
7920 | Soft Matter, 2015, 11, 7920--7931 This journal is©The Royal Society of Chemistry 2015

Cite this: SoftMatter, 2015,

11, 7920

A theory for the phase behavior of mixtures of
active particles†

Sho C. Takatori and John F. Brady*

Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT

that quantifies the particles’ kinetic energy and gauges how ‘‘hot’’ or ‘‘cold’’ the system is. For systems

far from equilibrium, such as active matter, it is unclear whether the concept of a ‘‘temperature’’ exists

and whether self-propelled entities are capable of thermally equilibrating like passive Brownian

suspensions. Here we develop a simple mechanical theory to study the phase behavior and

‘‘temperature’’ of a mixture of self-propelled particles. A mixture of active swimmers and passive

Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities

that get shared upon particle collisions. We derive an explicit equation of state for the active/passive

mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical

potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria

predict in general different phase boundaries, facilitating considerations in simulations and experiments

about which ensemble of variables are held fixed and varied.

1 Introduction

Active matter systems like colonies of bacteria and self-propelled

synthetic microswimmers are a rich area of study for soft matter.

The fundamental and seemingly elementary ability of self-

propulsion allows active systems to free themselves from classical

thermodynamic constraints and to control their own motion and

the surrounding environment. Their inherently nonequilibrium

properties engender intriguing behavior such as spontaneous

self-assembly and pattern formation,1,2 making active matter a

fascinating but challenging system to study.

Recently a new ‘‘swim pressure’’ concept was introduced—

namely, all active entities exert a unique mechanical pressure

owing to their self-motion.3,4 This perspective was applied5 to

predict the self-assembly of a suspension of active particles into

regions of dense and dilute phases observed in both experiments

and simulations.6–10 The usefulness of the mechanical pressure to

illuminate active matter’s physical principles begs the question:

what is the temperature of active matter? Do active swimmers

‘‘thermally equilibrate’’ with their surroundings? Although it is clear

that the mechanical pressure can be quantified and is valid out of

equilibrium, it is uncertain whether the notion of a temperature

exists and can be explained in basic physical quantities.

To understand the temperature of active matter, we shall

first discuss a simple experiment involving passive Brownian

suspensions (i.e., no self-propulsion) which can be rigorously

related to conventional thermodynamic quantities like the tem-

perature and free energy. Suppose we have a purely Brownian

suspension with thermal energy (kBT)H that is separated by a

thermally-insulated partition from another Brownian system

with a different temperature (kBT)C, as shown in Fig. 1. The

partition is suddenly removed and the particles at different

temperatures are allowed to mix. The ‘‘hot’’ and ‘‘cold’’ parti-

cles undergo many collisions, share their kinetic energy with

Fig. 1 Schematic of the mixing process of purely Brownian suspensions

(top) and active systems (bottom) that are initially at two different ‘‘tem-

peratures.’’ The Brownian particles thermally equilibrate their thermal

energy kBT whereas the active swimmers do not share their characteristic

‘‘energy scale’’ ksTs � zU0
2tR/2.
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each other, and eventually equilibrate to a common tempera-

ture (kBT)eq.

Now suppose we do the same mixing experiment with self-

propelled swimmers at two different activity levels. For simplicity

we consider self-propelled spheres of radii a that translate with an

intrinsic swim speed U0, reorient with a reorientation time tR, and

experience a hydrodynamic drag factor z from the surrounding

continuous Newtonian fluid. Their motion can be described as a

random-walk process for times t 4 tR with a diffusivity Dswim =

U0
2tR/2 in two dimensions (2D). Their characteristic ‘‘energy

scale’’ is not the thermal energy kBT = zD0 where D0 is the

Stokes–Einstein–Sutherland translational diffusivity, but comes

from their self-propulsive activity, defined as ksTs � zDswim =

zU0
2tR/2 (see later section for a more detailed treatment).

A system of ‘‘hot’’ active swimmers with (ksTs)H is initially

separated from ‘‘cold’’ swimmers with (ksTs)C as shown in

Fig. 1. When the partition is removed, the swimmers with

different activity levels spontaneously mix and undergo colli-

sions with each other. When a swimmer collides into another

swimmer, it displaces the body by its size a until they move

completely clear of each others’ trajectories. After the collision,

each swimmer then continues its motion with the same activity

it had initially—there is no sharing of kinetic activity (ksTs)

upon collisions. This implies that the swimmers’ activity scale

ksTs � zU0
2tR/2 does not get shared via collisions and thus does

not ‘‘equilibrate’’ like the temperature of a classical fluid kBT.

This simple experiment already reveals the richness and challenge

to understand the ‘‘temperature’’ of nonequilibrium active systems.

A simple multicomponent mixture of self-propelled particles

with two different activities is an ideal system to discover and

study this problem in greater detail. Previous studies have

provided various interpretations of the temperature in a non-

equilibrium active matter system.11–13 We discuss a new perspec-

tive by developing a mechanical pressure theory for predicting the

phase behavior of a mixture of active swimmers over the entire

phase space of the system. Our theory applies in general to

a multicomponent suspension with swimmers of different

activities, but perhaps the most straightforward mixture is that

of active self-propelled particles and passive Brownian particles

in a single solvent. In this mixture we must treat active swimmers

and passive particles as independent species, because their

compositions vary in space due to the phase-separating behavior

of active suspensions. This is true in general for multicomponent

systems—in a simple polymeric solution of polyethylene in

benzene, the polyethylene molecules do not all have the same

number of segments or molecular weight, and thus generally need

to be treated as different components. Experiments also often use

mixed solvents in which the solvent composition inside a polymer

coil (or gel) is in general different from the outer regions, as

certain solvent species preferentially remain inside (or outside)

the polymer coil.14

We consider a simple mixture of spherical active and passive

Brownian particles with equal size a; the passive particles

translate by Brownian motion but are otherwise inactive (see

Appendix A for the equations of motion). We do not include the

effects of hydrodynamic interactions, and there is no polar

order of the swimmers or any large-scale collective motion

(e.g., bioconvection). We find that many new insights about

the temperature of active matter can be obtained from this

simple system.

In the next section we further extend the mixing example

discussed above (Fig. 1) by analyzing the effects of adding

a small concentration of passive Brownian particles into an

active system. We analyze the quantities that ‘‘equilibrate’’ in

an active system by studying the collisions between a swimmer

and a passive particle. In Section 3 we develop a simple

mechanical theory by identifying the different contributions

that make up the total active pressure of the mixture. Since

active matter is an inherently nonequilibrium system, we do not

rely upon the thermodynamic free energy or chemical potential to

predict the phase behavior of the system. Unlike these thermo-

dynamic quantities, the mechanical stress (or pressure) is defined

out of equilibrium and can be used to analyze mechanical

instability of active matter. We then take our equation of state

to compute what would be the nonequilibrium analogs of the free

energy and chemical potential. Lastly, we analyze different stabi-

lity criteria, facilitating discussion about the variables that may be

held fixed and varied in experiments and computer simulations.

2 Do active particles ‘‘thermally’’
equilibrate?

From the mixing process in Fig. 1 we learned that the charac-

teristic activity scale of the swimmers do not equilibrate (i.e.,

(ksTs)H a (ksTs)C) unlike the thermal energy kBT of passive

Brownian particles. To gain further insight into the quantities

that get shared in an active system, suppose now that we have a

dilute concentration of passive bath particles in a sea of active

swimmers. The motion and behavior of passive bath particles

are influenced markedly by the swimmers’ reorientation Péclet

number PeR � a/(U0tR), a ratio of the swimmer size a to its run

length U0tR.

Swimmers with run lengths small compared to their size

(PeR c 1) reorient rapidly and take small swim steps behaving

as Brownian walkers. When a swimmer takes a step and

collides into a bath particle, the passive particle gets a dis-

placement of order the swimmer’s step size � O U0tRð Þ. After

many such collisions, the change in the translational diffusivity

of the passive bath particle is (Dbath � D0) B U0(U0tR)fa, where

D0 = kBT/z is the Stokes–Einstein–Sutherland diffusivity of an

isolated bath particle and fa is the area (or volume in 3D)

fraction of the swimmers. In this limit active swimmers repeat-

edly displace the bath particle by their run length U0tR, which

allows the bath particle to sense the activity or ‘temperature’ of

the swimmers via collisions. In other words, the bath particle

behaves as a ‘thermometer’ of the active suspension,12 where

the collisional displacements it receives from the swimmer can

be used to infer the swimmers’ characteristic ‘energy scale’

ksTs = zU0
2tR/2. This activity scale is analogous to the thermal

energy kBT, the kinetic activity of passive Brownian particles,

which can also be probed by analyzing the collisions between
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two passive particles. In this sense a suspension of swimmers

with small run lengths U0tR o a behaves similarly to a purely

Brownian suspension with an effective ‘temperature’ ksTs. For

active Brownian particles, this contribution is in addition to the

thermal kBT that gets shared as usual as a result of translational

Brownian motion. However, one would not be able to distin-

guish between the two contributions because the dynamics of

swimmers with PeR c 1 is equivalent to that of passive

Brownian particles. If we placed active swimmers that behave

identically to passive Brownian particles behind an osmotic

barrier, we would not be able to distinguish one from the other.

In this sense a Brownian particle can be interpreted as a

‘‘swimmer’’ having an extreme value of the reorientation Péclet

number PeBR-N.

The swim activity ksTs can also be understood by comparing

the statistical correlation of the self-propulsive swim force,

Fswim � zU0 = zU0q where q is the unit orientation vector

specifying the swimmer’s direction of self-propulsion, to that

of the Brownian force, FB. The swim force correlation

hFswim(t)Fswim(t0)i = (zU0)
2hq(t)q(t0)i = (zU0)

2 exp(�(t � t0)/tR)

turns into a delta-function correlation hFswim(t)Fswim(t0)i B

(zU0)
2tRd(t � t0) as tR - 0.15 Recall that as tR - 0 the active

swimmers behave as random Brownian walkers, which have the

white noise statistics FBðtÞFB t 0ð Þ ¼ 2kBTzd t� t 0ð Þ where the

overline indicates an average over the solvent fluctuations.

A comparison of these two correlations again suggests that the

swimmers’ kinetic activity can be interpreted by ksTs � zU0
2tR/2.

For swimmers with run lengths large compared to their size,

(PeR { 1), we observe a different behavior. Colliding into a bath

particle, the swimmer continues to push the bath particle until

it moves completely clear of the swimmer’s trajectory. The bath

particles receive a displacement of� OðaÞ upon colliding with a

swimmer, not the run length U0tR. Therefore the length scale

associated with collisions is the swimmer size a, and the change

in the long-time diffusivity of the bath particles (Dbath � D0) B

U0afa. Unlike the limit of PeR c 1 discussed above, here the bath

particles cannot probe the activity or ‘temperature’ of the swim-

mers because it only receives a displacement of its size a, even

though the swimmers actually diffuse with their swim diffusivity

Dswim
BU0

2tR. The ratio of the two diffusivities (D
bath� D0)/D

swim
B

U0afa/(U0
2tR) = faPeR, suggesting that the reorientation Péclet

number PeR � a/(U0tR) is the quantity that gets shared between

the swimmers via collisions for small PeR.
5 This implies that

the swimmers’ energy scale ksTs = zU0
2tR/2 does not get shared in

the collisions and thus does not represent the ‘temperature’ in

the classical sense.

The bath particles’ entirely different behavior for large and

small PeR reveals the richness and challenge to understanding

the ‘temperature’ of nonequilibrium active systems. This

marked change in the quantity that gets shared in active

systems is due to the capability of swimmers to have run

lengths U0tR that can be small or large compared to their size a.

This is a key fundamental difference between the swimmers’

activity ksTs and the thermal energy kBT. In a classical molecular

fluid, kBT is always the quantity that equilibrates because the

displacements of a passive Brownian particle are small compared

to its size a (or any other length scale), i.e. PeBR � a/(UBtB)-N

where UB = D0/a is the characteristic speed of a Brownian step

and tB is its momentum relaxation timescale.

Moreover, the swimmers must continuously collide with

the passive particle to impart information about their kinetic

activity, ksTs—even after many collisions, the passive particle

only possesses kBT units of thermal energy once all collisions

stop. This is in stark contrast with a molecular or kinetic fluid

particle that is able to completely transmit its kinetic activity to

another particle upon collisions. If a molecular fluid particle

with initially zero activity is placed inside a container full of

fluid particles with energy kBT, the inactive particle would

collide repeatedly and eventually attain the thermal energy

kBT. Furthermore, it will keep its kBT activity even when the

other particles are removed. In contrast, a passive particle

would cease to move (aside from its translational Brownian

motion) if active swimmers are removed because of the damp-

ing due to the solvent. In this sense the temperature of an active

nonequilibrium fluid is not well defined, as each swimmer has

its own unique intrinsic kinetic activity that does not get shared

and equilibrated.5

In pursuant of the discussion above we conducted Brownian

dynamics (BD) simulations (see Appendix) and computed the

long-time self diffusivity Dbath ¼ ð1=2Þ lim
t!1

dhxdxdi=dt, where xd

is the position of the passive bath particles. As shown in Fig. 2,

for small PeR we indeed find that Dbath = D0 + U0afa/2 fits the

data for all f t 0.4. At higher f the passive particles are

trapped into clusters by the swimmers and Dbath decays to 0.

Fig. 2 suggests that the parameter PeR gets shared upon

swimmer collisions and not the scale ksTs.

Finally, an important concept here is that the departure

induced by a swimmer is the same whether it collides into a

Fig. 2 Long-time self diffusivity of a passive particle as a function of the

total area fraction for different values of the active swimmer fraction xa.

The known Brownian diffusivity D0 was subtracted from the results. The

solid line is the analytical theory and symbols are Brownian dynamics (BD)

simulations. All data collapse onto a single curve when the diffusivity is

scaled with U0axa/2.
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passive particle or into another active swimmer. In both cases

the displacement due to the collision is the swimmer size a (for

small PeR), and this is the key idea underlying the mechanical

theory which we explain below.

3 Mechanical theory

Our theory applies in general to a mixture of active swimmers

with different activity levels, but here we focus on a mixture of

active swimmers and passive particles. Since a passive particle

behaves equivalently to an ‘‘active’’ particle with a very small

reorientation time and step size, this system corresponds to the

limiting case of a mixture of one group of swimmers with a

finite, nonzero PeR and another group of ‘‘swimmers’’ with

PeR - N. The general case is a mixture of active swimmers

with two different, finite PeaR and PedR. However, the active and

passive limit is interesting from an experimental perspective

because a mixture of passive and active particles is easy to

make. Mixtures of swimmers with different, finite PeR are

difficult to analyze because of the inherent variations in activity

in living organisms and in synthetic self-propelled particles due

to fabrication defects.

We are now in a position to derive a simple mechanical

pressure theory to predict the phase behavior of a mixture of

active and passive particles. The total active pressure of the

mixture is given by

Pact = Pswim + PP
a + PP

d + nkBT, (1)

where Pswim is the ‘swim pressure’, PP
a and PP

d are the inter-

particle pressure contributions of the active swimmer and

passive particle, respectively, and nkBT is the Brownian osmotic

pressure. It is permissible to add the separate contributions of

the pressure in what appears to be a superposition; this is true

in general for molecular, Brownian and active systems. Eqn (1)

is the additional pressure contribution due to the particles

(both active and passive); the solvent pressure pf is arbitrary

and constant in our analyses.

In generalPact is a function of (f, xa, PeR, ksTs, kBT), where f

is the total area fraction (f = fa + fd), fa and fd are the area

fractions of the active and passive particles, respectively, xa =

fa/f is the active swimmer composition, the reorientation

Péclet number PeR � a/(U0tR) is the ratio of swimmer size a

to its run length U0tR, ksTs � zU0
2tR/2 is the swimmers’

characteristic ‘energy scale’ as discussed earlier, and kBT is

the thermal energy. We can also express the active pressure

using the area fractions of the active and passive particles,

Pact(fa, fd, PeR, ksTs, kBT). To reduce the number of para-

meters, we take equal size active and passive particles aa = ad = a

and assume that swimmer reorientation is thermally induced so

that the translational and reorientational diffusivities are related

via the Stokes–Einstein–Sutherland expressions: (D0/a
2)/tR = 4/3.

Thus the ratio of the thermal energy to the swim activity is

kBT/(ksTs) = 8PeR
2/3. This is not a requirement; one can also vary a

swim Péclet number, Pes � U0a/D0 in addition to the reorientation

Péclet number PeR � a/(U0tR).

We now explain the independent pressure contributions in

detail below. The theory is presented for 2D, but it is straight-

forward to generalize to 3D.

3.1 Swim pressure of active swimmers, Pswim

The swim pressure is defined as the first moment of the swim

force Pswim = �nahx�F
swimi/2 (in 2D), where na is the number

density of swimmers and the angle brackets denote an average.3

It is permissible for computing the stress to interpret the self-

propulsion of an active swimmer as arising from a swim force,

Fswim � zU0,‡ where U0 = U0q; U0 is the swimming speed and q is

the unit orientation vector defining the swimmer’s direction of

self-propulsion. Physically, Fswim represents the force required to

prevent an active swimmer from moving, for example by optical

tweezers. The origin of the swim pressure stems from the notion

that confined self-propelled bodies exert a pressure on the con-

tainer boundaries as they collide into the surrounding walls.

The same notion applies to molecular gases that collide into the

container walls to exert a pressure or to colloidal solutes that

collide into a semipermeable membrane to exert an osmotic

pressure. The swim pressure is the ‘‘osmotic’’ pressure of active

particles.

A dilute system of purely active swimmers exerts an ‘ideal-

gas’ swim pressure given by Pswim = nazU0
2tR/2 = naksTs in 2D.3

The swim pressure is a single-particle self contribution in

which the relevant length scale (i.e. moment arm) is the

swimmers’ run length U0tR. As discussed earlier the ratio of

the swimmer size a to the run length U0tR is the reorientation

Péclet number PeR � a/(U0tR), and this parameter impacts the

phase behavior of active systems.5 For large PeR the swimmers

take small swim steps and behave as Brownian walkers, exerting the

swim pressure Pswim = nazU0
2tR/2 = naksTs for all concentrations.

For small PeR the swimmers have large run lengths and

undergo many collisions with passive particles and other

swimmers in a time tR. The average distance traveled by a

swimmer between reorientation events is reduced and the same

is true for the swim pressure. Extending the results for a purely

active system,5 we take (for small PeR)

Pswim = naksTs(1 � f � 0.2f2), (2)

where na is the number density of active swimmers,

ksTs � zU0
2tR/2 is the characteristic ‘energy scale’ of a swimmer.

Inside the parenthesis of eqn (2) is the total area fraction

because both active and passive particles hinder the run length

of an active swimmer. Recall our discussion from Section 2 that

the displacement induced by a swimmer is the same whether it

collides into another swimmer or a passive particle. For a dilute

system f- 0 we recover the ‘ideal-gas’ swim pressure Pswim =

naksTs. As the area fraction increases, both passive and active

particles collide and obstruct the motion of swimmers, decreasing

the run length and therefore the swim pressure. The decrease in

Pswim is the principle destabilizing term that facilitates a phase

transition in active systems. This is fundamentally different than a

‡ This however does not imply that the intrinsic swimming mechanism generates

a long-range (1/r) Stokes velocity field as does an external force.16,17
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purely Brownian system where repulsive interactions (e.g.,

excluded volume) necessarily increase the pressure and have a

stabilizing effect. Recall the concept that a passive Brownian

particle with the thermal energy kBT is equivalent to a ‘‘swimmer’’

with PeBR-N. In this work we focus on small PeR since this is

the limit that engenders interesting phase behavior in active

matter.

Fig. 3 confirms that all data from BD simulations collapse

onto eqn (2). To better understand eqn (2), we can analyze the

limits for large and small concentrations of active swimmers

relative to passive particles. Expanding the swim pressure for

small fd/fa = (1 � xa)/xa, we find

Pswim ¼ naksTs 1� fa � 0:2fa
2

� �

� naksTs 1þ 0:4fað Þfd

þO
fd

fa

� �2

: (3)

The first term on the right is the swim pressure for a purely

active system, and the second term is the leading-order correc-

tion of the hindrance provided by passive particles. As expected,

it is a 2-body correction of an active swimmer colliding into a

passive particle, Bnafd.

In the other limit of small concentration of active swimmers

relative to passive particles (i.e., small fa/fd = xa/(1 � xa)),

we find

Pswim ¼ naksTs 1� fd � 0:2fd
2

� �

þO
fa

fd

� �2

: (4)

Unlike the large active concentration limit, the reduction in the

swim pressure is caused entirely by the sea of passive particles.

Due to the small concentration of swimmers, a swimmer exerts

the self-term ‘ideal-gas’ swim pressure naksTs but does not

hinder the motion of other active swimmers.

3.2 Interparticle (collisional) pressure

In addition to the swim pressure, which is a single-particle

contribution to the mechanical pressure, there is also an

interparticle (or collisional) pressure arising from interactions

between the particles. Since two bodies are required for an

interaction (or collision for a hard-sphere potential) and the

relevant length scale is the particle size a, the interparticle

pressure scales as PP
B n2zU0a

3
B nksTsPeRf, fundamentally

different from the swim pressure. Furthermore, the interparticle

pressure monotonically increases with concentration for a

repulsive potential and helps stabilize a system. The competi-

tion between the destabilizing effect of the swim pressure and

the stabilizing effect of the interparticle (or collisional) pressure

controls the phase behavior of active systems. For clarity we split

the interparticle pressure into two contributions—collisions

induced by active swimmers and passive particles separately.

3.2.1 Active swimmer, PP
a. Extending the nonlinear micro-

rheology analysis,3 the collisional pressure contribution for

active swimmers (for small PeR) is

PP
a ¼ na

4

p
ksTsPeR þ 2kBT

� �

fgðfÞ; (5)

where kBT is the thermal energy and g(f) is the pair-distribution

function at contact. The first and second terms in the bracket

are the collisional pressures due to self-propulsion and Brow-

nian fluctuation, respectively. The former scales as BnanzU0a
3

whereas the latter scales as Bnanz(D0/a)a
3; the characteristic

Brownian speed D0/a replaces the swim speed U0 in the colli-

sional pressure arising from thermal noise. We again use the

total area fraction in eqn (5) since the active swimmers impart

the same departure whether they collide with a passive or an

active particle. Rigorously, the pair-distribution function is

different for each pair, i.e., gaa(f), gad(f), etc., but we assume

that they are all the same and equal to g(f) since we have taken

aa = ad. We adopt g(f) = (1 � f/f0)
�1 where f0 is the area

fraction at close packing (f0 = 0.9 in this study).5,18

3.2.2 Passive particle, PP
d. The collisional pressure contri-

bution of a passive particle is given by

PP
d ¼ nd

4

p
ksTsPeRxa þ 2kBT

� �

fgðfÞ: (6)

The first term in the brackets is the interparticle pressure due to

collisions with active swimmers, which scale as ndnazU0a
3 because

these collisions are induced only by the active swimmers. The

second term is the usual Brownian collisional pressure. Unlike

eqn (5) we see that the collisional pressure of passive particles has

an additional dependence on the active-swimmer fraction xa. If

there are no active swimmers (i.e., xa = 0) then eqn (6) reduces to

the usual collisional pressure of Brownian hard-spheres.19

Fig. 4 graphs the sum of the collisional pressures of the

contributions from both active and passive particles as a

function of the total area fraction. We see a dependence on

the composition of active swimmers xa especially at high area

coverage. We assume that swimmer reorientation is thermally

induced so that the translational and reorientational

Fig. 3 Swim pressure exerted by active swimmers in a mixture as a

function of the total area fraction f = fa + fd for different values of active

composition xa = fa/f and fixed PeR � a/(U0tR) = 0.1. Subscripts ‘‘a’’ and

‘‘d’’ refer to active and passive particles, respectively. The solid curve is the

mechanical theory eqn (2) and the symbols are BD simulations. The

swimmer activity ksTs � zU0
2tR/2.
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diffusivities are related via the Stokes–Einstein–Sutherland

expressions, (D0/a
2)/tR = 4/3, and the ratio of the thermal energy

to the swim activity is kBT/(ksTs) = 8PeR
2/3.

4 Phase behavior

Experiments and computer simulations have shown that a

suspension of purely active particles may self-assemble into

regions of dense and dilute phases, resembling an equilibrium

liquid–gas coexistence.6–10 The source of this phase separation

is that swimmers collide and obstruct each others’ movement,

causing large clusters to form at sufficiently high concentrations.13

Now, if this active system also contained passive Brownian parti-

cles, recent computer simulations20 and experiments21 have shown

that the composition of passive particles inside the dense cluster

phase is generally larger than that in the dilute phase, as they tend

to stay inside the cluster once they are pushed into one by an active

swimmer. In contrast, the active swimmers prefer to swim freely in

the dilute phase because their activity allows them to escape the

dense clusters.

Theory and simulations have produced phase diagrams for a

suspension of purely active swimmers,5,8,15,22–24 but a mixture of

active and passive particles is yet to be thoroughly analyzed.

Recently Stenhammar et al.20 conducted Brownian dynamics simu-

lations of a mixture of active and passive Brownian particles and

used a kinetic model to locate the phase boundaries. The kinetic

model based upon Redner et al.8 accurately predicts many regions

of phase space, but due to the theory’s inherent assumptions the

lower spinodal boundary is not well characterized.

Our theory is based upon the new ‘swim pressure’ perspec-

tive which accurately predicts the phase behavior of a system of

active swimmers.3–5 Others have subsequently used the swim

pressure to study phase-separating active systems.25,26 We now

have eqn (1), an equation of state that allows us to predict the

phase behavior of the active/passive mixture.

Interpreting the total density derivative of the active pressure

as a global mechanical instability, (qPact/qf)xa,Ts,PeR = 0, we can

identify the regions of stability in the phase diagram. This is a

purely mechanical definition of the spinodal and does not rely

upon thermodynamic arguments. As shown by the red curve in

Fig. 5, our prediction agrees well with Stenhammar et al.’s20

simulation data. Here the spinodal and the simulation data

correspond to a global dense/dilute-phase separation based upon

fluctuations in the total particle—active plus passive—density.

This is different from the phase separation that may occur locally

within each phase, as commonly seen in immiscible polymer

mixtures. There are no adjustable parameters in the comparison.

Compared to a purely active swimmer system, onset of phase

transition occurs at lower PeR when passive particles are pre-

sent. For xa = fa/f = 0.5 shown in Fig. 5, phase transition is

possible for PeR t 0.025, compared to PeR t 0.04 for a purely

active system xa = 1. Therefore, given a fixed total area fraction

the presence of passive particles makes it more difficult for

phase separation to occur, which may be an important consi-

deration in the design of experiments of active systems.

In Section 2 we discussed that the reorientation Péclet

number PeR is the quantity that gets shared upon collisions

between swimmers for PeR { 1. Using the swimmer activity

ksTs � zU0
2tR/2, we can rewrite PeR � a/(U0tR) = zU0a/(2ksTs),

which is interpreted as the interactive energy of the swimmer

(zU0)a to its swim activity scale ksTs. In Fig. 5 phase separation

becomes possible for small PeR, or large ksTs. In contrast, phase

transition in a classical thermodynamic system is usually driven

by attractive enthalpic interactions and becomes possible for

Fig. 4 Collisional pressure exerted by active and passive particles PP =

PP
a +PP

d for fixed PeR � a/(U0tR) = 0.1 as a function of the total area fraction

f = fa + fd and different values of active composition xa = fa/f. The solid

curve is the mechanical theory eqn (5) and (6) for xa = 0.3, and the symbols

are BD simulations. We take the swimmer reorientation to be thermally

induced so that kBT/(ksTs) = 8PeR
2/3.

Fig. 5 Phase diagram in the PeR � f plane in 2D for a fixed active

swimmer composition xa = 0.5. The colorbar shows the active pressure

scaled with the swim activity ksTs = zU0
2tR/2. The open and filled symbols

are simulation data of Stenhammar et al.
20 with a homogeneous and

phased-separated state, respectively. The solid and dashed red curves are

the spinodals delineating the regions of stability based upon fluctuations in

the total particle density and the thermodynamic definition, respectively.
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small kBT (low temperatures). If ksTs is interpreted as the ‘‘tem-

perature’’ of active matter, Fig. 5 suggests that mixtures of active

and passive particles may exhibit a lower critical solution tem-

perature (LCST) transition,27 commonly seen in thermosensitive

polymer systems.28 The LCST phase transition is dominated by

entropy—as PeR decreases (ksTs increases), the run length of the

swimmer increases, and the particle becomes effectively larger in

size and has less space available for entropic mixing.5 However,

because PeR is the quantity that gets shared upon collisions for

PeR { 1 (and not the activity ksTs), the activity ksTs does not play

the same role as the thermal energy scale kBT in LCST phase

transitions of polymer mixtures. This further verifies that the

‘‘temperature’’ of active matter is an elusive quantity that does

not have a direct mapping to the temperature of an equilibrium

system.

5 Limits of active pressure

Recent experiments by Kümmel et al.21 analyzed the phase

behavior of a mixture of passive particles with a small concen-

tration of active swimmers (fa E 0.01). They observed swimmers

gathering and compressing the passive particles into clusters.

By varying the concentration of passive particles, they observed

a phase separation of the mixture even at very small active

swimmer concentrations.

Our BD simulations agree qualitatively with the experiments.21

The active swimmers create tunnels in the sea of passive particles,

which open a path for other trailing swimmers to move through.

This leads to the formation of large clusters composed of purely

passive particles and individual swimmers moving in the dilute

phase, as shown in simulation images in Fig. 6. Based upon our

mechanical theory, there is an equality between the Brownian

collisional pressure of the dense passive clusters and the swim

pressure of the dilute active swimmers compressing the crystals.

A video of the BD simulation is available in the ESI.†

To model these observations, it is instructive to analyze the

limits of the active pressure for large and small concentrations of

active swimmers relative to passive particles. Since themechanical

pressure exerted by a system of purely active swimmers and purely

Brownian particles are known, we can interrogate the effect of

adding a small amount of passive or active particles into the

suspension. This may be particularly useful for further experi-

mental pursuits of active/passive mixtures.

In the limit of small active swimmer concentration relative

to passive particles, the active pressure is

Pact ¼ Posm þP00 fd;Ts;PeRð Þfa þO
fa

fd

� �2

; (7)

where the first term on the right is the osmotic pressure of a

purely Brownian suspension:

Posm = ndkBT(1 + 2fdg(fd)), (8)

and the second term in eqn (7) is

P00 fd;Ts;PeRð Þ

¼ naksTs 1� fd � 0:2fd
2

� ��

fa

þ 2nd
4

p
ksTsPeR þ 2kBT 2þ

fd

2f0

g fdð Þ

� �� �

g fdð Þ

þ ndkBT=fd:

(9)

In this limit, the swim pressure and swimmers’ interparticle

collisions appear in the leading-order correction. Taking the

global density fluctuation qPact/qf = 0, we find that the

spinodal qualitatively agrees with the experiments of Kümmel

et al.21—a lower spinodal boundary of f B 0.45 and the

divergence of the interparticle pressure near close packing.

A phase diagram in the PeR � f plane for different active

swimmer compositions is shown in Fig. 6. As xa decreases the

spinodal curve lowers to smaller PeR because phase separation

becomes more difficult to observe with a smaller fraction of

swimmers. For smaller xa, the Brownian crystals have more time

to melt and dissolve into a homogeneous system, and hence the

swimmer must have a small PeR that is in commensurate with

the small xa. Kümmel et al.21 report phase separation in swimmers

with PeR E 0.04, but our theory suggests that PeR must be smaller

(PeR t 0.01) for phase separation to be possible at the small

concentration of active swimmers used in their study.

In the other limit of large active swimmer concentration relative

to passive particles, we expect phase behavior similar to those

observed in purely active suspensions.5 The passive particles can

act as nucleation sites for cluster formation, which may spark an

earlier onset of phase separation. The active pressure has the form

Pact ¼ Pact fa;fd ¼ 0;Ts;PeRð Þ þP0 fa;Ts;PeRð Þfd þO
fd

fa

� �2

;

(10)

Fig. 6 Phase diagram in the PeR � f plane in 2D for different active

swimmer compositions xa = fa/f. The solid curves are the spinodals

delineating the regions of stability based upon fluctuations in the total

particle density. The two-phase region diminishes as xa decreases. Steady-

state images from BD simulations are shown for PeR = 0.01, xa = 0.05 at

f = 0.35 (left) and f = 0.6 (right), corresponding to a homogeneous and

phased-separated state, respectively. The red and white circles are the

active and passive particles, respectively.
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where the first term on the right is the active pressure for a purely

active swimmer suspension5 (i.e., eqn (1) with fd = 0):

Pact fa;fd ¼ 0;Ts;PeRð Þ ¼ naksTs 1� fa � 0:2fa
2

� �

þ na
4

p
ksTsPeR þ 2kBT

� �

fag fað Þ

þ nakBT ;

(11)

and the second term in eqn (10) is

P0 fa;Ts;PeRð Þ ¼ � naksTs 1þ 0:4fað Þ

þ na
4

p
ksTsPeR þ 2kBT

� �

2þ
fa

f0

g fað Þ

� �

g fað Þ

þ nakBT=fa:

(12)

As expected the leading-order correction to the swim and inter-

particle pressures scales asBnafd. As shown in Fig. 6, the spinodal

curve for xa E 1 remains high because phase separation is

dominated by the hindered motion of the active swimmers.

6 ‘Thermodynamic’ quantities

Thermodynamic quantities like the chemical potential and free

energy are defined only for equilibrium systems. However,

standard macroscopic mechanical balances can be applied to

define quantities that are nonequilibrium analogs for active

systems.3,5 Here we extend the derivation of the nonequilibrium

free energy and chemical potential to mixtures of active and

passive particles, and interpret these quantities as a natural

extension for nonequilibrium systems.

The virtual work done by an external mechanical force (i.e.,

stress) due to an infinitesimal change in the system volume dV

is given by dW = �PdV where P is the applied mechanical

pressure. One can interpret this virtual work as the change in

Helmholtz free energy of the system due to an applied mechan-

ical stress, as is commonly done in elasticity theory.29 Upon

carefully imposing incompressibility of the solvent, one can

relate the nonequilibrium free energy to the mechanical pressure

of a multicomponent mixture as14

P ¼ �f þ
X

Nc

i¼1

fi

@f

@fi

þ f ð0Þ; (13)

where Nc is the number of species in the mixture and f (0) is the

free energy density of the pure solvent (which is arbitrary and

constant in our analysis). We interpret eqn (13) as the definition

of the free energy for nonequilibrium active systems with Pact in

place of P. For our two-component (plus the solvent) system, we

have Nc = 2 and the nonequilibrium free energy f act(fa, fd, Ts,

PeR) can be defined as

Pact þ f act ¼ fa

@f act

@fa

þ fd

@f act

@fd

: (14)

The general solution is

f act fa;fd;Ts;PeRð Þ

¼
ksTs

n

fa logfa � faf
f

10
þ 1

� ��

� 4PeRf0fa log f0 � fð Þ
1

p
1þ

fd

f

� �

þ
4f

3fa

PeR

� ��

þ
kBT

n

fa logfa þ fd logfdð Þ;

(15)

where n � pa2 is the projected area of a particle. This definition

for the nonequilibrium free energy agrees with the true thermo-

dynamic free energy for molecular or colloidal solutes in solution

(i.e., fact(fa = 0, fd, Ts, PeR) = f osm).14 To gain further insight into

the free energy, in the Appendix we analyze the limits of fact for

our mixture for large and small concentrations of active swimmers

relative to passive particles.

As done previously for a purely active system,3 we can derive

the nonequilibrium chemical potential for multicomponent

mixtures using purely mechanical arguments (see Appendix

C). For a mixture of active and passive particles, it is given by

na
@macta

@f
þ nd

@mactd

@f
¼ 1� fa � fdð Þ

@Pact

@f
: (16)

Again this expression agrees with the rigorous thermodynamic

definition of the chemical potential for mixtures of molecular

solutes in solution.14 The chemical potential for each species i

in a multicomponent system can thus be obtained from

macti ¼ ni

@f act

@fi

�Pact

� �

; (17)

where the reference states were absorbed into the free energy.

We can invoke eqn (15) and (1) to obtain the chemical potential

for the active (macta ) and passive (mactd ) species.

From the thermodynamics of mixtures, the stability criter-

ion using the free energy is given by det(q2f/qfiqfj) = 0.14 For

our system this reduces to

@2f act

@fa
2

� �

@2f act

@fd
2

� �

�
@2f act

@fa@fd

� �2

¼ 0: (18)

This gives us the reorientation Péclet number as a function of

the active and passive concentrations, PeR = PeR(fa, fd).

The dashed curve in Fig. 5 is the spinodal curve using

eqn (18) for a fixed active swimmer fraction xa = 0.5. This

spinodal boundary does not agree with the simulation data of

Stenhammar et al.,20 as eqn (18) predicts a different phase

boundary than those observed in a simulation. The simulations

reflect a global dilute/dense phase separation based upon

fluctuations in the total particle (both active and passive)

density. In contrast, eqn (18) interrogates the stability of the

free energy due to fluctuations in the active particle concen-

tration while keeping the passive particle concentration fixed,

and vice versa.

This facilitates an important consideration in both experi-

ments and simulations about which variables are held fixed
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and varied. Depending on the ensemble of variables that are

held fixed (active swimmer density, composition, etc.), the

theory predicts in general different phase boundaries. To

produce a phase diagram in a simulation, one typically fixes

the overall swimmer composition xa and swimmer PeR, and

varies the total area fraction f or vice versa. This corresponds to

a global dense/dilute-phase separation based upon fluctuations

in the total particle density, which is well described by the

mechanical instability criterion (qPact/qf)xa,Ts,PeR = 0, as shown

by the red solid curve in Fig. 5.

In the experiments of Kümmel et al.,21 the active swimmer area

fraction (fa = 0.01) and Péclet number Pe � U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tR=D0

p

¼ 20
� �

were held fixed, and the passive particle area fraction (fd) was

varied. The ensemble of variables that we fix and vary must

therefore be considered when we predict of the phase behavior of

active mixtures. It is likely that one can conduct an experiment or

simulation where the phase behavior agrees with the thermo-

dynamic spinodal det(q2f/qfiqfj) = 0 (red dashed curve in Fig. 5).

There remains much more to the phase portrait than the existing

studies and our mechanical theory have revealed.

7 Conclusions

We developed a simple mechanical theory to address an impor-

tant question in active matter: do active particles thermally

equilibrate, and if so, what is the quantity that gets shared upon

collisions? We found that the swimmers’ activity ksTs � zU0
2tR/2

does not have the same properties of the thermal energy kBT. The

swimmers’ capability to have run lengths U0tR small or large

compared to their size a (and other length scales in the problem)

distinguishes them from passive Brownian particles whose step

size is smaller than any other length scale in the system.

We discovered that for PeR � a/(U0tR){ 1 the quantity that

gets shared upon collisions is PeR, not the scale ksTs. This was

seen in the simple mixing experiment in Fig. 1 and from

analyzing the motion of a passive particle as a probe to measure

the kinetic activity of the swimmers (ksTs). The notion of the

swimmers’ energy ksTs and/or PeR being shared via collisions is

an interesting concept that may facilitate further theoretical

and experimental studies.

Another fundamental difference between an active system and

a classical fluid was found by observing the motion of a passive

particle in a sea of active swimmers. Even after undergoing many

collisions with swimmers, the passive bath particle ceases to

move (aside from its translational Brownian motion) if the

swimmers are removed because of the damping by the solvent.

In contrast, a passive bath particle placed inside a classical

molecular or colloidal solution keeps its kBT activity even when

the other particles are removed. Because the swimmers must

continuously collide into the passive bath particle to impart

information about their kinetic activity, there is no ‘‘thermal

equilibration’’ that takes place in an active suspension.

To understand the temperature and phase behavior of active

matter, we studied a mixture of active and passive Brownian

particles. Our theory applies more generally to a mixture of

active systems with different activities. In fact, we showed that a

passive Brownian particle behaves equivalently to a ‘‘swimmer’’

with PeR-N, so the active/passive mixture corresponds to a

limiting case of a mixture of active systems with different

activities. A swimmer that takes small steps and reorients

rapidly is indistinguishable from a purely Brownian particle if

it is placed behind an osmotic barrier. For a mixture of active

particles with different, finite PeR, we would simply write the

swim and collisional pressures for each individual species Pe(1)R ,

Pe(2)R , etc. The total active pressure of the system is a sum of the

contributions from all species, as in eqn (1).

By understanding the dependence of the active swimmer

composition xa and the total area fraction f in each of the active

pressure contributions, we obtained an explicit equation of state

for the active/passive mixture. The key principle in deriving the

equation of state was that a swimmer imparts the same displace-

ment whether it collides into another swimmer or a passive

particle. We found that the swim pressure decreases with increas-

ing area fraction and is the destabilizing term that leads to a phase

separation in active systems. In contrast, the interparticle (colli-

sional) pressure increases monotonically with the area fraction

and helps to stabilize the suspension from phase separation. The

competition between these two effects is determined by the

reorientation Péclet number, PeR� a/(U0tR). The spinodal specifies

the regions in the phase diagram where these two opposing effects

cancel precisely, and these regions were identified in the PeR � f

space for our mixture.

We corroborated our theory with recent simulations20 and

experiments21 of active/passive mixtures. Our simple model

may be a useful tool for predicting phase behavior in both

experiments and simulations, as many regions of phase space

are difficult to explore because of experimental and computa-

tional challenges of covering the parameter space.

We found that different stability conditions give rise to

different phase boundaries, facilitating considerations in simu-

lations about which variables are held fixed and varied. The

derivative of our active pressure with respect to the total area

fraction predicts accurately the global dense/dilute phase tran-

sitions observed in simulations. To predict the local phase

separation within the dense or dilute phase (as in immiscible

polymer mixtures), a different stability criterion is required.

Finally, we extended the mechanical theory to determine the

nonequilibrium chemical potential and free energy for a mix-

ture of active and passive species.

Extension of our theory to 3D and for different particle size

ratios is straightforward. In 3D the characteristic activity scale

becomes ksTs � zU0
2tR/6 instead of zU0

2tR/2 due to the extra

degree of freedom. For a mixture of particles with different

sizes a and b, the pair-distribution function adjusts to different

collision pairs gaa(f), gad(f), etc because now the particle–

particle separation at contact is different. For a polydispersed

active system, the large clusters are no longer crystalline and

are less stable than those in a monodisperse system. Therefore

the two-phase region in Fig. 5 shrinks and shifts to smaller PeR.

In our model we neglected hydrodynamic interactions between

the particles, which may contribute additional terms such as the
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‘‘hydrodynamic stresslet’’30 to the active pressure. We also did not

consider the effects of polar order and alignment of the swimmers,

which are not necessary for phase-separating systems.

Appendix
A. Micromechanical equations of motion

The active particle dynamics are governed by the N-particle

Langevin equation

0 ¼ �zU þ Fswim þ FP þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2z2D0

p

KT (A1)

dy

dt
¼

ffiffiffiffiffi

2

tR

r

LR (A2)

where U is the translational velocity, z is the hydrodynamic drag

factor, Fswim � zU0 = zU0q is the self-propulsive swim force, U0 is

the swim speed, y specifies the swimmers’ direction of motion

q = (cos y, sin y), FP is the interparticle force between the

particles to enforce no overlap, KT and LR are unit random

normal deviates, tR is the orientation time of the swimmer, and

D0 is the Stokes–Einstein–Sutherland translational diffusivity.

The passive Brownian particles are governed by the same

equation but without the self-propulsive force:

0 ¼ �zdUd þ FP þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2zd
2D0

p

LT; (A3)

where the subscript ‘‘d’’ indicates a passive particle. For simpli-

city in this work we considered spherical particles with the

same size for active and passive particles so that z = zd. The left-

hand side of eqn (A1) and (A3) is zero since inertia is negligible

for colloidal suspensions. A more detailed discussion concern-

ing the origin of the swim force and the role of hydrodynamic

interactions is available elsewhere.17

B. Limits of active free energy

To gain further insight into the free energy, we analyze the

limits of fact for our mixture system for large and small

concentrations of active swimmers relative to passive particles.

Expanding the active free energy for small e = fd/fa = (1 � xa)/xa,

we find in the limit of large active concentration

f act ¼ f act fa;fd ¼ 0;Ts;PeRð Þ þ f 0 fa;Ts;PeRð Þfd

þ
kBT

n

fd log
fd

fa

� �

þO e2
� �

;
(B1)

where n� pa2 is the projected area of a particle and the first term

on the right is the active free energy for a purely active system:5

f act fa;fd ¼ 0;Ts;PeRð Þ ¼
ksTs

n

fa logfa � fa

fa

10
þ 1

� ��

�4PeRf0 log f0 � fað Þ
1

p
þ
4

3
PeR

� ��

þ
kBT

n

fa logfa;

(B2)

and the second term in eqn (B1) is

f 0 fa;Ts;PeRð Þ

¼
ksTs

n

�fa

fa

5
þ 1

� ��

� 4PeRf0 log f0 � fað Þ �
fa=f0

1� fa=f0

� �

1

p
þ
4

3
PeR

� ��

þ
kBT

n

logfa:

(B3)

Expanding the swim pressure for small e0 = fa/fd = xa/(1 � xa),

we find in the limit of small active concentration

f act ¼ f osm þ f 00 fd;Ts;PeRð Þfa

þ
1

n

kBT þ ksTsð Þfa log
fa

fd

� �

þO e02
� �

;
(B4)

where the first term on the right is the osmotic pressure of a

purely Brownian suspension:

f osm ¼
kBT

n

fd logfd � f0 log f0 � fdð Þ½ �; (B5)

and the second term in eqn (B4) is

f 00 fd;Ts;PeRð Þ

¼
kBT

n

logfd þ 2f0 log f0 � fdð Þ½ �

þ
ksTs

n

logfd � fd

fd

10
þ 1

� �

�
8

p
PeRf0 log f0 � fdð Þ

� �

:

(B6)

The influence of the swim pressure and swimmers’ interparticle

collisions are present in the correction term.

C. Mechanical derivation of the chemical potential for

multicomponent systems

The number density of an Nc-component system§ satisfies the

conservation equation

@n

dt
þ
X

Nc

i¼1

ri � ji ¼ 0; (C1)

where ji = niui = nihui + jreli is the particle flux of species i,

jreli = ni(ui � hui) is the flux of species i relative to the suspension

average velocity hui, which is defined as hui ¼
P

Nc

i¼1

fiui þ ð1� fÞuf ,

and ui and uf are the number averaged velocity of swimmer species

i and fluid at a continuum point, respectively. The total volume (or

area) fraction of the particles is f ¼
P

Nc

i¼1

fi. Incompressibility

requires the suspension-average velocity (particles plus the fluid)

to satisfy r�hui = 0.

§ There are Nc + 1 total components, including the solvent.
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We apply an averaged macroscopic mechanical momentum

balance to obtain an expression for jreli . Following the standard

Irving–Kirkwood approach, we obtain

0 ¼ �
X

Nc

i¼1

nizi ui � huið Þ þ r � ract; (C2)

where ract = r
swim + r

P is the active stress and the left-hand side

is zero since inertia is negligible for colloidal systems. Using the

relative flux jreli = ni(ui � hui) we arrive at a relationship between

the active particle flux and gradients in the active stress:

X

Nc

i¼1

zij
rel
i ¼ r � ract: (C3)

We did not rely upon the notion of a thermodynamic chemical

potential or the free energy to arrive at this expression.

We can use our mechanical derivation to define a non-

equilibrium chemical potential by analogy to the quantity

whose gradient would drive a flux:

jreli ¼ �
ni

zið1� fÞ
rmacti ; (C4)

where again f ¼
P

Nc

j¼1

fj . This definition is analogous to that of a

thermodynamic system where the relative flux is driven by

gradients in the thermodynamic chemical potential. Substituting

eqn (C4) into eqn (C3) and using the definition Pact � �trract/2,

we arrive at

X

Nc

i¼1

ni
@macti

@f
¼ ð1� fÞ

@Pact

@f
: (C5)

For a two-component (active and passive) system, we have

na(qm
act
a /qf) + nd(qm

act
d /qf) = (1 � fa �fd)qP

act/qf, as given in

the main text.

This relationship between the chemical potential and pres-

sure is equivalent for a system of passive Brownian particles

and active swimmers with small tR. We thus interpret mact as a

natural definition and extension of the chemical potential for

nonequilibrium systems.

Comparison to thermodynamics. From equilibrium thermo-

dynamics,14 the chemical potential of species i for a multi-

component system is given by

mi ¼ n

@f

@fi

�P

� �

; (C6)

where n is the volume (or area) of a particle. The free energy is

related to the osmotic pressure by

fa

@f

@fa

þ fd

@f

@fd

¼ f þP: (C7)

Taking the density derivative of both eqn (C6) and (C7) and

combining the results, we obtain

na
@ma
@f

þ nd
@md
@f

¼ 1� fa � fdð Þ
@P

@f
; (C8)

which is identical to eqn (16) of the main text, a result obtained

using a mechanical derivation.

Therefore themechanical derivations of the stress, momentum

balance, and flux are in full agreement with thermodynamics.
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