
QUARTERLY OF APPLIED MATHEMATICS 37
APRIL 1985

A THEORY FOR THE WAVE-INDUCED MOTION
OF FINITE MONOMOLECULAR FILMS*
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Abstract. The fluctuating velocity field of monomolecular films of arbitrary configura-
tion is investigated when gravity waves propagate on the air-water interface. The surface-
active material is assumed to have visco-elastic properties and to be insoluble. Boundary-
layer techniques are employed, and a Dirichlet boundary value problem, involving
Helmholtz' equation for the divergence of the velocity field, is obtained for the film.
Circular and rectangular films are considered explicitly, whilst an approximate method is
given for slender films of arbitrary orientation. Application is made to viscous wave-
damping.

1. Introduction. Effects of monomolecular surface films on waves at an air-water
interface have been considered experimentally, both in the laboratory, [1, 11], and in the
open ocean, [8, 12], many investigations being concerned with dissipative properties. In
wave-tanks, the water surface is usually completely covered by the film. Conversely,
oceanic surface films (or "slicks"), of natural or artificial origin, may sometimes be
regarded as finite, depending on the wavelengths involved. For long-crested progressive
waves, much theoretical work on films of infinite extent exists, as exemplified in [6, 7, 10,
11]. Miles [13] investigated temporal wave-damping for water in a container, the upper
surface being a monolayer.

The situation when the film only partially covers the available water surface has been
considered recently in [3], where a two-dimensional model is given for gravity waves,
normally incident on a slick of finite width b. Conditions near the "edge" of the film were
treated by analogy with [4], which concerns the special case of an inextensible, horizon-
tally-immobile, semi-infinite film (b = oo).

In the present work, the model of [3] is extended to slicks of finite area and arbitrary
configuration, subjected to long-crested progressive waves. We make the following as-
sumptions.

(al) The monomolecular film has linear visco-elastic properties.
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(a2) The surface-active material is fully spread and insoluble.
(a3) The incident waves are gravity waves, and capillarity is negligible except near the

film perimeter, cf. [4],
(a4) Boundary-layer theory is applicable to both the vortical layers at the air-water

interface and the film.
Due to (a3, a4), inviscid theory yields an approximately constant wave-number k,

satisfying the dispersion relation

a2 = gk tanh kh, (1-1)

where a is the prescribed wave-frequency, g is gravitational acceleration, and h is the
uniform mean depth of water. If ^ is the kinematic viscosity of water, the rotational layer
has vertical length-scaleS = ek~l = (2v/a)l/2, so that (a4) requires

6 « min(k~l,h,L), (1-2)

where L is a characteristic length-scale for the film. In particular,

e = kS <k 1. (1.3)

Mainly, we seek a method for the determination of the oscillatory response of surfactant
elements to the incident waves, and this is accomplished via a boundary value problem for
Helmholtz' equation. In passing, some justification is given to a basic assumption of [13].
As an application of the theory, the direct influence of the film on the spatial attenuation
of the wave amplitude is examined, and a numerical example is presented.

2. Preliminary details. We consider a laterally-unbounded region of water, having
uniform equilibrium depth h, density p and viscosity ju = pv. The air-water interface is
clean, apart from the presence of a monomolecular film of finite area A. The oscillatory
velocity field aq is sought within the boundary layer adjacent to A, when long-crested
gravity waves are incident on the slick, a being the maximum wave-slope. We choose
Cartesian co-ordinates, x, y and z, with z measured vertically upwards from the mean
interfacial level. The incident wave is specified by the interfacial position

z = zt = aexTp\i{at — kvx)\, (2.1)

where a is the amplitude, a the real angular frequency, and kr the complex wave-number.
(Only real parts of complex expressions are physically significant.) The dominant part of
kv is real, and, for gravity waves, remains constant within the slick, (cf. [4]). In the
following, we retain only this dominant, inviscid part, kv = k, take a = ak 1, and write
A = 2ir/k for the wavelength; the relative error here is O(e). In the Cartesian system, the
velocity and position vector r are given by

q = ui +vj +wk, r = xi +yj +zk, (2.2)

where i,j and k are unit vectors, and |<?| = O(o/k). The horizontal velocity of the film is
denoted by av, where

U = vx(x, y, t)i +v (x, y, t)j. (2.3)
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3. The monomolecular film. The linearized constitutive relation satisfied by the surface
stress if in the film is taken to be similar to that given by Miles [13] and Slattery [14, pp.
155 and 158], viz.

%= + vMZ-'v)+VsV2v, (3.1)

wherein T, the interfacial tension, has an expansion of the form T0 + aTl + ..., and qd
and r)s are the surface dilatational and shear viscosities. Miles considered a film completely
covering the upper surface of fluid in a container having vertical sides, and made the
assumption that the horizontal components of the local film velocity, and fluid velocity
just beneath the oscillatory layer, are parallel. In fact, Miles assumed even more, in that
the ratio of the magnitudes, and the difference in phases, of these components are actually
constants. As a consequence, the vertical component of vorticity for the film,

0, = k ■ curl v, (3.2)

is zero, whence the corresponding component, k ■ curl q, vanishes throughout the fluid. In
the present work, Miles' assumption is not made. Indeed, it is not, in general, valid within
the framework of our idealized model of the finite slick. Further, we do not, in general,
have the simplification that vanishes.

As in [10], we take T = T(T), where F is the surfactant concentration; for insoluble
films, the linearized conservation equation gives

31^/3/ + 1^ -v = 0, (3.3)

37\/3r - xE.-v = 0, (3.4)

where x = -T0(dT/dT)r_T. By Newton's second law of motion, the sum of the surface
stress in the film, and the shear stresses due to the air and water, must be zero. We assume
that the atmospheric forces acting on the film are due to the wave motion alone. Thus,

If ~ m(3qH/dz + %j,w) + na(dqaH/dz + ^,wa) = 0 (z = 0), (3.5)

where the subscript H denotes the horizontal component of a vector quantity, and the
subscript a refers to a quantity evaluated for the air. On using equations (3.1) and (3.4) to
eliminate rf and 7\, we obtain

/ ^ 9
X +{vd+ Vs)fa 5LD + Vsk X

_3_
31 + Sh") ~ If

(3.6)
where

D = S. -v (3.7)

denotes the divergence of the horizontal component of velocity of the slick.
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At the film perimeter, C, the remaining conditions required for determination of the
linearized molecular velocities are shown in Appendix A to be given by

+(yd- VS)D + h)?vn/dn = 0\ (3.8a)
\Xh g C),- 29^/an) = 0 I K~H (3.8b)

where (s, n) are orthogonal curvilinear co-ordinates for the slick, with .v denoting arc-length
measured clockwise around C (viewed from above), and n being measured normally
inwards to C. The quantities vs, vn denote the components of the velocity vector v in terms
of this co-ordinate system. By (3.4), we note that, for slicks of uniform width, and infinite
extent in the ^-direction, the conditions (3.8a,b) reduce to the requirement that T, vanishes
at the edges of the film, when the latter are normal to the direction of propagation of
long-crested waves. This is in agreement with [3]. We emphasize, however, that, whilst the
boundary conditions (3.8a,b) are taken to be physically appropriate for our model, the
intrinsic composition of "edges" of natural or artificial slicks is, in general, very difficult
to quantify.

The oscillatory boundary layers adjacent to the whole interface have thickness 0(8). By
analogy with [3, 4], they are viewed in terms of the following sub-division, which, apart
from "weak" slicks (cf. §4), proves sufficient for our purposes.

(a) Adjacent to the clean part of the interface, we have region S.
(b) In the neighbourhood of the film perimeter C, there is a "transition region" TR,

wherein 8 is also a horizontal scale normal to C. Region TR connects 5 to
(c) a cylindrical region S\ containing the remaining part A' (outside that in TR) of the

slick.
For weak slicks, a further length-scale, A say, normal to C, which is much smaller than

the wavelength A, may be «: , = or » 8, depending on the intensity of concentration of
the surfactant. Such slicks are considered in Appendix C.

As discussed in Appendix B, the conditions (3.8a,b) may, to the present order of
accuracy, be effectively applied at the "perimeter", C' say, of A'. This property is of
extreme significance in that it enables us to simplify the calculation of the dominant
correction (due to the presence of the slick) of the velocity field qff of §4. Specifically, we
are able to avoid the technically-complicated calculation of qH in TR, as is apparent from
Appendix B. For weak slicks, the property holds only when A » A » S, but, for very
weak slicks such that A < 0(8), qffl is readily calculated within A' (see Appendix C).

4. Boundary value problem for the slick. Henceforth, the formulation is in terms of
non-dimensional variables

t' = at, r' = kr, q' = (o/k)q, v' = (a/k)v, T' = kiT/a1p,

but the "dash" is omitted for simplicity. Excluding weak slicks for the moment, the
dominant part, 0(\), of the horizontal velocity within region S' satisfies the boundary-layer
equation

dqH/dt = dqtfVdt + d2q_„/dZ2 (Z = z/e), (4.1)
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whence

Qh = g/T* + (g//' - ^/00>)exP[(1 + i)Z/21/2]. (4.2)

In these equations, Z is a stretched variable, q\f) denotes the in viscid, irrotational velocity
just beneath the vortical region 5", specifically, as Z -» -oo, and q\(j] is the horizontal
velocity at the monomolecular slick. Since \q,,\ = 0(1), the continuity equation gives
w = w<0) + 0(e) within S', whence irrotationality of the velocity field beyond the oscilla-
tory layer leads to

V(°> = = (a^/3z)(oo). (4.3)

Upon introduction of the parameters

= k2(pno/2)~1/2{x/o,r)d,7is}, (4.4)

which represent surface compressional modulus and surface viscosity, employment of the
time-periodicity of the linearized velocity field, and use of equations (4.2, 4.3), equation
(3.6) becomes

(I + i£)%P + i£sk X Z_Q, = (1 - i)[&qH +(paHa/pn)1/2l±qaH\

+ i2^2e5^[w(00) (4.5)

where f fd + fs and AqH = q\f] - qff denotes the change in horizontal velocity across
the interfacial boundary-layer region 5", adjacent to the film. In the present work, the
viscous and capillary length-scales are assumed to be comparable, whence the elastic
parameter £ becomes a measure of the ratio d[\og(T/Tt))\/d[\o%(T/VQ)\.

We note that

iff = gaH = W(0) = W(00) = */„<«>, (4.6)

by the requirement of continuity of velocity at the slick. For gravity waves, 10"5 < e < 10"2
(approximately), /ia//x = 1.35 X 10"2, (p^a/pju)1/2 = (e/efl)(/ia/ji) = 3.67 X 10"3.
Moreover, whilst we expect | qffi - qf^\ = 0( 1), V£, f, which holds even in the absence of
a slick, the difference in horizontal velocity, q^ - qffi, across the rotational layer in the
water is O(l) only for slicks of sufficient strength that |£ + z'£| ̂  0(X). In such cases,
equation (4.5) may be written as

(S + >Z)V-D + i!sk XlS=(l- i)Aq„, (4.7)
to a good degree of accuracy; "weak" slicks, having small visco-elastic parameters such
that || + z'f | «: 1, are considered in Appendix C, and are relatively ineffective in that they
do not modify the velocity field at lowest order, O(l). From equation (4.7), D and
satisfy the following non-homogeneous and homogeneous forms, respectively, of Helm-
holtz' equation,

V2D + m2D = m2d(co)\ . (4.8a)

V2fi + p2Q, = 0 / '' (4.8b)
where

m 2 _ (1-i)/(*+ tf), P2 = (1 - i)/X„ d^=^rq^=0( 1), (4.9)
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and the irrotationality of q(x) has been used. From equation (B6) of Appendix B, together
with principles of asymptotic matching, the boundary conditions for equations (4.8a,b) are

(£ + i$)D = 2i£s(dvs/ds - kv„) \ (4.10a)
\1H e C ),

£2 = 2dvs/dn = -2(dvn/ds + kvs) ) (4.10b)

where k(s) denotes the curvature of the film perimeter C, and the terms on the right-hand
sides are, in general, unknown at this stage. Thus, equations (4.8a,b) and (4.10a,b)
represent a coupled pair of boundary value problems for the 0(1) velocity components vs,
vn in the interior, A', of the film, wherein both D and £2 are <9(1) when the parameters |,
and f 5 are 0( 1).

4.1. Weak shear viscosity. In what follows, we consider only the case when effects of
shear viscosity are small (cf. [15, p. 1-236]), so that the film vorticity £2 is appreciable only
near the perimeter C. Thus, we take

£,«1, (4.1.1)
which is considered to be adequate for gravity waves, although, in [13, p. 465], the more
restrictive condition f <sc 1 is assumed. As discussed in Appendix C, there are three cases,
according as

(i) i»ry2»c, (h) ry2 = o(e), m ry2«e. (4.1.2)
When (i) applies, it is seen from equation (4.8b) that the solution for £2 (rH e A') assumes
a boundary-layer character. Specifically, there is a further boundary-layer region, A's say,
of scale 0(£y2) normal to C, which is essentially located within A' and adjacent to C',
and whose width is much greater than that, 0(e), of ATR. In case (ii), this boundary-layer
region coincides with ATR, whilst, for case (iii), it is embedded within ATR.

From equation (3.7) and boundary conditions (3.8a,b) at the film perimeter C, it is
indicated in Appendix B that, in each of (i), (ii) and (iii),

(a) the leading terms, 0(1), in vs, vn do not vary normally across ATR (that is, such terms
are independent of the magnified variable N = n/e),

(b) the leading non-zero term in D is Otmaxf^, e}) in ATR, but that
(c) the leading non-zero term in £2 is < 0(1), and, if it is 0(1), is independent of N in

Atr in case (i), but varies rapidly with n in ATR for cases (ii) and (iii), (since, to 0(1),
£2 = 0 at the inner edge, C', of ATR, by asymptotic matching principles applied to the
implication £2 = 0 (rH e A') of equation (4.8b)).

Thus, when (4.1.1) holds, the conditions (4.10a,b) may effectively be replaced by

D = 0 [cases (i), (ii), (iii)],) (r„eC'), (4.1.3a)
£2 = 0 [cases (ii), (iii)], | (4.1.3b)
£2 = 0 [case (i)], (z>/ e Q)> (4.1.3c)

where C's denotes the inner "edge" of the boundary-layer region A's. Helmholtz' equation
(4.8a), with the slight modification that m2 now represents (1 - /)/(£ + i$d) for purposes
of consistency, remains valid for D in each case (i), (ii), (iii). This applies, in case (i), even
to region A's, wherein equation (4.2), on which (4.8a) is based, holds, because the
horizontal scale, 0(fj/2), greatly exceeds the vertical scale, 0(e).
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Case (/). Within the boundary-layer region A's, we define the stretched variable

Ns = n/$y2 (rH<EA's), (4.1.4)
whence equations (4.8a,b) become

d2D/dN2 = 0 | (4.1.5a)
d2£l/dN2 -(1 + z')S2 = 0/ (4.1.5b)

The solutions appropriate to conditions (4.1.3a,c), and to boundedness of D as Ns -» oo,

£> = 0 \ (4.1.6a)
& =+(s)&ep\it - VffeAs)> (4.1.6b)

where <p(s) is to be determined via asymptotic matching with the solution for £2 in ATR.
Consequently, within the major interior part, A' — A's, of the slick, D satisfies the
following boundary value problem:

V2D + m2D = m2rf(to) (n > 0)

D = 0 (n = 0)
The condition on n = 0 here is deduced from equation (4.1.6a) via principles of asymp-
totic matching. Similarly, within A' - A's,

S2 = 0 {n > 0), (4.1.8)
by equation (4.8b). Thus, if, for any particular film, D can be obtained from equation
(4.1.7), the corresponding velocity components vs, vn are found from equation (4.7) to be
given by

v = q^)-m-2y_D (rH<=A'-A's), (4.1.9)

which shows that, apart from a constant factor, D plays the role of a velocity potential for
the film velocity v {rH e A' — A's) relative to the horizontal component of velocity just
beyond the oscillatory layer in the water. The expression for v at the "perimeter" C/ of
A' - A's, as given by equation (4.1.9), evaluated on n = 0, yields the dominant parts, 0(1),
independent of Ns and N, of the film velocity v in the boundary-layer regions A's and ATR,
(cf. (a), above), and complete our primary objective in case (i) of equation (4.1.2.). We
note once more that

vs = q}x) = -u(oo)n -j (rH e A's + ATR), (4.1.10)

that is, the dominant part of the film velocity parallel to C is equal to the corresponding
component of q'/f *.

From the expressions for vs, vn in A TK, the boundary condition (3.8b), and item (c)
above, we obtain

12 = -2(dv„/ds + kvs)„=0 (rH^ATR), (4.1.11)
provided that the right-hand side is non-zero. Then asymptotic matching at the "edge" C'
of ATR yields

<p(s)e" = -2(9 v„/ds + kvs)„_0, (4.1.12)
and hence completes the solution for S (rH e A'S) in equation (4.1.6b).
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Cases (/'/'), (Hi). When fs1/2 < 0(e), D satisfies the boundary value problem (4.1.7) in
the interior region A' of the slick, wherein equation (4.8b) yields 0 = 0 and v is given by
equation (4.1.9). Then, as in case (i), the velocities vs, vn are known in ATR, once D
(rH g A') has been determined. The value of 0 at the film perimeter C is given by

Q =-2(dv„/ds + kvs)n_0 (rH e C), (4.1.13)
but, otherwise, remains undetermined in ATR (cf. (c), above).

Work of Miles [13]. When the fluid has fixed lateral boundaries with vertical generators.
Miles assumed that

0 = 0 (rH e A'), (4.1.14)
which satisfies equation (4.8b). Instead of the condition (4.10b), he took

n-%P = 0 (rHeC'), (4.1.15)
where n is a unit horizontal vector normal to the perimeter C. This follows from (4.7),
since vn — 0(e) = q[x) on C'. Outside the oscillatory layers at the boundaries, the linear
velocity field is irrotational, and qtfo) satisfies a homogeneous Helmholtz equation. In
consequence, it is readily found that a simple solution of the form v = Bqff) is possible,
where B is a complex constant. This clarifies Miles' assumption of such a form, which,
however, is not generally valid for containers of variable depth. In the present context,
adoption of this expression for v would violate the condition (4.10b).

Progressive waves. With a view to application of the boundary value problem (4.1.7) to
specific geometries of films with weak parametric shear viscosity £s, we first write

(„(«), „<«)) = (P = coth/z),1

j<°°) =
for propagating waves. Then, on setting

D = Pf(r„)e" + [im2/(l - m2)] Pe«'~x), (4.1.17)
the function / is related to the finite dimensions of the film, and, for f, « 1, satisfies the
boundary value problem

V2/ + m2f = 0 (n > 0), (4.1.18)

/= -[;m2/(l - m2)]e-'x(n = 0). (4.1.19)

The film velocity is given by

v = -m-2Pe"^J- [m2P/{\ - m2)\iei0'x). (4.1.20)

In the important limiting case |£ + -» oo, as when the molecular elements are closely
packed, m -* 0 and it is seen from equations (4.1.17, 4.1.18, 4.1.19) that D -* 0, so that
the slick is inextensible—its area is conserved, but its shape may change with time. This
extreme is now considered in some detail.

5. Inextensible slicks. In the limit £2 + f2 —► oo, both D, which is the rate of extension
of a surfactant element per unit area, and / tend to zero. However, from equation (4.1.20),
the horizontal velocity of the surfactant molecules is given by

v,= lim { v} = -Pe" lim {m'2yf }, (5.1)
£2 + f2 — oo m->0

(4.1.16)
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so that stagnation of the film does not necessarily occur. In fact, as shown for infinitely-long
films in [3], horizontal immobility is exceptional.

If we set

lim {f/m2} = -iF, (5.2)
m~* 0

equations (4.1.18, 4.1.19) show that F is a harmonic function which satisfies the Dirichlet
problem

(5.3)
V2F = 0 (n > 0),
F=e'ix (n = 0).

Moreover, as already indicated, the horizontal component of velocity of the slick is
non-divergent,

D,= lim {-0}= lim {S't} o: £'^^ = 0. (5.4)
|2 + f2-oo £2 + f2-00

Some specific examples are now considered.
(1) Two-dimensional theory. When the slick has uniform width b and length / -> oo, as

measured in the x- and ^-directions, respectively, F is a function of x only, and it is readily
found that the horizontal velocity field is spatially uniform,

v, = iPe"%F = i(P/b)(e~ib - 1 )/<?", (5.5)

which is in agreement with [3], and partially confirms the boundary value problem (5.3)
for the inextensible slick of finite area. When b -* oo, (5.5) shows that the slick is
horizontally-immobile, as deduced by Lamb [9] and others, and this static condition also
occurs if b = Inn (n = 1,2,3,...). For b ¥= 2n-n, the slick oscillates to and fro, and has
constant width due to the non-divergent property.

(2) Circular slicks. We use polar co-ordinates such that x + iy = Re"*", with origin at the
centre of a circular slick of radius R. By use of the relation

OO

e'ix = J0(R) + 2 £ (~i)"jn(R) cos n<t> (5.6)
n = 1

involving Bessel functions Jn of the first kind, the solution of the boundary value problem
(5.3) is readily obtained:

00

F = J0(R) + 2 £ (-i)"Jn(R)(R/R)"cos n<{>. (5.7)
n = 1

Some particular properties may be mentioned.
(i) When the radius is small compared with the wavelength, R « 1 and

1
"ix = 1 - ^iRcos <j> + 0(R2)

vh = ^iR sin<f> + 0(R2)

Pe", (5.8)

Pe". (5.9)

The motion of the slick is essentially that of a speck, or flake, on a pure air-water
interface.
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(ii) At the other extreme when R » 1, it is found from the asymptotic form of Jn(R) as
R -* oo that the slick is stationary:

vIx —> 0, v,Y —* 0 as R -» oo, (5-10)

in agreement with (1), above, when b oo.
(iii) The slick is symmetrical about the jc-axis, on which v,Y = 0. Elsewhere, the

transverse, or y-, component of velocity is, in general, non-zero. At the centre of the slick,

(Oa-o = 2P[J1(R)/R\e", (5.11)
which is readily shown to be equal to the average value of vIx over both the perimeter C
(by potential theory) and the area A; that is,

/ , 1 rlv 1 r~R r2v , .
(vix)r-o=jZJ vixd4> = ^[ I vrxRdRd<i>. (5.12)

•'o irR-Jo Jo

The motion at the centre of the circular slick is therefore of some significance as a spatial
average, and, in Fig. 1, the function

\(o,x)R=0\/P= 2\J,{R)\/R, (5.13)
representing the ratio of the maximum velocity at the centre to that for a pure interface, is
plotted against R. By use of the identities

-| 00 -J 00

2^o(R) = E ("1)""1(2« - l)/2„-i(*)> 2RJ^R) = ^ H)"-12nJ2M)>
n=1 n—1

[16, p. 18], we obtain

(»/*)«-* = ̂ [±/o(^) - (* = \ + f )■
The corresponding ratio is also shown in Fig. 1 for these boundary points, and decreases
monotonically with R, in contrast with that at the mid-point. Conversely, for these
inextensible slicks, the centre is virtually motionless when the radius exceeds a wavelength
or so, but there remains significant displacement at the perimeter.

TO

0 6
K \/p

ou

02

6 _ 9 12 15
R

Fig. 1
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(3) Rectangular slicks. We consider a rectangular slick, of width b and length /, bounded
by the intersection of planes x = 0, x = b and y = + \l with the horizontal plane z = 0.
The solution of the boundary value problem (5.3) is

F =

where

x(e - 1) r, ■ nirx rnry
1 +    1- Y Bn sin —7— cosh —r-b " b bn = 1

(5.14)

lb2 {l ~ e ,ft(-l)"} .n-nl , , , n
B"=—n—7i—sechTh (5-15)

n 77 - bz

Bn - — j'sech-j/ (b = nvr), (5.16)

and the horizontal velocity components of the slick are given by

iP
V,x b

iP
v'y~ b

~ih nirx , niry
e - 1 + y mrBncos——cosh—;—, b bn = 1

v1 d • n7TX • u n*yL nirBnsm—— sinh —
n = 1

(5.17)

(5.18)

(5.19)

(i) When the width of the slick is much smaller than the wavelength, /> 1 and

v,x = P[ 1 + 0(ft)]e"l

vly=0(b)Pe" /'
for a/j>> value of the ratio ft//. The presence of such a slick has virtually no effect on the
motion of the water within the oscillatory boundary layer.

(ii) At the intersection of the lines of symmetry of the slick,

/'sin Ij-b
( Vjx) x — \/2b,y = 0 ~ 1

2*

l _ lb2 y (-l)msech(rn7r//fe)
4w27t2 — b2m = 1

ei(t-l/2b)

(b =£ Imtr), (5.20)

= (-l)mPe"sech |/ (b = 2mir), (5.21)

whereas the average value of vIx over A is given by

T7 f C/2'vIxdxdy = i(P/b)(e~ib - l)e", (5.22)
J0 ■'-1/2/

which is independent of /. The transverse component of velocity vanishes on the front
(x = 0) and rear (jc = b) edges, and on y = 0; vIx = «(oo) = Pe'u~x) on y = ± \l. If
b = 2mn (m = 1,2,...),

vIx = (-l)mZV'cosh jsech ^7 Ix = (5.23)

if b = (2m + l)7r,

vjy ~ v—L) sum y ~l I A = —v, = (-l)m/Vsinh jsech [x = ^rb I. (5-24)
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In (5.23), vIx is in phase with the velocity u(oc) = (-1 )mPe" at x = \b\ v/v in (5.24) is out
of phase by with the corresponding velocity u(cc) = (-1 )miPe". The ratios vlx/u((X') and
\v,Y/u(x)\ are plotted against y for this median line of inextensible rectangular slicks in
Fig. 2.

(4) Approximate theory. Consider a long, narrow slick having a smooth perimeter C, but,
otherwise, of quite general shape. The orientation with respect to the direction of wave
propagation is arbitrary, and slow variations therein (due, for example, to drifting) are
ignored. The configuration is shown in Fig. 3, where the A'-axis makes a positive angle 6
(< with the x-axis. On writing

F = e-iYsin6G(X,Y), (5.25)

the boundary value problem for G is

^4 + ^4 ~ 2/sin6»|^ - Gsin26> = 0 (h>0),\
dX2 37 3 Y / (5'26)

G = e~,xcos6 (n = 0).)

Let the equation of C be X = b ±(Y) for X ^ 0, and assume that \db ±/dY\ «c 1. In
consequence, \dG/dY\ should generally be much smaller than \dG/dX\, whence an

Fig. 3
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approximate solution, based on the neglect of drG/dYr {r = 1,2), is

_ e-'*+cos*sinh[(;f — b_)sing] + e"fe-cosgsinh [{b + - JlQsinfl]

sinh [c(F)sin$]

where c(Y) = b+(Y) — b_(Y). The approximation is justified provided that

db ±{Y)

(5.27)

dY <s: 1 and dY
« 1; (5.28)

the latter condition implies that this analysis usually fails in the vicinity of the extremities
of the slick. If 8 = 0, so that Y = y and the slick is broadside on to the wave direction,

vIx = [iP/c{Y)][e'ib^Y) - e-ih~(Y)]e",

vIy ~ 0(\vlxdc/dY\),
(5.29)

which is a simple extension of equation (5.5), and is analogous to "strip theory" in
aerodynamical wing-theory. The motion of molecular elements is essentially in the wave
direction. On the other hand, if 9 = \ir, so that Y = x and the slick is elongated in the
direction of wave propagation,

0/*> v/y ) = P (c°sh

i sinh

y ~ \{b_+ b + )

y - ~(b_+ b + ) e'(t ^'^/cosh yc(7). (5.30)

Thus, horizontal components of molecular displacements are comparable, unless |&+(y)|
« 1, in which case motion is predominantly in the wave direction. For general values of
6, it is readily found that, when |b +(^)l ^ 1-

G=l, dG/dX = —i cos 6, 8G/dY = ~{dc/dY)/c(Y),
and that

0lx = Pe>i-'\ vIy = 0{\db ±/dY\)P. (5.31)

(5) Shape of the slick. As mentioned previously, the area of the slick is conserved whilst
the shape of the perimeter varies throughout the wave cycle. If the equation (averaged over
a wave period) of the boundary is y(x, y) = 0, the instantaneous equation is

y(x, y) - aPe"(yF)y=0 -^7 = 0. (5.32)

Thus, for a circular slick, the equation of C is
CO

R - 2aPe" £ (-1)"Jn(R)~ cos n<t> = R, (5.33)
n-1 ^

which, when R <§: 1, reduces to

R + aPe"^icos 4> + ^-i?cos2<|)| = R, (5.34)

provided that R » acoth h, so that second-order effects (in a) are negligible. If the term
in cos 2<p is ignored in equation (5.34), the perimeter is a circle, of radius R and centre
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x = aP sin t,y = 0; retention of this term indicates that the boundary is an ellipse, having
this same centre, with axes of length R(2 — aPcost) and R(2 4- aPcost) in the x- and
^-directions, respectively.

6. Extensible slicks. For general values of the elastic and viscous parameters £ and
we must solve the boundary value problem of equations (4.1.18, 4.1.19) involving the
Helmholtz equation for /. In this case, both shape and area of the slick vary during wave
motion. We confine attention to circular slicks, for which it is found that

/ = ~[im2P/( 1 - m2)]

•A) ( R) r / r>\ \ ( -\\n J I P\ // i\, , -Jo^rnH) + 2 2^ (-1) Jn(mR) cos n<t> . (6.1)
J0(mR) n = i

The velocity of surfactant elements is obtained from equation (4.1.10), and, at the centre
of the slick,

Mr-o = [mP/( 1 - m2)}

If -=sc 1 and \m\R «: 1,

JX(R)
m

Jy (mR) (6.2)

Mr-o = ̂ (l - 1^'+ 1 '••I6"' (6'3)
and deviates only slightly from the inextensible expression.

The perimeter C is represented by

-2 K
9 RR = R +a

which, when R <sc 1 and \m\R « 1, gives

R = R -aP

im 2tt^" +{im2P/( 1 -w2)}cos(>e lx (6.4)

rcos<#> 4- }rRcos2(j> — •£-//?2 (cos <p + cos 3$)
1 O (6.5)

so that effects of finite visco-elastic properties, which enter at 0(R3), are small, and the
slick behaves very much as in the inextensible limit.

The area A(t) of the slick is readily found:

A(t) = 77 R2 + \2vaPmR/{\ — m2)]
J0(mR)

whence, asymptotic expansions of Bessel functions give

(6.6)

A(t) =

ttR'

77 R1

1 + ~aPm2R2e" (R « 1, \m\R « l),

1 + a/M-=) —77m . ( m cos( R — -7^) + /'cosf R — t77
77/? / 1 — m

(fl » 1, |m|fl » 1).
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6.1. Viscous dissipation. We recall that the propagating waves are assumed to be strictly
periodic in time (§2), and seek an estimate of the direct effect, in the form of viscous
damping, of the surface film on their spatial attenuation.

Thus, consider the energy equation for the fluid within a fixed vertical cylinder V,
extending over the whole depth and having a small rectangular cross-section with sides of
length Sx and Sy parallel to the x- and j-axes, respectively. Since the energy of this fluid is
constant in time, an approximation for the local wave amplitude, A(x, y) say, is obtained
as follows. The dominant part of the energy flux, averaged over a wave period, out of the
vertical sides of V is given by

$y J°[-Pwu]Xx + Sx dz = 2/i + sinh2/? [a2(x, y) - A2(x + Sx, y)]Sy, (6.1.1)
J-h 8 sinh h

where pw denotes the fluid pressure (beyond the oscillatory boundary layers) due to the
wave motion. Also, the dominant part of D, the mean rate of viscous dissipation of energy
of the fluid in V, arises from the vortical layers at the bottom and at the free surface
(provided that V pierces the slick). From the bottom layer, it is found that

Dh — 2~3/2e8x8y\q(bx')\ = 2"3/2eS.x:5>7l2cosech2 h (6.1.2)

(cf. equation (6.1.3) and set v = 0), and, from the surface layer,

Ds ~ 2~3/2e8x8y& [ |^<00) - i>|2 +(l + i)(q<oc> - u) • u*| (6.1.3)

(cf. equation (4.12a) of [13]), where v* is the complex conjugate of v. However

^((l + f)(<jr<00> - v) •(qicc) - v)* j = q(cc) - t;| ,

whence (6.1.3) can be written as a linear expression in v, viz,

Ds = 2'3/1ESxSyd?{(\ + /)(^(00) - v) ■ £(00)*}, (6.1.4)

from which equations (4.1.9), (4.1.16) and (4.1.17) give

Ds = 2~3/2eP2A2SxSy^ |(1 + i)[m~2e'xdf/dx + (1 — w2)-1] } . (6.1.5)

Then, from equations (6.1.1), (6.1.2) and (6.1.5), the local wave-attenuation rate within the
interior of the film is given by

1 _1/2 1 + ^{(1 + i)[m~2eixdf/dx +(1 - m2)"1] Icosh2/;
A dx £ 2h + sinh2/i ' ^ ^

For inextensible slicks, m -* 0, and we have

1 dA 1/2 1 + cosh2/? + ^{(l — i)e'xdF/dx}cosh2h
A dx £ 2h + sinh2/i ' (6.1.7)

In the two-dimensional theory, the solution of equations (4.1.18) and (4.1.19) is

/= ~[im2/( 1 - m2)\[e~,hsin mx - sinw(x - 6)]cosec mb, (6.1.8)

whence integration of (6.1.6) yields

[log/f]*::£ = -21/2e[yb + ®(ysl + ys2)]/(2h + sinh 2h), (6.1.9)
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where

yh = i.

7,1 = fc[(l + z')/(l - m2)]cosh2h,

ys2 = 2m[(l + 0/(1 — w2)~](cos& — cos mb )cosec mb cosh 2h.

Equation (6.1.9) represents an estimate of the reduction in amplitude experienced by the
wave in passing across the entire slick. The quantities yh and ys = y5l 4- ys2 are associated
with damping in the bottom and surface boundary layers, respectively; yjl corresponds to
an unbounded slick (b -» oo), so that ys2 represents the effect of finite width. In the
inextensible case,

yh = 1, @ysl = bcosh2h, S#ys2 = 2b~1(cosb — l)cosh2/j,

so that the contribution due to finite width (hence, to horizontal, spatially-uniform motion
of the slick) tends to reduce wave damping, unless b = 2wn (n = 1,2,3,...), although this
effect of finiteness is significant only when b is less than about 3, or, in other words, the
wavelength exceeds about twice the width of the slick. Thus, for example, in deep-water
conditions, a single inextensible slick is, in general, more effective in damping waves than
a number of smaller slicks of the same total width.

Numerical example. In the two-dimensional case, we illustrate the dissipative influence
of an inextensible film, of width 200m, in water of depth 16m and having kinematic
viscosity v = 0.01 cm2 sec"1. The percentage loss of the square of the wave amplitude due
to passage of the wave across the film, viz.

1 -(A2)x,b/{A2)x_0,

which is a measure of the wave energy deficit, is found from equation (6.1.9) to be about
1.1% and 26.4% for deep-water waves of length 29.5m (period 4.35 sec) and 4.3m (period
1.67 sec), respectively. The chosen data corresponds very closely to some of the measure-
ments reported in [8; cf. Fig. 4] and made in the North Sea. Direct comparison is not
possible for a variety of reasons, e.g. observations include additional damping effects due
to modification of wind input and of wave-wave interactions, directionality of the wave
field, non-uniformity of the film. Nevertheless, it seems worth recording that the measure-
ments yield values of about 92% and 79% for the ratio of the wave energy in the slick area
B1 to that in the "nonslick" area C, (see Fig. 3a of [8]), corresponding to "wave
attenuations" of 8% and 21% for the above longer and shorter waves, respectively.

7. Concluding remarks. Boundary-layer techniques and, in the case of weak shear
viscosities f's « 1 for the film, the vanishing (to lowest order) of the horizontal divergence
D at the " perimeter" C", have facilitated the determination of the oscillatory velocity v of
an idealized insoluble slick of intermediate visco-elastic parameters £, $d. For a specific
configuration and known m{£,$d), knowledge of v enables calculation of various film
characteristics, particularly (a) elliptical orbits of the horizontal molecular motion, and (b)
energy dissipated within the oscillatory layer adjacent to A. From (b), estimates may be
found for the total viscous damping when a wave propagates through a region containing
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either one large slick, as indicated in §6.1, or (say) a non-uniform distribution of small or
medium slicks (cf. [8, p. 436]).

Other extensions of the present work may prove possible, e.g. to soluble films or to
second-order drift, and consideration of a model for films of small, but finite, thickness
might be viable.

Appendix A. Boundary conditions at the edge of the film. It is readily found from [14,
pp. 156-158; 15, pp. 230-235] that the linearized condition at the edge, C, of the film may
be written as

[ri +(Vj ~ i)Jdivt)]« + tjs[(/3 X curl v) + 2(n • £.)?;] = 0 (rweC); (Al)
see, also, [6, pp. 354-355] for the case with r\d = 0. Components of (Al) in directions
normal and tangential to C give the following dimensional forms of boundary conditions:

Ti +(vd ~ VS)D + 2tisdu„/dn = 0) (A2a)
rjs(tt - 2dvs/dn) = 0 f ~H ' (A2b)

wherein Q, = k ■ curl u,

D = divu = 9^/3i — KVn + dvn/dn (rH G C),

and k denotes the curvature of C, positive for centres of curvature having n > 0. Thus,
equation (A2a) can be expressed non-dimensionally, via equation (4.4), as

e"l7i +(?</ + $S)D = 2^s(^vs/^s ~ KVn) (A3)

Within the linearized framework for insoluble slicks, iTx = e£D by equation (3.4), whence
(A3) reduces to

T, = 0 (rH e C) (A4)

in each of the following cases:
1- = o,
2. slicks, of uniform width and unlimited length, having edges parallel to straight

wave-crests, allowing a Avo-dimensional theory, [3],
3. £d —> oo, with £ and finite, whence it is readily shown from equation (3.6) that

T = 0 = D (rH e A), so that this is an inextensible limiting case. [We note that £ —> oc,
with £d and f 5 finite, yields D = 0 (rH G C) and, in consequence, D = 0 (rH e A), so that
this is also an inextensible limit. However, by (A3), we then have Tx ¥= 0 (rH e C), in
general.]

Equation (A4), expressing the vanishing of the surface tension at the curved line of
contact of water and contaminant, is equivalent to the static requirement, as mentioned in
[2].

Appendix B. Transition region: velocity v(rH, t) for the film. When the film parameters
£, £d and £v are 0(1) on the scale of e, the shortest length-scale (in the plane z = 0) for the
transition region is O(e), and is measured normal to C, provided that k"1 » e. Thus, if we
introduce a stretched variable

N = n/e (rH^ATR), (Bl)
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the dominant terms in equation (3.6) yield

d2v/dN2 = 0(e2) (B2)

within the transition region, ATR, of the film. Consequently, the major part, 0( 1), of v does
not vary rapidly within A TR, and

v = lim v (rH g ATR) (B3)
N —> cc

correct to 0( 1). Therefore, both D and S2 are 0(1) in ATR, whence (3.6) shows that their
major parts are independent of N, that is

D = lim D, £2 = lim Q, (rH g Atr). (B4)
N —* 00 N CC

From either (B2) or the expression £2 = dvs/dn - dvn/ds - kvs in ATR, we deduce that the
major part of dvs/dn is 0(1) and independent of N, that is

dvs/dn = lim dvs/dn (rH G ATR). (B5)
N —> CC

Thus, to the present order of working, the boundary conditions (A2a,b) may be applied at
the "perimeter" C' of the interior region A' of the slick,

(I + = 2/^(3^/05 - KVn) \ (B6a)
12 = 29^/3 n f " (B6b)

on account of equations (B3), (B4) and (B5).
By formulating the linearized boundary-layer version, in terms of stretched variables

N = n/e, Z = z/e, of the three-dimensional boundary value problem for p and q in the
transition region TR of the water, it is readily found (cf. [4]) that

dp/dN = 0 = dp/dZ. (B7)
Hence, when <k 1, the boundary value problem for qs — <jrs(00) is homogeneous in TR (cf.
equation (B2)), and, at O(l),

p=p^\ qs = qlx) (r G TR). (B8)

In particular, the tangential component of the film velocity, vs, is simply the tangential
component of velocity of the water just beyond the oscillatory layer.

Appendix C. Weak slicks. When the visco-elastic parameters are so small that

|i + tf|«i, H»l, (Ci)
the effect of the surfactant on the velocity field is relatively slight, except near the film
perimeter C. In fact, in the water, the leading term in qH within the whole oscillatory layer
is simply qIt is apparent that the value of |£ + /f| relative to e, (fia/n)e, e2,... is
significant. Consequently, it is advantageous to write

q_ = q_' + Q (C2)
for these weak slicks, where q' is the known velocity corresponding to the exact linear
solution for waves on a clean interface, [5], and Q is the small addition due to the slick.
Near C, equation (3.6) shows that || + /f|1/2 is an important parameter, and that
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Qrf)=y~q'<H is expected to change rapidly over distances, normal to C, 0{\m\~l/2) and
0(e). For illustrative purposes, suppose that fs1/2 « e (see §4.1). Then there are three
cases, according as

(i) 1 » |£ + if|1/2 » e, (ii) |£ + zf|1/2 = 0(e),

(iii) |£ + /f|1/2 « £• (C3)
When (i) applies, there is a further boundary-layer region, A A say, of scale A: A =
0(|£ + if |1/2), which is essentially located within A' and adjacent to C', and whose width
is much greater than that, 0(e), of ATR. In case (ii), this boundary-layer region coincides
with Atr, whilst, for the slicks of case (iii), it is embedded in ATR. Cases (ii) and (iii)
correspond to very weak slicks, and the dominant part of v in the more important case (i)
can be determined via introduction of a boundary-layer variable N2 = \m\n in region A A.
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