:sl:X1.Xn

AVpq:F:sl: Xu.Xn: X1 XN

m(X1. XN Vpg: F:sl: X1.Xn

m(Xe. Xn)[Vpgl : (Xt XN)F] : n(Xu XN){s] : X0 XN
Vpq: m(Xe XNIF] : o(X1.Xn)s) : X XN

m(X0 XN0F] : X1 Xn)is} Xp. XN-q

(X1 XN)F] : of X1, XN)s xp.Xa-g]

(X1, XN0F : s xp..xn-g)

n(Xt. Xn)IM}

fn e v 3 3 8 8 810

227

The definition of A[M] follows inductive definition of A-terms and A-sequences,
it contains the sketch of its proof which can be formally done by a recurrence
on B(M) = Bt(M)+B2(M) where B1(M) is the number of subsequences Xp..Xa-q (for
some p,q) in M and B82(M) the maximal length of an Ak-sequence in M (trivial
inductive definition).

Example: Let us compute B = AlS : (K : x1) x2.%n]

B = alS:(K:xt) x2.Xn]
= A:AlV20:S: (K:xu)]
= A:(S:alV2o:S] AK:x1])
= A:(S: (S :AV20] AlSD) (S : 4Kl alxil))
=A:(S:(S: (K:V2p) (K:S) (S : (K:K) P1))

Thus: B=A:(S:(5:(:V20) (K:8) (8: (K:K) P1))

Optimisations: As usual, an abstraction algorithm is given in a simply
provable but unrefined version. There exists almost every time a better
technic. For instance, we could remark that if M does not contain any
occurrence of an xi or an Xa-i(even in a sequence), then we have: AM] = K : M.
This allows a simpler version for B since:

B=A:aV20:8:(K:x1)]
=A:(S : aAlVzo:S] AK:xil)
=A:(S: (K:(V2o:8)(S: (K:K)P1)

Once B is known, it could be used: if F does not contain any occurrence of an i
or an In-i then we have: AlF : MMkl = B : F AlMi].. AlMkl The fields of
exploration for a better algorithm are quite unlimited as it is today for
ordinary combinators. As a matter of fact, combinators U, (Vp.gmt.qo and
(Wo.gJmt.p0 are a little bit too intricate to be used efficiently in practice. Their
main virtues are theorical since they made a proved opening in a new field.

4 - Conclusions

This article presents a powerful theory of combinators named TeE whose main
differences with Combinatory Logic [Curry 581, A-caiculus [Barendregt 811,
Category theory [Cousinesu 851, URS [Strong 681 and other functional theories,
are that combinators are uncurryfied and that functions have naturally a
variable arity [Bellot 87al.

The main consequences of these choices are that ordinary abstractions give
very short and efficient terms and that functions with variable arity are
naturally representable, that is to say representable without any artefact over
the theory such as coding, structuration, end markers and so on. The task of
arguments manipulation is rejected on combinators.

It has been shown that natural representation of functions with variable arity
was not possible in usual languages (Lisp, ML,.) and theories. The theory Tee

228

has been proved very complele since we have constructed a General
Abstraction algorithm (the a-algorithm) which computes representations of
functions with variable arity which are specified under a very general form
(A-terms).

The theory is given with a very fast reduction machine which is that of the
Graal programming language iBellot 86b). This virtual machine is one of the
more efficient way of implementation on Von Neumann architectures. Graal
has been designed using uncurryfied combinators for efficiency and
generalized functional forms of FP systems for clarity. The result is a new,
powerful and pleasant functional language where programming is very
different from that of lambda-languages. Nevertheless, uncurryfied
combinators can be used for compiled versions of lambda-languages (such as
Lisp or ML) in a Turner's like approach. That is to say compilation of
generalized lambda-expressions with the a-algorithm and exXecution or
compilation on the Graal reduction machine. The result would be an efficient
lambda-ianguage allowing functions with variable arity without the previously
used notion of list or cartesian product. For instance, we could write in some
general syntax the polyadic addition function:

#define plus(zt.xs} n=l --—-- > X1 1+ plus(x2.xa)
This function would be compiled in:
plus = IF: aleg: (Id]: xt.x0) 1] alx1] al+:x1(plus: x2.xa}]
with: IF = apfg alp:xt.3n:fg 2120} = apfgA (S p (K FH{K:g)))

and is more naturally expressed that the usual Lisp version below which
assumes that arguments are structured into a list. The reason for this is
syntactic at first sight but, more deeply, a fambda-expression cannot express
arguments managing without giving them a structure or introducing special
combinators:

{de plus Iz
(if (naull x)
0
{+ (car lx) {apply 'plus {cdr 1x)})
Yo
Therefore, Tae-theory, Graal language and reduction machine are a lot for a
possible new point of view on functional programming style and
implementation on conventional architectures.

5 - Acknowiedgments

The authors are thankfull to A. Belkhir, R. Legrand, and D. Sarni for interesting
discussions on the subject and for their help in the realisation of the Graal
system and its theory. This work has been partly supported by the Gréco de
Programmation (Bordeaux) under project PACTE.

229

6 - References

[Arvind 821 Arvind, K.P. Gostelow
The U-interpreter, IEEE Computer. vol. 15, pp. 42-49, Feb. 1982,
[Backus 78] ' JW Backus

it;__Alg_q_b_mgLELg_m_gCACM Vol 1o 8 pp) 613- 641 1978,
[Barendregt 811 H.P. Barendregt

bda-Calculus, its syntax and ics, Studies in Logic and the Foundations
of Mathematics, Vol. 103, North Holland, 1981.
[Belkhir 861 A. Belkhir

Programmation Fonctionnelle et Parallélisme, Rapport Gréco de Programmation 1986,
[Bellot 86:] P Bellot

gducggg g;gggm ESOP 86 LNCS 213 B Robmet ed pp 82 98 Saa.rbrueken 1986
[Bellot 86b1] P. Bellot
Sur les sentiers du Graal, étude, conception et réalisation d'up langage de
programmation sans variable, These d'Etat, UPMC Paris 6, Rapport LITP 86-62, 1986.
[Bellot 87a] P. Bellot
Proposal for a natural formalization of functional programming concepts, submitted
to publication at RAIRO, 1987.
[Cardelli 851 L. Cardelli
Compiling a Functional Language, 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas, 1984,
[Chailloux 84! J. Chailtoux, M. Devin,]-M. Hullot
Lelisp. a portable and efficient Lisp system, 1984 ACM Symposium on Lisp and

Functional Programming, Austin, Texas, 1984.

[Cousineau 85] G. Cousineau, P-L. Curien, M. Mauny, A. Suarez
Combinateurs Catégoriques et Implementation des langages fonctionnels, 13th Spring

School of the LITP, LNCS. 242. G. Cousineau, P-L. Curien, B. Robinet ed., pp. 85-103.
Val d'Ajol, France, 1985,

[Curry 581 H.B. Curry . R Feys
Combinatory Logic Vol [, North Holland, 1958.
[Cutland 801 N.J Cutland

Computability, an introduction to recursive function theory Cambridge University

Press. 1980,

[Dennis 74] JB. Dennis

The varieties of DataFlow computers, IEEE Int. Conf. on Distributed Systems, 1979.
[Glaser 84} “H.Glaser , C. Hankin , D. Till

inci uncti , Prentice/Hall International, 1984.

[Godel 31] K. Godel

Ube QLMa A E athemati BIWe

System [enghsh translatwn in M Davxs The ggg ;gm Ra.venNY 1965
[Hindley 861 JR. Hindley,].P. Seldin

introduction to Combinators and lambda-Calculus, London Mathematical Society,

Student Texts I, Ca,mbmdge University Press, 1986,
(Klop 80] J W .Klop
Combinatory Reduction Systems, Ph.D. Thesis, University of Amsterdam, 1980.
[Mendeison 64! E. Mendelson

Introduction to Mathematical Logic, Van Nostrand, 2nd ed., 1979.

[ML 84]
The ML handbook. Rapport Inria, 1984,
[Robinet 82} B. Robinet
Combinateurs récurrents et itérateurs de Church, Rapport LITP 82-1, 1982.
[Rogers 671 H. Rogers
Theory of Recursive Functions and Effective Computability, Mc Graw Hill, N.Y., 1967.
[Strong 681] HR. Strong
ebraic eneralized re ive i ory, IBM Journal for Research and
Development, nov. 1968,
[Turner 791 DA Turner
ew i entation techpij 0 icative la , Software-Practice and

Experience, Vol. 9, pp. 31-49, 1979.

230

7 - Technical Appendix

This appendix is devoted to the proof of the three lemmas U V and W.
Combinators E! and E? of the following lemmas are strongly used in the proofs.

Notation: The notation M « N stands for N= M.

Lemma E!: There exists a combinator E! such that:
EL:F X1 Xz XN = F: X1 X2.XN

Proof: EL:F:Xi:X2.XN
m F.X1 X2 XN

e (K:F:X2.XN):(K:X1:X2.XN) X2.Xn
e L:K:F)K:X1):X2XN

Thus, it suffices to take: El=afax. (L K : D (K: D))

Lemma EZ: There exists a combinator EZ such that:
E2.F:Xt1X2.XN = F:X1:X2.XN

Proof: EZ:F:X1Xz2.XN
= F:X1:X2.XN
e F:{:X1X2.XN):X2.XN
e B:FI1:Xt1X2Xn:X2.XN
e T:(B:FI): X1 X2.Xn

Thus, it suffices to take: E2=aM(T:(B:f1)

Lemma U: There exists a combinator U such that:
U:FM:X1.Xn = F . Xi.X8M

Proof: We distinguish cases N-1 and N>1 in order to do a recursion using
combinator D as in section 3.a.
N=1: U.FM: X1
= F:Xi1M
= F:(1: XK : M X1}
e B:FI{K:MI:%1
In case N=1, it suffices to have: U:FM = B:FI(K:M)

N>t U:FM:XiX2. XN

F- Xi1Xo. XnM
EL:F:Xi-X2. XNM {-> lemma E!)
U:(EL:F: XM X2 XN {-> U used at level N-1)

U:(E:F: XK :M:X1) X2 XN
B: UGEL:F)(K:M): X1 :X2. XN
EZ: (B: UEL:F)(K:M)): XaX2. XN {-> lemma E?)

[O [

In case N>1, it suffices to have: U:FM = E2:- (B: U(E':F)(K: M)

231

Therefore, using the D combinator, we obtain a proper recursion if:

U:FPM = D:(B:FI(K:M)) (E%: (B: U(E:F)(K: M)
it suffices:

U=am(D: (B:f1(K:m)) (E2: (B: UGEL:D)(K:m)))
Therefore:

U=Y:0u. Wm (D: (B:f1K:m)) (E: B: u(E':0)K:mN))))

Lemma D': There exists a combinator D' such that:
D':FG:X1= F and D:FG:X1X2.Xn= G

Proof: D'= S:(K:D)(S:(K:K)P1)(5:(K:K)P2)

we have: D' :FG=» D:(K:F)(K:G)

Lemma E: There exists a combinator E such that:

E:F:Xt.Xn =» F:X1.XN-t when N> 1
Proof: We distinguish cases N=2 and N>2 in order to do a recursion using
combinator D as in section 3.a.
N=2: E:F: X1X2

=» F:Xi

e F:(1:X1X2)

< B:FI1:XiX2

Thus, in case N-2, we must have: E:F= B:FI

N>2: E:F:X1X2.Xn
= F:X1X2.XN-1
e El:F:Xt:X2.XN-1 (-> lemma E!)
e E:(E':F:X1) X2.XN {-> E used at level N-1}
e B:E(EL:F): X1 -X2.XN
e E':(B:E(E':F):XiX2.XN (-> lemma E?)

Thus, in case N>2, we must have: E:F = EZ:(B:E(E!:F))
The function which must be applied to X1. XN depending on N is:

D': (B:FI) (E2:(B:E(E!':F))):X2.XN
and the result is:

D':(B:FI)(E2: (B:E(E!':F))): X2.XN: Xt.XN

e K:(D':(B:FID(E*:(B:E(EL:F))): Xr.XN: X2.XN: X1.XN

e T:(K:(D:(B:FD(E2:(B:E(E':F)M)): Xt.XN: X1.XN

e A:T:K:(D:B:FDE:B:EE:PDNM: X1.XN
Therefore, we must have;

Ew A:(T:(K:(D':(B:FD(E2:(B:EE:FH)
Then:

E=Y: (e (A (T:(K:(D:B:fD(EE:(B:eEL:DINNY)

232

Lemma Z: There exists a family (Zq)oi of combinators such that:
Zo: F Xo.Xn = F:X1.Xn-g if N>g

Proof: We distinguish cases g=N-1 and g<N-1 in order to do a recursion as in
the proof of lemma E.
g=N-1: Zq:F X1.XxN
- F: X1
= F:(: X1.Xn)
e B:FIl: XtXn
In case g=N-1, we must have: Zg= B:F1

QN-1: Zg:F Xt.XN

= F:Xi.XN-qg

« E':F:Xt:¥X2.XNq {-> lemma EY)

e Zg:(E':F:X1) :Xz.XN {-> Zq used at level N-1)
e B:Zg(EL:F):X1:X2.XN

e E2:(B:Zq(E':F):X1X2.XN (-> lemma E%}

In case q<N-1, we must have: Zq = E2:(B:Zq(E!:F))

We have g=N-1 if the sequence X2.XN-(q-1) has length |. Therefore, the term
which must be applied to X1. XN is:

D':(B:FI)(E2:(B:2q(E': F))) : X2.Xa-(g-1)
And the result is:

D:(B:FI(E:(B:Zg (B : F)): X2 Xn-(q-1) : X1 X2. XN
& Zg1:(D:(B:FI)(E?:(B:Zg(E': F)))): X2.Xn : Xt X2.XN
e K:@g1:(D:(B:FD(EL:(B:Zq(E:FN): X1 X2.XN: X2.Xn : X1 X2.XN
e T:(K:{Zg1: (D :(B:FD(E2:(B:Zq (E':F)N)): Xt X2.XN: X1 X2.XN
& A:(T:(K:@¢1:(D:(B:F1)(E:(B:Zq (E' : PN : X1 X2.XN
Therefore, we may have:

Zg:F = A (T:(K:(Zqg1:(D:(B:FIDE2:(B:Zq B : P
And:

Zg = Y: Oz 06 (A (T (K: (Zg1: (D B:fDEL: B zEL: MM
So that:

Zg = Z:24-¢

with: Z=ar. (Y: (az (AL (A (T:(K:(c:(D:(B:fDE:B:zE DN
and: Z1=E

The conclusion is easy using Church’s iterators:
g = lg-11:2E

Lemma W: There exists a family (Wp.q)mt.q0 such that:
Woa:F:X1.Xn = F:Xp XNq if prq<eN

233

Proof: First at all, we must remark that Wi.q is exactly Zq of lemma Z. Now,
we try to find an iteration on p when p>1 (that implies that N>1).
Wpq: F:X1X2 XN
= F:Xp.XN-q
e Wp-19:F:X2.XN
e K:(Wprg:F): X1Xz.Xn: X2.XN
e T:(K:(Wp-tg:F)): X1 X2 XN

Therefore, it suffices to have:
Woqg = aw. (f AT (K:(w:)))): Wp-tqg if p>l
Wig = Zg

So that we choose: Wpq = [p-1] : Gw. WL (T:K:(w: M) Zg

Lemma V: There exists a family (Vp.q)mt. 0 such that:

Voq : F: XL XN :Ye.YM= F: X1 XNYp.YMq if prg<M
Proof: We distinguish cases N=1 and N>1 in order to use D.
N=1: Voq:F:Xt:YL.Yu

= F:XtVp.YMq

e EL:F:Xi:Yp¥Mq

e Wpq: (B F:X0): Y YM
In case N-1, it suffices to have: Vpq:F= ax.(Wpq:(E':F:x))

N>1: Voq:F: XtX2.XN:Yi.YM

w F:X1X2.XNYp. YMq

= EL:F:X1:X2.XNYp.YMq {-> lemma E')

e Vpg:(EL:F:X1): X2 XNYLYM {-> use of Vp.qat level N-1)
e B:Vpq(E':F):Xt: X2.XN: YiL.YM

e EX(B:Vpq(E':F)): Xt X2.XN: Yi.YM {-> femma E%)

In case N>1, it suffices to have: Vpq:F= E2:(B:Vpgq(E!:F)

Therefore, we must have:
Vpq:Fm D : (ax.(Wpq:(E':F:x))) (E2:(B: Vpq(E': F)))
Thus:

Vog = AL (D : (Ax . (Wpgq:(E':£: 1)) (B2 (B: Vpq(E': D))

in

And:

Vpg = Y:(av. (. (D : (ax.(Wpq:(E':f:x))) (B2 (B:v(E': D))

1]

