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Abstract 

Many engineering devices and natural phenomena involve gels that swell under the 

constraint of hard materials.  The constraint causes a field of stress in a gel, and often makes the 

swelling inhomogeneous even when the gel reaches a state of equilibrium.  This paper develops a 

theory of constrained swelling of a pH-sensitive hydrogel, a network of polymers bearing acidic 

groups, in equilibrium with an aqueous solution and mechanical forces.  The condition of 

equilibrium is expressed as a variational statement of the inhomogeneous field.  A free-energy 

function accounts for the stretching of the network, mixing of the network with the solution, and 

dissociation of the acidic groups.  Within a Legendre transformation, the condition of 

equilibrium for the pH-sensitive hydrogel is equivalent to that for a hyperelastic solid.  The 

theory is first used to compare several cases of homogenous swelling:  a free gel, a gel attached to 

a rigid substrate, and a gel confined in three directions.  To analyze inhomogeneous swelling, we 

implement a finite element method in the commercial software ABAQUS, and illustrate the 

method with a layer of the gel coated on a spherical rigid particle, and a pH-sensitive valve in 

microfluidics. 
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1. Introduction 

 Immersed in an aqueous solution, a network of covalently crosslinked polymers imbibes 

the solution and swells, resulting in a hydrogel.   The amount of swelling is affected by 

mechanical forces, pH, salt, temperature, light, and electric field.1,2  Gels are being developed for 

diverse applications as transducers, converting non-mechanical stimulations to large 

displacements and appreciable forces. 3-6  Many applications require that the gels swell against 

the constraint of hard materials.  For example, a microfluidic valve involves a gel anchored by a 

rigid pillar, and the gel swells in response to a change in the pH, blocking the flow. 7   Analogous 

mechanisms have been used by plants to regulate microscopic flow 8, and in oilfields to enhance 

production 9.  As another example, an array of rigid rods embedded in a gel rotate when the 

humidity in the environment drops below a critical value. 10,11   It has also been appreciated that, 

in a spinal disc, the swelling of the nucleus pulposus is constrained by the annulus fibrosus, and 

that understanding this constrained swelling is central to developing a synthetic hydrogel to 

replace damaged nucleus pulposus. 12 

    Despite the ubiquity of constrained swelling in practice, the theory of constrained 

swelling requires substantial work to be broadly useful in analyzing engineering devices and 

natural phenomena.  Developers of methods of analysis face two essential challenges.  First, 

swelling of a gel is affected by a large number of stimuli.  It is unrealistic to expect any single 

material model to describe behavior of many gels.  Second, when a gel is constrained by a hard 

material, the swelling often induces in the gel an inhomogeneous field of stress and large 

deformation.  The magnitude of the stress is of central importance to applications such as valves 

and actuators.  The large deformation, in addition to being important to applications, may also 

lead to cavities, creases, buckles, and other intriguing patterns that are hard to analyze. 13-17   

 Following a recent trend in the study of inhomogeneous deformation of complex 

materials, we have been pursuing a modular approach, which in effect meets the two challenges 

separately.  As an example, we have shown that the swelling of a neutral network in equilibrium 
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is equivalent to the deformation of a hyperelastic material. 18  The latter can be readily analyzed 

by adding a material model to commercial finite element software like ABAQUS.  This approach 

is applicable to a neutral network characterized by a free-energy function of any form.  

Commercial software like ABAQUS is widely used in many fields of engineering, and has been 

developed to analyze large deformation of extraordinary complexity.  Consequently, this 

approach has enabled researchers to use the commercial software to analyze complex 

phenomena in gels. 19,20   

 The present paper goes beyond the neutral network, and develops a theory for a pH-

sensitive hydrogel, a network of polymers bearing acidic groups, in equilibrium with an aqueous 

solution and a set of mechanical forces.  Following our recent work on polyelectrolyte gels,21 we 

express the condition of equilibrium as a variational statement.  The statement includes 

variations of the following inhomogeneous fields:  the displacement of the network, the 

concentrations of the solvent and ions, and the degree of acidic dissociation.  The variations are 

subject to auxiliary conditions of several types, including the conservation of various species, 

incompressibility of molecules, and electroneutrality in the gel and in the external solution.    

 Our task in the present paper is greatly simplified by the assumption of electroneutrality.  

To appreciate this assumption, consider a highly charged network immersed in a dilute solution 

of ions, so that the concentration of the counterions in the gel exceeds that in the external 

solution.  At the interface between the gel and the external solution, the counterions in the gel 

spill into the external solution, and the region near the interface is no longer neutral, leading to 

an electric double layer of a thickness scaled by the Debye length.  Outside the electric double 

layer, electroneutrality is nearly maintained in the gel and in the external solution.  In many 

applications, the Debye length is much smaller than other lengths of interest.  This paper will not 

be concerned with the electric double layer, and will assume that the gel is electroneutral.  This 

assumption will miss phenomena at the size scale comparable to the Debye length, but will 

capture the overall behavior of the gel. 21 
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 As a model material, the gel is characterized by a free-energy function developed by Flory 

22, Recke and Tanaka 23, Brennon-Peppas and Peppas 24, and others.  (Incidentally, these authors 

also assumed electroneutrality.)  The free-energy function accounts for the stretching of the 

network, mixing of the network and the solution, and dissociation of the acidic groups.  The 

model is used to compare several cases of homogeneous swelling:  a free gel, a gel attached to a 

rigid substrate, and a gel confined in three directions.      

 Inhomogeneous swelling is then studied by developing a finite element method.  

Inhomogeneous swelling of pH-sensitive gels has been studied in several recent papers, 25-27 but 

the existing methods have not been demonstrated for the analysis of complex phenomena of 

large deformation.   In this paper, we represent the free energy as a functional of the field of 

deformation by using a Legendre transformation.  Within this representation, the 

inhomogeneous field in a pH-sensitive hydrogel in equilibrium is again equivalent to the field in 

a hyperelastic solid.  We implement the finite element method by writing a user-supplied 

subroutine in the commercial software ABAQUS, and illustrate the method with a layer of the gel 

coated on a spherical rigid particle, and a pH-sensitive valve in microfluidics.  We hope that this 

work will enable other researchers to study complex phenomena in pH-sensitive hydrogels.  To 

this end, we have made our code freely accessible online. 28  

 

2. The condition of equilibrium for inhomogeneous swelling 

 Fig. 1 sketches a model system:  a network of covalently crosslinked polymers bearing 

acidic groups AH.  When the network imbibes the solvent, some of the acidic groups dissociate 

into hydrogen ions +H  mobile in the solvent, and conjugate bases −A  attached to the network.  

Once dissociated, the conjugate base −A  gives rise to a network-attached charge, i.e., a fixed 

charge.  The reaction is reversible:   

  +− +↔ HAAH . (2.1) 

The three species equilibrate when their concentrations satisfy 
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[ ][ ]
[ ] aK=

−+

AH
AH

, (2.2) 

where aK  is the constant of acidic dissociation.   

 The external solution is composed of four species:  solvent molecules (i.e., water), 

hydrogen ions, counterions that bear charges of the sign opposite to the fixed charges (e.g., 

sodium ions), and co-ions that bear charges of the same sign as the fixed charges (e.g., chloride 

ions).  To describe essentials of the method of analysis, we neglect the dissociation of water, and 

assume that counterions and co-ions are monovalent.  Let Sn , +H
n , +n  and −n  be the numbers of 

particles of the four species in the external solution.  When these numbers change by small 

amounts, the free energy of the external solution changes by  

  −−++ +++ ++ nnnnSS δμδμδμδμ
HH

, (2.3) 

where Sμ , +H
μ , +μ  and −μ  are the electrochemical potentials of the four species in the external 

solution.  The external solution is in a state of equilibrium, so that the electrochemical potential 

of each species is homogeneous in the external solution.         

 Fig. 2 illustrates a gel undergoing inhomogeneous swelling.  We take the stress-free dry 

network as the state of reference.  A small part of the network is named after the coordinate of 

the part, X, when the network is in the state of reference.  Let ( )XdV  be an element of volume, 

( )XdA  be an element of area, and ( )XKN  be the unit vector normal to the element of area.   

 In the current state, the part of the network X moves to a place with coordinate x.  The 

function  

  ( )Xii xx =  (2.4) 

describes a field of deformation.  The deformation gradient of the network is 

   
( )

K

i
iK X

x
F

∂
∂

=
X

. (2.5)     

 In the current state, let ( ) ( )XX dVBi  be the external mechanical force applied on the 
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element of volume, and ( ) ( )XX dATi  be the external mechanical force applied on the element of 

area.  When the network deforms by a small amount, ( )Xixδ , the field of mechanical force does 

work  

  dAxTdVxB iiii δδ ∫∫ + . (2.6)   

 Following a common practice in formulating a field theory, we stipulate that an 

inhomogeneously swollen gel can be divided into many small volumes, and each small volume is 

locally in a state of homogeneous swelling, characterized by a nominal density of free energy W  

as a function of various thermodynamic variables. Consequently, the Helmholtz free energy of 

the gel in the current state is given by 

  ∫WdV . (2.7)   

 The gel, the external solution, and the mechanical forces together constitute a 

thermodynamic system, held at a fixed temperature.  The Helmholtz free energy of the system is 

the sum of the free energy of the gel, the free energy of the external solution, and the potential 

energy of the mechanical forces.  When the system is in equilibrium, associated with small 

variations of the fields, the variation of the Helmholtz free energy vanishes.  Consequently, the 

condition of equilibrium is 

  0
HH

=−−++++ ∫∫∫ −−++++ dAxTdVxBnnnnWdV iiiiSS δδδμδμδμδμδ . (2.8) 

Note that W  is a function of various thermodynamic variables, so that the variational statement 

(2.8) includes variations of the following inhomogeneous fields:  the displacement of the 

network, the concentrations of the solvent and ions, and the degree of acidic dissociation.  The 

variations are subject to auxiliary conditions of several types, including the conservation of 

various species, incompressibility of molecules, and electroneutrality in the gel and in the 

external solution.  These auxiliary conditions are discussed below. 

 Denote the nominal concentration of species α  by ( )XαC .  That is, ( ) ( )XX dVCα  is the 
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number of particles of species α  in the element of the network when the gel is in the current 

state.  Of the four mobile species, the solvent molecules, the counterions, and the co-ions are 

each conserved.  The gel gains these particles at the expense of the external solution: 

  ( ) 0=+∫ SS ndVC δδ X , (2.9) 

  ( ) 0=+ ++∫ ndVC δδ X , (2.10) 

  ( ) 0=+ −−∫ ndVC δδ X . (2.11) 

 The mobile hydrogen ions, however, are not conserved, but are produced as the acidic 

groups dissociate.  The change in the total number of the hydrogen ions in the system equals the 

change in the number of the fixed charges:    

  ( ) ( )∫∫ −++ =+ dVCndVC XX
AHH

δδδ . (2.12) 

The sum of the number of the associated acidic groups AH and that of the fixed charges −A  

equal the total number of the acidic groups: 

  ( ) ( ) vfCC /-AAH =+ XX , (2.13) 

where f  is the number of acidic groups attached to the network divided by the total number of 

monomers in the network, and v  is the volume per monomer. 

 As discussed in Introduction, we assume that electroneutrality prevails both in the gel 

and in the external solution, so that 

  ( ) ( ) ( ) ( )XXXX −+ +=+ −+ CCCC
AH

, (2.14) 

  −+ =++ nnn
H

. (2.15) 

 Because typically the stress in a gel is small and the amount of swelling is large, we 

assume that individual polymers and solvent molecules are incompressible.  Furthermore, the 

concentrations of ions are assumed to be low, so that their contributions to the volume of the gel 

are negligible.  Under these simplifications, when the dry network of unit volume imbibes SC  
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number of solvent molecules and swells to a gel of volume Fdet , these volumes satisfy the 

condition  

  Fdet1 =+ SSCv , (2.16) 

where Sv  is the volume per solvent molecule.  This molecular incompressibility is assumed in all 

theoretical papers cited above. 

 Subject to the auxiliary conditions (2.9)-(2.16), the state of the inhomogeneously swollen 

gel is specified by the following independent fields: ( )Xix , ( )X+C , ( )X−C , and ( )X+H
C .  We 

stipulate that the nominal density of free energy is a function:         

  ( )+−+=
H

,,, CCCWW F . (2.17) 

Using the auxiliary conditions (2.9)-(2.16), we rewrite the condition of equilibrium (2.8) in 

terms of variations of the independent fields, namely, 

  ( )

( )

0

det

det

H
H

H

=
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
+−

∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
−−

∂
∂

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∂
∂

−

∫

∫

∫

∫

∫

+

+

+

+

−−
−

++
+

dVC
C
W

dVδCμμ
C
W

dVδCμμ
C
W

dAxTNH
v
μ

F
W

dVxBH
v
μ

F
W

X

H

iiKiK

S

S

iK

iiiK
S

S

iKK

δ

δ

δ

F

F

 (2.18)  

In writing (2.18), we have used the divergence theorem, as well as an identity 

FF det/det iKiK HF =∂∂ , where iKH  is the transpose of the inverse of the deformation gradient, 

namely, KLiLiK FH δ=  and ijjKiK FH δ= . 

 Inspecting (2.18), we write 

  FdetiK

S

S

iK

iK H
v
μ

F
W

s −
∂
∂

= . (2.19) 
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The quantity iKs  is known as the tensor of nominal stress.  The term containing sμ  is due to the 

assumed molecular incompressibility. 

 The statement (2.18) holds for arbitrary variations of the independent fields, ( )Xix , 

( )X+C , ( )X−C , and ( )X+H
C .  Consequently, each line of (2.18) leads to the condition of a partial 

equilibrium with respect to the variation of a single independent field.  The first line of (2.18) 

leads to 

  0=+
∂
∂

i

K

iK B
X
s

 (2.20) 

for elements in the interior of the gel.  The second line of (2.18) leads to 

  iKiK TNs =  (2.21) 

for elements on the surface of the gel.  These two equations constitute the familiar conditions of 

mechanical equilibrium with respect to the variation ixδ .   

 The next two lines of (2.18) lead to 

  +−=
∂
∂

+
+

H
μμ

C
W

, (2.22) 

  ++=
∂
∂

−
−

H
μμ

C
W

. (2.23) 

These equations are the conditions of ionic equilibrium with respect to the variations in the 

concentrations of the counterions and co-ions in the gel.  The combinations +−+ H
μμ  and 

++− H
μμ  are due to the assumed electroneutrality.   

 The last line of (2.18) leads to   

  0
H

=
∂
∂

+C
W

. (2.24)  

This equations is the condition of chemical equilibrium with respect to the dissociation of the 

acidic groups, a condition that reproduces (2.2), as shown in the next section.  
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3. A specific material model   

 The conditions of equilibrium described in the previous section are independent of 

models of the external solution and gel.  This section applies the conditions of equilibrium to a 

commonly used material model. 

 

External solution 

 Let +c  , −c  and +H
c  be the true concentration of the three species of ions in the external 

solution.  We assume that the external solution is dilute, so that the electrochemical potentials of 

the ions relate to the concentrations as 21  

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−

+

+

+

+

+
+

H

H
H

log
cc

cc
kT

ref

ref

μμ  ,      (3.1)   

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=+

+

+

+

−

−
− refref cc

cc
kT

H

H
H

logμμ , (3.2) 

where kT  is the temperature in the unit of energy, and refcα  is a reference value of the 

concentration of a species. 

 Imagine that the solution is separated from a reservoir of pure solvent by a membrane, 

which allows solvent molecules to pass through, but not the ions.  The solvent molecules will 

permeate from the reservoir into the solution, until the solution is under a pressure, the osmotic 

pressure, ( )−+ +++ ccckT
H

.  Consequently, relative to the pure solvent, the solvent molecules in 

the ionic solution has the chemical potential  

  ( )−+ ++−= + ccckTvSS H
μ . (3.3) 

Equations (3.1)-(3.3) express the electrochemical potential in terms of the concentrations of the 

four mobile species. 

  

pH-sensitive gel 
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 Following Flory, 22 Ricke and Tanaka, 23 Brannon-Peppas and Peppas, 24 and many others, 

we adopt an idealized model, assuming that the free-energy density of the gel is a sum of several 

contributions:  

  disionsolnet WWWWW +++= , (3.4) 

where netW  is due to stretching the network, solW  mixing the solvent with the network, ionW  

mixing ions with the solvent, and disW  dissociating the acidic groups. 

 The free energy of stretching the network is taken to be 

  ( )[ ]Fdetlog23
2
1

−−= iKiKnet FFNkTW , (3.5) 

where N is the number of polymer chains divided by the volume of the dry network.   

 The free energy of mixing the polymers and the solvent takes the form: 

  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −−=

FF
F

detdet
1

1log1det
χ

S

sol v
kT

W . (3.6) 

This contribution consists of the entropy of mixing of the polymers and the solvent molecules, as 

well as the enthalpy of mixing, characterized by a dimensionless parameter χ .   

 The concentrations of the mobile ions are taken to be low, so that their contribution to 

the free energy is due to the entropy of mixing, namely,     

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−

−
−

+

+
+

+

+

+ 1
det

log1
det

log1
det

log
H

H
H FFF refrefrefion c

C
C

c
C

C
c

C
CkTW . (3.7) 

 The contribution due to the dissociation of the acidic groups is taken to be 

  −

−−

−

− +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

Adis C
CC

C
C

CC

C
CkTW γ

AHA

AH
AH

AHA

A
A

loglog . (3.8) 

The expression consists of the entropy of dissociation and the enthalpy of dissociation, where γ  

is the increase in the enthalpy when an acidic group dissociates.  Note that −A
C  and AHC  are the 

nominal concentration of the fixed charges and of associated acidic groups, respectively.  They 
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are not among the independent variables chosen to represent the free-energy function, (2.17).   

Using (2.13) and (2.14), however, we can express them in terms of the chosen independent 

variables, −+ −+= +− CCCC
HA

, ( )−+ −+−= + CCCvfC
HAH / . 

 

Equilibrium between the gel, external solution, and mechanical forces 

 Recall that the number of particles of species α  in the gel in the current state divided by 

the volume of the dry network defines the nominal concentration of the species, αC .  The same 

number divided by the volume of the gel in the current state defines the true concentration of the 

species, αc .  The two definitions are related as Fdetαα cC = .    Recall that when the number of 

particles is counted in units of the Avogadro number, 2310023.6 ×=AN , the molar concentration 

of the species α  is designated by [ ]α ; for example, [ ]+=+ H
H ANc . 

   Recall a relation in continuum mechanics connecting the true stress ijσ  and the 

nominal stress:  Fdet/jKiKij Fs=σ , so that (2.19) can be written as 

  ij

S

S

iK

jK

ij v

μ

F

WF
δσ −

∂
∂

=
Fdet

. (3.9) 

Using the function ( )+−+ H
,,, CCCW F  specified above, (3.9) becomes that 

  ( ) ( ) ijionsolijjKiKij FF
NkT δδσ Π+Π−−=

Fdet
,  (3.10)  

where 

  ( )−+−+ −−−++=Π ++ cccccckTion HH
, (3.11)  

  ( ) ⎭
⎬
⎫

⎩
⎨
⎧

++⎟
⎠
⎞

⎜
⎝
⎛ −−=Π 2detdet

1
det

1
1log

FFF
χ

S
sol v

kT
. (3.12) 

Here ionΠ  is the osmotic pressure due to the imbalance of the number of ions in the gel and in 

the external solution, and solΠ  is the osmotic pressure due to mixing the network and the solvent.  
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Condition (3.9) is readily interpreted:  in equilibrium, the applied stress ijσ  equals the 

contractile stress of the network minus the osmotic pressure. 

 The conditions of ionic equilibrium (2.22) and (2.23) become that    

  ++=++ HH
// cccc , (3.13) 

  ( ) 1

HH
// −

−− ++= cccc . (3.14) 

These conditions are known as the Donnan equations.   The condition of chemical equilibrium 

with respect to acidic dissociation (2.24) becomes that   

  
( )

( )( ) ( ) aAKN
cccvf

cccc
=

−+−

−+

−+
−

−+

+

++

H

1
HH

det/ F
.   (3.15) 

This condition reproduces (1.2), with the identification 

  ⎟
⎠
⎞

⎜
⎝
⎛−= +

kT
cKN ref

aA

γ
exp

H
. (3.16) 

 

Parameters used in numerical calculations 

 In numerical calculations, we assume that the volume per monomer equals the volume 

per solvent molecule, Svv = .  Electroneutrality in the external solution requires that ++= +− H
ccc .  

Consequently, the composition of the external solution is specified by two independent numbers, 

say, the concentration of the counterions +c  and the concentration of the hydrogen ions +H
c .  

The later relates to the pH of the external solution, pH

H
10−=+ ANc . 

 The polymers are specified by several parameters.  Recall that N is the number of 

polymer chains per unit volume of the dry network, so that Nv/1  is the number of monomers 

per polymer chain.  The dimensionless parameter χ  measures the enthalpy of mixing the 

polymers and the solvent.  The number f is the number of acidic groups on a polymer chain 

divided by the total number of monomers on the chain.  For applications that prefer gels with 

large swelling ratios, materials with low values of Nv  and χ  and high value of f are used.  In 
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numerical calculations, we set 310−=Nv , 1.0=χ , and 05.0=f .  The constant of acidic 

dissociation, aK , has the same dimension as the concentration (in the unit mol/L).  We set  

3.4logpK 10 =−= aa K , a commonly accepted value for the dissociation of carboxylic acids. 

 We will normalize the chemical potential by kT , and normalize the stresses by vkT / .  A 

representative value of the volume per molecule is 328 m10−=v . At room temperature, 

21104 −×=kT J and 7104/ ×=vkT Pa .  The elastic modulus of the dry network is NkT .  For 

310−=Nv , the elastic modulus is Pa104 4×=NkT . 

 

4. Several cases of homogenous swelling 

 The material model described above is now applied to several cases of homogeneous 

swelling (Fig.3).  In each case, the conditions of equilibrium (3.10)-(3.15) form a set of 

simultaneous nonlinear algebraic equations.  Their solutions illustrate the basic behavior of a gel 

with or without constraint.  These cases of homogeneous swelling also provide tests for the 

finite-element program to be developed in the following section.     

 In the case of a free gel, Fig. 3a, all components of stress vanish, and the swelling is 

isotropic: iKλδ=F .  Fig. 4a plots the swelling ratio of the gel, 3λ , as a function of  the 

composition of external solution.  The latter is specified by  pH , and the molar concentration of 

the counterions, ANc /+ .  The gel swells more when the external solution has low concentrations 

of both the hydrogen ions and the counterions, but swells less when the external solution is 

concentrated with either species.  These trends are considered in some detail below.      

 Fig. 4b plots the swelling ratio as a function of pH  at a fixed concentration of the 

counterions.  The trend can be understood in terms of the two limits:  fully-associated limit and 

fully-dissociated limit.  When apKpH << , the abundance of hydrogen ions causes all the acidic 

groups to be associated, namely, 
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  vfC /AH = ,     0
A
=−C . (4.1) 

Consequently, the network is neutral, and ions of every species are equally distributed in the gel 

and the external solution: 

  −−++ === ++ cccccc ,,
HH

. (4.2) 

The balanced ions do not contribute to osmosis, 0ion =Π . 

 When apKpH >> , the scarcity of hydrogen ions causes all the acidic groups to be 

dissociated, namely, 

  0AH =C ,      vfC /
A
=− . (4.3) 

Consequently, the network bears a known number of fixed charges.  These fixed charges must be 

neutralized by counterions, as dictated by electroneutrality.  Consequently, mobile ions will be 

more concentrated in the gel than in the external solution.  These unbalanced ions contribute to 

osmosis, 0ion >Π , so that the network in the fully-dissociated limit will imbibe more solvent 

than the network in the fully-associated limit. 

 Fig. 4c plots the swelling ratio as a function of the molar concentration of the counterions 

in the external solution, ANc /+ , at several values of pH .  When pH  = 2, the hydrogen ions are 

abundant, and the gel approaches the fully-associated limit.  When pH  = 9, the hydrogen ions 

are scarce, and the gel approaches the fully-dissociated limit.  These two limits have been 

discussed above.  The external solution with an intermediate value, pH  = 5, deserves additional 

comments.20  The Donnan equation, ++=++ HH
// cccc , requires that the two species of positive 

ions in the gel and in the external solution be distributed proportionally.  When +<+ H
cc  in the 

external solution, +<+ H
cc  in the gel.  The abundance of hydrogen ions in the gel causes the acidic 

groups to be mostly associated, so that the network is nearly neutral.  As +c  increases while +H
c  

is fixed, more counterions will be available in the gel, and more acidic group will dissociate.  This 

process of ion exchange causes the swelling ratio to increase with the concentration of the 
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counterions in the external solution.  When the external solution has a very high concentration 

of the counterions, however, the gel behaves like a neutral gel, and the swelling ratio drops.   

 Fig. 3b illustrates a layer of a gel attached to a rigid substrate.  The substrate is flat, and 

the thickness of the gel is much smaller than the length and the width of the gel, so that the 

deformation of the gel is homogeneous.   The two stretches in the plane of the layer is prescribed 

to be 0λ .  When the gel is brought into contact with the external solution, the two in-plane 

stretches remain fixed, but the gel swells in the direction normal to the layer, with stretch λ .  

The swelling ratio of the substrate-attached gel varies with the composition of the external 

solution, with the trends similar to that of the unconstrained gel.  However, the amount of 

swelling of the free gel is significantly larger than that of the substrate-attached gel (Fig. 5).  

Consequently, the amount of swelling cannot be specified as a material property, but must be 

solved as a part of the boundary-value problem.  

 Fig. 3c illustrates a layer of a gel attached to a rigid substrate, with equal stretches 

prescribed in the plane, Tλ .  The layer is also constrained in the normal direction, but with a 

different level of stretch Nλ .  The gel develops a state of triaxial stress,  Tσ  and Nσ .  As 

mentioned in Introduction, in many applications of the pH-sensitive hydrogels, the gel has to 

exert a pressure on the constraining hard material.  In such applications, various ways to change 

the blocking stress Nσ  is important.  Fig. 6 plots the blocking stress as a function of the pH of 

the external solution at several values of the lateral stretch.  The blocking stress also exhibits two 

limits.  When the pH value in the external solution is low, the abundant hydrogen ions cause the 

acidic groups on the network approach the fully associated limit, and the magnitude of the 

blocking stress is small.  When the pH value in the external solution is high, the scarce hydrogen 

ions cause the acidic groups on the network approach the fully dissociated limit, and the 

magnitude of the blocking stress is large.  The magnitude of the blocking stress can be changed 

by prescribing different value of the in-plane stretch.  As expected, the magnitude of the blocking 
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stress increases when the lateral stretch decreases.     

  

5. Finite element method 

 The condition of equilibrium of a pH-sensitive hydrogel is expressed as the variational 

statement (2.8), which governs the following independent inhomogeneous fields:   ( )Xix , ( )X+C , 

( )X−C , and ( )X+H
C .  This variational statement has a form different from that used in 

commonly available commercial finite element software.  To rewrite this variational statement, 

introduce another free-energy function Ŵ  by a Legendre transformation:  

  SSCCCWW μμμμμ −+−−−= −−++ ++ )()(ˆ
HH

. (5.1) 

We can solve the nonlinear algebraic equations (3.13)-(3.15), and express +H
C , +C  and −C  in 

terms of +H
c , +c  and Fdet ; see Appendix A.  Consequently, Ŵ  can be expressed as a function of 

the following independent variables: 

  ( )++= ccWW ,,ˆˆ
H

F . (5.2) 

 When a network is immersed in a solution, so long as the amount of the gel is small 

compared to the amount of the external solution, the composition of the external solution 

remains unchanged as the gel swells.   Consequently, concentrations of the hydrogen ions and 

counterions in the external solution, +H
c  and +c , remain fixed, and so do the electrochemical 

potentials of all the species.  Inserting (5.1) into (2.18), the condition of equilibrium becomes 

that 

  ∫∫∫ += dAxTdVxBdVW iiii δδδ ˆ . (5.3) 

The variational statement (5.3) takes the same form as that of a hyperelastic solid.   

 We have implemented the above theory in the commercial finite-element software, 

ABAQUS, by coding the function Ŵ  into a user-defined subroutine for a hyperelastic material.  

Details in implementing the finite element method may be found in our paper on neutral gels, 18 
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Appendix A of the present paper, and the subroutine posted online. 28 

 We first test our finite element program against the cases of homogeneous swelling.  For 

example, Fig. 5 plots the swelling ratios of a free gel and a substrate-attached gel.  We have also 

tested other cases of homogeneous swelling.  In all cases, the results obtained by the finite 

element method agree well with those of the analytical solutions. 

 We then test the finite element program using a case of inhomogeneous swelling:  a layer 

of a gel coated on a rigid spherical particle (Fig. 7).  When pH  = 2, the gel is taken to be stress-

free, and the ratio of the outer radius of the gel to the radius of the rigid particle is set to be 

5.1/ =AB .  When pH  = 6, the gel swells subject to the constraint of the rigid particle.  

Consequently, a field of stress develops in the gel and the amount of swelling is inhomogeneous, 

even when the gel reaches a state of equilibrium.  Appendix B lists the differential equations for 

this spherical symmetric boundary-value problem.    These equations are solved by using a finite 

difference method.  The results are compared with those obtained by using the finite element 

method.  Fig. 7a plots the distribution of the swelling ratio in the gel.  Near the outer surface, the 

gel is nearly unconstrained, and the swelling ratio approaches that of a free gel.  Near the 

interface between the gel and the core, however, the gel is constrained, and the swelling ratio is 

much below of that of the free gel.   Fig. 7b plots the distribution of stress in the gel.  Near the 

outer surface of the gel, the radial stress vanishes because of the boundary condition, and the 

magnitude of the hoop stress is small because the gel is nearly free.  Near the interface between 

the gel and the rigid core, the radial stress is tensile and the hoop stress is compressive.  Once 

again, the results obtained by using finite element method agree well with those obtained by 

solving the ordinary differential equation. 

 As another illustration of the finite element method, consider the microfluidic valve 7 

mentioned in Introduction.  Fig. 8 illustrates a gel coated on a rigid pillar in a microfluidic 

channel.   The gel is taken to deform under the plane strain conditions.  When pH  = 2, the gel 
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shrinks to a stress-free state, and the channel is open.  When pH  = 6, the gel swells to push 

against the walls of the channel, and the channel is closed.  In the open state, the outer radius of 

the gel should be small to ease the flow.  In the closed state, the size of the contact between the 

gel and a wall, as well as the pressure in the contact, should be large to block the flow.  We plot 

the size of the contact and the distribution of pressure calculated by using the finite element 

method.  We fix the radius of the pillar, 1.0/ =DA .  As the outer radius of the gel increases, 

both the size of the contact and the pressure in the contact increase.  In the original design of the 

valve, several pillars were placed across the width of the channel. 7   In such a design, the pillars 

form a periodic array, and the above analysis remains valid.  The finite element program may be 

used to explore other patterns of pillars, or other designs of pH-sensitive valves. 

   

6. Concluding remarks 

 This paper develops a theory of a network of covalently crosslinked polymers bearing 

acidic groups, in equilibrium with an aqueous solution, subject to a set of mechanical forces.  

The inhomogeneous swelling is affected by the pH and salinity of the external solution, as well as 

by the geometry of the constraint.  The condition of equilibrium is expressed as a variational 

statement that governs the following independent fields:  the displacement of the network, and 

the concentrations of the hydrogen ions, counterions and co-ions.  By using the Legendre 

transformation, the variational statement is cast into a form such that a swollen gel in 

equilibrium is governed by the same equations as those for an equivalent hyperelastic material.  

The theory is implemented as a finite-element method in the commercial software ABAQUS, and 

is illustrated with cases of homogeneous and inhomogeneous swelling.  It is hoped that this work 

will enable other researchers to study complex phenomena in pH-sensitive hydrogels.  To this 

end, we have made our code freely accessible online. 28 
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Appendix A:  Coupled nonlinear algebraic equations   

 The nonlinear algebra equations (3.13)-(3.15) can be solved to express the concentrations 

in the gel, +H
c , +c  and −c , in terms of the concentrations in the external solution, +H

c , +c  and −c , 

and the swelling ratio Fdet .  A combination of the three equations gives a cubic equation for 

+H
vc , namely, 

       ( ) ( ) ( ) 0
det
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The solution to this cubic equation is 
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Once +H
c  is solved, +c  and −c  are solved from (3.13) and (3.14).   

 Recall that +− += + ccc
H

 due to electroneutrality in the external solution, and that 

Fdetαα cC =  in the gel.  Consequently, Ŵ  defined in (5.1) can be expressed as a function of the 

following independent variables: 

  ( )++= ccWW ,,ˆˆ
H

F . (A.5) 

In writing the user-supplied subroutine for ABAQUS, we also need partial derivatives of the 

function ( )++ ccW ,,ˆ
H

F .  These lengthy expressions can be found in the subroutine,28 and are not 

given here. 



 

August 19, 2009 23   

Appendix B:  A gel of spherical symmetry   

 Boundary-value problems of spherical symmetry have been solved for neutral gels. 29,30  

We now list the equations for a pH-sensitive gel.  We name a small element of the network after 

the radius of the element, R, when the gel is in a state of reference.  The same element of the 

network moves to a place of radius r when the gel is in the current state.  The state of 

deformation of the gel is fully specified by the function ( )Rr .   The stretch in each of the 

circumferential directions is  

  Rr /=θλ . (B.1)  

The stretch in the radial direction is  

  dRdrr /=λ . (B.2) 

 Let ( )Rsθ  be the nominal stress in each of the circumferential directions, and ( )Rsr  be 

the nominal stress in the radial direction.  Mechanical equilibrium requires that  

  02 =
−

+
R

ss

dR

ds rr θ .  (B.3) 

 Recall that the nominal stresses relate to the true stresses by θθθ λλσ rs =  and 2
θλσ rrs = .  

The stress-stretch relation (3.10) becomes that 

  ( ) ( )ionsolrNkTs Π+Π−−= −
θθθθ λλλλ 1 , (B.4) 

  ( ) ( )ionsolrrr NkTs Π+Π−−= − 21
θλλλ . (B.5) 

A combination of the above equations, together with the thermodynamic relations (3.11)-(3.15), 

leads to coupled first-order ordinary differential equations that govern the function ( )Rr  and 

( )Rsr . 
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Figures 

 

 

 

Fig. 1  A network of polymers imbibes a solution and swells, resulting in a gel.  The polymers are 

covalently crosslinked and bear acidic groups, some of which dissociate into hydrogen ions 

mobile in the solvent, and fixed charges attached to the network.  The external solution is 

composed of four mobile species:  solvent molecules, hydrogen ions, counterions, and co-ions.   
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Fig. 2  A dry network is taken to be the state of reference.  In the current state, the network is 

immersed in an aqueous solution and subject to a set of mechanical forces.   
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Fig. 3  Several cases of homogeneous swelling.  (a) Free swelling.  (b) Swelling subject to biaxial 

constraint.  (c) Swelling under triaxial constraint. 
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Fig. 4  Numerical results for a free swelling gel.  (a) The swelling ratio is plotted as a function of 

the two variables that specify the composition of the external solution: the pH  and the salt 

concentration (i.e., molar concentration of the counterions).  (b) The swelling ratio is plotted as 

a function of pH  for a fixed salt concentration.  (c)  The swelling ratio is plotted as a function of 

the salt concentration at several values of pH . 
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Fig. 5 The swelling ratio of a free gel and a substrate-attached gel as a function of the pH of the 

external solution. 
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Fig. 6  The blocking stress as a function of the pH of the external solution at several values of 

the lateral stretch.   
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Fig. 7  Swelling of a gel coated on a rigid spherical particle.  (a) Distribution of the concentration 

of water in the gel.  (b) Distribution of the radial stress and hoop stress in the gel. 
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Fig. 8  In a microfluidic channel, a gel is anchored by a rigid pillar.  When pH  = 2, the gel 

shrinks, and the channel is open.  When pH  = 6, the gel swells, and the channel is closed.  As the 

outer radius of the gel increases, both the size of the contact and the pressure in the contact 

increase. 
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