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Abstract

This paper develops a theory of anharmonic lattice statics for the
analysis of defective complex lattices. This theory differs from the clas-
sical treatments of defects in lattice statics in that it does not rely on
harmonic and homogenous force constants. Instead, it starts with an
interatomic potential, possibly with infinite range as appropriate for situ-
ations with electrostatics, and calculates the equilibrium states of defects.
In particular, the present theory accounts for the differences in the force
constants near defects and in the bulk. The present formulation reduces
the analysis of defective crystals to the solution of a system of nonlinear
difference equations with appropriate boundary conditions. A harmonic
problem is obtained by linearizing the nonlinear equations, and a method
for obtaining analytical solutions is described in situations where one can
exploit symmetry. It is then extended to the anharmonic problem us-
ing modified Newton-Raphson iteration. The method is demonstrated for
model problems motivated by domain walls in ferroelectric materials.
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1 Introduction

The method of lattice statics introduced by Born and his co-workers (see Born
and Huang (1988)) has been widely used to study various aspects of atomistic
solids. In particular, it has been widely used to study equilibrium structure
of defects. Based on a formulation by Matsubara (1952) and Kanazaki (1957),
this version of lattice statics has been used for point defects by Flocken and
Hardy (1969) and Flocken (1972), for interstitial by Flocken and Hardy (1968),
for cracks by Hsieh and Thomson (1973) and Esterling (1978), for surfaces by
Flocken (1977) and for dislocations by Maradudin (1958), Boyer and Hardy
(1971), Esterling (1978), Esterling and Moriarty (1978), Shenoy et al. (1999)
and Tewary (2000). Further reviews can be found in Flocken and Hardy (1970),
Boyer and Hardy (1971), Tewary (1973), Bullough and Tewary (1979), Flocken
and Hardy (1969), Maradudin et al. (1971), Mura (1982), King and Mura (1991),
Thomson et al. (1992), Gallego and Ortiz (1993), Ortiz and Phillips (1999),
Shenoy et al. (1999) and references therein. This method considers a harmonic
defect-free crystal subjected to an eigendeformation chosen to represent the
defect. The advantages of the method are that they provide analytic solutions
and that they do not require any ad hoc cut-off or periodicity assumptions.
However, they are harmonic and homogeneous, and importantly do not account
for the strong nonlinear and heterogeneous behavior near the defect core. It
should also be mentioned that none of the above-mentioned works solve the
defect problem as a discrete boundary-value problem. In contrast, nonlinear
treatments of defects are overwhelmingly computational and restrict themselves
to finite domains or periodicity assumptions.

This paper is concerned with the formulation of a semi-analytical method of
solution of fully nonlinear lattice statics problems for defective crystals. In par-
ticular, the method of solution takes as input an arbitrary interatomic potential,
and is not restricted to interactions based on harmonic force constants. The so-
lutions obtained represent equilibrium configurations for the input interatomic
potential. The method of solution is based on a modified Newton-Raphson it-
eration. Each step in the iteration requires the solution of a harmonic problem
with uniform force constants. The uniformity of the force constants ensures
that methods of solution for difference equations, such as the discrete Fourier
transform, can be applied to the linearized problem. The out-of-balance forces
are computed from the full interatomic potential, thus ensuring that converged
solutions represent equilibrium configurations of the anharmonic crystal. The
iteration starts from a nominal configuration of the defective crystal. This
initial configuration is not in equilibrium in general and the corresponding out-
of-balance forces are not zero. The main purpose of the initial configuration is
to place the crystal in the energy well corresponding to the defect of interest.
General results then ensure that if the equilibrium defect is stable, i. e., if the
corresponding force constants are coercive, and the initial nominal defect is suf-
ficiently close to the equilibrium defect, the modified Newton-Raphson iteration
converges linearly.

We demonstrate our methodology using a model problem motivated by the
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study of domain walls in ferroelectric perovskites. Elsewhere we present detailed
results of domain walls and defects on domain walls using more widely accepted
potentials.

This paper is organized as follows. §2 reviews harmonic lattice statics. We
reformulate lattice statics in a language as close to continuum mechanics as pos-
sible. In §3 the idea of symmetry reduction for defective crystals is presented
and some subtleties in the linearized discrete governing equations are explained.
§4 presents the idea of anharmonic lattice statics. Solution techniques for solv-
ing the linearized discrete governing equations are explained in §5. In §6 our
formulation of lattice statics is generalized to a system of dipoles in which in-
teractions are pairwise but not isotropic and atom position vectors are not the
only degrees of freedom. The method of solution is illustrated by means of sev-
eral examples concerned with the equilibrium structure of 180◦ and 90◦ domain
walls in a two-dimensional lattice of dipoles. Conclusions are given in §7. In the
appendix we show that with little modification our approach can be applied to
three-body interactions.
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2 Discrete Governing Equations

Consider a collection of atoms L and assume that they interact through some
interatomic potentials. Let xi denote the position of atom i ∈ L and Si the
set (list) of other atoms that it interacts with. We prohibit self interaction by
assuming i /∈ Si. The total energy is a function of the atomic positions,

E = E ({xj}j∈L
)
, (1)

and we assume that this may be written as the sum of the energy per atom

E =
∑

i∈L
E i

(
xi, {xj}j∈Si

)
. (2)

Note that this partitioning of energy cannot be done unambiguously in general.
However, this is unambiguous in the case of pairwise interactions. Assuming
that there are no discrete body forces, equilibrium requires ∗

∂E
∂xi

= 0 ∀i ∈ L. (4)

It can be easily shown that this is equivalent to equilibriating energy of the
atom E i with respect to xi, i.e.,

∂E i

∂xi

(
xi, {xj}j∈Si

)
= 0. (5)

These equations (4) and (5) embody the main idea behind lattice or molec-
ular statics. We seek a solution to equation (5) close to a given reference con-
figuration B0 =

(
xi

0, {xj
0}j∈Si

)
. Therefore we expand the governing equations

(5) about this reference configuration:

∂E i

∂xi
=

∂E i

∂xi
(B0) +

∂2E i

∂xi∂xi
(B0) (xi − xi

0) +
∑

j∈Si

∂2E i

∂xj∂xi
(B0) (xj − xj

0) + ... = 0.

(6)
We obtain the harmonic approximation by dropping the higher order terms.

It can be easily shown that because of translation invariance of the potential

∂2E i

∂xi∂xi
(B0) = −

∑

j∈Si

∂2E i

∂xj∂xi
(B0) . (7)

This is trivially verified for pair-wise interactions and shown in the appendix
to hold for three-body interactions. Using this, we rewrite the harmonic lattice

∗When there is a discrete field of body forces this is written as

−∂Ei

∂xi

�
xi, {xj}j∈Si

�
+ Fi = 0. (3)
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statics equations to be

∑

j∈Si

∂2E i

∂xj∂xi
(B0) (xj − xj

0)−
∑

j∈Si

∂2E i

∂xj∂xi
(B0) (xi − xi

0) = −∂E i

∂xi
(B0) . (8)

Setting

fi = −∂E i

∂xi
(B0) ,

ui = xi − xi
0, (9)

Kij =
∂2E i

∂xi∂xj
(B0) ,

the harmonic lattice statics governing equations may be written as
∑

j∈Si

Kij

(
uj − ui

)
= fi ∀ i ∈ L. (10)

A couple of remarks are in order. The matrix of force constants Kij are
derived from a potential about some reference configuration, and thus they
depend on the reference configuration. In particular, they may depend explicitly
on the indices i and j. In the classical formulation of harmonic lattice statics,
the governing equations would be written for some periodic lattice and the force
constants would depend only on the reference distance between atoms i and j.

The unbalanced force field f = {fi}i∈L can be written as

fi =
∑

j∈L
Kij∆uj

e ∀ i ∈ L. (11)

Or
f = T (∆ue), (12)

where the field of eigen-deformations ∆ue = {∆ui
e}i∈L is formally defined as

∆ue = T −1(f). (13)

Thus we can rewrite Eq. (10) as
∑

j∈L
Kij

(
uj −∆uj

e

)
= 0 ∀ i ∈ L (14)

and recognize it to be exactly that as the classical equation of harmonic lattice
statics (Ortiz and Phillips, 1999).

2.1 Linearized Discrete Governing Equations for Defec-
tive Crystals with No Symmetry Reduction

We now specialize to a (defective) complex lattice with a unit cell consisting
of N atoms. Here by “defective” lattice we mean a collection of atoms that
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is locally like a perfect complex lattice. We index the unit cells using integers
(m, n, p) ∈ Z3. Let Iαβγ denote the Ith atom in the (α, β, γ) unit cell. Given
an atom i, any other atom j can be specified uniquely by the unit cell it belongs
to and its type, i.e. j = Iαβγ. The discrete harmonic governing equations (10)
can now be written as

∞∑

α,β,γ=−∞

′
N∑

I=1

KiIαβγ

(
uI

αβγ − ui
)

= fi ∀ i ∈ L, (15)

where the prime on the summation means that the self-interaction term has
been excluded.

Let us define unit cell displacement vectors as

Umnp =




u1
mnp
...

uN
mnp


 (m,n, p) ∈ Z3. (16)

Now the discrete governing equations can be written in terms of interaction of
unit cells as

∞∑

α,β,γ=−∞
Aαβγ(m,n, p)Um+α,n+β,p+γ = Fmnp (m,n, p) ∈ Z3, (17)

where
Aαβγ(m,n, p) ∈ R3N×3N , Um+α,n+β,p+γ , Fmnp ∈ R3N . (18)

This is a linear vector-valued partial difference equation with variable coefficient
matrices of infinite order. The unit cell force vectors and the unit cell stiffness
matrices are defined as

Fmnp =




F1mnp

...
FNmnp


 ,

Aαβγ(m,n, p) =




K11αβγ K12αβγ · · · K1Nαβγ

K21αβγ K22αβγ · · · K2Nαβγ

...
... · · · ...

KN1αβγ KN2αβγ · · · KNNαβγ


 . (19)

To be able to solve such a difference equation one needs to assume a finite
range of interaction and then numerically study the effect of the range of inter-
action. Assuming ranges of interaction r1, r2 and r3 in m, n and p directions,
respectively, we have

r1∑
α=−r1

r2∑

β=−r2

r3∑
γ=−r3

Aαβγ(m,n, p)Um+α,n+β,p+γ = Fmnp (m,n, p) ∈ Z3, (20)

which is a linear partial difference equation of order r = max(2r1, 2r2, 2r3).
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2.2 Linearized Discrete Governing Equations for Defec-
tive Crystals with 2-D Symmetry Reduction

Let us now consider a complex lattice with a defect that is extended in one
dimension so that we can reduce the problem to two dimensions. In other
words, we study a collection of atoms which have translation invariance in only
one direction. In order to do so, we note that such a complex lattice may be
written as the disjoint union of one dimensional complex lattices:

Ld
2 =

⊔

α,β∈Z
Ld

2(α, β), (21)

where Ld
2(α, β) is a one-dimensional lattice or mathematically an equivalence

class of atoms. Each one-dimensional complex lattice is a chain of unit cells.
Because each unit cell is equivalent to any other unit cell in the chain, the
decomposition (21) can be thought of as a partitioning of the defective complex
lattice into some equivalence classes (chains). Choosing a representative from
each equivalence class Ld

2(α, β), the resulting two-dimensional lattice is called
the reduced lattice and is denoted by Ld2 . Further the neighboring set Si can
be partitioned as

Si =
⊔

α,β∈Z

N⊔

I=1

SIαβ(i), (22)

where SIαβ(i) is an equivalence class of equivalent atoms which all would have
the same displacement with respect to a given reference configuration. In other
words, SIαβ(i) is the set of atoms of type I in the chain Ld

2(α, β) that interact
with atom i. An example would be a lattice with broken atomic bonds on a half
plane, i.e., a crack. In this example equivalence classes are sets of atoms lying
on lines parallel to the crack edge (front). With this partitioning one can write

∑

j∈Si

Kijuj =
∞∑

α,β=−∞

′
N∑

I=1

KiIαβ uI
αβ , (23)

where

KiIαβ =
∑

j∈SIαβ(i)

∂2E i

∂xIαβ∂xi
(B0) , (24)

and prime on the summation means that the self-interaction term has been
excluded. It is seen that in a defective lattice there is a partial symmetry and a
given atom i interacts with equivalence classes and this is why each substiffness
matrix is defined in terms of a lattice sum. Thus the discrete governing equations
can now be written as

∞∑

α,β=−∞

′
N∑

I=1

KiIαβ

(
uI

αβ − ui
)

= fi ∀ i ∈ L. (25)
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Let us define unit cell displacement vectors as

Umn =




u1
mn
...

uN
mn


 . (26)

Now the governing equations can be written in terms of interaction of unit cells
as ∞∑

α,β=−∞
Aαβ(m, n)Um+α,n+β = Fmn (m, n) ∈ Z2, (27)

where
Aαβ(m,n) ∈ R3N×3N , Um+α,n+β ,Fmn ∈ R3N . (28)

This is a linear vector-valued partial difference equation with variable coefficient
matrices in two independent variables. The unit cell force vectors and the unit
cell stiffness matrices are defined as

Fmn =




F1mn

...
FNmn


 ,

Aαβ(m, n) =




K11αβ K12αβ · · · K1Nαβ

K21αβ K22αβ · · · K2Nαβ

...
... · · · ...

KN1αβ KN2αβ · · · KNNαβ


 . (29)

2.3 Linearized Discrete Governing Equations for Defec-
tive Crystals with 1-D Symmetry Reduction

We now consider a collection of atoms that has translation invariance in two
directions. In other words, L is a collection of two-dimensional perfect lattices.
Thus let us assume that L can be partitioned into two-dimensional equivalence
classes:

Ld
1 =

⊔

α∈Z
Ld

1(α) (30)

or infinite sets of atoms Ld
1(α) that lie on some planes. Each Ld

1(α) is a two-
dimensional periodic collection of unit cells, i.e., a perfect two-dimensional com-
plex lattice. Choosing a representative from each equivalence class,the resulting
chain is called the reduced lattice Ld1 . The neighboring set Si can be partitioned
as

Si =
⊔

α∈Z

N⊔

I=1

SIα(i), (31)

where SIα(i) is the equivalence class of all the atoms of type I and index α with
respect to atom i. In other words, SIα(i) is the set of all atoms of type I in the
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two dimensional lattice Ld
1(α) that interact with atoms i. For a domain wall,

for example, each equivalence class is a set of atoms lying on a plane parallel to
the domain wall.

With this partitioning one can write the linearized discrete governing equa-
tions as

∞∑
α=−∞

′
N∑

I=1

KiIαuI
α +

(
−

∞∑
α=−∞

′
N∑

I=1

KiIα

)
ui = fi, (32)

where the prime on the first sum means that the term α = 0, I = i is excluded
to avoid self-interaction and

KiIα =
∑

j∈SIα(i)

∂2E i

∂xj∂xi
(B0),

fi = −∂E i

∂xi
(B0), (33)

uI
α = xIα − xIα

0 = xj − xj
0 ∀ j ∈ SIα(i).

Let us define unit cell displacement vectors as

Um =




u1
m
...

uN
m


 . (34)

Now the governing equations can be written in terms of interaction of unit cells
as ∞∑

α=−∞
Aα(m)Um+α = Fm m ∈ Z, (35)

where
Aα(m) ∈ R3N×3N , Uα,Fm ∈ R3N . (36)

This is a linear vector-valued ordinary difference equation with variable coeffi-
cient matrices. The unit cell force vectors and the unit cell stiffness matrices
are defined as

Fm =




F1m

...
FNm


 , Aα(m) =




K11α K12α · · · K1Nα

K21α K22α · · · K2Nα

...
... · · · ...

KN1α KN2α · · · KNNα


 . (37)

Note that, in general, Aα(m) need not be symmetric as will be explained shortly.
The above system of difference equations is a Volterra system of difference equa-
tions (see Elaydi (1996))†.

†Lattice statics analysis of defective crystals with 1-D symmetry reduction leads to the
solution of vector-valued ordinary difference equations with variable coefficient matrices. In-
homogeneities are localized and the idea is to treat the inhomogeneous region as boundary
and transition regions. This will result in two vector-valued difference equations with constant
coefficient matrices one forward and one backward. In the end, the original difference equation
will be solved by matching the solutions of these two ordinary difference equations.
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The above governing equations can be written in terms of a discrete convo-
lution operator as‡

AX = F, (38)

where X = {Xn}, F = {Fn} and the discrete convolution operator is defined as

AX =
{(

AX
)
n

}
, (39)

and

(AX)n =
∞∑

m=−∞
An−mXm. (40)

2.4 Some remarks

For the case of N ≥ 2, there are some subtleties in calculating the Aα matrices.
This is also the case for defective crystals with 2-D and no symmetry reductions
but for the sake of simplicity we explain this subtlety only for defective crystals
with a 1-D symmetry reduction. One subtlety is that some interactions should
be ignored. One is the interaction of an atom of type I and index n with all atoms
of type I and index n, i.e., there are no interactions within a given equivalence
class (this is a consequence of Eq. (7)). This means that A0 has a special
structure. When position of atom i of type I changes, all its equivalent atoms,
i.e., those with α = 0 undergo the same perturbation. Atoms of the same type
as i do not contribute to energy of i because the potential is pairwise and their
relative distances from the atom i are always the same. This means that

KII0 = −
∞∑

α=−∞

′
N∑

J=1
J 6=I

KIJα. (41)

The same thing is true for forcing terms. The reason for this is that the distance
between the equivalent atoms is fixed and atoms in the equivalence class of i do
not contribute to −∂Ei

∂xi and its derivatives. For a defective crystal with a 2-D
symmetry reduction the above property implies that

KII00 = −
∞∑

α,β=−∞

′
N∑

J=1
J 6=I

KIJαβ . (42)

The other subtlety is when a finite number of interactions is considered for
representative unit cells. Consider atoms with index n and project the whole
defective crystal on a line perpendicular to the two-dimensional defect. This
would be the reduced lattice Ld1. As an example, we have the picture shown
in Fig. 1 for A and O2 atoms in a perovskite mutilattice ABO3. Suppose

‡This is the approach that Babǔska (1959) chooses in his treatment of difference equations.
We do not use this notation in this paper but it would be useful to know that the discrete
governing equations have a discrete convolution form.
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Figure 1: Nearest neighbors of A and O2 atoms and their indices in an ABO3

defective crystal with a 1-D symmetry reduction.

a given representative unit cell interacts with its first mth nearest neighbor
(representative) unit cells. We consider the interaction of A and O2 atoms
with other A and O2 atoms of indices {n−m, ..., n + m} (except the ones that
have already been excluded). Looking at Fig. 1, one can see that symmetry of
interactions dictates that interactions of A and O2 atoms with O1, O2 and O3
atoms with index n + m should be ignored. Similarly, consider atoms B, O2 or
O3 with index n and their nearest neighbors as shown in Fig. 2. Every atom B
(O1 or O3) interacts with B, O1 and O3 atoms with index {n −m, ..., n + m}
(except the ones that have already been excluded). Again, symmetry implies
that the interactions of B, O1 and O3 atoms with A and O2 atoms with index
n−m should be ignored.

Figure 2: Nearest neighbors of B, O1 and O3 atoms and their indices in an
ABO3 defective crystal with a 1-D symmetry reduction.

Another interesting subtlety is the symmetry of Aα matrices. It should be
noted that each KiIα is symmetric but the matrices Aα (α = −m, ...,m) are
not symmetric, in general. This can be seen more clearly in a simple 2-D model.
Consider a 2-D rectangular multi-lattice composed of two simple lattices each
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with lattice parameters a and c and the shift vector p = (p1, p2). This system
has three coefficient matrices A-1,A0,A1 ∈ R4×4. We now compare K12-1 and
K21-1 to see if A-1 is symmetric. It can be easily shown that

K12-1 =
∑

Y {n−1}

∂2E

∂xn−1∂yn−1
(B0) , (43)

K21-1 =
∑

X{n−1}

∂2E

∂yn−1∂xn−1
(B0) , (44)

where X{n− 1} is the set of atoms of type 1 which have index n− 1 relative to
the atom n of type 2 (these are the circles in Fig. 3). Similarly, Y {n− 1} is the
set of atoms of type 2 which have index n− 1 relative to the atom n of type 1
(these are the squares in Fig. 3). xn−1 and yn−1 are position vectors of atoms
of types 1 and 2 with index n− 1, respectively.

Figure 3: Non-symmetry of Ai matrices.

As it is seen in Fig. 3, these two matrices are not equal as the length of
the corresponding relative position vectors are not equal. It should be noted
that the lose of symmetry in the reduced 1-D system is just a consequence of
symmetry reduction and still the underlying 3-D physical system is symmetric.
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Suppose all the atoms in the lattice have the same displacements, i.e.,

Xn = C = ( c, ..., c︸ ︷︷ ︸
N copies

)T, c ∈ R3. (45)

Using Eq. (41), it can be easily shown that

∞∑
α=−∞

AαC = 0 ∀c ∈ R3, (46)

i.e.,

N
( ∞∑

α=−∞
Aα

)
= 3 (47)

as was expected, where N (A) is the nullity of the linear transformation repre-
sented by the matrix A. Note that the above statement is formal because there
is an infinite sum and in general one should worry about convergence. This is
not an issue for short-range interactions but long-range interactions should be
treated carefully. We will come back to the convergence issue in the sequel.
For the case of a defective crystal with a 2-D symmetry reduction the above
property states that

N



∞∑

α,β=−∞
Aαβ


 = 3. (48)

There is another symmetry relating A−γ to Aγ . It can be easily shown that
reciprocity implies that

KIJ−γ = KJIγ . (49)

This means that
A−γ = AT

γ . (50)

Convergence of infinite sums raise their own delicate issues. In the analysis of
defective crystals with 1-D and 2-D symmetry reductions, we need to calculate
stiffness matrices that are defined in terms of lattice sums of square matrices.
Discrete field of unbalanced forces is also defined in terms of lattice sums. Since
we will be interested in dipole-dipole interactions, we will find that substiff-
ness matrices for defective crystals with 1-D and 2-D symmetry reductions are
absolutely convergent. However, the forces are obtained as conditionally con-
vergent sums and thus require care. In our examples, we look at systems of
dipoles lying on a plane and thus force is also defined in terms of absolutely
convergent lattice sums.

Finally, our lattice statics model forces are always calculated exactly. How-
ever, to be able to solve the governing discrete equations for an infinite lattice
we need to have a system of difference equations of finite order. It would be
interesting to know how sensitive the solutions are to the range of interaction
of representative unit cells. This is problem dependent and should be carefully
studied for a given interatomic potential.
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In all the existing lattice statics calculations a fixed number of nearest neigh-
bor interactions (usually only the first and second nearest-neighbor interactions)
are considered. Our formulation of lattice statics can consider any number of
nearest-neighbor interactions and this enables us to numerically study the effect
of range of interactions with no difficulty. In §6 we present a numerical study
of the effect of range of interaction for a lattice of dipoles. It will be seen that
the effective potential is highly localized and increasing the range of interaction
does not change the displacements, i.e., the displacements are independent of
the range of interaction.

Our formulation of anharmonic lattice statics starts with choosing a reference
configuration. Here a comment is in order regarding the choice of reference
configuration. For a given defect, reference configuration is chosen to be a
nominal defect. By ‘nominal’ defect, we mean a configuration that is locally
like the bulk crystal but in some region(s) is close to the relaxed configuration
of the defect. Of course, a nominal defect is not unique. An example is shown
in Fig. 4 for an edge dislocation. In this figure we show the reduced lattice,
i.e., representative atoms of lines of atoms perpendicular to the plane. We know
that a dislocation can be understood as an extra half plane of atoms inserted in
the bulk lattice (in the reduced lattice a half line of extra atoms). Fig. 4a shows
a nominal defect that has been obtained by inserting a half plane of extra atoms
between two crystallographic planes. In Fig. 4b the configuration (a) has been
modified to make it exactly like the bulk crystal except in the region bounded
by the broken lines. These two nominal defect reference configurations are both
acceptable choices but configuration (b) is preferable because its unbalanced
force field is localized and this makes the numerical calculations more efficient.

Figure 4: (Two possible reference configurations for a dislocation.
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In the previous lattice statics models of dislocations (Maradudin, 1958; Boyer
and Hardy, 1971; Gallego and Ortiz, 1993) always some cutting and pasting
process is used. In the present formulation all is needed is a reference configura-
tion. The unit cell numbering for an edge dislocation is shown in Fig. 5. Note
that the n-axis is ‘curved’ but still the governing linearized equations are

∑

α,β

Aαβ(m,n)Xm+α,n+β = Fmn (m,n) ∈ Z2. (51)

Figure 5: Unit cell numbering for the reference configuration of an edge dislo-
cation.

We close this section by stating our harmonic lattice statics algorithm:

Input data: defective crystal geometry, interatomic potential

B Initialization

B Construct B0, calculate force and substiffness matrix
moduli

B Do for all α ∈ Ks

B Assemble substiffness matrices and construct Aα

B End Do

B Calculate unbalanced forces F0 = F(B0)

B Solve the governing linear difference equations

B End
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3 Anharmonic Lattice Statics

The classical harmonic lattice statics is not appropriate where displacements
from the initial configuration are large. There have been modifications of the
harmonic lattice statics in the past (Esterling, 1978; Esterling and Moriarty,
1978; Gallego and Ortiz, 1993). The idea of these and similar works is to consider
the fully nonlinear equations close to defects. These works, however, do not
solve a nonlinear defect problem as a discrete boundary-value problem; instead
all these and similar works are more or less heuristic. In this section we present a
formulation of anharmonic lattice statics in which one solves a nonlinear discrete
defect problem by solving discrete linear boundary-value problems. Anharmonic
lattice statics is based on Newton-Raphson (NR) method for solving nonlinear
equations. The basic idea of NR method is to look at a quadratic approximation
to the nonlinear equations in each step. Suppose f : Rn → Rn is continuously
differentiable and that f(x∗) = 0 for some x∗ ∈ D ⊂ Rn. We know that
derivative of f is a linear map defined as

f(x + u) = f(x) + Df(x)u + o(‖u‖). (52)

Let us start from an initial guess x0 ∈ D. The linear approximation of f about
x0 calculated at a point x1 ∈ D is

f(x1) ≈ f(x0) + Df(x0)(x1 − x0). (53)

Assuming that f(x1) ≈ 0 we have

x1 = x0 −Df(x0)−1f(x0). (54)

Similarly, in the kth step

xk+1 = xk −Df(xk)−1f(xk). (55)

It can be shown that this algorithm has a quadratic convergence (see Dennis
and Schnabel (1996)), i.e.,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2 for some positive number C. (56)

The modified NR method is based on a similar idea. In the kth iteration one
defines

xk+1 = xk −Df(x0)−1f(xk), (57)

i.e., the only difference is that in all the steps the derivative of the initial guess
is used. This is however slower than the usual NR iteration.

By modifying the proof presented in (Dennis and Schnabel, 1996), it can be
shown that the convergence of modified NR method is linear, i.e.,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ for some c ∈ (0, 1). (58)

The idea of anharmonic lattice statics is to find the nonlinear solutions by
a modified Newton-Raphson iteration. In modified Newton-Raphson method
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the Hessian matrix is not updated in each iteration and the initial Hessian is
used. Modified Newton-Raphson method is slowly and linearly convergent and
a large number of iterations should be performed to get good results. In our
lattice statics calculations this is an efficient method as the most expensive
part of the calculations is the computation of substiffness matrices (very slowly
converging lattice sums). It is important to note that the Hessian at x = x0

should be positive-definite for the modified NR to converge to a local minimum
of the energy.

Here we explain the idea for all three types of defective crystals. Let α ∈
Z3,Z2,Z for defective crystals with no symmetry reduction, with a 2-D symme-
try reduction and with a 1-D symmetry reduction, respectively. The linearized
governing equations have the following form

∑

α∈Zs

AαUn+α = Fn n ∈ Zs (s = 1, 2, or 3). (59)

Note that in general Aα = Aα(n) and are evaluated with respect to a given
reference configuration B0. Given a reference configuration B0, we calculate the
discrete field of unbalanced forces exactly. Let us denote this by F0 = {F0

n}n∈Zs .
Note that F0 : Lds → R3, where Lds is the reduced defective lattice.∗ Having
F0, one has the following discrete boundary value problem (DBVP)

∑

α∈Zs

AαU0
n+α = F0

n n ∈ Zs

Boundary Conditions (B.C.) (60)

The boundary conditions are problem dependent. For infinite defective crystals
we require boundedness of displacements at infinity. Solving the above DBVP
one obtains U0 = {U0

n}n∈Zs . Now the reference configuration is updated as
follows.

B1
0 = B0 + U0. (61)

In the case of a system with B0 = {X0
n}n∈Zs , i.e., when the only degrees of

freedom are position vectors of the lattice points, this means that

{X1
n}n∈Zs = {X0

n + U0
n}n∈Zs . (62)

Now having a new reference configuration one can calculate the discrete field
of unbalanced forces F1 = {F1

n}n∈Zs . In the second step one has the following
DBVP

∑

α∈Zs

AαU1
n+α = F1

n n ∈ Zs

B.C. (63)

Note that the stiffness matrices are not updated and in all the steps the orig-
inal stiffness matrices are used. Solving the above DBVP one obtains U1 =

∗In the case of a defective crystal with no symmetry reduction Ld3 = L.
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{U1
n}n∈Zs and B2

0 = B1
0 + U1. This process at step k requires solving the fol-

lowing BVP
∑

α∈Zs

AαUk−1
n+α = Fk−1

n n ∈ Zs

B.C. (64)

where
Fk−1 = F(Bk−1

0 ) and Bk−1
0 = Bk−2

0 + Uk−2. (65)

Depending on the problem the fields Uk are localized or localized modulo some
rigid translation fields. This means that the fields Fk are localized. This is prob-
lem dependent and one should carefully study the rate of decay of unbalanced
forces for a given defective crystal. The following is our anharmonic lattice
statics algorithm:

Input data: B0,Aα,U0

B Initialization

B B1
0 = B0 + U0

B Do until convergence is achieved

B Fk = F(Bk
0 )

B Calculate Uk by solving the harmonic problem

B Bk+1
0 = Bk

0 + Uk

B End Do

B End
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4 Solution Methods for the Linearized Discrete
Governing Equations

In this section we present analytic methods for solving the discrete governing
equations for defective crystals with 1-D, 2-D and no symmetry reductions. In
anharmonic lattice statics the first step in solving a nonlinear problem is to solve
the linearized governing equations. Linearized governing equations with respect
to a given reference configuration are vector-valued partial difference equations.
In this section we briefly review the theory of ordinary and partial difference
equations.

4.1 Theory of Difference Equations

Difference equations arise in many problems of mathematical physics. They also
appear in discretization of boundary value problems and also in combinatorics.
In this subsection we review a few facts and theorems from theory of difference
equations. For more details see Agarwal (2000); Elaydi (1996); Lakshmikantham
and Trigiante (1988) and references therein.

4.1.1 Ordinary Difference Equations

An ordinary difference equation is the discrete analogue of an ordinary differ-
ential equation. Difference equations can be defined on bounded or unbounded
discrete domains. For us all difference equations are defined on unbounded
domains. Consider a sequence {un}n∈N ⊂ R. A difference equation in the
independent variable n is an equation of the form

f(n, un, ..., un+p) = 0. (66)

The order of a difference equation is the difference between the largest and
smallest arguments explicitly involved in the equation. A linear (scalar-valued)
difference equation has the following form

p∑

j=0

Kj(n)un+j = bn n ∈ N. (67)

Here, we are interested in linear difference equations with constant coefficients.
These equations show up in discrete systems with uniform physical properties.
Consider a pth order difference equation with constant coefficients

un+p + a1un+p−1 + a2un+p−2 + ... + apun = bn. (68)

Similar to differential equations, we solve the corresponding homogeneous equa-
tion. Assuming that solutions are of the form λn, λ ∈ C, one obtains

λp + a1λ
p−1 + ... + ap = 0. (69)
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This is the characteristic polynomial of the difference equation (68). There are
several possibilities for characteristic roots. If all the roots are real and distinct,
for example, the general solution is of the form

uc
n = c1λ

n
1 + c2λ

n
2 + ... + c1λ

n
p . (70)

For details on other possibilities see Elaydi (1996). The general solution of Eq.
(68) can be written as

un = uc
n + up

n, (71)

where up
n is a particular solution of the nonhomogeneous equation.

A system of linear difference equations of first order has the following form‖

un+1 = A(n)un + bn, un,bn ∈ Rp, A(n) ∈ Rp×p, n ∈ N ∪ {0}. (73)

If A does not depend on n the system (73) is called a system with constant
coefficients.

un+1 = Aun + bn. (74)

For the homogeneous system with constant coefficients corresponding to (74),
i.e.,

un+1 = Aun (75)

the general solution is

un = Anc, c ∈ Rp, ∀n ∈ N. (76)

Here, An is called the fundamental matrix of the system (74). This is the
analogue of eAt in a linear system of differential equations. System of difference
equations (74) has p linearly independent solutions and the general solution can
be written as

un = Anc + up
n, (77)

where up
n is a particular solution. Using the method of variation of constants

the general solution can be expressed as

un = Anc +
n−1∑

j=0

An−j−1bj . (78)

Note that a system of difference equations can be thought of as a vector-valued
ordinary difference equation.

‖It should be noted that this is not the most general form of a linear vector-valued differ-
ence equation. The most general first-order linear vector-valued difference equation has the
following form

A1(n)un+1 +A2(n)un = bn, un,bn ∈ Rp, A1(n),A2(n) ∈ Rp×p, n ∈ N ∪ {0}. (72)

The matrix A1 can be singular in general. A direct solution of this equation in the case of
constant coefficient matrices can be found in Yavari (2004).
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4.1.2 Partial Difference Equations

Partial difference equations are discrete analogues of partial differential equa-
tions. Let Zp be the set of all p-tuples of integers (p ≥ 2). A linear partial
difference equation has the following form

LXα =
∑

β∈Ω

A(β)Xα+β = Fα, (79)

where Ω ⊂ Zp, α, β ∈ Zp and

X,F : Ω → Rq, A : Ω → Rq × Rq. (80)

For p = 2, a linear partial difference equation has the following form
∑

(r,s)∈Z2

ArsXm+r,n+s = Fmn (m,n) ∈ Ω. (81)

It is known that (Gregor, 1998) solution space of a partial difference equa-
tion is, in general, infinite dimensional. This means that explicit solutions of
partial difference equations cannot be as simple as those of ordinary difference
equations. The most common techniques for solving linear partial difference
equations are integral transforms. For solving partial difference equations on
bounded rectangular domains there are direct methods using matrix tensor
product methods (Lynch et al., 1964). However, these methods are not ap-
plicable to the problems we have in mind for defective crystals. There are also
some direct methods for solving simple partial difference equations (see Mickens
(1990)). However, these methods are not applicable for general vector-valued
partial difference equations.

4.1.3 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a powerful technique for solving systems
of linear difference equations. In the literature there are two different types of
discrete Fourier transform both known as DFT. The first type, which is the
one we use in this paper, transforms a sequence (or more precisely a lattice
function) to a function of a continuous variable(s). This is sometimes called
continuous discrete Fourier transform (CDFT). Theory of CDFT was developed
in (Babǔska, 1959; Babǔska et al., 1960; Vitásek, 1959). The other type of DFT,
which we call discrete DFT (DDFT), transforms a sequence to another sequence
(Briggs and Hendon, 1995), (Benedetto, 1997) and is usually useful for solving
periodic difference equations or difference equations on bounded domains. We
will briefly review DDFT and its applications in solving difference equations
with periodic boundary conditions at the end of this section. In this work by
DFT we mean CDFT, i.e., the one that maps a lattice function to a continuous
function in k-space.
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Consider a lattice L and a lattice function f : L → R3. The discrete Fourier
transform of f is defined formally as

f̂(k) = V
∑

j∈L
f(j)eik·xj

k ∈ B, (82)

where V is the volume of the unit cell and B is the first Brillouin zone. For
a chain of atoms of unit lattice spacing this definition reduces to the usual
definition of DFT of a sequence in R, where V = 1, B = [−π, π]. Let us denote
by U the set of all discrete Fourier transformable lattice functions. Let us also
denote by R the set of those lattice functions such that

|f(x)| ≤ C

3∏

i=1

(
1 + |xi|p

) ∀ x = (x1, x2, x3) ∈ L, (83)

for some integer p ≥ 0 and constant C ≥ 0. It can be shown (Vitásek, 1959) that
there is a one-to-one correspondence between the spaces R and U . It should be
noted that in the definition of DFT the convergence should be understood in
the sense of distributions.

Inverse DFT is defined as

f(j) =
1

(2π)3

∫

B

f̂(k)e−ik·xj

d3k. (84)

DFT has many nice properties and here we mention a few of them. DFT is a
linear operator, i.e.,

(αf + βg)∧ = αf̂ + βĝ ∀α, β ∈ R, ∀ f, g ∈ U . (85)

Shifting property of DFT is essential in solving difference equations. Suppose

X̂n = Y(k). (86)

Then
X̂n+m = e−im·k Y(k). (87)

Discrete convolution of two lattice functions f and g is defined as

(f ∗ g)(i) = V
∑

j∈L
f(i− j)g(j). (88)

Note that the multiplication f(i− j)g(j) is defined componentwise. If f, g ∈ U ,
then

(̂f ∗ g)(k) = f̂(k)ĝ(k). (89)

Discrete Fourier Transform is a powerful tool in solving partial difference equa-
tions but should be used carefully in numerical calculations as the integrands
in inverse DFT may be extremely oscillatory.
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4.1.4 DFT and Difference Equations

Consider the following ordinary difference equation.

xp+1 − 2xp + xp−1 = fp p ∈ Z. (90)

Note that this difference equation is translation invariant, i.e., if the sequence
{xp}p∈Z is a solution so is the sequence {xp + c}p∈Z, ∀ c ∈ R. Applying DFT
to this difference equation we obtain

(
e−ik − 2 + eik

)
x̂p(k) = f̂p(k). (91)

Or
x̂p(k) =

1
2(cos k − 1)

f̂p(k). (92)

Thus formally

xp =
1
2π

∫ π

−π

e−ipk 1
2(cos k − 1)

f̂p(k)dk. (93)

Note that this integral is not convergent in general because there is a singularity
at k = 0, i.e.,

1
2(cos k − 1)

= − 1
k2

+ O(1). (94)

This is a consequence of translation invariance of the difference equation. In
other words for this difference equation the solution can be obtained up to a
rigid translation and this shows up in the inverse discrete Fourier transform
as a singularity. One can make the integral convergent by adding a suitable
rigid translation. The following would be a rigid translation that removes the
singularity.

xp =
1
2π

∫ π

−π

e−ipk

[
1

2(cos k − 1)
f̂p(k)− eipk

2(cos k − 1)

]
dk. (95)

For R-valued difference equations there are rigorous treatments of this problem
in the literature (see De Boor et al. (1989) and Veit (2003)). In a special
case when the loading sequence is symmetric about p = 0 the inverse DFT is
convergent. An example would be the following.

f−p = fp ∀ p ∈ N, f0 = 0. (96)

In this case f̂p(0) = 0 and the inverse DFT is convergent.
Consider the following linear vector-valued partial difference equation with

constant coefficient matrices.
r1∑

α=−r1

r2∑

β=−r2

r3∑
γ=−r3

AαβγUm+α,n+β,p+γ = Fmnp (m,n, p) ∈ Z3. (97)

Taking DFT from both sides of the above equation, we obtain

Z(k)Ûmnp(k) = F̂mnp(k) k ∈ B = [−π, π]3, (98)
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where

Z(k) =
r1∑

α=−r1

r2∑

β=−r2

r3∑
γ=−r3

e−i(αk1+βk2+γk3)Aαβγ (99)

is the symbol of the difference equation. Assuming that Z(k) is invertible in B
the solution can be written as

Umnp =
1

(2π)3

∫

B

e−im·kZ−1(k)F̂mnp(k) dk, (100)

where m = (m,n, p). Symbol of a difference equation is not invertible, in gen-
eral. An example would be singularity of the symbol at k = 0 for a translation-
invariant difference equation. Assuming that origin is the only singularity point,
solution of the difference equation can be obtained by imposing a suitable rigid
translation. The following is a suitable choice.

Umnp =
1

(2π)3

∫

B

e−im·k [Z−1(k)− eim·kD(k)
]
F̂nmp(k) dk, (101)

where

D(k) =




U(k) . . . U(k)
...

...
U(k) . . . U(k)


 , U(k) =




d1(k) 0 0
0 d2(k) 0
0 0 d3(k)


 ,

d1(k) =
(Z−1(k)

)
11

, d2(k) =
(Z−1(k)

)
22

, d3(k) =
(Z−1(k)

)
33

. (102)

An alternative approach to remove the singularity is as follows. Let us first
introduce the following change of variables

Umnp = (−1)m+n+p Umnp, Fmnp = (−1)m+n+p Fmnp, Aαβγ = (−1)α+β+γAαβγ .
(103)

The governing equations in terms of the new variables are

r1∑
α=−r1

r2∑

β=−r2

r3∑
γ=−r3

AαβγUm+α,n+β,p+γ = Fmnp (m,n, p) ∈ Z3. (104)

The above system of difference equations is not translation invariant. As an
example, let us look at the difference equation (90). Defining x̄p = (−1)pxp and
f̄p = (−1)pfp, the difference equation is rewritten as

−x̄p+1 − 2x̄p − x̄p−1 = (−1)pf̄p p ∈ Z. (105)

It is seen that this equation is not translation invariant. The solution of the
original difference equation can be written as

xp =
(−1)p

2π

∫ π

−π

e−ipk

2(i sin k − 1)
̂̄fp(k)dk. (106)
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4.1.5 Difference Equations on Finite Domains: Periodic Boundary
Conditions

In any numerical treatment of defects in crystals, e.g., molecular dynamics, ab
initio calculations, etc., one takes a supercell large enough to be a representative
of the defective crystal and then extends it to the whole space periodically. A
useful tool for solving difference equations with periodic boundary conditions is
the discrete DFT. Here we explain some of its details for applications to ordi-
nary difference equations. But the results can be extended to partial difference
equations with no difficulty.

Consider a function f : I → R, where I = {0, 1, ..., N − 1}, N ∈ N and f is
periodic, i.e.,

f(m + kN) = f(m) ∀ k ∈ Z. (107)

f can be thought of as a finite sequence with N elements. Discrete DFT of f is
defined as

f̂(k) =
N−1∑
m=0

f(m)ωmk
N ∀ k ∈ I, (108)

where ωN = e−
2πi
N . The inverse of discrete DFT has the following representation

f(n) =
1
N

N−1∑
n=0

f̂(k)ω−nk
N ∀ n ∈ I. (109)

For a sequence {xn}N−1
n=1 it can be easily shown that

x̂n+1(k) = ω−k
N x̂n(k) + ω−k

N (xn − x0) . (110)

Similarly
x̂n−1(k) = ωk

N x̂n(k) + x−1 − xN−1. (111)

Let us consider the following discrete boundary-value problem

xn+1 − αxn + xn−1 = fn n = 0, 1, ..., N − 1,

x0 = xN (x−1 = xN−1). (112)

Taking DFT from both sides one obtains

Z(k)x̂n(k) = f̂n(k), (113)

where Z(k) = ωk
N + ω−k

N − α. Thus

x̂n(k) = Z(k)−1f̂n(k) (114)

and hence

xn =
1
N

N−1∑

k=0

Z(k)−1f̂n(k)ω−nk
N n ∈ I. (115)
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This would be the solution sequence as long as Z(k) 6= 0. Suppose α = 2, e.g.
the governing equation of a chain of atoms with harmonic interactions between
nearest neighbors. In this case the difference equation is translation invariant
and hence Z(0) = 0. In (115) let us remove the k = 0 term and define

x̄n =
1
N

N−1∑

k=1

Z(k)−1f̂n(k)ω−nk
N n ∈ I. (116)

Note that

xn − x̄n =
1
N

Z(0)−1
N−1∑
m=0

fm, (117)

which is a constant, i.e. x̄n is equal to xn up to a rigid translation. Note also
that if the system is self-equilibrated, i.e. if

∑N−1
m=0 fm = 0 then the singularity

of Z(k) at k = 0 causes no problem.
Let us now consider a vector-valued difference equation and define DFT

componentwise. Thus for Xn ∈ Rd define

X̂n(k) =
N−1∑
m=0

ωmk
N Xm n ∈ I. (118)

Therefore one can show the following two relations easily.

X̂n+1(k) = ω−k
N X̂n(k) + ω−k

N (XN −X0) , (119)

X̂n−1(k) = ωk
NX̂n(k) + X−1 −XN−1. (120)

Consider the following discrete boundary-value problem with a periodic bound-
ary condition.

A−1Xn−1 + A0Xn + A1Xn+1 = Fn n = 0, ..., N − 1,

XN = X0, X−1 = XN−1. (121)

Taking DFT from both sides and using the boundary conditions, formally one
has

X̂n(k) = Z(k)−1F̂n(k) (122)

and hence

Xn =
1
N

N−1∑

k=0

Z(k)−1F̂n(k)ω−nk
N n = 0, ..., N − 1, (123)

where Z(k) = ωk
NA−1 + A0 + ω−k

N A1. Note that for a translation-invariant
difference equation Z(0) is singular and the solution is obtained by removing
the term k = 0.
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5 Lattice Statics Analysis of a Defective Lattice
of Point Dipoles

In this section we consider a two-dimensional defective lattice of dipoles with
lattice parameter a. Each lattice point represents a unit cell and the corre-
sponding dipole is somehow a measure of the distortion of the unit cell with
respect to the high symmetry phase. This system is interesting in the sense
that its potential energy is not only a function of atom (unit cell) positions; it
depends on polarization vectors too. This means that the potential energy is
partially translation invariant. Total energy of the lattice is assumed to have
the following three parts

E ({xi}i∈L, {Pi}i∈L
)

= Ed
({xi,Pi}i∈L

)
+ Eshort

({xi}i∈L
)

+ Ea
({Pi}i∈L

)
,

(124)
where, Ed, Eshort and Ea are the dipole energy, short-range energy and anisotropy
energy, respectively. These energies have the following forms. The first term is

Ed =
1
2

∑

i,j∈L
j 6=i

[
Pi ·Pj

|xi − xj |3 −
3Pi · (xi − xj) Pj · (xi − xj)

|xi − xj |5
]

+
∑

i∈L

1
2α

Pi ·Pi, (125)

where α is the electric polarizability and is assumed to be the same for all the
lattice points (molecules).∗∗ The short-range energy is modelled by a Lennard-
Jones potential with the following form

Eshort =
1
2

∑

i,j∈L
j 6=i

4ε

[(
a

|xi − xj |
)12

−
(

a

|xi − xj |
)6

]
. (126)

The anisotropy energy quantifies the tendency of the lattice to remain in some
energy wells. We assume the following form for this energy

Ea =
∑

i∈L
KA|Pi −P1|2 ...|Pi −Ps|2. (127)

This means that the dipoles prefer to have values in the set {P1, ...,Ps}. Note
that this is a self-energy.

Let S =
({xi}i∈L, {Pi}i∈L

)
be the equilibrium configuration (a local mini-

mum of the energy), i.e.,

∂E
∂xi

=
∂E
∂Pi

= 0 ∀ i ∈ L. (128)

∗∗Note that the last part of this energy is a self-energy.
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Linearizing the governing equations (128) about a reference configuration B0 =({xi
0}i∈L, {Pi

0}i∈L
)

we obtain

∂E
∂xi

(B0) +
∂2E

∂xi∂xi
(B0) (xi − xi

0) +
∑

j∈Si

∂2E
∂xj∂xi

(B0) (xj − xj
0)

+
∂2E

∂Pi∂xi
(B0) (Pi −Pi

0) +
∑

j∈Si

∂2E
∂Pj∂xi

(B0) (Pj −Pj
0) + ... = 0,(129)

∂E
∂Pi

(B0) +
∂2E

∂xi∂Pi
(B0) (xi − xi

0) +
∑

j∈Si

∂2E
∂xj∂Pi

(B0) (xj − xj
0)

+
∂2E

∂Pi∂Pi
(B0) (Pi −Pi

0) +
∑

j∈Si

∂2E
∂Pj∂Pi

(B0) (Pj −Pj
0) + ... = 0,(130)

where Si is the neighboring set of atom i. Note that the only contribution to the
term ∂2E

∂Pi∂Pi (B0) comes from the anisotropy energy and the polarizability part
of the dipole-dipole energy and has the following form for the case of s = 2∗

Kpp
0 :=

∂2E
∂Pi∂Pi

(B0)

= 2KA

(|Pi
0 −P1|2 + |Pi

0 −P2|2
)
I + 4KA

(
Pi

0 −P1

)⊗ (
Pi

0 −P2

)

+ 4KA

(
Pi

0 −P2

)⊗ (
Pi

0 −P1

)
+

1
α
I, (131)

where I is the 2 × 2 identity matrix and ⊗ denotes tensor product. Assuming
interactions of order m, for a defective crystal with a 1-D symmetry reduction
the set Si can be partitioned as follows

Si =
m⊔

α=−m

N⊔

I=1

SIα(i), (132)

where SIα(i) is the set of atoms of type I lying on the line parallel to the y-axis
and αa away from the atom i.† Let us define

ui = xi − xi
0, qi = Pi −Pi

0, (133)

fx
i = − ∂E

∂xi
(B0) , fp

i = − ∂E
∂Pi

(B0) , (134)

∗But note that Kpp
0 has contributions from dipole-dipole interactions.

†Here we have assumed that each unit cell has N dipoles and the defect lies on the line
x = 0.
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and

Kxx
iIα = δα0

∂2E
∂xi∂xi

(B0) +
∑

j∈SIα(i)

∂2E
∂xj∂xi

(B0) ,

Kxp
iIα = δα0

∂2E
∂Pi∂xi

(B0) +
∑

j∈SIα(i)

∂2E
∂Pj∂xi

(B0) ,

Kpx
iIα = δα0

∂2E
∂xi∂Pi

(B0) +
∑

j∈SIα(i)

∂2E
∂xj∂Pi

(B0) ,

Kpp
iIα = δα0K

pp
0 +

∑

j∈SIα(i)

∂2E
∂Pj∂Pi

(B0) . (135)

With the above definitions the linearized governing equations can be written as

m∑
α=−m

N∑

I=1

Kxx
iIαuI

α +
m∑

α=−m

N∑

I=1

Kxp
iIαqI

α = fx
i , (136)

m∑
α=−m

N∑

I=1

Kpx
iIαuI

α +
m∑

α=−m

N∑

I=1

Kpp
iIαqI

α = fp
i . (137)

Now by simply looking at the linearized equations, one would expect to see
translation-invariance for the variable uI

α. This means that the sum of matrices
that act on uI

α cannot be full rank, i.e., in R2

N
(

m∑
α=−m

N∑

I=1

Kxx
iIα

)
= N

(
m∑

α=−m

N∑

I=1

Kpx
iIα

)
= 2 (138)

Note that this is not the case for matrices that act on qI
α variables.

One should note that dipole-dipole energy is pairwise but not isotropic. In
other words, the energy is the sum of pairwise interaction of dipoles but for
each pair the energy is not only a function of the relative distance of dipoles;
in addition to relative distances it depends on the dot product of the relative
position vectors and the polarization vectors of the two dipoles.

It is easy to show that for dipole-dipole energy the following holds (as a
consequence of translation invariance)

∂2E
∂xi∂xi

(B0) = −
∑

j∈Si

∂2E
∂xj∂xi

(B0) . (139)

Note also that

∑

j∈Si

∂2E
∂xj∂xi

(B0) =
∑

j∈Si0

∂2E
∂xj∂xi

(B0) +
∑

j∈Si\Si0

∂2E
∂xj∂xi

(B0) , (140)
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where Si0 is the equivalence class with i as its representative. Thus

∂2E
∂xi∂xi

(B0) +
∑

j∈Si0

∂2E
∂xj∂xi

(B0) = −
∑

j∈Si\Si0

∂2E
∂xj∂xi

(B0) . (141)

It should be noted that only the dipole-dipole energy contributes to ∂2E
∂xj∂Pi .

It is an easy exercise to show that for dipole-dipole energy the following
holds

∂2E
∂xi∂Pi

=
∂2E

∂Pi∂xi
= −

∑

j∈Si

∂2E
∂xj∂Pi

. (142)

This can be restated as

∂2E
∂xi∂Pi

+
∑

j∈Si0

∂2E
∂xj∂Pi

= −
∑

j∈Si\Si0

∂2E
∂xj∂Pi

. (143)

As a consequence of (141) and (143) we have

Kxx
II0 = −

m∑
α=−m

N∑

J=1
J 6=I

Kxx
IJα and Kpx

II0 = −
m∑

α=−m

N∑

J=1
J 6=I

Kpx
IJα. (144)

The substiffness matrix Kxp
II0 has a more complicated structure. Note that

Kxp
II0 =

∂2E
∂Pi∂xi

+
∑

j∈Si0

∂2E
∂Pj∂xi

= −
∑

j∈Si

∂2E
∂xj∂Pi

+
∑

j∈Si0

∂2E
∂Pj∂xi

= −
∑

j∈Si\Si0

∂2E
∂xj∂Pi

−
∑

j∈Si0

∂2E
∂xj∂Pi

+
∑

j∈Si0

∂2E
∂Pj∂xi

= Kpx
II0 +

∑

j∈Si0

(
∂2E

∂Pj∂xi
− ∂2E

∂xj∂Pi

)
. (145)

The linearized governing equations can be written in a more compact form
in terms of interaction of unit cells as

m∑
α=−m

AαUn+α = Fn, (146)
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where

Aα =
(

Axx
α Axp

α

Apx
α App

α

)
∈ R4N×4N , Um = {u1

m...uN
m q1

m...qN
m}T,

Fm = {fx
m1...f

x
mN fp

m1...f
p
mN}T, (147)

A∗?
α =




K∗?
11α . . . K∗?

1Nα
...

...
K∗?

N1α . . . K∗?
NNα


 ∈ RN×N ∗, ? = x, p.

For a defective crystal with a 2-D symmetry reduction discrete governing equa-
tions can be obtained similarly.

5.1 Hessian for the Bulk Lattice

The linearized governing equations in the bulk can be written as

N∑

J=1

Kxx
IJuJ +

N∑

J=1

Kxp
IJqJ = fx

I I = 1, ..., N, (148)

N∑

J=1

Kpx
IJuJ +

N∑

J=1

Kpp
IJqJ = fp

I I = 1, ..., N, (149)

where

fx
I = − ∂E

∂xI
(B0) , fp

I = − ∂E
∂PI

(B0) ,

Kxx
IJ = δIJ

∂2E
∂xI∂xJ

(B0) +
∑

j∈LI\{I}

∂2E
∂xj∂xI

(B0) ,

Kxp
IJ = δIJ

∂2E
∂PJ∂xI

(B0) +
∑

j∈LI\{I}

∂2E
∂Pj∂xI

(B0) , (150)

Kpx
IJ = δIJ

∂2E
∂xJ∂PI

(B0) +
∑

j∈LI\{I}

∂2E
∂xj∂PI

(B0) ,

Kpp
IJ = δIJKpp

0 +
∑

j∈LI\{I}

∂2E
∂Pj∂PI

(B0) I, J = 1, ..., N.

Assuming that s = 2(number of proffered polarizations), P1 = −P2 = P0, one
has Kpp

0 =
(
8KAP 2

0 + 1
α

)
I. Now the Hessian is written as

H =




K11 . . . K1N

...
...

KN1 . . . KNN


 , KIJ =

(
Kxx

IJ Kxp
IJ

Kpx
IJ Kpp

IJ

)
, I, J = 1, ..., N (151)
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Note that H has a zero eigenvalue of multiplicity two that represents the
x−translation invariance of the governing equations.

It is known that (Tosi and Doyama, 1967; Faux, 1971) point dipole model
does not describe the true physics of polarizable molecules, especially in small
distances. One example of breakdown of this model is ‘polarization catastrophe’
which is an instability in energy minimization of systems governed by point-
dipole interactions. In our calculations, we observed that the Hessian of the
dipole-dipole potential is not positive-definite. However, by adding a short-range
energy and an anisotropy energy the total Hessian can be positive-definite. We
do not argue that our model potential represents any physical system. Our goal
here is to demonstrate the power of our theory of anharmonic lattice statics for
analysis of a defective crystal governed by a stable potential.

5.2 Example 1: A 180◦ Domain Wall in a 2-D Lattice of
Dipoles

Let us look at a 180◦ domain wall and consider the reference configuration shown
in Fig. 6. In a 180◦ domain wall, polarization vector changes from −P0 on the
left side of the domain wall to P0 on the right side of the domain wall. We
are interested in understanding the structure of the defective lattice close to the
domain wall. In this example, each equivalent class is a set of atoms lying on
a line parallel to the domain wall, i.e., we have a defective crystal with a 1-D
symmetry reduction. As we will see shortly, this is a simple but rich example.
For index n in the reduced lattice (see Fig. 6), the vector of unknowns is

Un = {un,qn}T ∈ R4. (152)

Consider a square lattice with lattice vectors e1 = {a, 0}T and e2 = {0, a}T

with polarization vectors P = P0{0, 1}T. In the bulk, because of symmetry
fx = 0. It can be easily shown that

fp = −
∑

j∈L
j 6=i

{
P

|xi − xj |3 − 3
P · (xi − xj)(xi − xj)

|xi − xj |5
}
− 1

α
P. (153)

Multiplying both sides by P and enforcing fp = 0 we obtain

P 2
0

α
= −

∑

j∈L
j 6=i

{
P 2

0

|xi − xj |3 − 3

[
P · (xi − xj)

]2
|xi − xj |5

}
. (154)

Thus for the bulk polarization P = P0{0, 1}T we have

α =




∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
a3

{
3n2

(m2 + n2)
5
2
− 1

(m2 + n2)
3
2

}



−1

. (155)
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Figure 6: Reference configuration for a 180◦ domain wall in the 2-D lattice of
dipoles, its symmetry reduction and its reduced lattice. Note that domain wall
is not a crystallographic plane.

Given the lattice parameter a and the bulk polarization P0, polarizability α is
uniquely determined for the bulk lattice. We can now check positive-definiteness
of the Hessian for a the bulk lattice.

Solution of The Governing Difference Equation

Let us assume that m = 1, i.e. a given unit cell interacts only with its nearest
neighbor equivalence classes. Solution for an arbitrary m can be found similarly.
Because of symmetry it is possible to work with only one half of the lattice. Bulk
equations for the right half lattice are

A−1Un−1 + A0Un + A1Un+1 = Fn n ≥ 1. (156)

Governing equations for n = 0 are boundary equations. These can be written
as (note that U−1 = −U0)

(
Ab

0 −Ab
−1

)
U0 + Ab

1U1 = F0, (157)
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where the superscript b is to emphasize that the boundary stiffness matrices are
in general different from the bulk ones. Let us define the following variable

Xn =
(

Un−1

Un

)
n ≥ 1. (158)

Now the governing equation for Xn is

Xn+1 = AXn + Gn n ≥ 1, (159)

where

A =
(

0 1
−A−1

1 A−1 −A−1
1 A0

)
∈ R8×8, Gn =

(
0

A−1
1 Fn

)
∈ R8. (160)

Note that because of symmetry

Un = −U−n−1 n ≤ −1, (161)

Assuming that Fn = 0 for n > M we have

X2 = Ac + G1,

X3 = A2c +AG1 + G2,

...
XM+1 = AMc +AM−1G1 + ... + GM = AMc + d, (162)
XM+2 = A (AMc + d

)
,

...
Xn = An−(M+2)

(AMc + d
)

n ≥ M + 1,

where c = X1 = {U0,U1}T and d = AM−1G1 + ... + GM . For the potential
we use it turns out that M = 5 (see Fig. 7).

A physically meaningful solution should be bounded at infinity. The ma-
trix A is not diagonalizable because of translation invariance of the governing
equations.†† However, it has the following Jordan decomposition

A = XΛX−1, (163)

where X is the matrix of generalized eigenvectors and Λ has the following form

Λ =




Λ1

J
Λ2


 ∈ R8, Λ1,Λ2 ∈ R2. (164)

Here Λ1 and Λ2 are diagonal matrices of eigenvalues of modulus greater than
and smaller than 1, respectively and J ∈ R4×4 is the Jordan block corresponding
to the eigenvalue λ = 1 with multiplicity four. Now for n ≥ M + 1

Xn = XΛn−(M+2)
(
ΛMX−1c + X−1d

)
. (165)

††This is the case only for un.
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Boundedness equations can be written as
(
ΛMX−1c

)
{1,...,4} = − (

X−1d
)
{1,...,4} , (166)

where (.){1,...,4} means the first four rows of the matrix (.). Boundary and
boundedness equations give us the vector of unknowns c.

Figure 7: Unbalanced forces in the reference configuration of a 180◦ domain wall
in the 2-D lattice of dipoles. Fx is the component of fx perpendicular to the
domain wall and Fp is the component of fp parallel to the domain wall. Other
force components are zero because of symmetry.

The harmonic and anharmonic solution for the numerical values of a =
1.0, P0 = 1.0, ε = 1.0

8 , KA = 2.0 are shown in Fig. 8. Note that because of
symmetry for a given unit cell number n, Un = {ux 0 0 qy}T. Anharmonic
lattice statics iterations converged after almost ten iterations. For convergence
tolerance for displacement and polarization unbalanced forces are 10−4 ε

a and
10−4 P0

α , respectively. The harmonic solution for the range of interaction m = 2
differs from that of the range of interaction m = 1 by less than 0.5% and the
anharmonic displacements are the same. This means that the effective potential
is highly localized and considering m = 1 is enough.† However, in each step
unbalanced forces are calculated exactly. It is seen that a 180◦ domain wall is
two lattice spacings thick. Interestingly, this is in qualitative agreement with our
calculations with shell potentials for BaTiO3 and PbTiO3 (Yavari, 2004) and
also with ab initio calculations (Meyer and Vanderbilt, 2001). To understand
the effect of different parameters of the potential on the domain wall structure,

†In all the following numerical examples m = 1 is chosen.
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Figure 8: Harmonic and anharmonic displacements in 180◦ domain wall in the
2-D lattice of dipoles.

we consider the following four systems

S1 : a = 1.0, P0 = 1.0, ε =
10.0
8

, KA = 2.0 (167)

S2 : a = 1.0, P0 = 1.0, ε =
1.0
8

, KA = 2.0 (168)

S3 : a = 1.0, P0 = 1.0, ε =
1.0
8

, KA = 10.0 (169)

S4 : a = 1.0, P0 = 0.5, ε =
1.0
8

, KA = 2.0 (170)

S2 is the system we just discussed. S1 has a short energy ten times larger than
that of S2 and S3 has an anisotropic energy five times larger than that of S1.
S4 has a polarization with half of the magnitude of that of S1. The anharmonic
displacements of these four systems are compared in Fig. 9. It is seen that S1 has
the smallest ux displacements and the other three systems have almost the same
ux displacements. This shows that the x displacements are controlled by short-
range energy and the more dominant the short-range energy the smaller the x
displacements. S1 and S2 have the same uq and this is not surprising as they
have the same polarizations and the same anisotropic energies. S3, which has
the largest anisotropic energy, has the smallest uq. S4 has the largest uq which
means that the smaller the dipole-dipole contribution the larger the polarization
displacements. An important observation is that all the four systems have the
same domain wall thickness. This is not surprising as a simple dimensional
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Figure 9: Harmonic and anharmonic displacements for four different choices of
the interatomic potential.

analysis shows that the domain wall thickness is proportional to lattice spacing
a.

Remark. In this example, we presented the exact harmonic solutions. One
can solve an approximate harmonic problem by using a homogenized system
in terms of the stiffness matrices. In general, stiffness matrices on the left and
right sides of the wall (and also stiffness matrices for the unit cells close to the
wall) are different. One can average the stiffness matrices and then use DFT
for solving the resulting homogeneous vector-valued difference equation. The
harmonic solutions are different from the exact solutions but as the unbalanced
forces are calculated exactly both exact and approximate harmonic solutions
lead to the same anharmonic solutions.

Sensitivity of Solutions to the Choice of Reference Configuration:
One and Two-Parameter Families of Reference Configurations

Now one may wonder what would happen if one starts with a different reference
configuration. We studied the effect of choice of reference configuration on
the solutions by looking at the one and two-parameter families of reference
configurations shown in Fig. 10. In Fig. 10 (a), we assume that polarization
vectors in the two layers adjacent to the wall have magnitude KP0. We solved
the governing equations for different K values (K ∈ [0.25, 1.75]) and did not
observe any new equilibrium configuration for any of these large perturbations

38



form the original nominal defect. In Fig. 10 (b) a two-parameter family of
reference configurations is shown. In this case, polarization vectors in the two
layers adjacent to the wall have magnitudes K1P0 or K2P0. To be able to reduce
the governing partial difference equations to an ordinary difference equation one
needs to choose a larger unit cell as shown in the figure. Again for any choice
of K1, K2 ∈ [0.25, 1.75], we obtained the same equilibrium configuration for the
domain wall.

Figure 10: (a) A one-parameter family of reference configurations for the 180◦

domain wall. (b) A two-parameter family of reference configurations for the
same 180◦ domain wall.

5.3 Example 2: A Second Type of 180◦ Domain Wall

The reference configuration for this type of 180◦ domain wall is shown in Fig.
11. In this case lattice vectors are e1 = { a√

2
,− a√

2
}T and e2 = { a√

2
, a√

2
}T with

polarization vectors P = P0{0, 1}T. In the bulk, again because of symmetry
fx = 0 and one can show that

α =




1
a3

∑

(m,n)∈Z2

(m,n)6=(0,0)

{
3(m− n)2

2(m2 + n2)
5
2
− 1

(m2 + n2)
3
2

}



−1

. (171)

The form of governing equations are exactly similar to the previous example
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Figure 11: Reference configuration for a 180◦ domain wall in the 2-D lattice of
dipoles, its symmetry reduction and its reduced lattice. In this example domain
wall passes through some atoms, i.e., it is a crystallographic line.

and again because of symmetry we can reduce the problem to a half lattice.
In this example equivalence classes are lines of atoms parallel to the domain
wall and a√

2
apart from one another. Unbalanced forces are again highly local-

ized. Fig. 12 shows the harmonic and anharmonic solutions for both position
vectors and polarization for the numerical values of a = 1.0, P0 = 0.5, ε =
1.0, KA = 2.0. Again, displacements are perpendicular to the domain wall and
polarization displacements are parallel to the wall, i.e., for unit cell number n,
Un = {ux 0 0 qy}T. It is seen that the first harmonic solution is dramatically
different from the next iterations and the anharmonic solutions. This is, in
general, not surprising and shows the inadequacy of harmonic solutions for a
chosen reference configuration.

5.4 Example 3: A 90◦ Domain Wall in a 2-D Lattice of
Dipoles

In this example a 90◦ domain wall is considered. The reference configuration
is shown in Fig. 13. Governing equations have a form similar to that of 180◦
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Figure 12: Harmonic and anharmonic displacements in 180◦ domain wall in the
2-D lattice of dipoles.

domain walls. Symmetry of the domain wall implies that polarization force is
nonzero only parallel to the domain wall, i.e., because of symmetry for the nth
unit cell Un = {ux uy 0 qy}T. We also have the following symmetry

U−n = RU−n−1, R =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 n ≥ 1. (172)

This reduces the problem to a half lattice similar to what we saw for 180◦

domain walls. For the numerical values of a = 1.0, P0 = 1.0, ε = 1.0, KA = 2.0
displacements are shown in Fig. 14. Polarization displacements are shown
in Fig. 15. It is seen that the domain wall is very sharp and its thickness
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Figure 13: Reference configuration for a 90◦ domain wall in the 2-D lattice of
dipoles, its symmetry reduction and its reduced lattice. Note that domain wall
is not a crystallographic line.

is comparable to those of 180◦ domain walls. Interestingly, this is similar to
what has been seen for ferroelectric 180◦ and 90◦ domain walls in tetragonal
PbTiO3 using shell potentials (Yavari, 2004) and ab initio calculations (Meyer
and Vanderbilt, 2001).
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Figure 14: Unit cell displacements in a 90◦ domain wall in the 2-D lattice of
dipoles.

Figure 15: Polarization displacement in a 90◦ domain wall in the 2-D lattice of
dipoles.
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6 Conclusions

In this paper we developed a general theory of anharmonic lattice statics that
can be used in systematic analysis of a defective crystal given an interatomic
potential. This differs from all the existing treatments in that it does not apply
only to Bravais lattices and does not rely on a knowledge of force constants.
Instead, it can be used for arbitrary defective lattices and all is needed is an
interatomic potential describing the interaction of atoms. We started by looking
at deformation of a crystal from a given reference configuration as a discrete
deformation mapping and presented all the developments in a language very
similar to continuum mechanics.

We explained how one should construct the discrete governing equations for
a given complex lattice. The discrete governing equations are linearized about
a reference configuration. The reference configuration is arbitrary and problem
dependent and in general not force-free and perhaps not translation invariant.
Our experience shows that a nominal defect structure could be a good reference
configuration. Linearizing the (nonlinear) discrete governing equations about
the reference configuration leads to a nonhomogeneous system of linear differ-
ence equations with variable coefficient matrices. The forcing terms are a result
of the fact that the reference configuration is not a local minimum of the energy,
in general. We call these forces the unbalanced forces. We classified defective
complex lattices into three groups, namely defective crystals with 1-D, 2-D and
no symmetry reductions. Exploiting a symmetry reduces the dimensionality of
the discrete governing equations and this leads to numerically more efficient so-
lution techniques. Having analytic solutions for linearized governing equations,
the anharmonic solution can be obtained by modified Newton-Raphson itera-
tions. The idea is to keep the initial stiffness matrices and update the reference
configuration by calculating the unbalanced forces in each step. We explained
the convergence issue for long range interactions and our presentation is not
just formal.

For solving the harmonic displacements we used methods from theory of
difference equations. Our solution technique for an infinite defective crystal with
a 1-D symmetry reduction is novel. For more complicated defective crystals with
2-D and no symmetry reductions we use discrete Fourier transform (DFT) for
solving the governing partial difference equations. We explained the subtleties
in using DFT for translation-invariant difference equations.

As an example of a non-isotropic pairwise potential in which atom position
vectors are not the only degrees of freedom, we considered a lattice of point
dipoles. Dipole-dipole interactions are pairwise but anisotropic as the potential
energy of two dipoles depends on the dot product of the relative position vector
and the polarization vectors in addition to the relative distance of the two
dipoles. It was shown that our general formulation of lattice statics can easily
handle such a system. We were able to solve two types of 180◦ domain wall
problems. It was observed that the domain wall thickness is about two lattice
spacings. Interestingly, this is in quantitative agreement with our calculations
with shell potentials for the ferroelectric tetragonal PbTiO3 and also ab initio
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calculations. In one domain wall problem, it was observed that harmonic and
anharmonic solutions are dramatically different. This shows the importance of
anharmonic effects close to defects. We also solved a 90◦ domain wall problem.
It was observed that domain wall thickness is again about two lattice spacings.
This is again similar to what has been observed for ferroelectric domain walls
in PbTiO3 using shell potentials and ab initio calculations.

We believe this method can be useful in generating semi-analytical solutions
for many different systems with defects. The semi-analytical solutions can be
very useful for validating numerical techniques. Semi-analytical solutions can
also be useful in studying different interatomic potentials. We believe this de-
velopment is a step forward in rationalizing lattice scale calculations.
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7 Appendix: Three-Body Interactions

In this appendix we consider three-body interactions and discuss some of the
modifications that should be made in the theory that we developed in the bulk of
this paper. As the effect of pairwise interactions can be studied separately, let us
assume that a collection of atoms L is governed by only three-body interactions.
Generalizing the results of this appendix to arbitrary N-body interactions is
straightforward. The energy of the system can be written as

E =
1
6

∑

i,j,k∈L
(j,k)6=(i,i)

φ(xi,xj ,xk). (173)

Note that φ is invariant under permutations of i, j, k. For example, φ(xk,xj ,xi) =
φ(xi,xj ,xk). Because of material-frame-indifference φ has the following depen-
dence on the position vectors (Keating, 1966)

φ(xi,xj ,xk) = ψ
(
rij , rjk, rki, ωijk, ωjik, ωkij

)
, (174)

where
rpq = |xp − xq|, ωpqs = (xp − xq) · (xp − xs). (175)

Force on an atom i comes from interactions of i with paris of atoms j, k. Con-
tribution of the triplet (i, j, k) to this force is

fi(i, j, k) = −∂φ(xi,xj ,xk)
∂xi

. (176)

fj(i, j, k) and fk(i, j, k) are defined similarly. It is an easy exercise to show that

fi(i, j, k) + fj(i, j, k) + fk(i, j, k) = 0. (177)

This is the analogue of the relation fji = −fij for pairwise interactions. It is
easy to show that balance of angular momentum is trivially satisfied provided
that balance of linear momentum is already satisfied.

Neighboring set Si of atom i ∈ L is the set of all the atoms that interact with
i. By definition, i /∈ Si. Neighboring set Sij of the pair of atoms (i, j), i 6= j is
the set of atoms in L that interact with the pair (i, j). By definition, i, j /∈ Sij .
Note also that Sij = Si \ {j}.

Atom energy E i can be defined as one sixth of the energy of all the triplets
of atoms adjacent to i. Pair-atom energy E ij is one half of the energy of all
the triplets of atoms adjacent to the pair (i, j). Note that energy of the triplet
(i, j, k) is trivially defined as

E ijk = φ(xi,xj ,xk). (178)

Let us consider a discrete system of atoms without any external body forces.
Linearization of the governing equations about a reference configuration B0 can
be expressed as

∂2E i

∂xi∂xi
(B0)ui +

∑

j∈Si

∂2E i

∂xj∂xi
(B0)uj = −∂E i

∂xi
(B0) . (179)
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This can be simplified to read

∂2E i

∂xi∂xi
(B0)ui +

∑

j∈Si

∑

k∈Sij

∂2φ(xi,xj ,xk)
∂xj∂xi

(B0)uj = −∂E i

∂xi
(B0) . (180)

Now suppose the defective crystal has a 1-D symmetry reduction, i.e.,

Si =
∞⊔

α=−∞

N⊔

I=1

SIα(i). (181)

Thus

∑

j∈Si

∂2E i

∂xj∂xi
(B0)uj =

∞∑
α=−∞

′
N∑

I=1

∑

j∈SIα(i)

∑

k∈Sij

∂2φ(xi,xj ,xk)
∂xj∂xi

(B0)uIα

=
∞∑

α=−∞

′
N∑

I=1

KiIαuIα, (182)

where

KiIα =
∑

j∈SIα(i)

∑

k∈Sij

∂2φ(xi,xj ,xk)
∂xj∂xi

(B0) . (183)

For three-body interactions the following relation holds (as a consequence of
translation invariance)

∂2E i

∂xi∂xi
= −

∑

j∈Si

∂2E i

∂xj∂xi
. (184)

This means that for a defective crystals with 1-D and 2-D symmetry reductions,
respectively, we have

KII0 = −
∞∑

α=−∞

′
N∑

J=1
J 6=I

KIJα, (185)

KII0 = −
∞∑

α,β=−∞

′
N∑

J=1
J 6=I

KIJαβ , (186)

which is exactly what we had for pairwise interactions. This is not surprising
as the above relations are a consequence of translation invariance of the lat-
tice irrespective of the form of interactions. In conclusion, it is seen that in
our formulation of lattice statics, the only modification needed for three-body
interactions is in the definition of substiffness matrices.
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