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Contemporary theories of instrumental performance assume that responding can be controlled

by two behavioral systems, one goal-directed that encodes the outcome of an action, and one

habitual that reinforces the response strength of the same action. Here we present a model of

free-operant behavior in which goal-directed control is determined by the correlation between

the rates of the action and the outcome whereas the total prediction error generated by contiguous

reinforcement by the outcome controls habitual response strength. The outputs of these two

systems summate to generate a total response strength. This cooperative model addresses the

difference in the behavioral impact of ratio and interval schedules, the transition from goal-

directed to habitual control with extended training, the persistence of goal-directed control under

choice procedures and following extinction, among other phenomena. In these respects, this

dual-system model is unique in its account of free-operant behavior.

Keywords: actions, habits, dual-system theory, reward schedules, instrumental conditioning,

reinforcement learning, goal-directed

Introduction

Instrumental action instantiates a unique reciprocal relation-

ship between the mind and the world. Through instrumental

learning we bring our representations of the consequences or

outcomes of our actions into correspondence with the causal

relationships in the world, whereas through instrumental ac-

tion we bring the world into correspondence with the repre-

sentations of our desires. However, this reciprocity assumes

that instrumental behavior is goal-directed in the sense that it

is based upon an interaction between a belief about the causal

response-outcome relationship and a desire for the outcome

(Dickinson and Balleine, 1994; Heyes and Dickinson, 1990).

Over the last forty years a wealth of evidence has accumulated

that not only are humans capable of goal-directed action in

this sense, but so are other animals.

The canonical assay for the goal-directed status of instrumen-

tal behavior is the outcome revaluation procedure, which we

shall illustrate with an early study by Adams and Dickinson

Correspondence concerning this article should be addressed to

Omar D. Perez, 1200 East California Boulevard, Pasadena, Califor-

nia, CA91107. E-mail: odperez@caltech.edu.(c) 2020, American

Psychological Association. This paper is not the copy of record

and may not exactly replicate the final, authoritative version of

the article. Please do not copy or cite without authors’ permis-

sion. The final article will be available, upon publication, via its

DOI: 10.1037/rev0000201

(1981). They initially trained hungry rats to press a lever to

receive either sugar or grain pellets with the alternative reward

or outcome being delivered freely or non-contingently. The

lever was then withdrawn and a flavor aversion was condi-

tioned to one type of pellet by pairing its consumption with

the induction of gastric malaise until the rat would no longer

eat this type of pellet when freely presented. The purpose of

this outcome devaluation was to remove the rat’s desire for

this type of pellet, while maintaining the desirability of the

other type. If lever-pressing was mediated by knowledge of

the causal relationship with the pellet outcome, devaluing this

outcome should have reduced the rat’s propensity to press

when the lever was once again presented relative to the level

of responding observed when the non-contingent pellet was

devalued. This is exactly the result they observed (Adams

and Dickinson, 1981). More recently, the finding has also

been documented in both humans (Valentin et al., 2007) and

monkeys (Rhodes and Murray, 2013).

It is important to note that this test is conducted under ex-

tinction with the delivery of the outcome suspended; any de-

valuation effect should therefore reflect knowledge acquired

during training rather than during the test itself. A decrease

in responding without further experience with the outcome

produced by the instrumental response is evidence that the

animal represents both the response-outcome contingency and

the current outcome value so that the integration of these two

representations is reflected in test responding, and it is for this

reason that we characterize the responding as goal-directed

(Dickinson and Perez, 2018).
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Although research on the brain systems supporting goal-

directed behavior has advanced during the last 20 years (for a

review, see Balleine, 2019b; Balleine and O’Doherty, 2010),

the nature of the psychological processes underlying the ac-

quisition of response-outcome knowledge remains relatively

under-studied. This is in part because the psychology of

learning has focused on the Pavlovian paradigm for the last

50 years or so given the greater experimental control afforded

by such procedures. This research has generated a rich corpus

of associative learning theories, all of which assume that

learning is driven, in one way or another, by prediction er-

rors (for a review, see Vogel et al., 2004). In the case of

Pavlovian learning, these errors reflect the extent to which

the conditioned stimulus fails to predict to the occurrence (or

non-occurrence) of the outcome. In the most straightforward

of these theories, the larger the prediction error on a learning

episode the less predicted is the outcome and the greater

is the change in associative strength of the stimulus. As a

consequence, the prediction error is reduced appropriately

on subsequent, congruent learning episodes (Rescorla and

Wagner, 1972). Based on the idea that Pavlovian associative

learning is controlled by prediction errors and the multiple

phenomena that parallel those found in instrumental learning,

Mackintosh and Dickinson (1979) suggested such errors play

an analogous role in both types of learning processes.

Over the last decade or so, goal-directed learning has become

increasingly couched in terms of computational reinforcement

learning (RL). According to this approach (Daw et al., 2005;

Maia, 2009; Sutton and Barto, 1998), goal-directed behavior

is controlled by model-based computations in which the agent

learns a model of the state transitions produced by the instru-

mental contingencies and the value of each of the experienced

states. At the time of performance, the agent searches the

model to estimate the value of each of the actions available,

and chooses the one that maximizes the outcome probability

over a number of episodes of acting on the environment. Crit-

ically, what determines the value of each action in each state

(or, alternatively, the probability of choosing each of the avail-

able actions in each state) is the probability that a rewarding

outcome will be received given that the action is performed.

Similarly, theories based on Bayesian inference (Solway and

Botvinick, 2012) also deploy the conditional probability of an

outcome given an action as a critical variable.

Whatever the differences between the associative, RL, and

Bayesian accounts of goal-directed action, these approaches

share the assumption that the probability of a rewarding

outcome is a primary determinant of instrumental goal-

directed action. The reward probability directly determines

the strength of the response-outcome association according to

associative theory (Mackintosh and Dickinson, 1979) and the

estimated value of an action in the case of RL and Bayesian

theories. For all of these approaches, instrumental perfor-

mance should be directly related to the probability of an ac-

tion leading to a rewarding outcome. However, ever since

the initial studies of instrumental outcome revaluation using

free-operant schedules we have known that reward probability

is unlikely to be the primary determinant of goal-directed

control.

Ratio and interval contingencies

In contrast to the successful demonstration of devaluation

reported by Adams and Dickinson (1981), prior investiga-

tions of goal-directed free-operant behavior had all trained

rats to press the lever on a variable interval (VI) contingency

between the response and the outcome and were uniformly

unsuccessful (Adams, 1980; Holman, 1975; Morrison and

Collyer, 1974). This class of schedule models a resource, such

as nectar, that depletes when taken and regenerates with time.

In practice, a VI schedule specifies the average time interval

that has to elapse before the next outcome becomes available.

In contrast, Adams and Dickinson (1981) used a variable ratio

(VR) schedule, which models foraging in a non-depleting

source so that each action has a fixed probability of yielding

an outcome independently of the time elapsed since the last

outcome was obtained.

In an experimental analysis of the ratio-interval contrast, Dick-

inson et al. (1983) used a yoking procedure to match the out-

come probability on the two schedules. In one pair of groups,

the master rats were trained in an interval schedule, whereas

the yoked animals were trained on ratio schedules with out-

come probabilities that matched those generated by the master

rats. Figure 1 shows their results. As can be appreciated, in

spite of the fact that the outcome probability per response was

matched between the groups, outcome devaluation reduced

performance of the ratio- but not the interval-trained group,

suggesting that ratio training more readily establishes goal-

directed control than interval training. This conclusion was

reinforced when the outcome rate was matched by yoking

the rates of the interval-trained rats to those generated by

master ratio-trained animals. Again, ratio-, but not interval-

trained animals, were sensitive to outcome devaluation. As

the interval-trained rats pressed at a lower rate than the ratio-

trained animals, goal-directed control was observed in the

ratio-trained group even under a lower outcome probability

experienced by those rats. The higher levels of performance

produced by ratio training under matched reward probabilities

(Catania et al., 1977; Pérez et al., 2016; Pérez and Soto, 2020)

and the impact of the training schedule on the outcome devalu-

ation effect (see Gremel and Costa, 2013; Hilario et al., 2012;

Wiltgen et al., 2012) have now received extensive replication.

The claim that ratio training more readily establishes goal-

directed control than does interval training when outcome

probabilities (or rates) are matched finds further support by a

study of the acquisition of beliefs about the effectiveness of
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Figure 1. Results obtained by Dickinson and colleagues

(1983) in an experimental analysis of behavioral performance

and control (i.e., sensitivity to outcome devaluation) in rats.

The ratio group was yoked to the interval group by matching

the reward probability experienced by the interval-trained rats.

Goal-directed control of behavior was only evident in the

ratio-trained animals.

an action in causing an outcome. Reed (2001) trained human

participants on a fictional investment task in which pressing

the space-bar on the keyboard acted as the instrumental re-

sponse. Ratio training uniformly yielded higher judgments

of the causal effectiveness of the key-press in producing the

outcome than did interval training both when the probability

or rate of the outcome was matched by within-participant

matching.

Two properties of reward schedules

Our review raises the issue of the critical feature of the two

types of schedule that determines the relative sensitivity of

ratio and interval performance to outcome revaluation. There

are two properties that distinguish the contingencies. The first

is that variable interval contingencies differentially reinforce

pausing between responses or, in the operant conditioning

jargon, long inter-response times (IRTs). Indeed, having per-

formed a response and collected the outcome if available,

the longer that the agent waits before performing the next

response, the more likely it is that the resources will have

regenerated so that the next response performed will be re-

warded with the outcome. Figure 2a illustrates the relationship

between the seconds elapsed since the last response and the

probability of the next response being rewarded for different

parameters of a random interval (RI) schedule under which

there is fixed probability of an outcome becoming available

in each second. As can be appreciated, the probability of

reinforcement increases monotonically with the time between

responses at a faster rate with shorter programmed intervals

between outcomes. In contrast, this probability is independent

of the pause to the next response under a ratio contingency

that arranges a fixed probability of reward that is independent

of the time elapsed since the last response1.

Figure 2. Different properties of reward schedules. (a) Prob-

ability of obtaining and outcome after a pause between re-

sponses for different programmed inter-reinforcement inter-

vals under a random interval (RI) schedule. (b) Functional

relationship between response rates (in responses per minute)

and outcome rates (in rewards per minute) for ratio schedules

with different outcome probabilities. (c) Functional relation-

ship between response rate (in responses per minute) and

outcome rates (in rewards per minute) for interval schedules

under different interval parameters.

It is unlikely that this feature of interval contingencies is

the key factor that reduces sensitivity to outcome revaluation

because when an animal is trained with a choice between

two interval sources yielding different outcomes as opposed

to a single interval source, performance is highly sensitive

to outcome devaluation (i.e., remains goal-directed). Kosaki

and Dickinson, for example, trained their hungry rats with

a choice between pressing two levers (group choice), one

yielding grain pellets and the other a sugar solution, both

on RI schedules (Kosaki and Dickinson, 2010). In spite

1Although the very high response rates sometimes observed un-

der ratio training suggest the differential reinforcement of short

IRTs, these rates reflect the acquisition of a new functional response,

such as response bursting—our assumption in this paper will be

that responding is fully random, meaning that it follows a Bernoulli

process with a fixed probability of a response being performed in

each second.
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of of giving their rats extended training, devaluing one of

the outcomes reduced performance of the corresponding re-

sponse on test. This goal-directed control contrasted with

the insensitivity to outcome devaluation following matched

training with a single response. This second, non-contingent

group of rats was trained with a single lever so that pressing

yielded one of the outcomes on the interval schedule with the

other being delivered at the same rate but independently, or

non-contingently of the instrumental response. In contrast

to the goal-directed control observed in the choice group,

lever pressing during the test was unaffected by whether the

contingent or non-contingent outcome had been devalued. As

the target responses were both trained under identical interval

schedules, both of which should have differentially reinforced

long IRTs, it is not clear why choice versus single response

training should affect the degree of goal-directed control if

IRT reinforcement is the critical factor affecting sensitivity to

outcome revaluation under interval schedules.

The second distinction between ratio and interval contingen-

cies relates to their response-outcome rate feedback functions,

which are mathematical descriptions of the empirical relation-

ship between response rates and outcome rates (Baum, 1973;

Baum, 1992; Pérez et al., 2016; Reed, 2007; Soto et al., 2006).

Figure 2 (panels B and C) presents the feedback functions

for typical ratio and interval schedules, respectively. Under a

ratio contingency, the outcome rate rises linearly with increas-

ing response rate, with the slope of the function decreasing

systematically as the ratio parameter increases. The feedback

function for ratio schedules can be described by a linear func-

tion of the form R = nB, where R is the outcome rate and B

the response rate performed by the agent. The parameter n

represents the inverse of the ratio requirement (1/ratio), or,

equivalently, the outcome probability per response that the

particular ratio schedule programs. By contrast, the feedback

function for an interval schedule is nonlinear with the outcome

rate rising rapidly with increases in response rates when the

baseline response rate is low and reaching an asymptote as

soon as the response rate is higher than the rate at which the

outcomes become available (Baum, 1992; Prelec, 1982). At

this point, variations in response rates do not have an effect in

the obtained outcome rate 2.

When Baum first proposed a correlational version of the Law

of Effect, he (1973) suggested that the difference in perfor-

mance between ratio and interval schedules when outcome

probabilities or rates are matched could be explained by their

different feedback functions. To analyze this empirically, he

proposed that the feedback function could be captured by the

linear correlation between the response and outcome rates,

and that it should be higher for ratio contingencies at inter-

mediate to fast rates of responding. This idea led Dickinson

and his colleagues (Dickinson, 1985; Dickinson et al., 1995;

Dickinson and Perez, 2018; Pérez et al., 2016; Pérez et al.,

2018; Pérez and Soto, 2020) to argue that response-outcome

learning is driven by the response-outcome rate correlation

experienced by the agent: the greater the experienced rate

correlation, the stronger is goal-directed control.

In the next section, we develop a computational mnemonic-

based system for goal-directed action that yields a response

strength on the basis of the experienced response-outcome

rate correlation. We then report simulations of the sensitivity

of this response strength to some of the major variables of

free-operant schedules. In order to accommodate the fact that

in many cases free-operant behavior is insensitive to outcome

devaluation, or in other words behaviorally autonomous of the

current value of the training outcome, we then integrate this

goal-directed system with a habit system based on a reinforce-

ment learning algorithm to generate a dual-system model of

free-operant behavior. Again, we examine the performance of

this model against variations in the amount training, the avail-

ability of choice, and under extinction. Finally, we discuss

additional predictions of the model and processes that impact

on free-operant behavior but that lie outside its scope.

Unlike most models of instrumental action in the computa-

tional RL literature, we evaluate our model solely against free-

operant behavior. The reasons for this choice are two-fold.

As we have already pointed out, the empirical genesis for rate

correlation theory lies with the impact of ratio and interval

contingencies on behavior, which is essentially a property of

free-operant contingencies. Second, and more importantly,

free-operant procedures are intrinsically action- rather than

stimulus-oriented in that they engage the spontaneous emis-

sion of actions in a relatively constant stimulus environment.

Moreover, we have good evidence that free-operant actions on

a manipulandum, such as a lever, are directly sensitive to the

instrumental response-outcome contingency as assessed by

the canonical bidirectional conditioning criterion (Dickinson

et al., 1996). By contrast, model-based RL is primarily struc-

tured for a discrete-trial choice paradigm, such as the two-step

choice task (Daw et al., 2011; Doll et al., 2012), in which

typically a human agent is instructed to choose between two

or more localized visual stimuli. Although the target action is

a nominal state variable within a RL model, it is not clear that

the agent actually represents the action as an element of the

task contingency which, within our theoretical framework, is a

2Although the exact analytic form of the feedback function for

interval schedules is still a matter of debate (see Baum, 1992), it is

well accepted that this function needs to flatten once response rates

attain a sufficiently high level so that all outcomes programmed by

the schedule are collected. A widely-accepted form of this function

is R = B
tB+a

, where t is the interval parameter and a is a parameter

that depends on the conditions of the experiment, and which affect

the animal’s pattern of responding independently of the outcome rate

generated by the schedule.
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criterion for goal-directed status. Alternatively, the agent may

simply use the action as a vehicle for registering a stimulus

preference while encoding the choice task solely in terms of

stimulus-outcome or stimulus-stimulus contingencies.

Rate Correlation Theory

Baum (1973) illustrated the empirical application of his ap-

proach to the Law of Effect by dividing the time-line in an

experimental session into a number of successive time sam-

ples and displayed the rate correlation by plotting the number

of responses in each sample against the number of outcomes

in that sample. In the present approach, we develop rate

correlation theory in terms of psychological processing by

assuming that the agent computes the rate correlation at a

given point in time by reference to the contents of a short-

term memory. This memory is segmented into a number of

time samples spanning the recent past, in each of which is

recorded the number of responses and outcomes that occurred

in that time sample. When the current time sample expires,

the system computes the current rate correlation across the

contents of the short-term memory.

Figure 3a illustrates a schematic representation of the time-

line divided into different samples in the short-term memory

of our model. At the end of each sample, the number of

responses and outcomes in that sample is registered in the

memory and the content of the short-term memory is recycled.

Given that the memory has a limited capacity, for simplicity

we assume that this recycling involves not only the registration

of the contents of the next sample but also the erasure of the

oldest sample in memory. For illustrative purposes, Figure

3a displays a memory of four samples; that is, the initial

memory cycle involves the first four samples, the second

memory cycle involves the second to fifth samples, and so

on. In general, if the memory size of our agent is N, cycle

k involves the deployment of the contents of memory from

samples S k
i

(i = 1, ...,N). In the simulations shown in this

paper, we assume that the memory size is the same for all

subjects.

Following each mnemonic recycle, the agent estimates the

response-outcome rate correlation based upon the current

contents of the memory. We assume that the agent computes a

standard Pearson correlation coefficient which, in psychologi-

cal terms, accounts for the agent’s experienced linear relation-

ship between the action and outcome rates in the cycle under

a given reinforcement schedule. More formally, if Bi and Ri

represent, respectively, the number of responses and outcomes

in the i − th sample within memory cycle k, then each sample

can be understood as an ordered-pair (Bi,Ri), i = 1, ...N, from

which the agent computes the rate correlation rk by

Figure 3. Memory model for a rate-correlation approach

to instrumental actions. (a) In this simplified illustration,

each memory cycle is composed by four time-samples. The

romboids represent response events and the outcomes are

represented by red stars. (b) Different experienced rate corre-

lations computed for each of the memory cycles exemplified

in (a). The arrows indicate the new observations added at

each memory recycle.

rk =

N
∑

i=1

(Bi − B̄)(Ri − R̄)

NsBsR

=
cov(B,R)

sBsR

(1)

where cov(B,R) is the covariance between B and R, B̄ and R̄

the average responses and outcomes per sample in the cycle,

and sB and sR the standard deviations of B and R, respectively.

We propose that goal-directed strength g is a direct function

of the rate correlation experienced by the agent. To determine

the probability of responding p, the simplest model would

assume that responding during the following cycle k + 1 is

a function of the rate correlation computed on the basis of

the memory contents at the last cycle, that is, pk+1 = gk = rk.

However, there are two concerns about this simple algorithm.

First, the algorithm is sensitive solely to the currently ex-

perienced rate correlation and so gives no weight to prior

experience. This would imply that the strength of the goal-

directed system should be immediately affected by abrupt

changes in the response-outcome contingency, in contrast

with the current empirical evidence. Second, if at a given

cycle the memory contains no responses and/or no outcomes,

the agent cannot compute a response-outcome rate correlation.

From a psychological standpoint, therefore, it is reasonable

to assume that the agent relies on both the current and prior

experience to determine responding for the next memory cy-

cle. To determine pk+1, therefore, we assume that both the

rate correlation experienced in cycle k (rk) and the average

rate correlation experienced up to cycle k (r̄k) have an effect
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on the level of responding on the following cycle, with the

effect of previous cycles being discounted with time. Under

this model, and assuming that there is at least one response

and outcome event in memory, the agent can track the average

rate correlation r̄ by updating a running estimate according to

r̄k = r̄k−1 + β(rk − r̄k−1) (k > 1) (2)

with β = 1/k as the learning rate in each cycle and r̄1 := r1, by

definition. To determine responding for the following cycle,

our agent jointly deploys this average rate correlation with the

current experienced rate correlation as follows:

p
(N)

k+1
= gk = θrk + (1 − θ)r̄k (3)

where p
(N)

k+1
is the probability of responding in the new sample

of the following cycle, denoted by S k+1
N

, and θ is a weighting

parameter that represents the importance of the current rate

correlation on responding for the next cycle. If θ = 1, the

agent would put all the weight on the current cycle; if θ = 0,

its responding would be driven only by the average experi-

enced rate correlation; other values of θ will give intermediate

degrees of importance to the history of rate correlation on

current performance. As noted before, if outcome delivery

is suspended under extinction or, more generally, if neither

responses nor outcomes are represented in memory, the agent

cannot update the estimation of the rate correlation and there-

fore relies on the last estimation until at least one response

and one outcome are again experienced and stored in memory.

It is important to note that the deployment of the average and

current rate correlation experienced by the agent determines

responding for the next cycle in memory, which only differs

with the current cycle in one time sample. The agent responds

with strength p
(N)

k+1
throughout this new sample; the value of p

is only updated at the end of the cycle according to Equation

3. To simplify the notation, in what follows we ignore the

superscript N and refer to the response probability of cycle k

simply as pk, on the understanding that it refers to the response

rate in the new sample in memory.

Simulations of a rate-correlation theory

We first investigated the robustness of the correlation coeffi-

cient in this model with respect to variations in the sample

duration parameter. To this end, we probed the effect of

varying the sample duration between 10 and 120 s on the rate

correlation generated by random ratio (RR) 5-to-50 and RI 5-

to-90 s schedules with response rates varying between 30 and

150 responses per minute. These two types of schedules as-

sign, respectively, a probability of an outcome being delivered

for each response and a probability of the outcome becoming

available in each second. In the case of the RI schedule, once

the outcome was available, it remained so until collected by a

response.

For the range of response rates that we tested, the rate correla-

tion was not significantly affected by the size of the sample

chosen (see Supplemental Material), and so we chose a value

of 20 s for the time samples in memory, primarily to limit the

total duration of the agent’s memory to a few minutes. As the

simulations were run with a memory size of 20 samples, the

total memory size of each agent was 400 s. For simplicity,

we also limited agents’ performance to a maximum of 60

responses per min (i.e. a maximum of 1 response per second)

by arranging for the probability of a response in each second

to be the value of g computed at the recycle that started the

current time sample. In what follows, we set θ = .5, but note

that the same pattern of results hold for the other values of θ

tested in our simulations.

Ratio-interval effects

As already noted, our initial reason for investigating the role

of rate correlation in goal-directed learning arose from the

fact that ratio schedules establish responding that is more

sensitive to outcome devaluation than does interval training

even when the outcome probability (or rate) is matched by

yoking (Dickinson et al., 1983; see Figure 1).

Within our rate correlation theory, g is the agent’s learned rep-

resentation of the strength of the causal relationship between

the action and the outcome, which underlies goal-directed

behavior. However, as g also determines the probability of

responding, our theory predicts concordance between judg-

ments of the causal strength of the response-outcome relation-

ship and the rate of responding emitted by the agent.

The most direct evidence for such concordance comes from

the study by Reed (2001), who reported the instrumental per-

formance of human participants on ratio and interval sched-

ules with matched outcome probabilities. Not only did he

find that ratio training yielded higher causal judgments of

the effectiveness of the action in producing the outcome, but

also that participants performed at a higher rate under ratio

than under interval training. To investigate whether a rate-

correlation model could reproduce these data, we simulated

training on a master RI 20-s schedule (the temporal parameter

employed by Reed (2001) in his human study) and then used

the outcome probability generated by each master subject to

determine the parameter for a yoked subject trained under

a ratio schedule. The initial response rate during the first

cycle was 10 per min, and we trained the simulations across 3

sessions, each of which terminated after 13 outcomes, in an

attempt to match the training received by the participants in

Reed’s (2001) experiment. Figure 4 shows the data obtained

by Reed (left panel) and the simulations produced by the

rate-correlation model of the response strength, g, during the

last 50 cycles and averaged across 100 replications of each

simulation. As can be appreciated in the right panel of Figure

4, the model generated lower goal-directed response strength

.CC-BY-NC 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/807800doi: bioRxiv preprint 

https://doi.org/10.1101/807800
http://creativecommons.org/licenses/by-nc/4.0/


A THEORY OF ACTIONS AND HABITS 7

values following interval than ratio training, in agreement

with Reed’s results.

Figure 4. Simulations of a rate correlation model for ratio and

interval schedules with matched outcome probabilities. The

left panel shows the data obtained by Reed (2001) in a human

causal judgment experiment. The right hand panel show the

simulations produced by a rate correlation model.

Outcome probability

Having established that rate correlation theory can repro-

duce the ratio-interval difference, we investigated whether

our model could capture the general effects of the major

variables determining free-operant performance. From these

simulations we report the response strength, g, during the last

50 cycles from the 2000 cycles of each simulation averaged

across 100 replications of each simulation. The response rate

for the first memory cycle was again set to 10 per min.

We have already noted that both associative and model-based

RL theories of goal-directed behavior assume that instrumen-

tal learning is driven by reward-prediction error, which in

turn implies that instrumental performance should be deter-

mined by outcome probability (Mackintosh and Dickinson,

1979; Sutton and Barto, 1998). This prediction was confirmed

empirically by Mazur in a free-operant procedure (1983).

He trained hungry rats to press a lever on an RR schedule

under different ratio requirements (or the inverse of reward or

outcome probability). To ensure that the motivational state of

the animals was kept relatively constant, Mazur scheduled a

limited number of food outcomes per session in an open econ-

omy 3. In addition, to assess performance only during periods

of engagement in the instrumental action, Mazur removed

the outcome handling time by assessing the rate following

the first lever press after an outcome delivery. The left panel

of Figure 5 shows a relevant selection of the response rates

obtained by Mazur.

To investigate the response rates generated by a rate corre-

lation model when the outcome probability was varied, we

replicated a similar design by simulating performance on RR

schedules with ratio requirements varying between 10 and 30.

Figure 5 shows that the likelihood of responding decreased

systematically when the outcome probability was reduced by

increasing the ratio parameter, correctly predicting the pattern

of results obtained by Mazur in his parametric investigation

of ratio performance in rats.

Figure 5. Simulations of rate correlation models for ratio

training with different outcome probabilities (the inverse of

the ratio requirement). The left panel shows the results ob-

tained by Mazur (1983) in a within-subject study in rats. The

right panel shows the simulations of a rate correlation model

for a similar design.

Outcome rate

Figure 6. Simulations of a rate correlation model for interval

schedules with different interval parameters. The left panel

shows the results obtained by Bradshaw et al. (1981) in rats.

The right panel shows simulations of a rate correlation model

using parameters similar to the ones used in their study.

As discussed previously, Herrnstein and his colleagues have

argued that instrumental performance on interval schedules

is systematically related to the outcome rate programmed by

the schedule, such that longer programmed intervals between

reinforcers should bring about lower performance than shorter

ones (Herrnstein, 1969). This prediction has been confirmed

3In an open economy, the animal is also fed in the home cage

with a different food to the one earned by the instrumental response

during training, so that its weight remains constant throughout the

experiment.
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multiple times and in different species. One example, shown

in the left panel of Figure 6, was provided by Bradshaw et

al. (1981), who trained hungry rats to lever press for milk

and found a systematic decrease in the response rates as the

interval parameter was increased. A selection of their results

for intermediate intervals are shown in the left panel of Figure

6. To match the conditions of this experiment, we simulated

training under RI schedules with different outcome rates by

varying interval parameters between 30 and 90 s. As the right

panel of Figure 6 shows, all values produced a systematic

decrease in responding as the outcome rate was reduced by

increasing the temporal parameter of the interval schedule,

replicating the pattern of results obtained by these authors.

Outcome delay

In addition to discussing ratio and interval performance, Baum

(1973) noted that his correlational Law of Effect anticipated

a deleterious impact on the acquisition and maintenance of

instrumental responding when delaying the outcome follow-

ing the response that generated it. For example, the left panel

of Figure 7 illustrates the terminal rates of lever pressing by

hungry rats obtained by Dickinson and colleagues when each

lever press produced a food outcome after a delay of 16, 32, or

64 s (Dickinson et al., 1992). With the 16-s delay and a 20-s

memory sample used in our model, only outcomes generated

by responses during the first 4 s of a sample occur in the same

sample as their responses, whereas with the 32-s and 64-s

delays all the outcomes occur in a different sample, thereby

reducing the experienced rate correlation. The simulations

displayed in the right panel of Figure 7 confirm this intuitive

prediction.

Because the response strength g also determines goal-directed

strength, the model anticipates lower causal beliefs of the

response-outcome association when outcomes are delayed.

This prediction has been confirmed by Shanks and Dickinson

(1991) using fictitious credits as the outcome and key presses

as the instrumental response. Moreover, if a causal response-

outcome belief underlies goal-directed control, our model

anticipates a weaker effect of devaluation on responding when

outcomes are delayed. This prediction has been recently

confirmed by Urcelay and Jonkman in rats (2019), who found

that delaying a food outcome by 20 s after a lever press in one

group abolished sensitivity to outcome devaluation compared

to a group that underwent training with no delay between the

lever response and the outcome.

Contingency degradation

At first sight, the most direct evidence for a rate correlation

approach to instrumental learning is the sensitivity of free-

operant performance to the causal response-outcome rela-

tionship, in that its computation provides a measure of this

perceived contingency. However, the strength of the causal

Figure 7. Simulations of rate correlation models for delayed

rewards. The left panel shows the data obtained by Dickinson

et al. (1992) in rats. The right panel shows simulations of a

rate correlation model for the same delay parameters used in

the original paper.

relationship between response and outcome in the environ-

ment can be varied not only by changing the probability of a

contiguous outcome as in Mazur’s (1983) experiment, but also

by varying the likelihood that the outcome will occur in the

absence of the action—or the probability of non-contiguous

outcomes. When the contiguous and non-contiguous proba-

bilities are the same, the agent has no control over the number

of outcomes received in any given time period and its actions

are independent to outcome delivery. Hammond (1980) was

the first to study the effect of such manipulation in a free-

operant procedure. Using rats, Hammond fixed the prob-

ability of a contiguous outcome for the first lever press in

each second while varying the probability of delivering a non-

contiguous outcome at the end of any second without a lever

press. Non-contingent schedules, in which the contiguous

and non-contiguous outcomes probabilities were the same,

failed to sustain lever pressing initially established without

the delivery of non-contiguous outcomes.

In general, however, one cannot be certain that a low rate

of lever pressing under a non-contingent schedules is due to

the absence of a causal relationship between the action and

the outcome. Inevitably, the non-contingent schedule greatly

increases the frequency of the outcome and therefore the time

required to handle and process the outcome with the result that

the depression of responding under a non-contingent outcome

may have been due to interference with lever pressing by

the enhanced outcome handling and processing. One way of

addressing this issue is to use a non-contingent schedule while

varying the identity of the contingent and non-contingent out-

comes. When the contiguous and non-contiguous outcomes

are the same, the agent has control over neither the outcome

rate nor its identity. However, when the outcomes are different,

the agent can control the type of outcomes received because by

responding the relative frequency of the contiguous outcome

increases.
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To illustrate the simulation of contingency degradation by the

rate correlation model, we followed an experiment reported

by Balleine and Dickinson (1998). Hungry rats were initially

trained to lever-press for one of two different food outcomes

on an RR 20 schedule so that the probability of the contiguous

outcome was 1
20
= .05. The instrumental contingency was

then degraded by delivering a non-contiguous outcome with

the same probability of .05 in each second without a lever

press. As the left panel of Figure 8 shows, the rats pressed at

a higher rate if the non-contiguous and contiguous outcomes

were different rather than the same. The right panel illustrates

that the rate correlation model can replicate this effect on

the assumption that different outcomes receive distinct repre-

sentations in memory with separate response strengths being

calculated for each outcome type.

That a causal response-outcome belief is affected by con-

tingency degradation has been demonstrated by numerous

studies showing that human causal judgments of the response-

outcome association and the rate of responding are lower

when the contingency between the response and the outcome

is degraded by increasing the probability of non-contiguous

outcomes (see Shanks and Dickinson, 1991).

Figure 8. Simulations of a contingency degradation experi-

ment. Left panel. Data obtained by Balleine and Dickinson

(1998) in rats. Group diff was given freely an alternative

outcome with the same probability as the outcome produced

by the target action. Group same was given freely the same

outcome as that produced by the target action. Right panel.

Simulations of a rate-correlation model for a similar proce-

dure.

Interim summary

In summary, this set of simulations demonstrate that our rate-

correlation model can in principle provide an account of the

primary determinants of instrumental performance: the im-

pact of outcome probability, rate and delay on instrumental

performance. In addition, the model correctly anticipates the

ratio-interval schedule effect when the outcome probabilities

are matched and the effect of degrading the causal contin-

gency between the response and the outcome, both of which

are prerequisites for any theory of goal-directed control.

It is equally clear, however, that a further learning system

is required for a complete account of instrumental behavior.

To the extent that goal-direct learning is assigned to a rate

correlation system, we are left with no account of respond-

ing on an interval scheduleor ratio schedules with high ratio

requirements, both of which are able to sustain responding

in spite of establishing very low response-outcome rate cor-

relations. Furthermore, rate-correlation theory on its own

provides no principled explanation of why responding extin-

guishes when outcomes are withheld. As we have noted, the

rate correlation cannot be computed at a memory recycle if

no outcomes are represented in memory (as would be the case

during extinction), and under this circumstance the response

strength remains constant at the value computed at the last

recycle in which the memory contained at least one outcome

representation. A comprehensive account of instrumental

action therefore requires an additional learning system.

A Dual-System Model

When Dickinson (1985) first argued that a rate correlation

account of instrumental action could explain goal-directed

learning, he embedded it within a dual-system framework to

explain instrumental responding that is autonomous of the

current value of the outcome, as assessed by the outcome

revaluation paradigm. He envisaged this second system as

a form of habit learning that involved the acquisition of an

association between the stimuli present during training and the

instrumental response. This is, of course, the form of stimulus-

response learning first postulated by Thorndike (1911) in his

original Law of Effect more than a century ago. Accord-

ing to Thorndike, the occurrence of a contiguous attractive

outcome following a response simply serves to strengthen

or reinforce the stimulus-response association so that the re-

presentation of the training stimuli are more likely to elicit

the response. However, because all information about the out-

come is discarded once it has served its reinforcing function,

any subsequent change in the value of the outcome cannot

impact on instrumental performance without re-presenting

the revalued outcome contingent upon responding. For this

reason, to test whether an outcome representation exerts goal-

directed control over responding, the outcome devaluation

paradigm tests responding in the same training context but in

the absence of the now-devalued outcome. Any decrease in

responding under these conditions indicates that a represen-

tation of the outcome controls an action in accord with the

current value of the outcome, thereby demonstrating its goal-

directed status (Balleine and Dickinson, 1998; Dickinson and

Perez, 2018). Conversely, responding that is impervious to

outcome revaluation is generated by a habit system that does

not encode the identity of the outcome.

More recent models in the computational RL tradition have

attempted to offer a computational account using a similar
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dual-system approach. RL models recognize two types of sys-

tems that closely resemble the two psychological processes

just described. Both RL systems aim to maximize the number

of rewards obtained by the agent during a task (Daw et al.,

2005; Dolan and Dayan, 2013; Keramati et al., 2011). As

we have already noted, model-based computations learn a

model of the environment by estimating the probability that

an action performed in a given state will lead to each of the

possible next states and the probability of a reward in each

state. As it is this RL system that generates goal-directed

action, it is this system that we argue should be replaced by

response-outcome learning based on the rate correlation, at

least in the case of free-operant behavior.

In addition to a model-based system, RL models recognize

another system that is relatively impervious to outcome reval-

uation. Model-free computations estimate the value of each

action in each state (Q(action|state)) by computing a reward-

prediction error in each trial, which is equivalent to storing a

running average for the outcome rate obtained by each action

in a given state (Sutton and Barto, 1998). Because all the

history of rewards is collapsed in Q(action|state), every time

the agent visits a state it maximizes the outcome rate by sim-

ply looking up a table with stored Q−values and selecting the

actions with a higher Q−value. For this reason, model-free

computations are less computationally expensive and faster

than model-based computations (Dezfouli and Balleine, 2013;

Keramati et al., 2011). However, when an outcome is revalued

or the response-outcome contingencies modified, model-free

computations can only adjust to these new conditions by re-

experiencing the new conditions of the environment. In this

important respect, therefore, the behavioral control exerted

by a model-free RL system is similar to the psychological

definition of habitual behavior contained in Thorndike’s Law

of Effect.

In the following sections, we formalize a dual-system model

in which a goal-directed system computes a response-outcome

rate-correlation to generate goal-directed strength and inter-

acts with a habit model-free RL algorithm based on a summed

reward prediction-error to explain behavioral performance

and system control under free-operant training. We show

how this model can explain all the empirical phenomena we

have already discussed, along with additional results from

the literature that are not currently fully captured by RL or

associative models of instrumental learning.

As we have already demonstrated a goal-directed system

based on the experienced response-outcome rate correlation

can capture the primary determinants of free-operant perfor-

mance. In this section, our goal is to specify a habit algo-

rithm that integrates with this correlation-based goal-directed

system to explain behavioral performance on free-operant

schedules. To this end, we postulate a model-free algorithm

similar to those employed in the RL literature, but modified

to account for free-operant procedures. In essence, every

time a response is performed, the algorithm deploys a reward

prediction-error depending on whether the response was, or

was not, reinforced. The value of this prediction-error then

changes the habit strength for the next time-step.

Let h
(k)
t denote habit strength at each time-step t in the current

memory cycle k. In our habit system, the acquisition and

extinction of habit strength in cycle k follows the following

equation:

h
(k)

t+1
=

{

h
(k)
t + α

+PEt if PEt > 0

h
(k)
t − α

−PEt if PEt < 0
(4)

where α+ and α− are parameters between 0 and 1 and rep-

resent the learning rates for excitation and inhibition of the

stimulus-response connection, respectively, 4 and PEt is the

reward prediction-error at time-step t, defined as:

PEt =

{

1 − (h
(k)
t + gk) if response is reinforced

(h
(k)
t + gk) if response is not reinforced

(5)

Based on evidence that learning rates for rewarded and non-

rewarded episodes are asymmetric (Behrens et al., 2007;

Gershman, 2015; Palminteri et al., 2017), we assume that

the learning rate of a reinforced response is higher than the

learning rate for a non-reinforced response (α+ > α−). This

assumption is also necessary from a practical perspective:

under the partial reinforcement schedules of free-operant

schedules, the increment in habit strength produced by re-

inforcement needs to counteract the effect of a much greater

proportion of non-reinforced responses in order to sustain

positive levels of responding. Under this habit algorithm,

every reinforced episode strengthens the connection between

the context and the instrumental response when the reward

prediction-error, given by PEt = α
+[1− (h

(k)
t + gk)] is positive.

Likewise, every non-reinforced episode weakens the strength

by PEt = α
−(h

(k)
t + gk). At the end of each cycle, the habit

strength is accumulated and used as the starting habit strength

value for the following cycle. We denote the habit strength

accumulated up to cycle k as

4Previous versions of this algorithm deployed only one connec-

tion for increasing and decreasing the probability of responding.

The original RL algorithm postulated by Bush & Mosteller (1951)

had the form ht+1 = ht + α
+[1 − (ht)] − α

−(ht) and assumed that

α+ = 0 when a response was not reinforced. The term −α−(ht) can

thus be regarded as reflecting an inhibitory potential present both in

reinforced and non-reinforced responses.
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hk =

T
∑

t=1

h
(k)
t + hk−1 (6)

where T is the size of the new sample that is added in each

cycle (20 seconds in our particular formulation).

As can be appreciated, the habit system in our model employs

a summed prediction term by combining the current response

strengths generated by the goal-directed and habit systems.

The rationale for this summed prediction term lies with the

fact that a prediction-error is intended to capture the extent to

which an outcome (or its omission) is surprising or unexpected

with respect to the predictions from both systems. In this re-

spect, the rationale for the summed prediction-error in our

habit algorithm is the same as the one present in the Rescorla-

Wagner rule (1972) for determining associative strength in

Pavlovian Learning.

It is important to clarify from a psychological perspective

how the interaction between habit and goal-directed systems

transfer to instrumental performance in our model. At the end

of cycle k, and before determining responding for the next

cycle k + 1, the agent has computed two values: hk and gk.

The activation function takes the linear sum of these values

to determine the total response strength for the following

cycle, pk+1, which remains constant across this new cycle

(i.e., the new time sample added to memory in cycle k + 1).

However, it is also true that these two computations are not

completely independent. First there is the inclusion of goal-

directed strength that partially determines the total prediction

in the PE term on the habit system. But it is likewise clear

that the memory recycling process of the goal-directed system

needs to interact with the habit system by constraining the

deployment of the accumulated habit strength to the new

memory sample that is added after each cycle that elapses.

Thus not only there is an independent additive relationship

to determine performance, but also an additional interaction

during the agents’ behavior within a memory cycle.

Being a model-free algorithm similar to those in the RL field

which assign the value Q(action|state) to a specific action

in a given state, Equation 4 assigns response strength to the

habit system according to the value of h, which completely

summarizes the history of reinforcement in a particular state

or context. Given that this algorithm is only driven by PEt, it

does not explicitly model the information regarding the rela-

tionship between the response and the outcome or its current

motivational value, making it insensitive to manipulations of

outcome value or the causal relationship between the response

and the outcome. Such behavioral autonomy is the cardinal

feature of habitual behavior (Dickinson, 1985).

Having specified the algorithm for the habit system, the next

step is to specify the type of interaction between behavioral

systems that would explain performance and behavioral con-

trol for different experimental conditions in free-operant train-

ing. Our assumption in this regard will be motivated by

the data reported by Dickinson et al. (1983, see Figure 1).

After training two groups of rats under interval and ratio

schedules with matched outcome probabilities, Dickinson

and colleagues devalued the outcome in half of the rats in

each group by pairing it with toxicosis. After the devaluation

manipulation, only the ratio-trained rats decreased respond-

ing (i.e., were under goal-directed control). By contrast, the

performance of the interval-trained rats at test was unaffected

by outcome devaluation (i.e. they were under habitual con-

trol). An interesting feature of these data is that the level of

responding after devaluation in the ratio-trained group did

not differ from that of the interval-trained group. Because

the outcome probability was matched between the groups,

the habit system’s contribution to responding should have

been equal in both groups. Likewise, because by definition

responding that is sensitive to devaluation must be attributed

to the goal-directed component, the residual responding that

was not affected by devaluation in the ratio-trained group

must, by necessity, be attributed to a habitual component that

was still active after devaluation of the outcome. In light of

these data, we propose a model where the relative strengths of

each system concurrently contribute to response probability,

which we denote by p. In particular, we assume that response

probability in cycle k + 1, pk+1, is governed by a sigmoid

function:

pk+1 = s(Igk + hk) =
1

1 + e−τ(Igk+hk−C)
(7)

where gk is the goal-directed strength in cycle k as defined

above, hk is the habit strength accumulated by Equation 4

during the experiment, up to cycle k, and I is a variable repre-

senting the current incentive value of the outcome by taking

the value 1 if the outcome is valued and 0 if the outcome is

devalued (that is, we assume that the devaluation procedure

successfully decreases the incentive value of the outcome to

zero). The parameter τ is an inverse temperature parameter

that reflects how sensitive the agent is to increases in total re-

sponse strength (Igk+hk)) and C is a bias parameter (C = 0.6)

which represents a bias towards responding over waiting. Un-

der this total response function, the two systems summate to

determine total responding, and therefore response probability

in the next cycle pk+1 reflects the relative contribution of each

system to behavior (see Figure 9).

In the following sections, we will discuss the implications

of such an assumption for the type of behavioral control that

should be expected for different free-operant procedures by

performing simulations of this dual-system model. We should

note that the aim of these simulations was not to fit the free

parameters of our model to the experimental data presented
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Figure 9. Schematic representation of the dual-system model.

For each cycle, the agents concurrently computes the response-

outcome rate correlation while habit strength is accumulated.

The strength of both systems is then summed and a response

activation function produces the probability of responding

for the new sample in the following cycle. The rate corre-

lation on the goal-directed system is only computed when

both responses and outcomes are held in memory ; otherwise,

the system is inactive and the value stays constant at the last

value registered in memory. (Illustrations courtesy of Loreto

Contreras.)

here. Instead, we performed an unsystematic search for those

parameters that predicted the qualitative patterns of the data

that originally motivated our theory (i.e., Dickinson et al.,

1983) and kept the values of those parameters constant across

all simulations (see Niv et al., 2005; Soto et al., 2014; Soto

and Wasserman, 2010; Wagner, 1981 for similar approaches).

Ratio and interval training

Initially, we simulated goal-directed and habitual learning

under interval and ratio contingencies using a RI 15-s master

schedule. The outcome probability generated by each master

interval simulation was then used to generate a yoked simula-

tion on a ratio schedule with a parameter that yielded the same

outcome probability. The initial response probability for the

first session of training reflected one session of pretraining un-

der RR 5 and each session was terminated after 30 outcomes

had been received.The response rate for the first memory

cycle was set to 10 per min. Panels a and b of Figure 10

display the mean values generated by 200 simulations under

the master interval and yoked ratio schedules, respectively.

Shown separately are the response strengths generated by the

goal-directed and habit systems, g and h respectively, and the

resultant probability of responding per second, p, produced

by the cooperative interaction of these response strengths.

The first point to note is that the model reproduces the differ-

ential sensitivity of ratio and interval performance to outcome

devaluation early in training. For example, ratio training gen-

erates a goal-directed response strength, g, of about 0.4 by the

third session, whereas the interval response strength is close

to zero for equivalent training. As the model assumes that

outcome devaluation, if complete, abolishes the contribution

of g to overall responding by setting I = 0, the model natu-

rally explains why devaluation has a greater impact on ratio

than on interval responding early in training (Dickinson et al.,

1983). This finding is summarized in Figure 10c in terms of a

devaluation ratio, DR, defined as DR =
s(g)

s(g+h)
, where s is the

sigmoid function as defined in Equation 7.

Figure 10. Simulations of the dual-system model for the

experiment reported by Dickinson et al. (1983). (a) Strength

from each system and response probability per second across

10 sessions of interval training. (b) Strength from each system

and response probability per second across 10 sessions of

training under yoked ratio training, matching outcome prob-

abilities with the interval-trained subjects. (c) Sensitivity to

outcome devaluation for ratio and interval training as assessed

by a devaluation ratio early in training (Session 2); at mid-

training (Session 5) and at the end of training (Session 10). (d)

Response probability per second for ratio and interval training

across different extensions of training.

The development of behavioral autonomy

Perhaps, however, the most notable feature of these simu-

lations is the decline in the goal-directed response strength

as the habit strength grows with training. This reduction in

g reflects, at least in part, the reduction in the variance of

the rate of responding across the time samples in memory:

as the overall response rate increases, the experienced rate

correlation, and therefore g, declines. Thus, according to our

model, behavioral autonomy should develop as responding

becomes stereotyped with more extended training. The re-

duction in sensitivity to outcome devaluation with training
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predicted by the simulations is documented in Figure 10c

in terms of a devaluation ratio calculated for three different

training extensions.

Adams (1982) was the first to report that behavioral autonomy

(i.e., habitual behavior) developed with training on a variety

of ratio schedules. Although the development of autonomy

with training has been independently replicated multiple times

(e.g., Dickinson et al., 1995; Holland, 2004; Killcross and

Coutureau, 2003), a number of studies have reported goal-

directed control even after extended training. For example,

de Wit et al. (2018) have documented two failures to repli-

cate the development of behavioral autonomy observed by

Tricomi et al. (2009) after training humans under an interval

schedule (see Corbit et al., 2014; Nelson and Killcross, 2006).

Similarly, Jonkman et al. (2010) found that rats remained

sensitive to outcome devaluation throughout 20 sessions of

interval training and Garr et al. (2019) have recently reported

an outcome devaluation effect that only emerged after ex-

tended training on an RI schedule. We shall return to these

problematic effects when we discuss motivational effects on

free-operant responding.

Choice training.

Our analysis of extended training makes clear that, according

to rate correlational theory, the conditions for developing ha-

bitual control are not directly determined by the reinforcement

schedule nor the amount of training but rather by whether or

not the agent experiences a correlation between the rates of

responding and outcomes as represented within the memory

cycle. To recap, embedding rate correlational theory within

a dual-system model predicts a reduction in the experienced

rate correlation through the development of invariant stereo-

typed responding with the growth of habit strength, an effect

enhanced in the case of interval schedules by the temporal

control of outcome availability.

The cardinal importance of the experienced rate correlation is

reinforced by the contrast between the single-response train-

ing, which has been our focus so far, and free-operant choice

or concurrent training, which involves interleaved experience

with two different response-outcome contingencies (Colwill

and Rescorla, 1985; Colwill and Rescorla, 1988). However,

of more direct relevance to the present analysis is the study

by Kosaki and Dickinson (2010), which we have already

discussed briefly with respect to the differential reinforce-

ment of long IRTs, in that they directly compared behavioral

autonomy after concurrent and single-response training.

To recap, Kosaki and Dickinson (2010) trained rats on two RI

schedules that were concurrently active during each session

of training. In one group, the choice group, responding on

different levers produced different outcomes. Another group

of rats, the single-response group, received the same two

outcomes, except that in this group one of the outcomes was

earned by responding on one lever, whereas the other outcome

was delivered after the same average period of time but in-

dependently of responding (i.e., non-contingently). After 20

sessions, a contingent reward was devalued in both groups by

aversion conditioning and responding tested in a subsequent

extinction session. Kosaki and Dickinson (2010) observed

that responding in the single-response group was insensitive

to devaluation, whereas the choice group markedly reduced

the rate of the response whose outcome was devalued.

There are two points to note about Kosaki and Dickinson’s

(2010) findings. First, the devaluation effect was assessed

against control conditions in which the other outcome was

devalued. As a consequence, any effect of outcome devalua-

tion that was not mediated by the instrumental contingency,

such as the motivational effect of contextual conditioning on

general performance (see below), was equated across condi-

tions. Second, the same devaluation effect was found whether

or not the choice was tested with both levers present or just

a single lever. Thus, the devaluation effect exhibited by the

choice group arose from the training rather testing conditions.

In conclusion, these results demonstrated that responding in

the choice group was still under goal-directed control even

when similar extended training rendered responding habitual

in the single-response group.

Recall that, according to the rate correlation component of

our dual-system model, habitual behavior develops through

extended training because responding becomes stereotyped

with little variation across time-samples, thereby yielding a

low rate correlation experienced within a memory cycle, an

effect compounded by the intrinsic low rate correlation en-

gendered by an interval contingency. However, response rate

variation across time-samples is an inevitable consequence

when the agent is engaged with two interval sources of reward.

When engaged with one of the sources, the memory samples

will register neither responses nor outcomes from the non-

engaged source. Consequently, any memory cycle contain-

ing a switch will have some samples with no response nor

outcome representations of the switched-to-source and other

samples containing these representations in the active source.

Of course, the same will be true of the switched-from-source.

As a consequence, the agent will experience a sustained rate

correlation for both responses, each of which will sustain

goal directed control. To substantiate this intuitive analysis,

we simulated a concurrent choice procedure similar to that

employed by Kosaki and Dickinson (2010). The simulations

were run under the same conditions as the previous ones for

interval training in the previous simulation of Dickinson et

al.’s (1983) experiment; that is, the initial response rate was

set to 10 per min, followed by one session of pre-training

under RR 5.

It is well established that the probability of switching away
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from a source remains constant during responding to that

source (Heyman, 1979) and so we programmed a fixed proba-

bility per 1-s time sample, pswitch, for a change-over between

levers in the case of the choice group. Inspection of the

authors’ original data-set revealed that their rats switched

between levers on average every 10 s; we therefore set

pswitch = .1 for the following simulations.

Figure 11 shows the results of the simulation by the dual-

system model for this choice experiment. As can be seen,

similar amounts of training under a choice procedure yield

significant contributions of the goal-directed system compared

to single training. The result holds even when the amount of

training is sufficient to drive the habit strength to asymptote,

a factor that should reduce the experienced rate correlation

(and hence goal directed control) if only a single response

was available. In summary, the model predicts that both

systems should contribute to the control of responding under

choice training, and therefore outcome devaluation should be

effective in modulating responding under choice procedures,

in line with the results reported by Kosaki and Dickinson

(2010).

Figure 11. Simulations of Kosaki and Dickinson (2010),

investigating sensitivity to outcome devaluation in a choice

procedure. The left panel shows the results obtained by the

authors and the right panel the results of the simulations of

the dual-system model. The choice group was trained con-

currently with two responses yielding two different outcomes

under RI schedules with the same interval parameters.

One thing to note with regard to Kosaki & Dickinson’s (2010)

study is that the outcomes produced by each response differed

in their sensory properties, which is critical if the dual-system

model is to predict devaluation sensitivity after overtrain-

ing. It is an important feature of the goal-directed system

that separate rate correlations are calculated for each type

of outcome experienced. Using the same outcome for each

of the responses effectively changes the schedule into a non-

contingent one for both responses because the outcome rate

when the agent is responding to one source would be the same

as that when response are not directed at that source. Hence,

the rate correlation for this response should be close to zero

with the consequence that responding under such a schedule

should be purely habitual. Holland (2004, Experiment 2)

conducted an experiment where the same training regime was

given to two different groups of rats under interval schedules,

with two different responses and outcomes available in one

group, and with two responses producing the same outcome

in another group. After extended training, only the rats in the

group trained with multiple outcome was sensitive to devalua-

tion; using a single outcome even when two responses were

available made responding autonomous of the current value

of the outcome, in line with the predictions of our model.

Temporal scope

Although our dual-system model provides a plausible account

of the Kosaki and Dickinson (2010) demonstration of the

persistence of goal-directed control under extended training

choice or concurrent training, Colwill and Rescorla (1985)

also reported such persistence under training conditions that

are more problematic for our account. Importantly, they

trained the two response-outcome interval relationships in

separate sessions before giving their rats a choice test in ex-

tinction with both response manipulanda present following the

devaluation of one of the outcomes. The reason why this find-

ing is problematic for our implementation of rate correlation

theory in a short-term memory system is because exposure to

the conjoint absence of a response and its outcome in sessions

when the other response-other contingency is being trained is

not sufficiently temporally contiguous to the sessions in which

this response is trained with its outcome. As a consequence,

the conjoint absence of the response and its outcome and their

conjoint presence cannot be plausible represented within the

same short-term memory cycle, a condition that is necessary

for a sustained positive rate correlation for that response and

its outcome.

A similar problem for our short-term memory system for

assessing the local experienced rate correlation arises from

Adam’s (1982) initial analysis of behavioral autonomy. Hav-

ing initially established lever-pressing by all his rats (Adams,

1982, Experiment 5—see also Dickinson et al., 1995), he then

overtrained one group on a variable ratio schedule, which

yielded habitual behavior. By contrast, the experimental non-

contingent group received the same number of outcomes but

the absence of the lever except for the last session when lever

pressing was trained on the variable ratio schedule. Like the

overtrained group these animals showed habitual behavior

even though the amount of instrumental training they received

was such as to render responding by a control group sensi-

tive to outcome devaluation in the absence of the prior non-

contingent exposure. Once again, it appears that the animals

are capable of integrating information about the outcome

from sessions without the opportunity to perform the target

response with that gained in sessions with the opportunity to

respond in a way that modulates the experienced rate correla-
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tion appropriately. In the case of Colwill and Rescorla (1985),

interleaved concurrent training exposure to training context

in the absence of the outcome enhances the experienced rate

correlation whereas context exposure with non-contingent

outcomes reduces the experienced rate correlation in Adams’

(1982) experiment.

Although we do not have the empirical evidence to specify the

psychological mechanisms by which such integration takes

place, we may assume that the mechanism is functionally

equivalent to increasing the size of the memory across which

the experienced rate correlation is assessed. For example, it

is possible that the return to a context in which the target re-

sponse has been previously trained leads to the retrieval of the

contents of the final memory cycle in the same context during

the previous session, which is then integrated with contents

of the the initial memory cycle established by training the

target response. To illustrate how such a system may operate,

we performed simulations of the dual system model with an

enhanced memory on a non-contingent pre-exposure schedule

similar to that employed by Adams (1982).

The left panel of Figure 12 presents the results obtained by

Adams expressed as a devaluation ratio. To simulate this

experiment, we increased the number of time samples de-

ployed by subjects to 500 samples. For the first cycle of 500

samples, we delivered free outcomes with p f ree = .2, which is

equivalent to an RT 5 sec schedule; a single session of RR 10

training then followed. The session was terminated after 30

outcomes were delivered. For the control group, we simulated

the first cycle of 500 memory samples with a probability of

responding pinitial = .1, followed by a single session of RR

10 training. The results of these simulations are shown in the

right panel of Figure 12. Although using a larger memory size

did not abolish the devaluation effect completely, as observed

by Adams (1982), the devaluation ratio for the pre-trained

group is lower than that for the control group, anticipating a

weaker devaluation effect after outcome pre-training.

Extinction.

As it stands, the rate correlation system in our model makes

what at first sight appears to be a highly problematic pre-

diction: goal-direct control should never extinguish. Recall

that the goal-directed system only computes the response-

outcome rate correlation for memory cycles in which at least

one response and one outcome are registered in memory. The

consequence of this assumption is that goal-directed strength

remains frozen throughout extinction at the the level attained

during acquisition following the last memory cycle that con-

tained an outcome representation.

Although not generally acknowledged by RL theory, this pre-

diction accords with a series of studies conducted by Rescorla

(1993), who reported that the impact of the outcome devalua-

Figure 12. Simulations of an experiment run by Adams (1982,

Experiment 5) where one group was given extended magazine

training before a single session of training under RR 10. The

left panel shows the results obtained by Adams during the

extinction test, measured by a devaluation ratio. The right

panel shows the simulations of the dual-system model for a

similar procedure, employing and increased memory size.

tion is not reduced by extinction. In one of his experiments,

Rescorla trained two responses each with a different outcome,

and then one of the responses was extinguished before a final

devaluation test. Having re-established responding with a

third outcome, Rescorla found that devaluating one of the

original training rewards produced a comparable reduction in

performance of the associated response in extinguished and

non-extinguished conditions, thereby demonstrating that goal-

directed learning survived the extinction phase. The left panel

of Figure 13 presents the comparable outcome devaluation

effect observed by Rescorla (1993) in the extinguished and

non-extinguished conditions.

The most plausible explanation for this result was offered by

Colwill (1991), who reasoned that the goal-directed strength

remains unaffected during the extinction phase because it is

inhibited by the habit system when outcomes are withheld.

Our dual-system model anticipates the acquisition of this

inhibitory habit strength during extinction following a similar

reasoning. In our model, the prediction error term in the

habit system includes the total prediction determined by the

linear sum of the habit and goal-directed strengths g and h,

respectively. Assume that cycle k is the last one containing

response and outcome events in memory (the last cycle in

training, in this example). If g retains a positive value during

extinction (because the response-outcome rate correlation is

not computed in a memory cycle that does not contain any

outcomes) then gk′ = gk = g0 for all cycles k′ in extinction.

Then it follows that the prediction-error for h will be negative

at each time step (PEt = −(ht + g0)) and hence there will be a

systematic decrease of h during extinction. The reductions in

h will in turn decrease p with training, and responding will

eventually extinguish. Indeed, and in accord with Colwill’s
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hypothesis, the habit strength h will have to become nega-

tive or inhibitory for complete extinction to occur, because g

remains constant and positive throughout the extinction phase.

To simulate extinction, we initially trained our virtual rats

as in the pre-training stage of our previous simulations; that

is, the response rate for the initial memory cycle was set to

10 per min followed by a single session of training under

RR 5. Outcome delivery was then suspended for 2000 ad-

ditional memory cycles. As can be appreciated in the right

panel of Figure 13, the model correctly predicts a systematic

decrease in total responding while maintaining a positive

goal-directed strength, providing an account of the retention

of goal-directed control reported by Rescorla 5.

The survival of g across extinction raises the question as

to which training conditions would have an impact in goal-

directed responding in our model. According to our account,

goal-directed responding can only be extinguished by ex-

posure to a non-contingent schedule, so that the response-

outcome rate correlation experienced by the agent is de-

graded (see Figure 8). There is evidence that exposure to

non-contingent outcomes does not reduce outcome-specific

Pavlovian-instrumental transfer (Colwill, 2001; Rescorla,

1992), but this form of transfer is thought to be unaffected by

outcome devaluation (see Cartoni et al., 2016; Holmes et al.,

2010). Moreover, transfer learning differs from that mediating

goal-directed behavior (1994). As far as we know, the impact

of outcome revaluation following a reduction in responding

induced by non-contingent training has not been reported and

so represents a novel prediction of our model. We simulated

this novel prediction by training our agents as in the previous

extinction simulations, but switched them from RR 5 to a

non-contingent schedule in which free reinforcers were de-

livered with the same probability as that programmed by the

RR schedule (.2). The simulations confirmed our prediction

(see Figure 14): degrading the response-outcome contingency

significantly reduced the contribution of the goal-directed

system that would otherwise stay constant by inhibition from

the habit system in an extinction procedure.

As can be appreciated from the set of simulations we have

presented, our dual-system model can explain a wide range

of phenomena from the instrumental free-operant literature.

However, there still remain a number of behavioral processes

that are not as yet open to simulation by our formal model,

but that are in principle compatible with it. We discuss these

processes in turn below.

Performance after extended training

As Figure 10d clearly illustrates, the dual-system model pre-

dicts that a ratio schedule maintains a higher response rate

than a comparable interval schedule early in training, as was

originally observed by Dickinson et al. (1983). With more

Figure 13. Simulations of a devaluation manipulation after ex-

tinction. The left panel shows the results reported by Rescorla

(1993), which involved devaluation of one outcome for one

response after an extinction phase compared with a response

for which the outcome was not devalued. A control group

had similar training but without undergoing an extinction

phase. Note that before the devaluation test, responding was

recovered by training with another outcome after extinction.

The right panel shows the final values after one session of RR

5 followed by 2000 cycles of extinction for the dual-system

model.

extended training, however, the difference in performance

disappears as responding comes under habitual control. This

prediction is clearly at variance with the empirical evidence

showing a sustained ratio-interval performance effect with

extended training (e.g. Catania et al., 1977; Pérez et al., 2016;

Pérez and Soto, 2020). We have already noted that interval

schedules differentially reinforce long IRTs—the longer an

agent waits before responding again, the more likely it is that

a further outcome has become available with the resultant

increase in the probability of reinforcement (see Figure 2a).

To the extent that habit learning is conceived of as a form

of stimulus-response learning, we should expect this form

of learning to be sensitive to the temporal cues registering

the time since the last response and hence to come under the

control of these cues, with the resulting impact on the rate of

responding. By contrast, on a ratio schedule the probability

of reinforcement is constant and independent of IRTs, so

responding should be independent of the size of the emitted

IRTs (for a discussion, see Chapter 4 in Mackintosh, 1974).

As the habit system does not incorporate a mechanism for the

differential stimulus control of responding, we cannot use our

5The decrease in p under the value of α− chosen for previous

simulations made p decrease at a low rate and to remain at a positive

and low value after 2000 memory cycles. Therefore, for illustrative

purposes, we employed a higher value for α− in the simulations

shown in Figure 13 and kept the rest of the parameters identical

to previous simulations (see Supplemental Material for the specific

values used in the simulations presented in this paper).
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Figure 14. Simulations of a dual-system model for a deval-

uation manipulation after non-contingent training. The plot

shows the final outputs of the systems after one session of RR

5 training followed by 2000 cycles of non-contingent training

for the dual-system model.

model to assess impact of IRT reinforcement on responding.

However, if this differential reinforcement could be removed

while implementing the low rate correlation characteristic of

interval contingencies, the model predicts that there should

be no sustained ratio-interval performance effect. Kuch and

Platt (1976) specified such a schedule, now referred to as a

regulated-probability interval schedule (RPI). Without going

into the implementation details, the RPI schedule sets the

probability of reinforcement for the next response so that if

the agent continues responding at the current rate, the rate

of the outcome will match that specified by the scheduled

interval parameter. As a consequence, variations in the rate

of responding will have little impact on the obtained outcome

rate. In other words, the schedule maintains the low rate corre-

lation characteristic of a standard interval schedule. However,

as the outcome probability for the next response is fixed at

the time of the preceding response, the RPI schedule, like a

standard RR schedule, does not differentially reinforce any

particular IRT. Consequently, our dual system model predicts

that there should be no difference in the sustained responding

on ratio and RPI schedules with matched outcome rates or

probability.

The limited empirical evidence on this contrast is mixed. Nei-

ther Tanno and Sakagami (2008) nor Perez et al. (2018), who

both trained hungry rats to lever-press for a food outcome, re-

ported a sustained difference between responding on ratio and

matched RPI schedules, while observing the reduced response

on a standard matched interval schedule. In contrast, Dawson

and Dickinson (1990) observed a sustained higher response

rate of chain pulling on a ratio schedule than on a yoked

RPI schedule. The source of this empirical anomaly is as yet

unclear, although it may well be that the use of an atypical

chain-pulling response by Dickinson and Dawson produced

a sustained variation in the rate of responding relative the

prototypical lever pressing. If so, the chain-pulling rats would

have continued to experience a higher rate correlation under

the RR schedule than under the matched RPI schedule and

therefore, according to the model, should have continued

to respond at a higher rate due to the sustained goal-direct

response strength g.

Motivational processes

Different processes are involved in the motivation of habits

and goal-directed action and so we shall consider each in turn

in relationship to our dual-system model.

Incentive learning. In Equation 6 We have already in-

cluded the incentive value I of outcomes in the term for the

contribution of the goal-directed system to determining the

response probability in a memory cycle. In the case of bi-

ological outcomes, such as foods and fluids, animals have

to learn about their incentive values through consummatory

experience with these commodities if they are to function as

goals of an instrumental action, a process that Dickinson and

Balleine (1994; 2002) refer to as incentive learning. Moreover,

the animals also have to learn how these incentive values vary

with motivational states, such as hunger and thirst. Dickinson

and Dawson (1988; 1989) first reported the role of incentive

learning in the motivational control of goal-directed action in

an irrelevant incentive procedure using a shift from training

under hunger to testing under thirst. Their rats were initially

trained to lever-press and chain-pull, one for food pellets and

the other for sugar water, while hungry. During a subsequent

extinction test, thirsty rats only preferentially performed the

action trained with the sugar water if they had previously had

the opportunity to drink the sugar water while thirsty, indicat-

ing that they had to learn about the incentive value of the sugar

water when thirsty. Such incentive learning is required not

only for shifts between motivational states but also variations

within a motivational state, such as that between satiety and

hunger (Balleine, 1992). Dickinson and Balleine (2010) have

subsequently argued that the assignment of incentive value to

an outcome is based on the experienced hedonic reactions to,

and evaluation of that outcome.

Motivating habits. In accord with classic two-process the-

ory (Rescorla, 1967), it is well established that Pavlovian

stimuli associated with appetitive reinforcers motivate free-

operant behavior established and maintained by appetitive

outcomes. Estes (1948) was the first to demonstrate this effect

using what has come to be called the Pavlovian-instrumental
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transfer (PIT) paradigm (see Cartoni et al., 2016; Holmes

et al., 2010 for reviews). He initially established a Pavlovian

stimulus as a signal for food before training his hungry rats

to press a lever for the food. When he then presented the

stimulus for the first time while the rats were lever-pressing,

he observed an increase in response rate during the stimu-

lus. Given this transfer, two-process theory assumes that the

Pavlovian conditioning to contextual cues occurs concurrently

with instrumental learning during standard operant training

so that the context comes to exert a motivational influence on

free-operant performance.

The concordance between the impact of outcome rate on oper-

ant performance and Pavlovian responding accords with this

two-process theory of instrumental motivation. It has long

been recognized that an important variable in determining

the rate of responding on interval schedules is the outcome

rate rather than the outcome probability per response, and

Killeen (1978; 1982) proposed that outcome rate has a direct

motivational impact so that higher outcome rates will have a

general and sustained energizing effect on behavior. Indeed,

this effect has been formalized by Herrnstein and collegues

(de Villiers and Herrnstein, 1976) in terms of a hyperbolic

function between response and reinforcement rates and, more

recently, Harris and Carpenter (2011) have reported that the

same function applies to Pavlovian conditioning of magazine

approach in rats, consistent with the idea that the sensitivity

of instrumental responding to outcome rate reflects a moti-

vational influence of Pavlovian contextual conditioning on

response vigor.

This Pavlovian motivation modulates habitual rather than goal-

directed behaviour. Holland (2004) reported a stronger PIT

effect when habitual control had been induced by extended

training, whereas Wiltgen et al. (2012) reported a similar

association between the habitual status of responding and

general PIT in mice by contrasting ratio and interval training.

They observed greater PIT following interval training when

performance was impervious to outcome devaluation than

following ratio training when responding was still under goal-

directed control. Further evidence that the target of Pavlovian

motivation is habitual comes from the fact that the magnitude

of PIT was unaffected by whether the outcome associated

with the Pavlovian stimulus was the same as or different from

the instrumental outcome 6.

A compelling demonstration of the generality of Pavlovian

motivation comes from an irrelevant incentive study of PIT.

Dickinson and Dawson (1987) trained hungry rats to lever-

press for food pellet while also giving separate Pavlovian

training by pairing one stimulus with the pellets and another

with sugar water in the absence of the lever. When for the

first time the rats were given the opportunity to press the lever

during the stimuli while thirsty and in the absence of any

outcomes, they did so more during the sugar-water stimulus

than during the pellet signal. This finding establishes two im-

portant points. The first is the generality of the motivational

influence which augments any prepotent habitual response

even if that response was trained with a reinforcer that differs

from that associated with the stimulus. Second, the Pavlovian

motivational process can endow habitual responding with a

veneer of goal-directedness. The shift of motivational state

from training under hunger to PIT testing under thirst is an ap-

parent outcome revaluation procedure in that the sugar-water

reinforcer remained relevant to the test motivational state

whereas the pellet reinforcer did not. However, this appar-

ent outcome revaluation effect did not indicate goal-directed

control because the revaluation did not operate through a

representation of the response-outcome contingency in that

lever pressing was trained with the food pellets, not the sugar

water. Moreover, in contrast to the instrumental incentive

learning, it was not necessary for the animals to re-experience

the outcome in the new motivational state for a PIT effect to

occur: the sugar-water stimulus enhanced lever pressing in

the extinction test even though their rats had never previously

experienced the sugar water while thirsty.

The sensitivity of this Pavlovian motivation to an outcome

revaluation procedure can easily lead to the erroneous at-

tribution of goal-directed status. For example, Jonkman et

al. (2010) reported that the rate of lever pressing remained

sensitive to outcome revaluation even after extensive training

on an interval schedule. It is very likely, however, that the

apparent devaluation effect was mediated by Pavlovian contex-

tual motivation of habitual responding. Extinguishing context

conditioning prior to the devaluation test significantly reduced

the magnitude of the effect. This same Pavlovian process may

have operated in two more recent outcome devaluation effects

that are problematic for our dual-system model. Recently,

Garr et al. (2019) have reported that lever-pressing by rats

established with an RI schedule was impervious to outcome

devaluation after minimal and intermediate training but be-

came sensitive to outcome value after more extended training.

This finding is compatible with the view that the influence of

contextual Pavlovian motivation increases with habit strength,

so that changes in motivational state have a stronger impact

on responding with extended training. Conversely, the lack of

devaluation sensitivity after limited training may have been a

6This motivational effect of Pavlovian stimuli on instrumental

responding is called general PIT, as it increases the probability of

responding for all the available responses and is thought to be medi-

ated by a general energizing effect of a stimulus that is associated

with the motivational properties of the outcome. This is in contrast

with specific PIT, where responding is enhanced only to the response

that predicts the same outcome as in training and is thought to be

mediated by the association between the stimulus and the sensory

properties of the outcome (see Cartoni et al., 2016 for a review).
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consequence of weak contextual conditioning.

In the case of the second problematic effect, Coutureau and

Killcross (2003) gave extensive lever-press training that was

sufficient to establish habitual responding in a subsequent

outcome devaluation test for their control rats. By contrast,

their experimental animals showed a reliable devaluation ef-

fect when the infralimbic cortex was inactivated by muscimol

immediately prior to the devaluation test. They interpreted

this result as evidence that disrupting the habitual system re-

vealed an underlying goal-directed control. This interpretation

is at variance with our model, which argues that behavioral

autonomy results from a loss of goal-directed strength through

the development of stereotyped invariant responding so that

there should be minimal goal-directed control to be reinstated.

Coutureau and Killcross (2003) were aware that a spurious

devaluation effect could arise through a contextual Pavlovian

process and, consequently, their rats received exposure to

the operant context without the lever or outcomes to extin-

guish the contextual conditioning. However, it is possible that

the administration of the muscimol may have renewed the

contextual conditioning and thereby reinstated the Pavlovian

outcome devaluation effect. It is well established that after

Pavlovian conditioning and extinction in one context, a shift

to another context can renew the Pavlovian response (Bouton

and Ricker, 1994). So it may well be that administration of

the muscimol acted as a context shift by changing the internal

state of the rats with the result that the muscimol, rather than

revealing latent goal-directed control, functioned to renew the

Pavlovian outcome devaluation effect.

Finally, it is possible that two more recent demonstrations

of the reinstatement of an outcome devaluation effect may

also be mediated by the motivational impact of Pavlovian

contextual conditioning on habitual responding. In one set of

studies (Bouton et al., 2020) the reinstatement was induced by

presenting a novel food at the end of of instrumental training,

whereas in the second set (Trask et al., 2020) interleaved

training of another response in a second contextual during the

final sessions of training of the target response produced the

reinstatement. In neither case, however, was it demonstrated

that the reinstated outcome devaluation effect was mediated

by the instrumental contingency between the target response

and its outcome rather than by Pavlovian conditioning to the

context in which the target response was tested. Therefore,

we cannot be certain that the outcome devaluation effects

reflected a reinstatement of goal-directed control.

As we have noted, the performance function in our dual-

system model (see Equation 7), which transforms response

strengths into response probability, includes a parameter I that

represents the current incentive value of the outcome so that

Ig determines the contribution of the goal-directed system to

performance. By analogy, we extend it by also including an

additional parameter that reflects the motivational effects of

appetitive Pavlovian stimuli on habitual performance. Fol-

lowing Hull’s (1943) classic nomenclature, we denote this

parameter as D for drive, which multiplies the habit strength

h to represent the contribution of the habit system to overall

performance. Like the Hullian drive concept, D appears to ex-

ert a general motivational effect, at least within the appetitive

domain, so that the complete response function has the form

pk+1 = s(Igk + Dhk) (8)

, where s is the sigmoid function as shown in Equation 7.

In summary, the motivation of habits and goal-directed actions

is varied and complex, even in the case of basic biological

commodities such food and fluids. Habits are motivated by

a general appetitive drive D conditioned to contextual and

eliciting stimuli, whereas the incentive value of the outcome

I, which is learned, motivates goal-directed action. Habitual

motivation is directly sensitive to shifts in motivation state,

whereas the agent has to learn about incentive values of out-

comes in different motivational states before they can control

goal-directed action.

Discriminative control

As it stands, our dual-system model offers no mechanism by

which goal-directed responding can come under stimulus con-

trol as the goal-directed strength, g, is solely a product of the

experienced correlation between response and outcome rates

and the current incentive value of the outcome I. There is,

however, extensive evidence that such responding can come

under discriminative control. The most compelling comes

from an elegant biconditional discrimination studied by Col-

will and Rescorla (1991). They trained rats with two different

responses (R) and outcomes (O) and arranged for the different

stimuli (S) to signal which outcome would be produced by

each response. When S1 was present, R1 led to O1 and R2 to

O2, whereas the opposite relation held when S2 was present

(R1 led to O2 and R2 led to O1). When one of the outcomes

was then devalued, rats responded more in the extinction test

during the stimulus that during training signalled the non-

devalued outcome for the target response. As this design

equates the stimulus-outcome associations across stimuli and

the response-outcome association across responses, this deval-

uation effect requires the encoding of the triadic relationship

between stimulus, response and outcome, a representation

that is not as yet incorporated into our current formulation

of the model. The nature of this representation has been a

long standing issue (Rescorla, 1990). One possibility is that

the stimulus is associated with the rate correlation experi-

enced in its presence and thereby modulates the strength of

the response-outcome relationship controlling goal-directed

responding during the stimulus. As a consequence, the same

response can enter into different rate correlations, each of
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which would be associated with relevant discriminative stim-

uli. An alternative is that a response is represented in memory

in a configuration with the discriminative stimulus and that

different rate correlations are computed for each stimulus-

response configuration.

Whatever the merits of these alternative accounts of dis-

criminative control, goal-directed responding does not spon-

taneously come under the control of the stimulus context

in which the response-outcome contingency is experienced.

Thrailkill and Bouton (2015) found that after limited instru-

mental training the magnitude of the devaluation effect shown

by their rats was unaffected by a shift from the training context

to another familiar context between the end of instrumental

training and testing. It is unlikely that their rats did not dis-

criminate between the contexts because with more extended

training, when responding had become autonomous of out-

come value (i.e., habitual), this context shift reduced overall

responding. This pattern of results accords with our model in

that after limited training the goal-directed strength g controls

responding and, consequently, this control transfers sponta-

neously across contexts. By contrast, when responding has

become under habitual control due to the monotonic increase

in h with training, a context shift automatically produces a

response decrement because such control reflects the develop-

ment of context (stimulus)-response strength accrued during

training.

As well as their paradoxical effect of extended training on

outcome devaluation (see above), Garr et al. (2019) also

reported an empirical evaluation of rate correlation theory

by contrasting RI and fixed interval (FI) schedules. As well

as replicating the established finding (Derusso et al., 2010)

that behavioural autonomy is more readily established by RI

than by FI training, they also assessed the rate correlation

within each training session. At variance with our account of

goal-directed action, they report that, if anything, the FI rate

correlation was lower than the RI rate correlation, even though

FI was more sensitive to outcome devaluation. However, once

it is acknowledged that goal-directed strength can come under

discriminative control when the stimuli signal different rate

correlations, the analysis of FI becomes much more complex.

In the case of an FI schedule, the outcome itself functions as

a discriminative stimulus signaling a period without any out-

come. This discriminative function of the outcome is evident

in the scalloped pattern of performance across the FI interval

with low rates of responding immediately after the outcome

and higher rates later in the FI. That the outcome served such

a discriminative function in the Garr et al (2019) study is

evident from the scalloped pattern of responding they report.

As the extinction conditions in force during an outcome de-

valuation test are most similar to the stimulus conditions in

force during the terminal period of the FI, our model predicts

that the critical rate correlation that should be computed is

that during the terminal period of the FI, which may well be

higher than for a matched RI schedule. It is because of the

complexities introduced by schedules in which the outcome

has a discriminative role that we have restricted our empirical

analysis to random or variable schedules in which this role is

minimized7.

Avoidance

We have developed rate correlation theory within a dual-

system framework by reference to positive reinforcement of

free-operant behavior using appetitive or attractive outcomes.

However, Baum (1973) also analyzed free-operant avoidance

in terms of his correlational Law of Effect. Under a typical

free-operant avoidance contingency, a response causes the

omission or postponement of a future scheduled outcome

with the consequence that our recycling memory model yields

a negative goal-directed strength (g < 0), at response rates

that do not avoid all the schedule outcomes in a memory cycle.

On the assumption that experience with the aversive outcome

through incentive learning produce a negative incentive value,

(I < 0), the product of the negative goal-directed strength and

incentive value, Ig, will be positive and thereby contribute

to the probability of a response being performed, p. Under

our model, therefore, responding should increase under an

avoidance procedure.

One of the most interesting aspects of avoidance behavior is

that it requires an explanation of its persistence in the absence

of an explicit reinforcing event (for a recent review, see Gillan

et al., 2016). In our model, once the response rate is sufficient

to avoid all schedule outcomes within a memory cycle, the

goal-direct strength will remain frozen at the established g

value and thereby produce sustained avoidance in the absence

of the aversive outcomes.

The most radical aspect of this account is its assumption

that avoidance responding can be goal-directed. Although

there are precedents for a goal-directed account of avoidance

(e.g. Seligman et al., 1973), contemporary RL theory follows

traditional two-process theory in assuming that avoidance

responding is purely habitual or model-free (see Maia, 2009).

Although human discrete-trial procedures have demonstrated

a reduction in avoidance following revaluation of the aversive

7In addition to manipulating the type of training schedule (RI vs

FI), Garr et al. (2019) also varied the parameters of an RI schedule

to generate a between-session rate correlation but found no effect

of this variation on the outcome devaluation effect. However, our

model computes the rate correlation locally, and Garr et al. report

that the between-session variation in the RI parameter had no effect

on the within-session rate correlation. Therefore, our model predicts

that the between-session variation should also have been without

effect on the magnitude of goal-directed control.
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outcome (Gillan et al., 2011), more critical for a rate corre-

lation account of goal-directed avoidance is a demonstration

by Fernando et al. (2014) of an outcome revaluation effect

using a free-operant schedule. They trained rats to lever-press

to avoid foot-shocks that were programmed to be delivered

at fixed intervals. Their revaluation procedure consisted of

non-contingent presentations of the shock under morphine,

so that pain would be reduced and the aversive status of the

shock devalued. During an extinction test, their rats decreased

responding compared to a non-revalued control group, demon-

strating that their rats were performing the avoidance action

to reduce the rate of an unpleasant outcome.

In accord with our dual-system model, Fernando and col-

leagues (2014) also investigated the role habit learning in

free-operant avoidance. As mentioned above, an enduring

problem for reinforcement theory is the absence of any event

following an avoidance response that could act as a reinforcer.

However, Konorski and Miller (1928) discovered that per-

formance of an avoidance response itself, or more strictly

speaking the feedback stimuli generated by responding, func-

tioned as a conditioned aversive inhibitor and, subsequently,

Weisman and Litner (1969) reported that an explicit aversive

inhibitor acted as a conditioned reinforcer of free-operant

avoidance responding by rats. Taken together, these results

suggest that habitual responding may be reinforced by the

feedback stimuli generated by responding itself. In accord

with this analysis, Fernando et al. (2014) found that avoidance

responding by their rats was enhanced by the presence of an

explicit feedback stimulus and, moreover, this enhancement

appeared to be habitual. Although exposure to the feedback

stimulus under morphine enhanced its reinforcing property,

the enhancement was not evident in an outcome revaluation

test. This finding led Fernando and colleagues to conclude

that the responding generated by the presence of the explicit

feedback stimulus was habitual.

In summary, free-operant avoidance, like its appetitive coun-

terpart, is under joint control by goal-directed and habitual

systems with the former reflecting rate correlation learning

between the response and aversive outcome, and the latter

reinforced by the aversive inhibitory property of response-

generated feedback stimuli.

Discussion

In this paper we have formalized a theory of goal-directed

actions and habits that marshals two systems to generate re-

sponses rates under random free-operant contingencies. After

discussing associative and RL theories based on outcome

probability and reward prediction-error, we presented an al-

ternative theory of goal-directed control according to which

agents compute a correlation between rates of responding and

rate of outcomes in a fixed working memory to represent the

current causal relationship between an action and its outcomes.

The new rate correlation is then combined with the historic

average correlation stored in long-term memory to generate

a goal-directed strength. Furthermore, we also assume that

habit strength is acquired in parallel with goal-directed con-

trol through a standard prediction-error associative learning

process and that the strength generated by these two systems

simply summate to determine the rate of responding. The

strength of the goal-directed input determines the extent to

which responding is sensitive to the current value of the out-

come as assessed by the outcome revaluation test, whereas the

responding that is autonomous of the current outcome reflects

the current habit strength. By simulation, we demonstrated

how the theory captures instrumental performance under ratio

and interval schedules when outcome probabilities (or rates)

are matched, how goal-directed control transitions to habitual

behavior with extended training and why this transition occurs

more rapidly under an interval than under a matched ratio

schedule. The model also explains why responding under

choice procedures tends to remain under goal-directed control

in spite of the amount of training when different outcomes

are employed for each of the choice responses. In all these

cases, the actual instrumental contingency implemented by a

schedule is filtered by the experienced rate correlation gener-

ated by the agent’s performance under the particular schedule

which, together with additional training constraints, generates

the goal-directed response strength.

An important feature of our model is that our agent’s per-

ception of the actual contingency may well be different to

the objective contingency established by the schedule; we

do not propose an optimal biological agent whose goal is to

estimate the actual rate correlation in the environment. Our

agent simply acts on the environment and experiences a rate

correlation in each memory cycle that is only affected by the

stability and/or vigor of the response strength during training—

two of the cardinal features of habitual behavior (Balleine,

2019a). In this sense, the habit system not only is capable of

inhibiting the goal-directed system throughout extinction, but

also interferes with the experienced rate correlation that the

agent computes in each cycle during training.

There are a plethora of formal accounts of free-operant per-

formance (e.g. Killeen, 1994; Niv et al., 2007; Peele et al.,

1984; Tanno and Silberberg, 2012; Wearden and Clark, 1988),

at least one of which (Killeen, 1994) also deploys a short-

term memory to couple recent behavior with reinforcement.

However, none of these theories distinguish between goal-

directed and habitual responding, which is the prime focus

of our model, and so we have restricted our discussion to

theories that recognize and implement this distinction. Apart

from model-based and model-free RL, which we have have

already discussed, we know of only one other theory that

addresses the distinction within the context of free-operant

behavior. Recently, Miller et al. (2019) presented a dual-
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system or -controller account in which they assume that at

each time step the goal-directed system selects a response

rate and observes the resultant outcome rate as determined

by the schedule feedback function, which in turn provides a

basis for selecting a response rate by comparing it with the

effort exerted by the agent under a particular reinforcement

schedule. This responding concurrently engages the habit con-

troller, which contributes to the habitization of performance.

By simulation of their model, they present acquisition profiles

generated by the goal-directed and habitual systems under a

VI and VR schedule that are similar to the ones generated by

our model (See Figure 5) with the ratio schedule initially pro-

ducing greater goal-directed control than interval training and

with performance coming under habitual control with more

extended training. However, their ratio-interval contrast is not

based on matching the outcome probability across schedules,

which, as we have seen, is a cardinal aspect for contrasting

the effects of ratio and interval contingencies on responding.

Moreover, they do not report whether their model can capture

the impact of the primary variables of free-operant schedules,

outcome probability, rate, and delay, nor whether their model

anticipates the preservation of goal-directed control under

choice or concurrent training with different outcomes.

A unique feature of the Miller et al.’s (2019) model is their ac-

count of habit learning which eschews the predominant view

in the classic learning theory and RL literature that habits are

reinforced by the contingent outcome. Instead, they resur-

rect Guthrie’s theory (1959) that simple stimulus-response

contiguity is sufficient for habit learning. It is far from clear,

however, that unlike Guthrie’s theory, their contiguity process

can account for the extinction or reduction of an established

habit. They illustrate the persistence of habitual responding by

simulating an omission contingency by reference to a study re-

ported by Dickinson, Squire, Varga and Smith (1998). Having

extensively trained their model under positive contingency,

Miller et al. reversed the contingency so that the outcome

now only occurred in the absence of a response. When the

response probability was close to one at the end of training,

the imposition of the omission contingency had no impact on

the probability of responding generated by their habit system.

However, this simple contingency reversal does not simulate

the actual procedure used by Dickinson et al. (1998). To

detect the impact of the omission contingency, Dickinson et

al. maintained reinforcement of the target response with the

training outcome and superimposed an omission contingency

with a different outcome. We know of no case in which

habitual free-operant responding persists in the face of simple

extinction (see Dickinson et al., 1995), let alone an omis-

sion contingency. Simple stimulus-response contiguity is a

nonstarter as a learning condition for free-operant habits.

Our model deploys a standard associative account of habit

extinction based on the negative reward prediction-error re-

sulting from the omission of an expected outcome. Impor-

tantly, this prediction error encodes the total prediction of

both behavioral systems, which enables our model to provide

a unique explanation of the survival of goal-directed control

across extinction. As the goal-directed system can only com-

pute a rate correlation when both responses and outcomes are

represented in the memory, successful behavioral extinction

requires inhibition of the historic goal-directed strength when

the outcome is suspended. As a consequence, responding

extinguishes because the sum of the strengths of the systems

approaches zero, even though the goal-directed strength g

remains positive with the value of the last rate correlation

experienced during the training phase.

A further contrast between our dual-system model and that

of Miller et al. concerns the interaction between the goal-

directed and habitual systems. Whereas the outputs of the

two systems simply summate to determine the probability

of responding in our model, Miller et al. (2019) argue for a

weighted average of the system outputs with the weighting

varying the goal-directed and habit strenghs. This is the type

of arbitration analysis taken within the context of human

discrete-trial choice paradigms and has become a major focus

for both empirical and theoretical research (Cushman, 2013;

Daw et al., 2011; Gillan et al., 2015; Kool et al., 2016; Kool

et al., 2017; Lee et al., 2014). Such arbitration processes

typically allocate control on the basis of the reliability of the

estimations or the costs and benefits delivered by each system,

but we know of no evidence that such arbitration processes

play a role in free-operant responding.

The dual-system approach offered here differs sharply from

RL models in how the systems interact during training. In con-

trast to deploying an additional arbitrator to determine which

system controls responding according to the reliability of the

estimations of each system, in our model the contribution of

each system to performance is given by its relative strength

across training, and total performance follows from the linear

sum of their strengths. As just discussed, the mnemonic

mechanisms of our model filter the actual instrumental con-

tingency established by the schedule’s feedback function to

yield the experienced rate correlation, which is modulated by

the increasing habit strength during training. Consequently,

behavioral control follows from the proportion of responding

that is explained by the goal-directed system under differ-

ent experimental conditions, not from an additional system

that assigns control to either of the systems according to an

additional computational process.

Another model that is relevant for our theory is one offered

by Balleine and Dezfouli (2019; 2012), who argue that the

functional unit in a behavioral stream may not be a single

isolated action such as a lever press, but a habitual chunk

generated by a chain of stimulus-response associations with

each response in the chain functioning as a stimulus for the
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subsequent response. Within the context of free-operant re-

sponding by rats, the example they offer is the chain involving

a lever press followed by an approach to the source of the

outcome. In favor of this view of habits they cite an analysis of

lever pressing for a food outcome by Halbout and colleagues

(2019) who found that isolated lever presses were sensitive

to outcome devaluation, and therefore goal-directed, whereas

press-source approach chains were habitual. Although these

results accord with the idea that free-operant response chains

may be habitual, they do not speak to the issue of non-chunked

lever pressing that is habitual, which is the main concern of

our model. Therefore, we argue that a summation mecha-

nism remains the simplest and most plausible account of non-

chained actions established by free-operant contingencies.

Finally, we should acknowledge that a simple summation

process has implications for the nature of the representations

underlying instrumental learning. So far, we have focused on

the learning process underlying the acquisition of instrumental

knowledge while remaining agnostic about the nature of this

knowledge (at least in the case of goal-directed action). Ever

since Thorndike (1911) formulated his Law of Effect, psy-

chologists have assumed that habit strength is implemented

by excitatory (and inhibitory) stimulus-response associations,

an assumption we have endorsed in our theory. Therefore, if

we are to deploy simple summation between systems outputs,

we have to assume that the goal-direct system also yields

associative excitation (or inhibition). Appealing to such an

associative output may not seem problematic, and indeed it

has been widely assumed that goal-directed action is based

on response-outcome associations. However, such isolated as-

sociations fail to capture the purposive nature of such actions,

which require an appeal to representations with intentional

properties, such as beliefs and desires (Dickinson, 1980). To

address this issue, one possibility is embedding the associative

representation within a cognitive architecture that implements

a process of practical inference to derive an action intention

(Dickinson, 2012). From this perspective, a future theoretical

goal is to integrate such a processing architecture with the

dual-system learning outlined in this paper.
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