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A b s t r a c t

This dissertation puts forth an original theory of cortical neural processing that is 

unique in its view of the interplay of chaotic and stable oscillatory neurodynamics 

and is meant to stimulate new ideas in artificial neural network modeling. Our 

theory is the first to suggest two new purposes for chaotic neurodynamics: (i) as a 

natural means of representing the uncertainty in the outcome of performed tasks, 

such as memory retrieval or classification, and (ii) as an automatic way of producing 

an economic representation of distributed information. We developed new models, 

to better understand how the cerebral cortex processes information, which led to our 

theory. Common to these models is a neuron interaction function that alternates 

between excitatory and inhibitory neighborhoods. Our theory allows characteris

tics of the input environment to influence the structural development of the cortex. 

We view low intensity chaotic activity as the a priori uncertain base condition of 

the cortex, resulting from the interaction of a multitude of stronger potential re

sponses. Data, distinguishing one response from many others, drives bifurcations 

back toward the direction of less complex (stable) behavior. Stability appears as 

temporary bubble-like clusters within the boundaries of cortical columns and be

gins to propagate through frequency sensitive and non-specific neurons. But this 

is limited by destabilizing long-path connections. An original model of the post

natal development of ocular dominance columns in the striate cortex is presented 

and compared to autoradiographic images from the literature with good match

ing results. Finally, experiments are shown to favor computed update order over 

traditional approaches for better performance of the pattern completion process.
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C h a p t e r  1 

I n t r o d u c t io n

This dissertation views cognitive tasks as often uncertain in their outcome and that 

this uncertainty is represented by a unique mechanism carried out by the cerebral 

cortex; the grey tissue making up the outermost layers of the brain. We propose 

that low intensity chaotic activity in the cerebral cortex represents the a priori un

certain base condition that exists before information is supplied by input. This 

view of our theory expresses a new interpretation of the role of chaotic oscillations 

in neurodynamic activity. Fundamental mechanisms underlying how the brain fo

cuses its attention and organizes its memories in a hierarchical structure that binds 

together separate but related activity into a useful whole, are some of the important 

questions related to the oscillatory nature of cortical processing.

This dissertation also considers the representational form given information in 

the cerebral cortex to be important in the development of its structure. The aim 

of the developmental process is to partition computing resources in a hierarchical 

manner that is well adapted to the kinds of data represented by input patterns 

likely to be encountered. Our theory views cortical structures as being formed 

dynamically as well as developmentally and suggests a similar mechanism of lateral 

interaction is responsible for both. The long term influence of dynamic processes 

that respond quickly to input allow characteristics of the input environment to shape 

the developmental process that partitions computing resources of the cortex.

1
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2

A recent trend in neurocomputing is toward physiologically realistic models of 

brain function [1, 5, 15, 37, 47, 48]. The oscillatory nature of brainwave activity is 

especially prominent in many of these new models and is a topic in neuroscience that 

receives a great deal of attention [12,13,18, 24, 29, 38, 39]. Chaotic neurodynamics, 

as well as oscillations in general, are being seen as likely ways to advance beyond 

present limitations.

The rest of our theory concerns itself with the formation of stable activity when 

information is applied by input and how this is automatically organized into a 

hierarchical structure. The final form of this structure is considered by our theory 

to be largely influenced by the content of the input data. This is consistent with 

some linguistics theories of Human language acquisition as well as with observations 

of the postnatal development of ocular dominance columns in the striate cortex [25].

The approach taken in our investigation of the cerebral cortex, which led to our 

theory, is to explore both the development of cortex structures as well as character

istics of its neurodynamic behavior. Therefore, we posed two questions: (i) “How 

does the cerebral cortex organize itself to process information?”, and (ii) “How is 

information represented in the neurodynamics of the brain?” We believe these are 

related questions that are best examined together when attempting to formulate 

physiologically realistic models.

This dissertation draws on a physiological knowledge of the brain to address an 

important issue overlooked by traditional neural computing schemes. Specifically, 

traditional neural networks report results without any indication of the uncertainty 

with which they are reached. Without means of attaching a measure of uncertainty 

to the results, perfect reliability could be erroneously assumed. It is argued that

i
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3

the utilization of uncertainty should be studied from the standpoints that its arbi

trary elimination is not always advantageous and that its persistence is biologically 

plausible.

In addressing the representational form given data by traditional schemes, this 

dissertation expands on a recent interpretation of the usefulness to which chaotic 

dynamics may be employed [7, 8, 9, 47], while keeping it in context with the issue 

of utilizing uncertain results.

Understanding gained through modeling specific brain functions can help in the 

design of artificial neural networks which mimic those functions. Relating these 

functions together leads toward a more comprehensive understanding of the brain’s 

ability to perform tasks that have, until now, evaded our best technological efforts.

1.1  B a c k g r o u n d

A great deal of knowledge about the brain has already lead to much progress in neu

roscience and artificial neural network modeling. But still, so much more about the 

brain is not well understood. From neurophysiology to neuropsychology, the many 

and diverse fields of neuroscience testify to the formidable task of understanding 

the brain. Some of this material will be reviewed briefly below, along with a back

ground of neural network modeling, to provide the context and terminology used 

throughout this dissertation [6, 34, 44, 51].

Before doing this, we relate our work to the contributions of several leading 

views, including the organizing principle of Mountcastle [32], an oscillation based 

model of selective attention by Crick and Koch [4], the role of chaotic dynamics 

in olfactory perception proposed by Freeman [7, 8, 9, 10, 11], a nested structure
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formulated by Sutton [48], and others. First we consider differences of our work in 

regard to those that study cortical processing from a neuroscience point of view, 

then in regard to some new physiologically realistic artificial neural network models.

Structures (minicolumns and microcolumns) that are smaller than the standard 

column-like structures of the cortex, and the mechanism of pericolumnar inhibition 

given to explain their existence, are concepts suggested by Mountcastle [32]. We 

pick up on the idea of cortical microcolumns but adapt pericolumnar inhibition in a 

different way that allows us to partition the cortex on the basis of stable oscillation 

versus chaotic activity. The mechanism for selective attention proposed by Crick 

and Koch [4], is based on observations of synchronized oscillations in the brain near 

40 Hz. Our theory proposes a different mechanism responsible for synchronization 

among remote regions of the brain.

The physiologically realistic model of olfactory function developed by Freeman 

[7, 8, 9, 10, 11] provides an interpretation for how the brain might make use of 

chaotic oscillations. Our theory is different in that we view complex oscillation as 

produced by uncertainty instead of a way to represent more information than that 

captured in simple periodic oscillation. We describe Freeman’s interpretation in 

more detail in Chapter 3 and discuss aspects of his model in Section 2.3.

In a model proposed by Sutton [48] neurons are organized in a series of clusters, 

one within another, to form a nested hierarchical structure based on different classes 

of neuron types determined by their respective connectivity patterns. We expand 

this somewhat by allowing neural activity as well as connectivity to be the basis 

of clusters formed and cast it within a developmental context. By contrast, Sutton 

suggests no mechanism for how clusters are formed.
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The formation of clusters by agglomeration due to the operation of the so called 

“Mexican hat” function in a two dimensional array is well known and associated 

with Kohonen’s work on feature maps [23]. Our contribution is to consider the 

cortex as having several functions with different spatial resolutions that form the 

clusters suitable for hierarchical organization. As we model it, some form over a long 

period of cortical development while others are temporary and allow for dynamic 

reconfiguration.

Finally, a mechanism presented by Kauffman [22], disordered boolean circuits, 

illustrates how somewhat randomly constructed arrays of boolean logic gates can 

spontaneously form functionally isolated “islands” (clusters) of oscillating activity. 

Clusters in our theory are the result of the agglomeration of neurons and neural 

circuits with similar behavior. This makes our approach more responsive to order 

found in neural activity than one that relies on random connectivity. We believe 

that only in this way will the resulting structure be best adapted to process the kind 

of data it is likely to encounter.

1 .1 .1  N e u r o s c ie n c e  B a c k g r o u n d

Consider for a moment the coordinated electrochemistry of billions of specialized 

nerve cells, most of which are found in the cortex, and the highly organized and 

amazingly intricate interconnections between them that make up what is, without 

a doubt, the most complex structure known. The brain is remarkably efficient in its 

construction. It is estimated that the human cortex contains over 10 billion neurons 

that communicate with one another through more than 60 trillion neural connections 

(or synapses). Six identifiable layers can easily be distinguished within almost any
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Figure 1.1: Cortical Structure

region of the cortex. These distinctions are mainly based on population distributions 

of the various types of nerve cells and their morphology. Most neurons within a 

given layer are connected to other nearby neurons of the same layer. However a 

special type of cell, known as the pyramidal nerve cell because of its shape, provides 

the cortex with connections that project down through the layers. Pyramidal cells 

sometimes help to form vertical structures referred to as cortical columns, as seen 

in Figure 1.1. These columns show that a high level of connectivity not only exists 

between nearby neurons of the same layer but also vertically, across layers through 

synapses predominately formed with pyramidal nerve cells.

Interaction among neurons occurs not only at the level of the local neuron assem

bly but also globally. Note that pyramidal cells also communicate between remote 

regions of the cortex through what are called cortico-cortical fibers. Not shown are 

the many additional indirect connections made by other pyramidal cells through 

brain structures such as the thalamus. Centrally located, the thalamus is distinct 

from the cortex and is thought to help globally coordinate cortical function.
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Besides the vertical organization of the cortex, there is also an important lat

eral structure as well. It has been hypothesised for more than a century, and is 

now well known, that spatially distributed correlations exist within several cortical 

regions that relate to features in sensory input [23]. Visual, acoustical and tactile 

information are all examples of spatial mappings within cortical regions.

The efforts of neuroscientists necessarily include attempts to model biological 

neural systems through computer simulations. These efforts dovetail nicely with 

those of computer engineers who wish to push forward the state of the art of com

puter design. The next section provides an overview of some of these efforts using 

artificial neural network modeling [16].

1 .1 .2  N e u r a l  N e t w o r k  B a c k g r o u n d

The beginning of the modem era of neural networks is often associated with the 1943 

publication of McColloch and Pitts [28]. Interestingly, this corresponds to the same 

period of time in which von Neumann developed the first general purpose electronic 

computer, the ENIAC, during the years from 1943 to 1946. Today virtually every 

computer that the average person is likely to encounter can trace its architectural 

lineage back to the von Neumann model. While descendents of the ENIAC appeared 

rapidly in the years that followed its development, the alternative view of computing, 

through artificial neural networks, took longer to catch on. Contributions by Minsky 

[30], Rosenblatt [42] and others provided some important advances in the field during 

this time, but it was not until 1982 when J. J. Hopfield [17] published his idea of what 

became known as the Hopfield model that the field began to enjoy the popularity it 

sees now.

i
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Figure 1.2: Neuron as Threshold Logic Gate

Important to physiologically realistic models is knowing how closely to follow 

the source of inspiration. As mentioned, the brain performs certain kinds of tasks 

with greater speed and efficiency than by any artificial means. But, oddly, it ac

complishes this with neurons that are believed to operate many times slower (mil

liseconds verses nanoseconds) than the logic elements of typical electronic devices. 

Obviously, it would be meaningless to slow electrical components just to be real

istic. After all the brain is a living tissue that does much more than perform its 

computational task. It grows, metabolizes nutrients and protects itself from dis

eases as well. Attempts to model the behavior of a neuron, therefore, inevitably 

assume some degree of simplification. Traditionally neurons are modeled as simple 

threshold logic gates such as the one depicted in Figure 1.2. This figure shows a 

nonlinear threshold function performed on the weighted sum of n binary inputs. 

The output Xi is also binary. Though crude, this binary model has been able to
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Recurrent FeedForward

Figure 1.3: Neural Network Architectures

uncover methods for learning correlated relationships in devices such as the Percep- 

tron [42]. Early concepts of brain function have also ascribed symbolic or abstract 

meaning to individual neurons. This gave way to the distributed representation of 

data which took form in feedforward and recurrent structures. A recurrent structure 

must include at least one feedback path, as illustrated in Figure 1.3. This intro

duced the important concept of stabilization to network dynamics. Stable patterns 

of activity can be associated with learned items or objects of memory in networks 

such as that made popular by J. J. Hopfield [17], which made such things as content 

addressable memory possible. At this point discrete valued network elements that 

were updated at discrete time intervals were adequate to capture this basic kind of 

behavior. Discrete systems are usually described by an equation of the form

Xm  =  T {M X t +  bias), (i.i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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where X t is the system state vector at time t, M  is a matrix of connection weights 

and bias is a constant offset. But many unanswered questions remained that seemed 

to require another approach. Some limitations that emerged include the occurrence 

of spurious stable states and errors in recall. A spurious state is a stable condition 

of the system, as are memories. However, a spurious state corresponds to none 

of the intended learned memories of the system. It exists purely as an unwanted 

by-product of the learning procedure. Errors in recall, on the other hand, produce 

learned memories as the final result, only the memory recalled is not the correct 

one.

In addition to updates at discrete time intervals, system states may also be

updated continuously. The following equation depicts a continuous system:

dPY A dY  /■./,,% r / \ / n
d P  +  ~ d T  +  B Y  =  ( )

where Y  is the system state at time t, Q is a nonlinear operator and I(t) is an 

input function. At first, Continuous time dynamic systems were mostly seen as 

an unnecessary complication of their discrete counterparts. Since the influence of 

a sigmoidal nonlinear operator on a real number is to discretize the value, the 

two approaches were essentially equivalent. Any attempt to model the individual 

action potentials, or spikes, of a biological neuron was thought to be even more 

unnecessary. It was believed that only the average rate that a neuron fired was of 

any importance. As it turns out, this is short-sighted. A number of results have 

since clearly shown that a great deal more information is encoded within a neural 

spike train [35, 40, 41]. Efforts to simulate this activity can be divided into those

J
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dealing with periodic oscillators [14, 15, 33] and quasi-periodic and/or turbulent 

chaotic activity [7, 8, 9, 10, 11, 43, 46, 47, 52]. Not all oscillatory models simulate 

the neural spike train, as we shall see, but in any case the dynamic behavior is quite 

rich. These models now are beginning to demonstrate applications beyond that of 

mimicking, in general form, neural spike trains.

1 .2  D isser ta tio n  O v e r v ie w

The main contribution of this dissertation is a new theory of cortical neural pro

cessing that better captures some of the computational characteristics of the brain 

by providing a realistic interpretation of the interplay between chaotic and stable 

neurodynamics. The objective, from an engineering point of view, is to use this en

hanced understanding to design new kinds of artificial neural networks. Our theory 

is summarized in Chapter 2 along with a discussion of the relevant issues.

In Chapter 3, our method of representation that expresses uncertainty as a 

chaotic base condition is presented. Two mechanisms that lead to neurodynamic 

instability (the tendency to depart from periodic oscillation) are described and two 

views of the computational role of chaos are discussed. A model is presented that 

simulates a laminar structure and attempts to duplicate the lateral interaction within 

a cortical column. It is used to demonstrate the chaotic base condition and the for

mation of stability bubbles.

Chapter 4 develops our theory further by investigating the agglomeration of neu

rons into clusters due to their lateral interaction along the cortex. Both transient 

and static clusters are considered. The operation of a two-dimensional spatial func

tion is studied experimentally. It is used to model the receptive field of most cortical
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neurons as well as the pericolumnar inhibition proposed by Mountcastle [32]. The 

response to several random and regular patterns of initial activity are considered. 

Next, a developmental model of the cortex is proposed to characterize the forma

tion of ocular dominance columns in the striate cortex. The results of the model are 

compared with autoradiographic images found in the literature [25] of the actual 

developing tissue.

The task of presenting economic representations is examined in Chapter 5 by 

exploring the limited activation described by our theory. Our method of Feature 

Based Retrieval is cast as a means of identifying minimal representations of dis

tributed memories. Experimental evidence showing improved performance of our 

method over that of another pattern completion method is presented. It is specu

lated that the chaotic base condition of our theory provides the necessary ensemble 

information to form economic distributed representations.

Finally, a summary and discussion of the work presented in this dissertation 

is provided in Chapter 6. Issues related to the performance of cognitive tasks are 

also discussed along with the opportunities for future research that our work has 

created.

I
,1____
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C h a p t e r  2 

A  F r a m e w o r k  F o r  C o r tic a l  M o d e l in g

In this chapter we put forth an original interpretation of how the cerebral cortex 

accomplishes key aspects of its function. Our theory of cortical neural processing 

brings together, in a novel way, issues relevant to the realistic modeling of brain 

function to formulate a useful view of the structure and behavior of the cerebral 

cortex. Cortical structure varies significantly from region to region, but in many 

ways similarities also exist among them. We consider only general structure and 

behavior features that we believe are commonly repeated throughout the cortex. 

The framework we present establishes a role for chaotic neural activity based on the 

need to represent the uncertainty of the outcomes of performed tasks. Our theory 

is not one specific model, though we develop models in later chapters to illustrate 

aspects of it. The ideas of our theory are meant to serve as a guide for a variety of 

future artificial neural network models.

Our theory has six parts: (i) we view low intensity chaotic activity as the a priori 

base condition of the cerebral cortex; (ii) we suppose that information supplied by 

input drives bifurcations back toward less complex (stable) oscillations; (iii) we 

suggest that transient stable activity agglomerates into temporary clusters; and (iv) 

we further suggest that stable oscillations spread to remote regions of the cortex, 

creating large scale synchronized activity; (v) we suppose that the spread of stable 

oscillations is limited by the destabilizing influence of long-path connections; finally, 

(vi) we believe that the long-term effect of repeated stable fragments of synchronized

13
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activity, during early developmental growth, influences the final form of the cerebral 

cortex.

2 .1  T h e  R e p r e s e n t a t io n  o f  U n c e r t a in t y

The neurodynamics of the brain describe a complex and ever changing pattern of 

oscillating electrochemical activity. It is well known that, at any given moment, the 

majority of the brain’s neurons produce a low intensity non-periodic waveform. From 

the earliest recordings made of brainwaves to the most sophisticated micro-electrode 

and magnetic scanning techniques available today, this background, activity, as it is 

called, has been interpreted as noise and filtered from stronger signal-like responses. 

In recent decades, interest in the mathematics of chaos has brought new tools and a 

broader understanding to the analysis of neural time series recordings. These tools 

have only now begun to lead theoretical studies toward new interpretations about 

the role of chaotic neurodynamics.

One concept takes a view completely opposite the conventional perspective that 

chaotic neural activity is noise. It supposes that the complexity of a chaotic neural 

response serves to encode signals, rich in information, coming from the body’s many 

input receptors [7, 8]. According to this concept, chaos is actually believed not to 

be noise but the signal itself. Under this interpretation, a signal of high fractal 

dimension corresponds to a complex environmental stimulus. However, the signal 

measured to have highest dimension is in fact the so called background, which is 

of low intensity and generally does not evoke a response at all [47]. Our theory 

proposes a different interpretation of neural chaos. The view we suggest places the 

role of chaotic neurodynamics between the two extremes of signal and noise.
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2 . 1 .1  C h a o t ic  In s t a b il it y

We assert that the unstable nature of chaotic activity is the principle factor for its 

incorporation into the natural design of the brain. Our purpose is to relate the 

instability of chaotic neurodynamics to a natural means of measuring uncertainty. 

The more unstable a signal is, the less reproducible it will be, and therefore it is 

also less reliable. According to our theory, chaotic neural responses are understood 

as being produced because of uncertainty in the results of the tasks performed by 

the brain. This view comes from the fact that unpredictability in chaotic systems 

is a quantitatively measurable value. We begin by considering a measure known 

as fractal dimension, a quantitative property of a set of points in an n-dimensional 

space characterizing the motion of a chaotic system. Specifically, it measures the 

extent to which the points fill a subspace as the number of points becomes very large. 

One definition of fractal dimension is d[, the well known information dimension [31],

dt =  lim £ £ i P i!°gP‘ , (2.1)
e-*o loge v '

To intuitively understand Equation 2.1, consider the set of N0 points representing a 

trajectory of the chaotic motion of a selected system. Suppose we cover these points 

with a set of N  cubes of size e. The probability, P, of finding a point in the Ith cube 

is given as

(2.2)

where W* is the number of points in the t** cube, Nq is the total number of points 

in the set and P* =  1-
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We interpret Equation 2.1 by relating it to the information theoretic concept of 

entropy. Defined by Shannon [45], the entropy of a discrete random variable, x, with 

a range of N  values is given by the expression

H{x) -  -  Y , Pk logPk- (2.3)
I

Entropy is a measure of the average amount of information conveyed by the event 

x  =  Xk, where Xk is a particular value of the random variable x  and Pk is the 

probability of the event. Comparing Equations 2.1 and 2.3, it is easy to see why this 

measure of fractal dimension (di) is called information dimension. The probability 

Pi is related to p* of Equation 2.3 and a point in the Ith cube of size e is considered 

as the random variable x  having the value In other words, we are describing the 

information conveyed by finding a point in the i«, cube as its size, e, goes to zero.

Fractal dimension is useful because it provides a way to compare the unpre

dictability (instability) of chaotic systems. Table 2.1 is from the literature and 

lists fractal dimensions of known chaotic systems based on a measure of correlation 

dimension [31].

Table 2.1: Fractal Dimension of Selected Chaotic Systems

Name of System Dimension
Henon map 1.26
Logistic map 1.538
Lorenz Equations 2.06 ±  0.01

Just as there is more than one measure of fractal dimension (information, corre

lation, etc.), there are also more ways to quantify chaotic behavior. Phase diagrams
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and Fourier transforms are used in most of the analyses we perform, but the infor

mation dimension is discussed here so that we may relate it to uncertainty.

Before the event x  = Xk, there is an amount of uncertainty. After its occurrence, 

there is a gain in the amount of information. Therefore, information is related to 

uncertainty. From instability to fractal dimension to information to uncertainty we 

establish a clear motivation for a natural representation of uncertainty by chaotic 

instability.

2 . 1 . 2  P r e v i o u s  M e th o d s  o f  R e p r e s e n t i n g  U n c e r t a i n t y

Before presenting our approach, let us examine sources of uncertainty and existing 

ways to represent it in traditional artificial neural networks. We pose the simple 

problem of a content addressable memory (CAM) to represent a typical neural 

processing task as it is implemented by traditional artificial neural network schemes. 

The nature of the task is not important to this particular discussion and could, for 

example, be posed equally well in terms of the classification problem. What is more, 

the type of the neural structure and the way in which its connections are learned are 

also unimportant. Uncertainty of outcome is as relevant to feedforward structures 

as it is to fully connected recurrent structures, regardless of the learning algorithm 

employed.

Consider the diagram of Figure 2.1 depicting an artificial neural network which 

has learned M  memories and produces a response to an applied probe. Ideally, the 

response will be a stable pattern of activity representing a memory most closely 

matched by the content of the probe. If the probe is ambiguous, in the sense that
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O O O

Response

Memory 1 Memory 2 Memory M

ARTIFICIAL

NEURAL NET

Figure 2.1: Typical Neural Processing Task

it does not distinguish between two or more of the learned memories, the result is 

reached with uncertainty.

Definition 2 .1 ; An ambiguous probe is defined as one that correlates 

equally well with two or more learned memories.

In such a case, the response may be one of the equally best matched memories, 

arbitrarily selected by the CAM retrieval process, or it may be a linear combination 

of the memories best matched by the probe. The latter of these occurs whenever 

the learning process has spuriously created a stable state of the linear combination. 

Not all learning schemes will produce spurious memories.

With either outcome, the response will be interpreted as being completely reliable 

unless a measure of the uncertainly with which it was reached is somehow attached 

to the response. How should uncertainty be expressed? One of the best existing 

approaches involves adding onto each memory a tag of M  bits that identifies the 

response as being a specifically learned memory, a linear combination of memories 

or the complement of a memory. (Complements of stable points are sometimes also 

stable.) Each bit of the tag is associated with exactly one of the learned memories.
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If a stable final state is reached with more than one active bit in the tag, this 

represents an uncertain result.

Two or more active tag bits (active =  1 , inactive =  0) do not express which of 

these identified memories more closely match the probe. They mearly show that 

the match is sufficient to cause the tag to be active. But tag bits with a graded 

response, of say the range from 0  to 1 , will supply this information.

These schemes still do not convey the uncertainty of individual neurons. To do 

this, each neuron of the outcome would have to produce a graded output. But a 

stable final state with a graded response could itself be a memory. Such a scheme 

would not utilize its potential storage capacity and it is doubtful that the brain 

employs such methods.

2 .2  T h eory  F o r m u la tio n

We present a theory that describes the structure and behavior of the cerebral cortex. 

Our theory, in regard to cortical behavior, has three parts: (i) The low intensity 

chaotic background present throughout the cerebral cortex is treated as the base 

condition from which all other activity emerges; (ii) Isolated bubbles of activity 

that appear against the background exhibit lower fractal dimension as a result of 

having less interaction with the surrounding cortex; and finally, (iii) fragments of 

limited activation confine the spread of activity from involving entire distributed 

representations. This last part is seen as being needed to prevent the complexity of 

a hierarchical memory, for example, from adding complexity to the neurodynamic 

response. It also provides a natural means of producing economic representations 

that are important to such cognitive tasks as feature extraction.
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Our theory, in regard to structure, divides the cortex into four organizational 

levels: (i) Local cortical circuits (microcolumns), (ii) Columns, (iii) Regional circuits, 

and (iv) Global circuits. Each of these are discussed in more detail in Section 2.3. 

For now, we concentrate on the above three aspects of cortical behavior.

2 .2 .1  C h a o t ic  B a s e  C o n d it io n

We begin with an approximation of cortical neurodynamics. Let ^ UjV be a time- 

varying surface function defined parametrically over the entire cerebral cortex, such 

that the point (u, v) on the parametric surface S  corresponds to the point (x, y, z) 

on the cerebral cortex by the transformation < x{u, v), y{u, v), z(u, v) >. The inde

pendent variables u, v are discrete; Ut+i =  u, +  Au and u,-+ 1  =  i/t- +  An define the 

spatial resolution assumed by the model. The variable t represents time, which is 

continuous. The transformation is needed to preserve spatial relationships among 

points on the cortex and the resulting interconnection structure. Spatial relations 

determine the kinds of interconnections, and to some degree their strengths as well 

as temporal delays and periods of integration.

For every point (u, v) defined above, we ascribe a vector of time-varying functions 

representing a neuron assembly contained within the small area AuAv. Let the 

vector

lu,» =  (y«,v,l, Vu,v,2i • • • > Vu,v,n%v) (2-4)

represent the set of neuron output values of the neuron assembly, where is the 

size of the vector (the number of neurons in the assembly at the coordinate (u, v)). 

We next define a system of equations to be order partials taken with respect to 

t, as shown below, where the vector functions Q and H map the elements of Y  onto
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itself through the cortical interconnection structure and Z(t) is the input applied to 

the system.

_ d

^ (y )  +  K ( r ) + r ( t )  (2.5)

The time constants A*. . .  Ao are assumed to be uniform for all cortical neurons rep

resented by this model. (Ao represents the natural frequency of all cortical neurons, 

At their decay rate, etc.) The term Ak is assumed to be unity after factoring it from 

the equation, and in most cases, it is necessary to include terms only up to k =  2 . 

The terms of Q may include nonlinear operators such as threshold or saturation 

functions as well as time delay and integration. This function is described in detail 

in Chapter 3. The function % is used to express lateral interaction among neurons 

of relatively close proximity. This function models the lateral receptive field of most 

cortical neurons and is often referred to as the Mexican hat function because of its 

shape [23]. It may be approximated as the sine function, defined for one dimension 

as sinc{x) =  2 2 ip l. Another way to model this function is to use a variation of 

the Bessel function. The Kaiser function, defined as the Bessel function of the first 

kind divided by the modified Bessel function of the first kind, is used in a model 

we developed in Chapter 3 that demonstrates generation of the base condition. It 

also is used in our investigation of self-partitioning through lateral interaction that 

appears in Chapter 4.
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The surface function is related to Y  as the instantaneous mean of its vector 

components.

=  ~  52  (2-6) 
“tt® »=i

This is similar to the electromagnetic potentials, such as the excitatory post-synaptic 

potential (EPSP) that are measured using micro-electrode recording methods.

2 .2 . 2  S t a b i l i t y  B u b b le s

A major feature of this theory is the way in which uncertainty is depicted in the 

phase-space portraits of chaotic neurodynamics. In this depiction, isolated frag

ments of simple periodic motion emerge from out of a chaotic background. We 

define a stability bubble as an isolated area in S  over which $  yields a stable time 

series. Any point in S  not covered by a stable bubble is assumed to yield a chaotic 

time series.

The periodic activity of a bubble, being of a lower fractal dimension than the 

background is considered to be less uncertain and therefore conveys the fact that 

information has been received. The view is that information must be supplied to the 

system to drive a bifurcation into low dimensional behavior, observation of a simple 

periodic waveform conveys this same amount of information. Another analogy one 

may use is that of receiving an unlikely symbol sent from a code book of symbols 

used for communication, where the background represents the code book.

The clusters are isolated from surrounding neurons by the lateral function H 

and appear as bubbles of stable periodic activity against an otherwise chaotic back

ground. The larger a bubble, the more hierarchical links there are leading into and 

out of it. Hierarchical links are generally longer path connections than those that
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occur laterally. Most are made by pyramidal cells that have long axons. Long neural 

pathways create a delay and integration of the activity traveling down these axons. 

Delay and integration are both nonlinear operators that add to the complexity of 

the response. A small, well isolated bubble is most likely to bifurcate into periodic 

activity.

2 .2 .3  C o n f in e d  A c t iv a t io n

It is necessary for this theory to limit the spread of activation from involving large 

regions of the cortex at any one time. This is in fact physiologically plausible since 

any synchronization that might occur across large distances of the cortex does so only 

transiently, except in the case of epileptic behavior, which is considered abnormal.

Our theory allows complex memory structures, even hierarchical arrangements, 

in spite of this requirement. As new stability bubbles form, others must return to 

the background state to keep a balance in the dynamical system.

Suppose a topological ordering is established at each of several levels of a dis

tributed hierarchical memory structure. A level is physically represented by a 

two-dimensional spatial array of neurons composing a connected region of the two- 

dimensional surface of the cerebral cortex. Topological order is based upon the 

relative spatial position, within the cortex, of individual neurons, or groups of neu

rons, and a regular lateral feedback interconnection function as well as asymmetric 

hierarchical connections. Examples of these structures are detailed in Chapter 5. 

Clusters of neurons, their size and spatial position determine topographical patterns 

that may be learned by training the hierarchical links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Principles of pattern completion methods allow distributed representations to 

be expressed by only a fraction of the full memory. Prom work we have done on 

the pattern completion problem, it is shown that the order elements are updated 

is sufficient to identify full distributed representations [54]. A demonstration of 

improved pattern completion performance obtained through updating rules that we 

developed can be seen in Chapter 5.

2 .3  C o rtic al  A r c h it e c t u r e

The structure of any circuit determines much of the character of its function. It is 

reasonable to consider the organization of the brain before characterizing its neuro

dynamics. The view taken in this dissertation on the functional organization of the 

brain is that it is composed of a hierarchy of levels. There are believed to be many 

functional levels that work together in a very well coordinated manner.

A simple list of the brain’s various organs include the cerebrum, cerebellum, 

brain-stern, etc. At this level of organization, the largest of these is also the most 

recognizable part of the brain, the cerebrum. Its overall mass is divided into two 

hemispheres. Each has a number of visible divisions (large folds in its surface) form

ing what are called lobes. Any cross section cut perpendicular to the surface reveals 

even more structure. Two kinds of material are immediately seen. White matter is 

the name given the material that fills up the central volume of the cerebrum. Grey 

matter surrounds it much like bark covers a tree. The name, cortex, means bark.

Toward the lower end of this hierarchy, brain functions deal with information 

in its rawest form. Much of the initial processing is performed by brain structures 

such as the retinal neural network in the eyes, the olfactory system responsible for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

a sense of smell and the aural process that deals with hearing. These are among the 

most studied regions of the brain because of the ability researchers have to directly 

influence them by stimulating their respective sensory receptors.

2 .3 .1  F o r m u l a t io n  o f  t h e  In t e r c o n n e c t io n  St r u c t u r e

In this section we elaborate on the function Q responsible for hierarchical interaction 

in our theory. We begin with the surface function 'ErUtU that we defined in Chapter 2 , 

and extend our discussion downward through the vertical dimension of the cerebral 

cortex. A variety of local cortical circuitry lies just beneath the surface at every 

point (u, v). If an area of size Au by An is completely cut off from the rest of the 

brain, we assume it will oscillate in a stable periodic fashion.

Definition 2.2: We define a cortical microcolumn as a small vertical 

structure capable of resonating at some natural frequency.

The name of this structure and its inspiration are due Mountcastle [32] who first 

speculated on its existence. It is adapted here with the addition that it act as a 

resonating circuit of some stable frequency. Its stability may be disturbed by inter

action with activity from elsewhere in the brain, through the hierarchical function 

G. The microcolumn is considered by us to be the smallest functional unit of the 

brain above the individual neuron.

A structure somewhat larger than the microcolumn is the column. The bound

aries of columns are fixed during the development of the brain, which begins before 

birth. A zone of inhibited neurons surrounds each column demarcating its extent 

and isolating it from the activity of neighboring columns. Isolation is important for 

two reasons: (i) it establishes a partition of the cortex by dividing it into distinct
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functional groups, and (ii) it prevents the activation at one location from spreading 

throughout the entire cortex, as occur in epileptic seizures.

An average is computed over a column-wide region of the cortex by the broad 

dendritic span of a nonspecific pyramidal neuron. Frequency sensitive inter-neurons, 

depicted as circles in Figure 2 .2 , were theorized by Crick and Koch [4] to be involved 

in an oscillatory basis of the attention process. These interneurons in our theory re-

MicrocolmuA

O s

: Pyramidal CeO :

Figure 2 .2 : Frequency Sensitive Connection

spond when a microcolumn is permitted to resonate at its natural frequency without 

disturbance from other sources.

The output of pyramidal cells such as these have long axonal processes that reach 

out to distant regions of the cortex as well as other structures, such as the thalamus, 

that are not even found in the cortex. These long neural pathways introduce delays 

as well as temporal integration due to the propagation time down the axon path.

From this organization principle we speculate on the existence of transiently 

reconfigurable large scale cortical circuits such as depicted in Figure 2.3. In this 

figure five columns are shown with a certain type of local circuit illustrated within 

each. Input is applied to columns I and II only in this particular example which
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INPUT

Figure 2.3: Large Scale Cortical Circuit

is modeled after Freeman’s representation of the olfactory system [9]. Delay and 

integration occur along paths labeled “D /F  due to the relatively longer transmission 

time and stored energy in these connections compared to close connections. Stable 

activity that appears in a given column will tend to spread along these longer paths 

to other columns due to the frequency sensitive connections within the columns. The 

system of equations describing the dynamics of this system grows in complexity as 

this happens, introducing more of the nonlinear terms of delay and integration. The 

result is that the system begins to destabilize as more and more recurrent long-path 

connections are added. Eventually, stability breaks down and activity returns to 

the base condition. This process establishes the transient nature of large cortical 

circuits.

The formulations we present permit organization in a distributed hierarchical 

structure. One approach is to adopt the scheme of nested structures proposed by 

Sutton [48]. Figure 2.4 illustrates the basic concept of a nested structure. Large 

shapes, representing clusters, are shown to be interconnected at the same hierarchi

cal level. A similar arrangement is seen within each of these, indicating its recursive
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Figure 2.4: The Nested Structure

form. The smaller shapes (also interconnected) are at a level below that of the larger 

ones. Taken together, they represent a single cluster at the higher level. This may 

be repeated for several levels and in this sense the organization is recursive.

At the lowest level, the elements of a cluster ultimately represent individual 

neurons which may themselves be considered as level zero clusters. A first level 

cluster is the smallest grouping of individual neurons and is represented in our 

model by the microcolumns proposed my Mountcastle [32]. Second level clusters 

are the stability bubbles of our model that form when stable microcolumns begin to 

agglomerate. The third level is defined by the boundaries of the standard cortical 

column which form developmentally during the early stages of growth. Higher levels 

are established by the long-path connections between neurons of distinct columns.

Connections between clusters at any level are always between individual neurons 

belonging to the clusters at the level the connection is made. A heterogeneity of
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network elements is seen in [48] as the division between elements that only form 

connections to other elements within the same cluster and those that project to 

elements in other clusters. First-level elements are linked together into clusters by 

a subset of projection elements forming a second-level cluster. Other subsets of 

projection elements link elements in second-level clusters and so forth. In a circuit 

with r-levels, there are therefore r  — 1  subsets of mutually exclusive projection 

elements. Mutual exclusion is assumed for the sake of simplification in Sutton’s 

model, but strictly speaking, any degree of overlap can occur in natural circuits.

This distributed hierarchical model is described by a method that labels clusters 

and individual neurons. A cluster at nesting level k is identified by the sequence of 

indices £*... ir, where r  is the highest level. A cluster at level zero is considered to 

be an individual neuron. The index iT is always 1, and at level 1 there are ,-r 

neurons while at level k there are level k — 1  clusters. The reader may refer

to Sutton’s work [48, 49] for further details.

This method may be applied toward describing the connectivity of our formu

lation as stated. But it is important to point out that Sutton’s model does not 

express differences in neuron function beyond that of its connection pattern. We 

are adapting his model to allow clusters that exist due to dynamic patterns of stable 

neural activity.

2 .3 .2  L o c a l  C o r t ic a l  C ir c u it s

Recent attempts to model oscillatory systems in the brain involve neural circuits 

governed by a complex system of nonlinear differential equations. Let us closely 

examine the model of olfactory neurodynamic behavior proposed by Freeman [9].
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The remainder of this section is taken from Freeman [9]. The dynamics of a local 

collection of non-interactive neurons in parallel is modeled by what is called a KQ 

subset. This is the basic module from which the Freeman olfactory system model is 

constructed. The neurons represented by a KQ subset may be either all excitatory 

KQe, or inhibitory KQi, and each simultaneously performs four serial operations: 

(i) nonlinear conversion of afferent axonal impulses to dendritic currents; (ii) linear 

spatiotemporal integration; (iii) nonlinear conversion of summed dendritic current 

to a pulse density; and (iv) linear axonal delay, temporal dispersion, translation and 

spatial divergence. A static sigmoidal function with bilateral saturation converts 

an internal waveform into a suitable pulse function. In feedback loops, saturation 

restricts this conversion to its linear range. Each KQ subset is described by a single 

ordinary differential equation, cascaded with the static sigmoid function. Thus the 

KQ subset is split into two parts, a linear time-dependent operator F(t) and a 

nonlinear time-invariant operator G(v). The linear part is defined as:

abF(vn) =  vn + (a +  b)vn -F abvn, (2.7)

where
vn is the voltage at time t of the nth KQ subset element, 
vn is the first derivative of vn with respect to t, dvn/dt, 
v'n =  d?Vn/dt2,
a=220/s and b=720/s are fixed rate constants found 
experimentally for all KQ subsets that determine 
the carrier frequency of the K II  set.

The K I I  set is constructed out of two K I  subsets which are likewise formed by two

KQ subsets. The nonlinear part is expressed below in terms of the input variable v

and the output variable p:

t

i
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p =  u0(Q + 1 ), (2 .8)

where

Q  =
U q

— 1 V  <  — U q

U q  =  - In  [1 -  Qmln(l  +  1/Qm)]
Qm =  0.5 is the asymptotic maximum of the sigmoid curve.

The modification uQ =  UQdxê ~diÛ  where di =  1.64 and cfe =  0.53 permits the 

equation to be stable over all values of Q m -

The formation of K I  subsets is illustrated in Figure 2.5. The K Ie subset is

Kip subset
KO.

KOj

Excitatory connections

KI, subset

}Kit

Inhibitory connections

KII subset

Figure 2.5: KI and KII Subsets

formed by mutually excitatory connections between two K0e subsets. Likewise the 

KU  subset uses mutually inhibitory connections between two KO, subsets and two 

K I  subsets are combined to form a K II  set as also shown in Figure 2.5.
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The braces identify the K Ie and K li subsets and the excitatory and inhibitory 

connections between them are labeled. The equations for the M l K I I  set with N  

subsets are:

F (Veij) =  ktePeij t̂"e(Pt'ij d* Ptjj) keePeik Ij
F ( v e2j )  =  k e e P e ij k i e P i i j  

F (v i2j) =  kaPeij ~  b iP n j
=  k e i( P e i j  "H Pejj) ^ i i P i t j  "b ^ i t  P h j k

where
Ij is the input to the jth K I I  subset,
kjj is the gain coefficient, such that Vj =  kijPi,
(0.2 <  kij <  2.0),
keei kgi, kie, ka are four types of internal connections, 

and simulation is over all the other K II  subsets.

There are three main parts of the central olfactory system: the olfactory bulb (OB), 

the anterior olfactory nucleus (AON), and the prepyriform cortex (PC). Each of 

these are modeled individually by a single K II  subset. When coupled together 

with both excitatory and inhibitory feedback loops that include delays and inte

gration, then the K i l l  set is formed. Simulations run on the K i l l  set reproduce 

the chaotic electro-encephalogram (EEG) patterns associated with the complete ol

factory system. These patterns include the normal low-level background activity, 

high-level relatively coherent “bursts” of oscillation that accompany reception of 

input, and a degenerate state associated with epileptic seizure.

2 .4  T he F u n c t io n  o f  t h e  C e r e b r a l  C o r t e x

To better understand the cerebral cortex, its structure and function, it is necessary 

to consider what tasks are understood to be performed by the cortex and what
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is known of its physical structure that give it those particular properties. The 

discussion in this study of cortical function is limited to the cognitive process of 

selective attention, the hierarchical organization of memory, and processes related 

to the dynamic binding problem.

The natural organization of cortex interconnections forms perhaps one of the 

most complex structures known. The organization is examined here with an em

phasis on its recursive construction and heterogeneous neuron types.

Biological circuits are composed of a heterogeneity of neuron types as opposed 

to the uniform circuit elements employed by most models. Different neuron types 

in biological circuits determine the kinds of interconnections between neurons. For 

example, some types influence only those neurons that are near-by while others, 

especially pyramidal cells, have a greater range. Furthermore, the number of con

nections formed by a particular neuron depends on the neuron type.

At first glance, the brain reveals that it is divided into two halves and that each 

half contains several distinct lobes. The brain seems to be built compartmentally to 

handle various tasks with specialized equipment for each. Indeed neuropsychological 

studies have long identified correlations of the activity of specific cortical regions with 

certain motor and cognitive tasks or sensory input [1, 12, 26, 27, 35, 38, 40, 41, 50].

2 .4 .1  S e l e c t iv e  A t t e n t io n

In spite of the great variety of connections in the cortex, we believe that at any mo

ment only a fraction carry signals that require processing. The brain must ignore
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most of its own activity, much the same as it does with perceptual data. Accord

ing to our cortical theory, the brain’s attentional mechanisms are presumed to act 

internally as well as upon data from external stimuli. That is to say, that activity 

occurring in the various regions of the brain are selectively attended to, or ignored, 

by the activity in other regions.

The cognitive process of attention is subjectively familiar to us all, even though 

the mechanism behind it is not fully understood. It is integrally tied into what the 

brain does yet no consensus of an understanding exists among those who study it. 

What is known is that the attention process filters sensory data for useful informa

tion because not all data is informative. The work of the attention process is then 

to identify what is useful, ignore what is not, and do this at a rate that keeps up 

with the input stream. The process creates a grouping of input data into attended, 

which receives more processing, and unattended, which does not.

Attention as a neuropsychological phenomenon can be expressed in many forms 

including focused, selective, divided and sustained [3]. For the purposes of this 

discussion attention shall be considered a task of information processing that can 

be thought of in terms of a filter extracting salient information from raw input data. 

The criteria for what is salient may change over long periods of time. Therefore the 

filter is an adaptive one.

! _
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2 .4 .2  D y n a m ic  B in d in g

The transient synchronization of chaotic EEG patterns observable in the neocortex 

[18, 50] lasts usually on the order of a few hundred milliseconds, making it a likely 

candidate for the underlying mechanism of very short term conscious memory [5 ].

The rapid and efficient formation of transient interactions on a systems level 

is viewed as a necessary aspect of cognitive function. Such interaction provides 

a means for the formation of composite objects by grouping distinct features of a 

complex unit into an associated whole. Called the dynamic binding problem, it has 

been a familiar topic for symbolic rule-based systems but has only recently been 

addressed among neural network and connectionist researchers [2, 14, 15, 18, 27]. 

Observations of synchronized neural oscillations in separate cortical regions of the 

brain [2, 26, 33] have now inspired new approaches to this problem as well.

Synchronized neurodynamics are typically observed as the correlated time-series 

of electrochemical or electromagnetic activity. Electromagnetic field potentials are 

averages of neuron activity within the local vicinity of a measuring instrument. Typ

ically, whenever measurements of brain activity are made, it is the dynamics of these 

field potentials, not the individual neurons, that are recorded. The monitoring of 

individual neuron firings (action potentials) is much more difficult. When respond

ing to stimuli, cortical neurons tend to oscillate in rhythmical patterns synchronized 

to peaks in the local field potential waveform. Conversely, neurons firing at un

correlated times tend to flatten the local field potential waveform. This interplay
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between individual action potentials and average field potentials is fundamentally 

important to the kind of processing done by the cortex. Interaction is governed by 

characteristics of the connection structure such as the number, type and strength 

of connections. For example mutually associative links in a fully connected local 

group of neurons would promote strongly correlated firing times among these neu

rons. Many details of the interconnection structure in the cortex are known and yet 

many are not. Synchronization has also been observed among neurons located in 

different regions of the cortex.

2 .4 .3  H ie r a r c h ic a l  M em o r y

The problem of the hierarchical organization of memory has been approached from 

many directions and different hierarchical arrangements exist. A common arrange

ment organizes a sequence of clustered elements in layers. Each successively per

forms a coarse graining of the previous through the symmetric fully interconnected 

structure between adjacent layers. This arrangement however does not capture the 

variety of high-level associations possible with a distributed hierarchical arrange

ment which some researchers [32, 48, 49] believe is revealed by the structure of the 

cortex.

Enough evidence suggests that the cortex, which may be functionally divided into 

various regions, may be further divided into structures known as cortical columns. 

These columns, so named because of an apparent vertical connectivity pattern, 

are believed to be still further subdivided into microcolumns. These observations
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therefore seem to imply that a thoroughly nested structure exists within the cortex. 

This was in fact the conclusion reached by Mountcastle [32], as well as the motivation 

for a distributed hierarchical model [48].

The nested structure observed in biological circuits is a recursion of subcircuits 

each containing many types of neurons. The similarity among subcircuits gives a 

kind of regularity to the overall nested structure, with clusters of subcircuits at 

the first level coming together to form subcircuits at the second level that in turn 

cluster together forming third-level subcircuits and so forth. The significance of this 

arrangement is the distributed manner in which the brain on a whole is organized; 

an arrangement through which even remotely separated regions may interact.

Consider now the reaction of such a structure to an input stimulus. First-level 

subcircuits, organized into parallel columns, are associated with physiological re

sponses produced by various stimuli. Successive higher levels integrate these re

sponses and modify the boundary relations among clusters of first-level as well as 

some higher level subcircuits. The result is that responses at the first level are 

associated together, hierarchically, into a global distributed response.

According to the model put forth by Sutton [48], elements in first-level subcir

cuits are fully interconnected in an apparently disordered manner sim ilar to Hopfield- 

style neural networks. A small number of memory states are therefore associated 

with each of these subcircuits that represent the physiological responses. The fact 

that there are only a few memory states per subcircuit is not a limitation since the
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storage capacity is not emphasized. Instead it is the hierarchical response of the 

overall system that provides the necessary richness of its behavior.

2 .5  S u m m a r y

A theory of cortical neural processing was presented in this chapter along with a 

formulation that serves as a framework for modeling the cortex according to our 

theory. Three parts were identified in this theory. They are a chaotic basis, stability 

bubbles and confined activation. Also neuroscience issues related to the cognitive 

function of the cerebral cortex was discussed. These include selective attention, the 

dynamic binding problem and the structure of a hierarchal memory.
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C h a p t e r  3

C h a o t ic  N e u r o d y n a m ic  N e t w o r k s

Most immediately noticed about the activity of the brain is its oscillation. The 

brain is in constant flux as every neuron in the body oscillates in ever changing 

ways. In fact a neuron must at all times oscillate to survive. Incredibly, very little 

has been done to understand the computational advantages of oscillatory dynam

ics. Since early on, research in artificial neural networks has avoided, for the most 

part, this natural feature of the brain. The goal of most traditional neural network 

models is a static “final” system state; a concept entirely alien to biological com

puters. Only recently do oscillations appear in neural network models. Therefore, 

no real framework exists, as yet, for how to systematically approach this complex 

problem. Our view is one of the new views now emerging for how oscillatory neu

rodynamics are useful. Periodic oscillatory neurodynamics appear in many of the 

new artificial neural network models that seek to be more physiologically realistic 

[1 , 5, 15, 37, 47, 48]. But few of the new models treat chaotic neurodynamics as a 

desirable feature. One that does is Freeman’s model of olfaction (odor perception) 

[8 , 9]. Our theory differs from Freeman’s view of the role played by chaotic neurody

namics in cortical processing. Specifically, we assert that chaotic activity represents 

uncertainty in the outcome of tasks performed by the cerebral cortex because of 

its unstable nature, where chaotic instability refers to the tendency to depart from 

simple periodic motion.

39
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3 .1  C o rtical  B eh a v io r  M o deling

Our approach is to investigate oscillatory dynamics in cellular automata made in the 

form of a two-dimensional array of processing elements interacting according to a 

regular connection structure. The model is meant to represent the laminar structure 

of the cerebral cortex and is adapted from Freeman’s model of the olfactory system 

[9]. Each neuron is modeled as a second order differential equation of the form

where Y  is an array of elements yUjV1 0 < u < n , 0 < v < n ,  and n is the size of the 

array; 1Z is the receptive field of the element defined by some radius of points 

surrounding the point (u, v); H is a lateral interaction function; and I(t) is an input 

function.

The goal is to develop a model that adequately represents the behavior of the 

cerebral cortex. To do this we begin with a description that characterizes cortical 

behavior and acknowledges the usefulness of chaotic neurodynamics.

3 .1 .1  C h a r a c t e r iz a t io n  o f  B eh a v io r

The activity described by our theory of cortical neural processing is bimodal in 

regard to the kinds of oscillations that neurons are said to exhibit. Neurons or 

groups of neurons working together in a local cortical circuit must be capable of 

both kinds of behavior described by our theory. They must have a base condition 

(without stimulation) of a low intensity waveform that is highly chaotic. Then as 

input is applied, a strong periodic, or at least quasi-periodic, signal quickly appears.
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Such rapid transitions are known as bifurcations. Note that the term input is used 

here in a general sense. It may refer to stimulation due to sensory receptors, such 

as the visual, auditory and olfactory systems, or it may simply mean a signal that 

originates elsewhere in the cortex.

The mechanism of pericolumnar inhibition, as proposed by Mountcastle [32], 

establishes dynamic regions within the laminar cortical structure. By dynamic re

gions, what is meant is that these regions form due to the immediate input signal 

and is not the result of learned or innate structure. This raises the issue of whether 

input, causing the dynamic isolation of a region, in turn causes its activity to bi

furcate; or is it that input causes a bifurcation that later creates isolation. A third 

possibility is that isolation and bifurcation are both directly produced by received 

input.

3 .1 .2  T h e  C o m p u t a t io n a l  R o l e  o f  C h a o s

An interpretation for chaotic oscillatory behavior in physiologically realistic systems 

is to be found in the literature and is the source of the material in this subsection 

[7, 8 , 9]. A vase shaped diagram was developed by Freeman [47] as an attempt 

to represent the state space bifurcation characteristic of his model of the olfactory 

process. It illustrates the action of odor perception during the normal respiratory 

behavior of rabbits [9]. A spectrum of distinct behavioral modes begins at the lowest 

possible level, a condition while only under deep anesthesia. Then comes sleep and 

waking rest, were the amplitude is low but considerably more complex than before. 

Later are exhalation and inhalation, the two states of motivation. Finally, the most 

excited state of all is seizure. The ability to model seizures is very important in its
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own right, independent of what cognitive modeling insight it may bring, because it 

takes medical researchers that much closer to understanding and perhaps controlling 

the debilitating disease of epilepsy.

An important feature to bring out of the bifurcation diagram is the number of 

limit cycles present at the inhalation level. This differs from the waking rest level 

in which only one central limit cycle can be found. The limit cycles, or spatially 

patterned attractors, classify respective stimulus odors that anim als are trained to 

respond to.

Prom this description there come four suggested functions performed by chaotic 

activity in biological neural systems, (i) It provides rapid and unbiased access to all 

the collection of latent attractors. Any attractor may be selected, without warning, 

by environmental factors. The process “tums-off” the low-dimensional noise at 

the moment of bifurcation to a patterned attractor, and is “turned-on” again on 

reverse bifurcation as the patterned attractor vanishes, (ii) The chaotic attractor 

provides for global and continuous spatio-temporally unstructured neural activity. 

This is vital for the survival of neurons, in periods of low demand, which parish 

without proper conditioning to prevent atrophy of the tissue, (iii) A special pattern 

provides response to the contextual component of the environment. In this way any 

new odor stimulus, not already a member of the latent attractors, interferes with the 

contextual response leading to failure of convergence to any of the learned patterned 

attractors. The resulting chaotic activity also differs from the contextual response, 

signaling that what has been encountered is an unidentified stimulus. The power of 

this process is that classification of unknown odor stimuli can occur as rapidly as 

the classification of any known odor, without requiring an exhaustive search through
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an ensemble of classified patterns, (iv) A function that deals with learning. Chaos 

allows the system to escape from its established repertoire of responses in order 

to add a new response to a novel stimulus under reinforcement. The process is 

analogous to the Hebbian learning rule. Chaotic activity evoked by a novel odor 

provides unstructured activity that can drive the formation of a new nerve cell 

assembly by strengthening synapses between neurons of highly correlated activity.

3 .2  S im u l a t e d  L a m in a r  S t r u c t u r e

We develop a model in this section that is less complex than the structure described 

previously. The purpose is initially to simulate the base condition of our proposed 

cortical processor without requiring a discouraging amount of computing overhead. 

Then we examine responses to a number of different stimuli. Only lateral interaction 

is taken into account by our simplified model.

We begin by setting up an n by n array of processing elements (neurons). The 

output of each is numerically calculated from a 2nd order differential equation having 

a similar form to that of the model by Freeman [9]. Our important modification is 

a coupling between neurons that reflects the lateral interaction of the cortex as seen 

in the right hand side of the expression:

+Â sr+Bv‘* = + WmWi (3.2)

where (yUi„ : u =  1 , . . . ,  n; v = 1 ,..., n) are the neurons of the array and 1Z is the 

receptive field surrounding neuron (u, v) defined below.

Definition 3.2 : For some radius r, the receptive field Tt defines the 

set of points (u + i,v  + i) by their Euclidean distance to the point (u, v).
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The receptive field is defined in our model as:

n = { ( u  + i, v + j ) : ( u  + i + n ) ^  +(v + j  + n ) ^  < r2}. (3 .3 )

The radius r  and the function H  are considered to be uniform throughout the 

array. Also, to eliminate edge effects, neurons near the outer limits of the array 

wrap around to points on the opposite edge using the modular operator modn- A 

and B  are constants found experimentally that represent the natural frequency and 

damping coefficients, respectively. The constant gains ki and £ 2  are also determined 

experimentally. The function /«,»(£) is an input signal applied to the neuron at 

coordinate (u, v). The fourth order Runge-Kutta method of integration is used to 

evaluate this system of simultaneous equations. The advantage of having only one 

differential equation per coordinate (u, v) is to reduce the complexity of our model.

3 .2 .1  L a t e r a l  In t e r a c t io n  F u n c t io n

Most neurons in the cerebral cortex interact with neighboring neurons through a 

nonlinear spatial function. The range of this interaction may extend as far as several 

centimeters in some cases but the majority of the influence covers a much smaller 

area. Specific neuron types determine the characteristics of the interaction function 

and most follow the same general form which may be approximated as a single gain 

function common to every neuron in a two dimensional array of neurons. The form 

of the interaction function used in our simplified model may be seen in Figure 3 .1 .

It is generated by taking the Kaiser function (the Bessel function of the first 

kind divided by the Modified Bessel function of the first kind, Jq/ I q) and scaling it 

along lateral dimensions. Units in the figure are in microns. Only the area covered
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R ECEPTIVE F IE L D : N o r m a l i z e d  R e s p o n s e  v s .  D i s t a n c e  ( m i c r o n s )

-1 0 0 0 -5 0 0 500 1000

Figure 3.1: Lateral Interaction Function

by radius r  (microns) was used in the implementation of the function. This is 

accomplished with the two dimensional gain matrix depicted in Figure 3.2.

The point (0,0) of this matrix represents the coordinates of the neuron using this 

gain to compute its output. To hasten the simulation of this structure, our model 

implemented this matrix as a look-up table which avoided unnecessary calculation.

It can be seen from this figure that spatial resolution below that shown would 

have difficulty in representing the central peak of the interaction function while 

keeping the relative scale in the lateral dimension of its various features. It was for 

these reasons that the array was chosen to be 8  by 8 , where n = 8 . At this scale, 

however, edge effects become considerable. To avoid this and yet keep the number 

of neurons in the model few, the modular operator was used in defining the receptive 

field.
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Figure 3.2: Gain Matrix(Upper Right Quadrant)

3 .2 .2  S im u la t io n  o f  C h a o t i c  B a s e  C o n d i t io n

To observe the base response of our model, a simulation was run without applying an 

input stimulus. We constructed an 8 by 8 array and initialized each neuron according 

to a pseudorandom number generator to create the start state. Parameters were set 

at A  =  0, B = 50, ki =  40 and k2 = 0 and the system was integrated for 4000 steps 

of size dt =  0.01.

To characterize this behavior and to get an idea if it is, in fact, non-periodic, we 

plot the phase diagram of any two neuron responses; one against the other. Figure

3.3 is just such a phase diagram, showing the base response of 1/3 ,6  against that 

of 1/4 ,1 . The plot appears to be very disorderly and certainly non-repeating over
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P h a s e  D ia g r a m

7 .S- 7 .

- 6

Figure 3.3: Base Response (2/4 ,1  vs 2/3 ,5 ) : t=0,40

the interval of the simulation. To help determine if any long-term stabilization is 

occurring, another graph (Figure 3.4) is shown for only the first 2000 data points of 

the previous graph.

When compared, these two graphs show that the path traced out on the phase 

diagram continues to have both low and high amplitude orbits, showing no indication 

of settling. A more conclusive determination of chaotic behavior can be had through 

other more computationally intensive analysis techniques such as calculation of the 

Lyaponov exponents of the system. In this case, over 642 simultaneous equations 

must be solved.

3 .2 .3  R e s p o n s e  t o  S t im u l i

When a sinusoidal input is applied to one or more sites within our simulated cortical 

array, an area of stronger response appears in the immediate vicinity of the applied
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P h a s e  D ia g r a m

Figure 3.4: Base Response (y4il vs y3i5) : t=0,20

input. This is similar to the stability bubbles predicted by our theory. What’s more, 

the response appears to be much more stable than the surrounding activity. A series 

of experiments were done. Sinusoidal waveforms of the same frequency and phase 

were first applied to three pairs of locations in the array. Distances of one (adjacent 

locations), three and five separated the pairs of applied inputs. Also, frequency and 

phase shifts between the two inputs were considered. From all the variations tried, 

the results of four are shown in Appendix A in Figures A.1, A.2, A.3 and A.4. In 

this example, input is applied to two adjacent locations in Figure A.I. The same 

frequency of 7t / 2 5  is applied to both and the phase angle between the inputs is zero.

The top of the figures depict the time series response of each simulated neuron 

in an 8 by 8 array. Fourier transforms were calculated for each using fast Fourier 

transforms, and are depicted below the time series response. The base condition is

I

I
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certainly quasi-periodic. This is seen in the high number of spikes in their Fourier 

response. However, the Fourier response of the neurons to which input is applied is 

not as complex. Significant high-frequency response is almost non-existent. Neurons 

nearby the locations where input is applied are also affected, due to the lateral 

interaction function. Note that only one bubble is generated in spite of the fact that 

two inputs are applied. What would have been two separate bubbles merged into 

the one shown.

Two frequencies are applied at a distance of 3 locations in Figures A.2, A.3 

and A.4. The frequency of one input is changed, 7r/22, in Figure A.2. The other 

input frequency remains at 7r/25. In Figure A.3, the frequencies are the same, but 

there is a phase angle of 7r/4 between them. The phase is increased to 7t/ 2 for the 

experiment depicted in Figure A.4.

3 .3  S um m a r y

The behavior of the cerebral cortex was characterized as an interplay of chaotic and 

stable neurodynamics. Issues relating to the way in which chaotic neurodynamics 

is employed by the brain were discussed. A simulation of the lateral interaction 

function was shown to produce the chaotic base condition predicted by our theory. 

The application of stable, periodic oscillation to our model created bubbles of stable 

activity. However, these bubbles were not entirely isolated from the surrounding cel

lular array. The low-intensity reaction to the applied input, experienced by neurons 

lying beyond the boundaries of stable bubbles, is viewed as a kind of pre-conscious 

processing.
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C h a p t e r  4  

S e l f  P a r t it io n in g  C o r t ic a l  St r u c t u r e s

In this chapter we study the automatic formation of clusters by the agglomeration 

of neurons and how this serves to create partitions in the cortex. We also suggest 

a new application for this process relative to our theory. We are interested in the 

ability of the cerebral cortex to automatically divide available computing resources 

(the set S) into two nonempty disjoint subsets (si, s2) whose union is S. These 

resources correspond to microcolumns, but may also generalize to other structures.

Cortical neural structures may be viewed as being formed by two modes: (i) 

the developmental mode, where the characteristic columns emerge through self

partitioning; and (ii) the dynamic mode, where the mature structures are used for 

various cognitive tasks. Here we show how the Mexican hat function (an example 

of lateral interaction) operating on random initial states, leads to self-partitioning 

of neural activity which by some other biological process is converted into isolated 

physical substructures.

Transient partitions (dynamic mode) are considered as well as more permanent 

ones (developmental mode). The division of resources made by a transient partition 

is done on the basis of neurodynamic activity (stability). This process forms, within 

columns, the stability bubbles of our theory. More permanent partitions form the 

columns themselves by grouping together clusters of microcolumns according to sim

ilarities in neurodynamics that establish topological mappings within a hierarchical
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structure. Transient cluster formation and column formation are distinct processes, 

but the mechanism they share is the focus of this chapter.

The formation of clusters due to the Mexican hat function as described by Ko- 

honen is already well established [23]. Mexican hat functions of successively smaller 

spatial frequency are used to create a mapping of specific input patterns onto in

dividual neurons that yield the strongest response to that pattern. The result is 

a topological ordering of high dimensional data onto a lower dimensional array or 

vector.

Our investigation of self partitioning through lateral interaction is not concerned 

with mappings made to individual neurons. Instead the aim is to partition com

puting resources in a hierarchical manner that is well adapted to the kinds of data 

represented by input patterns encountered. This is an important concern for the 

simulation of intelligence as it is believed that biological systems continually reorga

nize their conscious structure in a complementary relationship with the environment 

[21]. The development of ocular dominance columns in the striate cortex reported 

by LeVay, Wiesel and Hubei [25] documents a process in which characteristics of 

the input environment shape the developmental process that partitions computing 

resources of the striate cortex.

The structural organization of the cerebral cortex outlined by Mountcastle [32] 

implies that the size and shape of a column are likely to determine how many 

connections to other columns are expected. Therefore, we are interested in knowing 

what kinds of spatial clustering patterns are formed when various input are clustered 

together by agglomeration, and what parameters of the lateral interaction function 

influence this.
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Clusters that become columns develop an isolation from one another in regard 

to lateral interactions. One way this is done is by weakening lateral connections 

between neurons crossing any border surrounding a cluster. This is a slow develop

mental process that occurs during the formation and growth of the cortex. Another 

method is to set up a zone of inhibited neurons that serve as a wall across which 

lateral influences cannot pass. This technique can be done rapidly without slow 

synaptic changes and is, therefore, suggested as a means for transient partitioning.

Definition 4.1 We define an agglomerated cluster of microcolumns as a 

set C such that each member /xUl>„l 6 C is adjacent to another microcol

umn of the same set, or the set contains only one member.

Definition 4.2 An agglomerated cluster is said to be functionally iso

lated if members of it are not influenced by, or exert an influence upon, 

members of another cluster.

An agglomerated cluster is more specific than the clusters referred to by Sutton 

[48, 49] in his nested structures model. Note that individual neurons are considered 

clusters by his model and he has no restriction similar to Definition 4.1. For the 

sake of simplification, lateral interactions are the focus and Definition 4.2 ignores 

hierarchical connections.

4 .1  C o r tic a l  C l u st e r  F o r m a t io n

The method for which this isolation is accomplished is based on Mountcastle’s pro

cess of pericolumnar inhibition [32] that establishes the boundaries of active columns 

and isolates them from the surrounding cortex. Activity traveling vertically (per

pendicular to the surface) excite neurons along its path. Around the periphery of

I
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this path, neurons are inhibited. This creates an active and isolated microcoiumn 

of neurons in an otherwise highly interconnected and highly interacting structure.

Pericolumnar inhibition creates lateral interaction similar to that created by 

the nonlinear receptive field of many cortical neurons. Accordingly, we simulate 

both mechanisms with a single general model of lateral interaction across a two 

dimensioned cellular array.

The model we build is a two dimensional structure. Therefore vertical columns 

(microcolumns), as such, are not physically represented. Instead, groups of neurons 

massed together closely on a flat surface depict the extent of a vertical column (mi

crocoiumn) in the cortex. In reduced form, two neighborhoods of cells are defined. 

Those that lie within a radius, r l5 of a central point are referred to as the immediate 

neighborhood. The distant neighborhood, on the other hand, refers to cells lying 

beyond but within the radius r2 > tv  Every cell of this structure is connected to 

every neighboring cell surrounding it from both of these neighborhoods. The dis

tinction deals with the lateral interaction function. The immediate neighborhood is 

generally excitatory, while the distant neighborhood is inhibitory. The extent of the 

structure is considered finite, but connections to cells on the edges wrap around to 

neurons on opposite edges of the cellular array.

A graph of the excitation versus lateral distance resembles the receptive field 

surrounding most cortical neurons but on a smaller scale. The plot shown in Fig

ure 4.1 shows a function similar to the scaled Kaiser function used in Chapter 3. 

This function is repeated so our results may be applicable to the simulated laminar 

structure as well as developmental column formation. For pericolumnar inhibition 

the horizontal dimension is assumed to be smaller than the receptive field model.
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EXCITATION

Figure 4.1: Pericolumnar Inhibition

Considered as an excitation (output) or as a receptive field (input), the lateral 

influences of this function are similar. No distinction is made between the two for 

the simulations done in this chapter, so that the results may be scaled and applied 

to either process.

The model we use in this chapter consists of a 41 by 41 square array of binary 

elements with the value xv>v =  +1 (xUi„ =  —1) representing membership in the 

subset si (S2 ). Cluster formation is an iterative process that follows the equation:

xu,v(t + 1) =  5 /G iV E « (x tt+t>+i(t)], (4.1)
n
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where SIG N  is a nonlinear operator defined as:

{ +1 if k > threshold
(4-2)

—1 otherwise

and 7i is the lateral interaction function. The receptive field, 1Z, is the region over 

which % operates and is defined as in Equation 3.3 of Chapter 3. Three neighbor

hoods are identified as the alternating excitatory and inhibitory regions for which 

r  in Equation 3.3 take the following values: (i) r  < rx, excitatory; (ii) rx < r < r2, 

inhibitory; and (iii) r2 < r  < r3, excitatory. The parameter threshold in Equation

4.2 is experimentally determined.

Consider the example in Figure 4.2. A sequence of iterations are depicted, where

Figure 4.2: Cluster Formation A
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the entire set of neurons is updated in parallel between each step. We assume it 

takes unit time to update a frame based on the values of its predecessor, and assign 

t =  0 to the initial state. The state at time t  =  1 is to the right and the system 

is stable at time t =  9. As simulated in this chapter, cluster formation begins by 

initializing the entire array with values chosen from the set {-1,4-1}. The array is 

initialized in this example using a pseudo-random number generator to make the 

choices, with an even probability between them.

The final state shows an elaborate pattern of activity displayed across the array. 

The array elements with output values of +1 (depicted in white) have agglomerated 

into a region that sprawls out in all directions. The remaining elements (depicted in 

black) have output values of —1. In spite of the interesting shape, only one cluster 

was produced. Our model wraps the lateral interaction function around the edges of 

our array to prevent edge effects, so clusters should also be interpreted as wrapping 

around in the same way.

Although both sets Si and s2 existed initially, their membership has changed. 

The boundary between the two sets in the final state is much smaller. That is to say, 

the number of adjacent element pairs with opposite output values has decreased.

Partitioning in this way has two physiological effects. The first is that a smaller 

boundary simplies the job of isolating clusters. The second has more to do with the 

area than with the circumference of these clusters. A region of some specific area 

covers a number of array elements. The average of the output values of elements in 

this region is typically close to zero for any large enough area taken anywhere in the 

array at time t =  0. But at time t =  9, when the clusters have formed, the average 

is highly dependent on the area and location of the region.
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Another example, cluster formation B, is shown in Figures 4.3 and 4.4. The

Figure 4.3: Cluster Formation B : Part 1

only difference from the previous example is in the form of the lateral interaction 

function. The lateral interaction function was reduced in size compared to that 

used in the previous example. The new simulation does not fully stabilize until time 

t =  30, even though most of the pattern of clusters had formed in the first few 

iterations. A total of 5 clusters were created.
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Figure 4.4: Cluster Formation B : Part 2

4 .1 .1  T h r e s h o l d  Va r ia t io n  S t u d y

Next we wish to explore the influence of varying threshold values. Figure 4.5 shows 

5 simulations run for each of 5 threshold values. Again, the initial state is randomly 

chosen with each run. The rows of the figure depict, from the top, threshold values 

of {—2,—1,0,1,2}. Immediately, it is seen that positive threshold and the reduced 

lateral function create similar cluster patterns. The percent of the array that was

!

I
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Figure 4.5: Threshold Variation Study

active in the final state for all 25 runs depicted in Figure 4.5 is plotted in Figure 

4.6. A linear relationship is seen between the percent active and the threshold. 

Threshold values of 3 and above produce no active array elements, values of —3 

and below produce no inactive elements. The number of clusters formed is also of 

interest. Figure 4.7 shows a plot of the number of clusters found in the final state 

for all 25 runs. Negative numbers represent clusters of elements with output values 

of —1.

i

i
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PERCENT A C TIV E  v s .  THRESHOLD

1 2  3 4  5 6 7 8 9 10 11  12  13 14 15 1 6  17  18 19 20 21 22 23 24 25

Figure 4.6: Active Percent of Array

4 .1 .2  F u n c t i o n  V a r ia t io n  S t u d y

We now wish to examine the influence of the form of the lateral interaction function 

by comparing simulations with a simplified variation of it. The basic form of the 

interaction function, described in the previous section, generally has three parts. A 

central excitatory region is the first part. This is surrounded by the second part, an 

inhibitory region. Pericolumnar inhibition has only these two parts. But the lateral 

receptive field surrounds these two with a third part, a very shallow (low intensity) 

excitatory region. These regions are marked by the radius to which each extends. 

In our first set of simulations, all three parts of the basic form are used. The results 

of this set are shown in the sequence given by Figures B.l, B.2, B.3, B.4, B.5, B.6,

B.7 and B.8 in Appendix B.
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NUMBER OF CLUSTERS v s .  THRESHOLD

Figure 4.7: Number of Stable Clusters

The second set of runs we report are shown in Figures C.l, C.2, C.3, C.4, C.5,

C.6, C.7 and C.8 in Appendix C.. These final states have spatial patterns that are 

very similar to those produced by the complete function with a threshold of +2. 

To obtain some idea of the variety of clusters that can be formed, we ran a series 

of simulations, varying the initial state with each case. The results summarized in 

Appendix B and Appendix C are based on random initial states. The response to 

patterned initialization (Walsh patterns) are also investigated. These results are in 

Appendix D.

4 .2  D iso r d e r e d  B o o l e a n  C ircuits

One of the attractive features of connectionist structures in general is their adapt

ability. For instance in situ training of a neural network, by which changes are 

made to connection weights during operation, has many applications from controls 

to pattern classification and signal processing. But with each type of structure there
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is a somewhat different behavior. This implies an obvious limitation in adaptability. 

In other words, a feedforward structure cannot adapt into a recurrent structure no 

matter what assignment of weights is made to the connections available because it 

has a less general interconnection structure. What would make a structure more 

adaptable is of course some means of altering its connectivity in situ. Dynamic 

reconfigurability refers to this ability.

The remainder of this section is from Kauffman [22]. Consider the example of 

a recurrent synchronous network depicted in Figure 4.8. In the first of the three

Y MODE#l

AND

ANDOR

(§> ©

'£>
MODE #2 MODE #3

@0
Figure 4.8: Recurrent Synchronous Network

modes of behavior the system reaches the stable point x 1X2 X3 =  000. The system is 

said to be stable because once this point in state space is reached no more changes 

occur to any of the elements. Another way to describe this is to say that xi, x2  and 

x3  are frozen to the output value zero and that therefore these elements represent 

frozen components of the system. The second mode of behavior represents a limit 

cycle whereupon once entered the system repeats a sequence of states. Although
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the system repeats a sequence of states, close inspection reveals that x-i is in fact 

frozen and only Xi and x3 continue to change.

This behavior occurs in large boolean logic networks whereby the network state 

space is effectively divided into functionally discrete regions. The process begins 

with a small number of frozen components that quickly spread, or percolate to 

many other network elements. When a region of the network that is not frozen is 

completely surrounded by components that are frozen, this region is referred to as 

an island because it is functionally isolated from the rest of the system.

Two mechanisms responsible for percolation are forcing structures and internal 

homogeneity clusters. In both cases, percolation would not occur if the network 

were updated asynchronously. The principle behind forcing structures is the class 

of boolean functions termed canalizing, which refers to the property whereby the 

outcome of a function is completely determined by a single input regardless of other 

input values. Logical functions such as AND and OR are examples, whereas XOR 

is not canalizing. A function is canalizing only if that the element has at least one 

input having at least one value, 1 or 0, which guarantees that the element assumes 

a specific value, 1 or 0. To illustrate how forcing structures are formed, an example 

is worked out involving six OR gates arranged as shown in Figure 4.9. Note that 

this structure contains feedback loops.

The 1 state in any element will guarantee, or force, its descendent OR gates to 

be in the 1 state as well. Then, in turn, these gates will force all those elements 

which they regulate, and so forth. In the loop, the 1 value cycles around. When the 

loop has filled up the entire loop remains in a fixed state and cannot be perturbed 

by outside influence. What is more, all elements descending from the fixed loop will
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(OR)

E  )  (OR)

F )(OR) D)(or)

B ) (OR)
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1 0 
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Figure 4.9: Forcing Structure of OR Gates

also be fixed at the 1 state. Thus a single fixed element can in this way percolate 

across several elements until a wall of constancy is established through which no 

signal may pass. Of course, these structures need not be limited to those made 

purely of OR gates. As shown in Figure 4.10, a variety of gates are involved.

x E A

0
1 (OR)

I
1

B ) (NOT IF)
B M C

C /AND)0
0
0
1

D R

F XOR)

L A B

0 0 0
0 1 0
I 0 I
1 I 0

J  c D

0 0 I
0 I 0
I 0 I
I I 1

CQ E

0 0 I
0 1 1
I 0 0
1 I I

Figure 4.10: Another Forcing Structure

The defining principle is still at work, namely that at each point in the structure an 

element is in a state, 1 or 0, that can force a descendent element to a specific state, 

1 or 0, regardless of its other inputs.
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A forcing connection is defined as a connection between two regulated elements 

each governed by canalizing functions, the first of these supplying an input value to 

the second which guarantees the activity of the second element. The second element 

may also be indirectly governed by a canalizing boolean function via K  =  1 input 

connections. If two elements regulated by canalizing functions are connected, one 

as input for the other, then the probability that this connection is in fact a forcing 

connection is exactly 0.5. This typically leads to large forcing structures of frozen 

elements. The threshold above which frozen structures form is called the percolation 

threshold. This threshold occurs when the ratio of forcing connections to elements 

is unity. For example, the K  =  2  network has 2N  connections (N is the number of 

connections), half of which, on average, may be forcing connections, assuming that 

ail of the elements have been assigned canalizing functions. In such a network the 

ratio of expected forcing connections to elements is N /N  =  1  which is high enough 

for forcing structures to form.

Internal homogeneity of a boolean function is defined in terms of P, the fraction 

of the 2k input patterns (where K is the number of inputs), which produce a 1  

response by the element.

Specifically the deviation of P above 0.5 is the internal homogeneity. Figure 4.11 

corresponds to a network of binary elements connected together in a two-dimensional 

square lattice. The number at each site gives the periodicity of the site on the state 

attractor. A 1 represents an element frozen in either the active 1 , or inactive 0, 

state. Clearly a frozen web of elements has formed and isolated islands of connected 

elements are free to oscillate but are functionally cut off from other islands. A web
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Figure 4.11: Boolean Network with Frozen Elements

will form in any such network if P > 0.5 is above a critical percentage Pc. This 

represents a kind of phase transition in behavior.

4 .3  A  D e v e l o pm e n t a l  M o d e l  o f  t h e  St r ia t e  
C o r t e x

The brain of a living creature continues to grow after birth, in the early stages of 

life. Studying the postnatal development of the brain during this period is a useful 

way to learn more about how the brain organizes its own structure and if there are 

any environmental influences on the process.

One such study by LeVay, Wiesel and Hubei [25] investigated the plasticity of 

ocular dominance columns in the striate cortex. Three figures in [25] show a series

i
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of images of healthy macaque monkeys at (A) one week, (B) three weeks and (C) 

six weeks of age. In this section we present a model that mimics this developmental 

process. These images are autoradiographic photos and the reader may wish to 

examine and compare them to those generated by our model.

An ocular dominance column is a cortical structure, approximately cylindrical in 

shape, with its long axis running vertically through the cortex, perpendicular to its 

surface. Neurons in the striate cortex are connected to input from both right and left 

eyes. Columns in the striate cortex of a healthy adult are connected predominately 

to one eye or the other, and are therefore ocular dominate.

The autoradiographic images made by LeVay, Wiesel and Hubei were created 

with a radioactive die (marker) attached to a neurotransmitter used by the neurons 

in the eyes making connections to the striate cortex. One eye was injected with the 

marker and the other was not. Striate cortex neurons connected to the marked eye 

glow in these images.

Initially, these connections are made randomly throughout the entire region, 

and no clear columnar structure is apparent. The beginnings of cortical columns 

are barely discernible at one week. What happens as the striate cortex develops, is 

that connections are reformed from each of the two eyes, eventually grouping them 

together into columns.

In our investigation of cortical self partitioning, we simulated the process of 

ocular dominance column formation in the striate cortex. We set up a 100 by 

100 array of binary processing elements. The output values of each element, xUitM 

represents a connection from one of the two eyes. For example, let the value + 1  

(—1 ) represent a connection from the right (left) eye.
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The behavior of our model is governed by the equations:

<„(« + 1) =  signiE  « « « > « (« ) ] (4.3)

Vu,v —  ^  (x u+i,v+ j f in a l) ) i
H

(4-4)

where SIG N  is a nonlinear transfer function defined as in Equation 4.3 and I t  is

the region of lateral interaction (receptive field or pericolumnar inhibition) defined 

uniformly as in Equation 3.3 of Chapter 3. The lateral interaction function we 

use may be seen in Figure 4.12 and is of the same scaled Kaiser function form as 

described earlier. Three values are associated with each coordinate (u,v) in the 

array; xUjtM x*>t> and yu,„.

The array is initialized with a pseudo-random number generator, as is done in our 

other simulations already discussed in this chapter. These initial values are copied 

to the variables x* „ which are then iteratively updated according to Equation 4.3 

until it stabilizes at a time defined as t  =  £/*„«/• From these new values of x* the 

values yU|V are computed as shown in Equation 4.4. It should be noted that values 

of yu>t) may also be computed without x* „ first becoming stable. An example of the 

field (surface) resulting from this is shown in Figure 4.13. The rest of the process 

consists of re-assigning the connections (values of xUi„): (i) pick a point (u, v), with 

equal probability, from the set of points in the array; (ii) assign the new value by 

the following probability distribution:

probability =  %% 

probability =  g

y u .v -m m
m ax—m in

T7mx*~ynty
m a i-m m

(4.5)
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Figure 4.12: Lateral Function for Ocular Dominance Model

where max =  maximum value of yUjV in array, min =  minimum value of t/Ui„ in array 

and tfinal == time when x* „ stabilizes.

The initial state is shown in the upper left-hand frame of Figure 4.14. Elements 

are then reassigned according to our approach and progress is charted in this and the 

next figure. Neurons were reassigned probabilistically using the values yu>v. Large 

positive values gave the greatest probability of a neuron being reassigned to the 

right eye (+1). Large negative values made it more likely that a reassignment be 

made to the left eye (—1). Values near zero were the least likely to be reassigned. 

The lower right-hand frame of Figure 4.15 shows the state of the array when the 

simulation ended, after 5000 reassignments were made.

i
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100

Figure 4.13: Ocular Dominance Surface

When the simulation was stopped, the boundaries between the two columns were 

still not completely defined. (Compare this with the results of LeVay, Wiesel and 

Hubei [25] reviewed earlier in this chapter.) Continuing the reassignment eventually 

produces clear boundaries.

4 .4  S u m m a r y

The aim of this chapter has been to better characterize the lateral interaction func

tion of our theory, but an understanding of this process also leads to knowledge of 

how the brain makes adaptive classifications and performs concurrent processing.
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Figure 4.14: Simulated Column Formation : Part 1

An important potential role for oscillations in connectionist structures may be to 

partition computing resources for concurrent processing. Partitioning requires that 

all direct and indirect interaction between specific groups of processing elements 

(neurons) be broken. Without a mechanism for partitioning, some connectionist 

structures can only perform one task at a time; that task being the overall function 

of the neural network. In a fully interconnected structure such as the Hopfield 

neural network [17], every neuron in the network directly influences all the others.
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Figure 4.15: Simulated Column Formation : Part 2

As a result, a connectionist structure of this type, say functioning as a content 

addressable memory, can only retrieve one memory at a time in spite of the massive 

parallelism employed. But in another type of structure, Boolean logic circuits, frozen 

(not oscillating) network elements have been shown to functionally isolate active 

(oscillating) groups of elements from one another [22]. Such isolation may enable a 

network to operate more efficiently in some cases by dividing its resources among 

separate parallel tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

Synchronous discrete networks are structures that simultaneously compute out

put values for network elements over a sequence of finite time intervals. By contrast, 

the asynchronous operation of discrete networks does not select more than one ele

ment at a time when computing output values. Asynchrony may be a good approx

imation of the kinds of interactions that occur across great distances in the brain. 

But brain behavior at close quarters is probably better modeled synchronously. Dis

crete networks are studied in this chapter to simplify model implementation. This 

does not cause any loss of generality.

As shown by Kauffman [22] through a previously proposed cellular automaton, 

functional isolation is a common occurrence when construction is properly con

strained. Random boolean circuits created within the automaton produce groups 

of cells that oscillate, separated by cells that are fixed in their output values. But 

the isolated functions of these groups is simply to cycle through a series of output 

values. Moreover the patterns of functional isolation and the functions performed 

are intimately tied together. When changes are made to the structure it effects 

the function, and vice-versa. This makes it a less suitable mechanism for column 

formation. As it turns out, greater biological plausibility, specifically, pericolumnar 

inhibition, may provide the basis from which a better approach can be found.

i
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C h a p t e r  5 

C o n f in e d  A c tiv a tio n

Our previous chapters have shown how useful activity emerges from out of back

ground chaotic activity and how the spread of useful activity is limited by destabi

lizing long-path connections. We view such confined activation as being fragments 

of stored memories and investigate if they may serve as economic forms of com- 

pleated memory patterns. We propose that the chaotic background may provide 

information of the ensemble of network memories needed to identify an economic 

form. In this chapter we examine how fragments of stored memories can spread in 

the network to become whole.

The aim of pattern completion is to reconstruct a learned memory from its partial 

representation. For example, an incomplete representation in a visual image can be 

of an object which is somewhat obscured by another object or of one that extends 

beyond the observer’s view. The completion process reconstructs, from memory, the 

missing parts of an object’s learned appearance.

The feature based retrieval (FBR) method, for the asynchronous update of fully 

connected recurrent structures, was developed by the author [53] to improve pat

tern completion performance. It is presented here in a new generalized form which 

can now be implemented in locally connected as well as fully connected structures. 

This form is shown to be closer to the interconnection structure of the cortex. In 

it, classifications are made on local data as part of the overall process of pattern 

completion. Let us now consider the origins of FBR.

74
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5 .1  T r a d it io n a l  P a t t e r n  C o m p l e t io n

The Hopfield neural network is a fully connected asynchronous structure, capable of 

acting as a content addressable memory (CAM). That is to say, it may implement 

storage of memory items for which context is used to access each item. As will be 

shown, a CAM may perform pattern completion, provided missing data is initialized 

to an appropriate value. The Hopfield model may be expressed in terms of the 

following state transition equation:

X t+l= F (T X t), (5.1)

where X t is the system state at time t and the matrix T  may be created by a learning 

algorithm such as Delta Learning:

(5-2)
P

where, x? is the desired value of the ith element of pattern p, i j  is the evaluated 

output of the ith element and c is an incremental constant.

The appearance of the Hopfield model of neural processing in the early 1980s 

ended almost a decade of what seemed to be slow progress in the connectionist field 

at the time. The basic structure of the Hopfield model is recurrent in form, Figure 

5.1. It is composed of binary threshold logic gates, is constructed with symmet

ric connections and is updated asynchronously by selecting, at random, individual 

neurons whose outputs are updated one at a time. With the exception of having 

no self-feedback, the interconnection structure is fiilly connected. By constructing
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Figure 5.1: The Hopfield Model

his model in this way, Hopfield established an isomorphism with statistical physics 

models of molecular behavior known as spin glasses [17].

The vector {2 :1X2 X3 2 :4 } corresponds to the outputs of the four processing ele

ments as labeled in Figure 5.1. This vector indicates the instantaneous state of 

the system. The unit delays provide for the evaluation of the system state at dis

crete time intervals. Hopfield’s popularization of the concept of dynamic stability 

in connectionist structures as a means of storing information is significant in that it 

permits an implementation of CAM.

Content addressability makes learned memories accessible by content rather than 

by some abstract and unrelated label or address identifier. Memory access begins by 

initializing the elements of the network with a vector, which is essentially a corrupted 

version of one of the learned memories. The network is then allowed to proceed to
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Figure 5.2: The Boltzmann Machine

a stable point where the resulting vector should correspond to the memory most 

matching the initial vector.

Pattern completion is very similar to the CAM retrieval problem. It is only 

slightly different in that just a fragment of a learned memory is provided and the 

complete memory must somehow be restored. A model that appeared soon after 

Hopfield’s was able to achieve pattern completion (Figure 5.2). Called the Boltz

mann machine, because it was influenced by ideas that had been put forth earlier 

by Boltzmann, it is in fact very similar to the Hopfield model but differs from it in 

the following important ways:

•  The Boltzmann machine includes hidden neurons in its structure.

•  The neurons of the Boltzmann machine are probabilistic while Hopfield neu
rons are deterministic.

•  The Boltzmann machine is trained using a probabilistic supervised learning 
scheme.

Pattern completion by the Boltzmann machine is accomplished by applying a subset 

of a learned memory to the input layer, the elements of the input layer not receiving

•  •  •

•  •  •
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input from the subset are initialized to zero and the system is then allowed to settle 

into a stable state. Key to the operation of the Boltzmann machine was the second, 

hidden layer of neurons used to store higher order associations.

The hidden layer in this model is not actually required for pattern completion 

to be performed. It does, however, permit functions that are not linearly separable. 

Shortcomings of these models include their rigid architecture and the fact that they 

tend to get stuck in local minima. This is seen most dramatically in the use of the 

Hopfield model for the solution of optimization problems. The spurious presence of 

stable states not corresponding to any of the learned memories may also cause an 

erroneous result. But even without spurious states, incomplete fragments can often 

lead to a memory that is not the one it most resembles. This difficulty in particular 

motivated such schemes for pattern completion as the generator method and feature 

based retrieval.

Consider the following example in which a fully connected recurrent network, 

having 100 binary neurons and being of the Hopfield type construction, is used to 

store memory patterns as stable system states. Let the vector X  =  X1 X2 . . .  X1 0 0  

represent the state of this system. For convenience, the 100-bit vector shall be 

represented as a 1 0  by 1 0  array of colored squares, each depicting the value of a 

single neuron. In Figure 5.3, a fragment of three bits is supplied and the network is 

allowed to proceed to a stable state.

i
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Figure 5.3: Hopfield Pattern Completion

Figure 5.4: Training Set

Seven time frames (at times t = 0,20,40,60,80,100,120) are shown from the 

completion process. Note that the last two frames are the same, indicating stability 

has been reached. In each frame, a dark square represents an output value of x — — 1 

and a light square the value x  =  +1. Grey squares represent the initial quiescent 

state of x  =  0  given to neurons that correspond to missing data.

In this example, the final stable state reached is one of a set of three patterns 

that were used to train the connection weight matrix according to Delta Learning 

(Equation 5.2). These patterns are shown in Figure 5.4.
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As noted, these are not expected to be the only stable states of the system. In 

fact, as anticipated, the complements of these patterns were found to be stable as 

were a number of their linear combinations. An exhaustive search over all 21 0 0  states 

was not performed due to computational limitations. In a later example, a smaller 

network that can be searched for all stable states is used to determine the influence 

of probe ambiguity.

The experiment depicted in Figure 5.3 actually shows an incorrect result, due to 

the difficulties inherent to this approach. That is to say that the final state, although 

stable, is not the one most closely matched by the original probe fragment. This can 

be seen by closely examining the active elements in the first frame. These values 

match the corresponding values of the second pattern of Figure 5.4 better than the 

other patterns, their complements or any of their linear combinations. The probe 

was chosen for this particular property. Since the second pattern should have been 

reconstructed, but was not, the outcome is considered to be in error. In all of 1000 

runs of the completion of this probe, approximately 17% were in error. For this 

reason, alternative methods were developed.

5 .2  In f o r m a t io n  D r iv e n  D y n a m ic s

In this chapter it is argued that extended periods of uncertainty should be studied 

in models of neural systems with oscillatory dynamics from the standpoints that 

its arbitrary elimination is not always advantageous and that its persistence may 

be biologically plausible. Rhythmic oscillations are such a common feature of the
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electrophysiology of all living creatures, it seems somewhat shortsighted to ignore 

their rich dynamics in models that only average the activity. Visual and olfactory 

system research have discovered a number of things about the oscillatory nature of 

the brain including possible functional uses for the chaotic neurodynamics observed. 

A link between chaotic dynamics and uncertainty provides motivation for a new 

information theoretic approach to oscillatory dynamics. Toward this end, a simple 

feedback model is developed that sustains uncertainty through a collective process 

based on information content. Rules for selecting the order network elements are 

activated and quieted sometimes create transient fragments of oscillatory activity 

that wander through an otherwise quiet system.

5 .2 .1  T h e  P r e s e r v a t io n  o f  U n c e r t a in t y

The collective properties of traditional neural systems create an undue emphasis of 

dynamics that arbitrarily seek stability and certainty. While delaying a decision 

may not be desirable in some instances, it is useful in others. For example, in 

processing phrases and sentences of natural languages it is sometimes better to 

delay decisions about the meanings of words because the most likely meaning may 

change when a later word is read. By waiting for more information at a later time, 

the computational complexity of unnecessary backtracking can be avoided. In such 

cases, uncertainty should be preserved and decisions that determine the outcome 

should be avoided or at least delayed.
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Biological neural systems with chaotic oscillatory dynamics can be said to be in 

a state of uncertainty because more than one learned pattern of activity is reachable 

from the current activity. This is the role chaos plays in an interpretation popular

ized by W. J. Freeman in his model of the olfactory system [7] for which a chaotic 

background serves as an unbiased starting point in the classification of input stim

uli. Such a system is well suited to handle new information, being able to rapidly 

classify novel and learned stimuli and perform selective attention.

Observations of chaotic oscillations of electromagnetic activity in the brain [7, 8 ] 

testify to a natural preservation of uncertainty and give further motivation for the 

persistence of chaotic behavior in artificial neural systems. If uncertainty were not 

preserved in the brain, then any chaotic oscillation would quickly die off. Freeman 

reports that the act of recognizing a conditioned stimulus causes a bifurcation of the 

activity from a chaotic background state to an identifiable pattern in the electrical 

activity of the olfactory bulb [7, 46, 47]. During exhalation, activity returns to the 

chaotic background state and persists for the entire period of exhalation [7]. A 

growing interest in the role that chaotic oscillation plays in neural systems is seen 

in a number of recent models of brain function and even recent speculations about 

consciousness [4, 5, 8,10,15,18, 27] that favor chaotic activity over point attractors 

because of their biological plausibility.

For these reasons the collective properties of traditional connectionist networks, 

those that arbitrarily remove uncertainty in an effort to obtain stability, seem to
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be inappropriate. When traditional networks are faced with more than one stable 

state that may be reached from a given initial state, a saddle point in state space, 

the choice made is arbitrary and the result is random. What is sought here is 

a system that does not automatically make these kinds of decisions. The result 

is an oscillatory wandering among uncertain states until new input is supplied or 

the system is driven toward stability by other means. Although more than one 

stable state may be reached from a saddle point, others may not. Therefore an 

uncertain state conveys information. Care must be taken when updating the neurons 

of the system if the information they convey collectively is not to be destroyed by 

the network dynamics. This suggests that information theoretic concerns should 

form the basis of a new collectively regulated network dynamic. The uncertainty 

of outcome created by ambiguous input permits a variety of potential final states 

that are stable in the neural system and have specific probabilities of being reached. 

Entropy, a measure of uncertainty and therefore information, can be said to be 

related to a chaotic system by the number of unstable orbits that make up its 

phase portrait. The bifurcation from a chaotic attractor into a point attractor or a 

stable periodic oscillation is somewhat analogous to the stability-seeking behavior 

of traditional feedback models which are drawn toward a final stable point in state 

space. The major difference is that a definite action, either a change in a system 

parameter or the introduction of new input, must be made in order to force the 

bifurcation to occur.
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In. what follows it is shown that the persistence of chaotic behavior can also 

be represented analogously by something similar to a traditional feedback model, 

provided it is modified to preserve entropy. For simplicity an adaptation of the 

Hopfield model [17] will be used in this discussion of the operating principles of the 

proposed model. The Hopfield model here is composed of discrete valued elements 

that are updated asynchronously and randomly. The focus here is on the rules that 

govern network behavior that are based on estimations of system state entropy.

Information content in neural systems is a quantity that is not readily observable 

nor can it be directly calculated from a description of network connection strengths 

and network activity because a detailed knowledge of the entire set of attractors, 

among other things, is required. What follows is based on a direct application of 

the theory of communication developed by Shannon [45]. A neural system in state 

i  shall be said to have produced the symbol k  when there is unit probability of 

reaching attractor k  from state i  provided all state changes result from evaluating 

neuron transfer functions individually (asynchronous update). In this system, states 

are taken as messages and the set of all attractors comprise the code book of possible 

meanings. For each possible state i, there is a set of probabilities P i ( k )  of producing 

the various possible symbols. There is, therefore, an entropy Hi of the system for 

each state i  which serves as a measure of the information the state conveys. The 

reason why we use the term entropy is because we average the information over all 

reachable states from the given fragment.
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It is important to realize that sustaining a given value of uncertainty does not 

mean that the potential outcomes will keep their original probabilities. This is a 

separate problem because a distribution of probabilities can yield an uncertainty 

equal to that of another even though the respective outcomes have different proba

bilities. What is desirable is that the same information, not just the same amount 

of information, be preserved. Therefore, not only a sim ilar distribution is needed 

but it is important that the very same one be maintained. Simulated annealing and 

other methods that make small random changes to neuron output values may also 

bring about delay in stabilization. But these methods do not attempt to preserve 

the distribution. Their goal is to reach a global optimum, which is quite different 

from the one taken up in this model.

A state change that significantly alters the likelihood of an outcome alters the 

very thing that the state represents. Such change can and should be allowed with 

the application of input, but avoided otherwise. Of course, the easiest way to avoid 

this is to prevent state changes of any kind as long as there is an uncertainty greater 

than zero. Unfortunately, a network of this sort performs no useful function beyond 

the mere accumulation of input until such time as sufficient information permits 

the network to proceed and reach a determined stable point. On the other hand, 

if care is taken in choosing the kinds of state changes that are allowed, a limited 

amount of network dynamics might be possible without significantly influencing the 

probability distribution.
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5 .2 .2  Q u i e t  N e u r o n s

To preserve any level of uncertainty other than zero, state changes that alter the 

entropy of the system must be met with changes that restore it. But almost all 

movement in state space from any point to another will change the distribution of 

probable.outcomes. From this fact it seems that little can be done to restore the 

original distribution except to return the system to its initial state. There is in 

fact something that can be done involving quiet neurons that will provide greater 

freedom to the network dynamics.

A quiet neuron considered as a communication channel should carry zero infor

mation about the condition of its inputs. To do this the output must not bias the 

other neurons toward any particular state and it must be a value that is not arrived 

at through the operation of its transfer function. A quiet value can, for example, be 

the average of all the output values of a discrete transfer function provided the aver

age itself is not one of them. All other values of the transfer function are considered 

active values.

On the other hand, a continuous transfer function as illustrated in Figure 5.5 includes 

its average in the range of output values. If this average represents a naturally 

occurring stable neuron condition, then it is not suitable as a quiet value because 

it can be learned by the network. But if the neuron ordinarily passes through the 

average only briefly as it approaches a stable saturation state, as shown in the figure,
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Output Transfer Function

Quiet Value(constant) 

Input

Figure 5.5: Continuous Transfer Function

then it can be used to represent a valid quiet value when assigned to the neuron 

instead of having its transfer function evaluated.

The modified model is based on a discrete transfer function that performs a 

binary operation on the weighted sum of its inputs. This means that assigning 

the average creates a quiet neuron having an output it would not have had the 

transfer function been evaluated to update the neuron. Although the system has a 

larger state space that fact alone does nothing to increase the storage capacity of 

the network. A network with n neurons has 3n states when quieting is used though 

"~2- of them are potentially unstable. This is because evaluating a quiet neuron will 

always change the network state thus making all state vectors with quiet elements 

unstable. The modified network behaves as if it were in fact a smaller network 

than it is physically because all evaluations operate on only the active network and 

none will yield a quiet value. It is as though all connection to the quiet neurons 

are cut off from the point of view of any present evaluation. With a number of 

weights essentially removed from the connection matrix the neuron response and,
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therefore, the network behavior can be very different. This represents a form of 

dynamic reconfigurability based on network activity rather than synaptic plasticity.

5 .2 .3  E n e r g y  a s  a n  E s t i m a t e  o f  E n t r o p y

An entropy surface can be cast over the points of state space just as an energy surface 

can. In fact the entropy surface is determined using the energy surface though it 

is not a simple functional relationship. The procedure begins by exhausting all 

possible monotonic non-increasing paths along the energy surface from state i and 

counting the number of times each of the final states k is reached. The number of 

paths to state k divided by the total for all k is the probability pt-(fc) that state k is 

reached from the initial state i. The product of this probability and its logarithm 

when sum m ed over all values of k gives the entropy of state i

Hi =  - ^ P i ( k )  logpi{k). (5.3)
k

Repeating this procedure for all states produces the complete entropy surface. 

Clearly this is a monumental task, using 0(n2n) time, for large or even moder

ate size networks. Precalculating these values for use by each neuron complicates 

the distributed processing requirements of connectionism. But, more significantly, 

every time any interconnection weight is changed the entire entropy surface must 

be recalculated. The overhead demanded would be so great that this approach is 

simply not practical. Since entropy is a labor-intensive measurement, it is desirable 

to relate it to a more readily available value such as energy. The system energy
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Ei is not directly known by individual neurons but it may be decomposed into the 

contributions from each neuron Eij which are available at each neuron. For the 

purposes here the following is an adequate form of the energy function, where wjik 

is an element of the connection weight matrix and the terms X j ( i )  and Xk(i) are the 

j  and k  neurons of the state i

Ei =  Eij =  —— Wj^Xk (i)xj (i). (5-4)
i  *  i .*

In the physical sense energy which describes the thermal temperature of a system 

is directly related to entropy. This is not true as defined in the neural sense. It 

is important therefore to determine exactly what can be said of a correspondence, 

if any. To begin, one already knows that a nonzero value of entropy attributed 

to a state implies that a number of possible outcomes may be reached from that 

state whereas an uncertainty of zero means only a single possible outcome exists. 

Consequently an uncertain state is also an unstable one and a stable state has 

zero uncertainty. Given the correspondence of stability with energy minima, this 

implies some relationship with entropy. Beyond this nothing can really be said of a 

consistent relationship. The zero entropy at a global energy minimum is the same for 

all energy minima and a global energy maximum is not necessarily a global entropy 

maximum. The latter is easily seen for cases where all monotonic nonincreasing 

paths from the point of highest energy lead to relatively few unevenly distributed 

energy minima. If there also exists another point from which many more energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

£  = 0.000 
E  =  - 2 9

H  =  1.154 
E  =  -1 3

£  = 0.000 
£  =  - 3 1

£  =  0.693 
£  =  -1 5

£  =  0.526  
£  =  - 1 5

t  £  =  1.040
£  =  0.000 E  =  _ U
£  =  - 2 5

Figure 5.6: Energy and Entropy

minima may be reached with nearly equal probability, then this point has more 

entropy.

Calculated values of entropy and energy are given in Figure 5.6 for all adjacent 

points surrounding a central one in a very small network that has only eight neurons. 

It is clear the central point is a stable state since the energy is higher in all directions. 

Entropy on the other hand is higher in all of the adjacent states but two. Elevated 

entropy indicates that there are paths from these adjacent states leading toward 

stable points other than the one shown. Still other regions of the topology show 

state changes between adjacent points where the two gradients are opposed to one 

another, that is to say that a rise in entropy is sometimes seen along with a drop in 

energy and vice versa.

5 .2 .4  C o l l e c t iv e  a n d  I n d iv id u a l  U n c e r t a in t ie s

Since having a detailed knowledge of the entire entropy surface to compute the prob

abilities P i ( k )  is not practical one must look at how small changes in the m e s s a g e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

affect the information it conveys. This is done through an approximate decompo-

individual network element. The average h computed over the number of active 

network elements 77 will serve to approximate Hi

Just as system energy is the sum of many individual energy contributions, neuron 

uncertainties can form an approximate decomposition of the collective uncertainty. 

For simplicity, consider a network element that evaluates a threshold function on 

the weighted sum of its inputs. The proximity to a threshold may be considered 

to be related to the uncertainty of that element’s output. For example hj =  t/j, 

where yj is the weighted sum of element j. In biological systems hj may be related 

in some way to somatic membrane potential. A new output value from element j  

changes the uncertainties of every element that receives it. Controlling the amount 

of change by selecting which element should be updated regulates the information 

content of the system state.

The n-dimensional binary vector xi(i)x2(i) . . . X j ( i )  - • -x„(i) describes the ith 

state and the following transfer function for the jth neuron is used to evaluate every 

neuron

sition of Hi. An individual uncertainty hj is associated with the output of the j th

(5.5)

(5.6)
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The coefficient iz/y,* is a connection weight and i0 is simply the state before state i 

and before updating the jth neuron. The function F(q) evaluates to +1 if q > 0 

and to —1 otherwise. Since Xj € {—1,+1} is the range for all elements, Xj = 0 

serves to represent an inactive neuron condition. The following two rules are used

for regulating entropy and are based on the expression hj(iQ) =  [£ fc Wj^Xkiio)]2 for

individual uncertainty.

Rule 1: A quiet element is eligible for activation when its uncertainty hj(io) is greater 
than h(iQ), the average uncertainty of the system:

h j ( i o )  >  C i h ( i Q ) .  (5.7)

Rule 2: An active element is returned, to the quiet state only if the following inequality 
holds:

hj(i0) < c2h(iQ). (5.8)

The control parameters ci and c2 are positive real numbers that regulate the 

decrease and increase of entropy, respectively. Suitable values of Ci =  0.75 and 

c2 =  2.25 were found experimentally for use with the networks described below. 

These eligibility rules only delay the eventual removal of uncertainty and in some 

cases entropy is seen to fluctuate considerably before dropping off completely. The 

size of the active set may also change as the network is updated but this is fine since 

the eligibility rules do not ensure that there is always an eligible neuron.
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5 .3  T he ID D  M o d e l

The information driven dynamics model (IDD) makes network state changes by 

sometimes activating neurons and sometimes quieting them in a way that preserves 

uncertainties concerning which final state is reached or indeed if one is ever reached. 

A fully connected feedback structure is used for the simulations analyzed in this 

chapter because feedforward architectures will not support the long state-change 

sequences described. Fully connected structures are preferred over ones with lower 

connectivity in order to maximize redundancies within the learned patterns. If the 

IDD model is incorporated into a larger system, the overall structure does not need 

to be fully connected to support the kinds of activity reported in this chapter. As 

long as enough redundancy exists to permit a variety of fragments to represent any 

learned pattern then the activity characterizing the IDD model can be supported.

Let x(£0) =  Xi(to)^2 (̂ o) - • • Zn(£o) represent the state at time t0 of a network hav

ing n neurons. The network is updated to the next state x(t) = xi(t)x2(t) .. .xn(f) 

in one of two ways. An active neuron, x*-(£o) #  0> may be quieted by the operation, 

Xi(t) =  0, and a quiet neuron, x,-(£o) =  0, may be activated. The activation of 

neuron i is done in the same way as it is for the traditional Hopfield-style neural 

network:

x t f )  = J r($2wijxj (tQ)), (5.9)
i
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where t%  is the connection weight from neuron j  to neuron i and F  is a function 

taken to be the same for all neurons. For simplicity, and without loss of generality, 

zero bias will be assumed for all neurons and T  shall be the sign function.

From the above activation function we derive an estimate of the system entropy. 

The value h(tQ) represents this estimated value at time t0. It is taken to be the mean 

of the square of the sum performed by the activation function. The contribution by 

each neuron to h(t0) is accordingly given by h,(to) as defined below:

hi(t0) =  E ^ ^ ( t o ) ] 2. (5.10)
3

The IDD model is distinguished from the traditional Hopfield model mainly by 

the way it maintains and uses two neuron sets. The first of these, set A, is a subset 

of the set of all quiet neurons and represents those chosen as eligible to be activated. 

Set B contains the active neurons that may be quieted. An algorithm constructs 

these sets and updates the outputs of neurons from them accordingly. Once a 

state change is made the sets themselves are updated and the process repeats. The 

basic form of the algorithm (Figure 5.7) has two rules for establishing sets A and 

B that use the estimates of individual and system uncertainties described above. 

The algorithm was implemented in several different forms to evaluate the merits of 

certain modifications.

Notice that when sets A and B are both the empty set, the system is in a stable 

equilibrium condition. If set B is empty and set A contains only those neurons such
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IDD Algorithm  : Basic Format 

Step 1 Construct set A such that x,-(£o) € A if xt-(£o) =  0 and

Step 2 Construct set B such that X i(t0) € B if x,-(£o) #  0 and

Step 3 Select and activate a neuron from set A 

Step 4 Select and quiet a neuron from set B 

Step 5 Assign x(£) to x(£o) and return to Step 1,

where hf(£0) =  [E; *%*i(*o)]2 
h(t0) =  iZ ilk ito )
■q =  number of active elements at time to 
ci, c2 are constants

Figure 5.7: Basic format of the IDD algorithm

hi(tQ) > cih(t0) (5.11)

hi(tQ) < c2h(t0) (5.12)
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that X i ( t )  =  X i ( t 0 )  for all i  then the network is also stable. These are the only 

conditions that permit stability. While keeping in mind that stability is not always 

the desired end result, it may be interesting to see when stability will occur. In the 

traditional Hopfield-style network, stability is ensured for asynchronous updated 

networks. This can be seen from an argument using the following energy function:

E(t) = WH */(*)• (5-13)
i j

Using the IDD algorithm, an increase in hfa) will tend to cause set A to grow smaller 

while set B will grow larger. As more neurons become quiet, set B will see fewer 

active neurons from which to choose eligible neurons, while set A will have more of 

a selection. This implies that as h(tQ) increases an equilibrium will be reached.

In fact, as will be seen, this is borne out in the experimental results. It is 

important, however, to realize that an equilibrium in the sizes of sets A and B does 

not mean the system dynamics are in equilibrium (i.e., the activity of the neurons 

has reached a stable state condition). If neither sets A or B are empty, the network 

will continue to select neurons to activate and quiet regardless of whether the sizes 

of these sets are changing.

Suppose, on the other hand, that the fragment is one that decreases the value of 

the function h ( t 0 ) .  In this situation, set A increases in size while set B decreases. The 

expected result is that the fragment will grow. This was observed for the following 

condition. If the initial fragment was close in Hamming distance to only one learned
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Figure 5.8: Small Network Example

pattern, while relatively farther from all the others, then the fragment grew. This 

is expected since it corresponds to a fragment that bears stronger similarity to only 

one out of the possible learned patterns. In other words the uncertainty is low.

5 .3 .1  S m a l l  N e t w o r k  E x a m p le s

Small networks of n < 10 neurons were studied because of the time needed to 

calculate entropy. Connection weights were chosen with a random function and 

assigned to a matrix that was made to be symmetric and have a zero diagonal. The 

following examples are from a network of n =  8 neurons that had 10 stable points 

found through an exhaustive search of all 2s states.

Whenever the network was initialized to a state that had zero uncertainty, the 

entropy remained at zero. In some cases, but not all, this did not prevent the 

energy from oscillating as seen in Figure 5.8. The initial state here is in fact a stable
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Figure 5.9: Oscillating Energy

state under normal circumstances but because of the eligibility to quiet at least one 

neuron the system does not remain static.

A small initial entropy tends to drop off very rapidly as shown in Figure 5.9 where 

again the energy is seen to continue to oscillate after the entropy has reached zero. It 

can be seen that some stable points are no longer stable because of the eligibility to 

quiet neurons. More important than stability is that the network reaches a condition 

of zero uncertainty and remains there. If each previously stable point is considered 

a stored memory item, then the modified model will retain all of these items on 

the basis of zero entropy assuming reasonable values for the control parameters are 

used.

Figures 5.10 and 5.11 show cases where a stable point is actually reached as 

indicated by their final steady values of energy. These figures also show the 

comparative times needed to stabilize as related to the initial entropy. The general
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trend observed is that the delay is longer when the uncertainty of the initial state is 

high. But this is only a trend and not a direct relationship because the actual delay 

varies with the specific update order followed. Since the eligibility rules only restrict 

but do not completely determine the update order, there will be some variation 

between runs.

In any neural system, especially those with inactivity, update order plays a major 

role in determining the outcome of the system. This is easily shown experimentally 

with a network that has been arbitrarily trained. While exhaustively permuting 

the order of the indices j, evaluate the elements Xj of a vector that begins in the 

completely inactive state. The dependence of the outcome is seen by comparing 

the results of each different update order. In some cases update order alone can 

determine which final state is reached. Update order was determined competitively 

in [20] by delaying the evaluation of each neuron a period proportional to the prox

imity to threshold of , the weighted sum of the jth neuron. Only quiet neurons 

were updated so that fragments grew until complete vectors were formed. A similar 

competition might be used to establish update order among the eligible active and 

eligible quiet neurons of the modified model. In this case an interval should be 

assigned each neuron defining the minimum time before an active (inactive) neu

ron may be quieted (activated). This permits those eligible neurons not absolutely 

closest to threshold to occasionally win the competition but only after those closer 

have been updated. This also modifies the direct competitive selection process by
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Figure 5.12: Retrieval Dynamics

imposing the update order of the elements most recently affected. Thus the selection 

is based not only on the instantaneous state but also the update order leading to 

that state. This is important because it enables smaller fragments to convey more 

information.

5 .3 .2  L a r g e r  S im u la t io n s

In what follows networks of 64 neurons were used. A low number of patterns were 

stored (usually three) and were constructed to have a large average Hamming dis

tance and high level of redundancy. An example of one ran of this model on such 

a network is illustrated in Figure 5.12. A total of 60 time steps are shown as 16 

frames at intervals of 4 steps. Each frame represents the output values of the active 

neurons at a specific time in this process. An active value of +1 (—1) is depicted as 

a closed circle (open circle). Any inactive neuron, with the output value 0, appears 

as a blank space. The 64 neurons of this simulation are represented in 4 rows of
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fc =  0 k =  l  k =  2

Figure 5.13: Memory Set

16. Note that the active neurons with the output value —1 at time t  — 0 remained 

so throughout the simulation. Several neurons that were inactive initially also re

mained inactive throughout this period, as well. However a number of neurons seem 

to alternate between the inactive and active +1 values.

In this particular simulation, only three patterns were used as the memory that 

had trained the network. As with the small network example, Hebb’s rule was 

adequate to store the three rather redundant patterns of 64 bits shown in Figure 

5.13. These patterns are labeled k =  0, k — 1 and k =  2. Redundancy was desired 

in this example to provide a very likely case for multiple fragments to represent 

the same information. The initial fragment in Figure 5.12 was deliberately selected 

to be equally distant to as many of the stable memory set states of Figure 5.13. 

The resulting wandering among similar network states demonstrates the expected 

behavior of IDD when the ambiguity (uncertainty) of the probe is high.
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5 .4  F e a t u r e  B a se d  R et r iev a l

The progression of a recurrent network structure from an initial to a final stable 

state is an iterated process. This fact, together with the highly redundant nature in 

which information is stored in a fully connected network, permits the reconstruction 

of memories without use of a hidden layer [19, 20, 53, 54]. This redundancy is seen 

in that from the 2n states of a network having n elements only 0.143 * n randomly 

chosen memories can be reliably stored by the usual means. Pattern completion by 

way of feature based retrieval and its predecessor, the generator method, both utilize 

this fact.

The generator method of pattern completion is a straightforward way of avoiding 

retrieval error of the kind not caused by spurious states. The subset of a memory, 

that comprises the active elements used to initiate the reconstruction process, is 

called a generator [20, 53]. These elements are clamped (or fixed at their initial 

values) while all other elements are initialized to a quiescent state and then evaluated 

sequentially following some fixed order. The quiescent (or quiet) state is taken to 

be the output value zero while all active states are either —1 or +1. This is similar 

to Boltzmann. Each newly activated element is in turn clamped as the process 

develops until all quiet elements have been activated.

All memories can be correctly reconstructed in this way with perfect reliability, 

provided the generator is not corrupted and is sufficiently large. Minimum generator 

lengths for accurate recall are found experimentally by beginning with a complete
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memory, then by working backward in the reverse order that evaluations are done, 

the generator is shortened one element in length with each iteration. The new, 

shorter candidate generator is tested by evaluating the quiet neurons as before. The 

smallest generator to successfully reconstruct its respective memory represents the 

minimum required length, which usually varies between memories. This variation 

may occasionally demand generator lengths approaching the number of elements in 

the network for success.

Improving upon this was the motive behind developing feature based retrieval 

[53, 54]. In this approach, update order is not fixed but is a function of the network 

state as the state is advanced. As before, initially active elements are clamped. But 

now, once all quiet elements are activated, clamped elements are then allowed to be 

updated in the same order they were originally evaluated. When the network state 

is stable, the process ends.

The FBR model performs so well in fact, that update order alone, without any 

initial fragment, can sometimes completely specify a memory with perfect reliability. 

This is to say that a network, starting with all of its elements quiet, can be made 

to reconstruct any desired memory simply by specifying which quiet element to 

evaluate first.

It should be noted that, by the previous model, generators of zero length can 

be obtained experimentally if, instead of a fixed update order, a search is made for 

a suitable update order for each memory item. Such a search, in the worse case,
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might have to be done over all n\ possible update orders. But to find the correct 

zero length probe of a desired memory using FBR one need only search through at 

most n  neurons for the appropriate one to start with.

The underlying power of both methods derives from the fact that the decision 

of which element to update on each iteration of the network state carries with it 

information that is otherwise lost with a random update scheme. In the first method 

the order is blindly predestined. But what gives FBR greater capability is that it 

uses available information, as it develops, to make each successive choice.

The precise amount of information is estimated by considering the number of 

elements available when a choice is made that, once evaluated, will yield an output 

value different from its current value. All quiet elements will yield an active value 

(—1, +1) once evaluated, while generally, only some active elements may change.

A system that clamps the output of each evaluated neuron per iteration effec

tively reduces the incremental information gained with each subsequent choice. The 

theoretical amount of information needed to distinguish 0(n) memories is log(n) 

bits. The information supplied by choosing which of the n quiet elements to evalu

ate first is n  bits. The information given by clamping the first element to a preset 

value is 2n bits. Clamping two elements yields bits of information and for 

k clamped elements it is 2*Wfc) bits, which approaches 2n as k approaches n. Of 

course n clamped elements represents a stable state by virtue of the fact that all n 

elements have been fixed.
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An example of the performance of FBR is seen in the tables listed in Appendix 

E. The FBR approach was cast in terms of a cellular automaton in which a training 

set of 3 patterns were stored using Hebbian learning. An exhaustive search of all 

system states found 14 to be stable. Six probes were constructed so that each 

would uniquely identify each of the three training set patterns and each of their 

complements. Table E .l shows the percent of the active neurons in the probe that 

correspond to the values they have in each of the 14 stable states. From this table, 

we see that our six probes uniquely identify the stable patterns 4,14,9,11,1 and 6, 

respectively.

Random selection was first used to determine update order as a basis for com

parison. The percent of the final stable state reached that correlates with each of 

the 14 stable patterns is listed in Table E.2 for each of the six probes used to ini

tialize the array. We see that probes 2 and 5 failed to reconstruct the patterns best 

matched initially. Probe 2 lead to pattern 13 instead of 14, and probe 5 produced 

pattern 2 when it should have yielded pattern 1. In both cases, the initial probe 

percent correlations were 75 percent, which was the next nearest to 100 percent.

Finally, in Table E.3 we show the results of using FBR to determine the update 

order. In every case, the probe reconstructed the correct stable pattern. This 

performance is obtained for any training set and set of probes that are chosen, 

provided the necessary guidelines are followed.
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5 .5  Sum m ary

The important work begun in the control of asynchronous update order that was 

begun with the feature based retrieval model [53] has been expanded in the infor

mation driven dynamics model. Rules for quieting as well as activating network 

elements enable an entirely new form of connectionist dynamics that seek to pre

serve the information conveyed by a fragment of active elements. This often results 

in an oscillatory wandering of the active fragment among similarly uncertain states. 

The notion that uncertainty should be preserved instead of arbitrarily removed, as 

occurs with random update ordering, is key to the IDD principle. Only when enough 

information is present in the fragment is the system driven to pattern completion.

The issue of network states having a reconfigurable influence on the function 

performed was raised in the discussion about the boolean circuit model in Chapter 

4 [22]. This has some similarity with IDD in the sense that network states influence 

the propagation of information in the structure. The quiet elements do not enter 

into the function computed by a neuron when it is activated. Perhaps this is a 

distributed form of functional isolation. We believe that the IDD model provides a 

better understanding of the oscillatory dynamics of brain processes.
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C h a p t e r  6 

C o n c l u sio n s

We have presented an original theory of cortical neural processing that describes 

aspects of the structure and behavior of the cerebral cortex. We use an interac

tion function among neighboring neurons that alternates between excitatory and 

inhibitory regions to explain transient and long-term structures that form around 

stable oscillatory neural activity. Our theory is unique in its interpretation of the 

interplay of chaotic and stable oscillatory neurodynamics. We demonstrated that a 

chaotic base condition can exist as the result, and as an expression of, an ensemble 

of potentially stable behavior patterns. We show experimental evidence for at least 

one mechanism for generating the base condition. Our theory asserts that stable dy

namics form as temporary bubble-like clusters within the fixed boundaries of cortical 

columns, and we show experimental support for it. With our theory, we outlined a 

means for cortical columns to interact in a hierarchical manner through frequency 

sensitive interneurons and non-specific pyramidal neurons working together in such 

a way so as to limit the spread of stable, high-intensity activity.

Our investigation of pericolumnar inhibition and the lateral receptive field of 

many cortical neurons produced two major results. We identified a common mech

anism for partitioning the cortex dynamically as well as developmentally. And we 

believe we are the first to convincingly model the postnatal development of ocular 

dominance columns in the striate cortex.
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Our theory is the first to suggest two new purposes for the existence of chaotic 

neurodynamics: (i) as a natural means of representing the uncertainty in the out

come of performed tasks, such as memory retrieval or classification, and (ii) as an 

automatic way of producing an economic representation of distributed information. 

The mechanisms and models we propose are physiologically realistic and are relevant 

to the goals of many cognitive processes and artificial neural network applications.

6 .1  D i s c u s s i o n

The oscillatory nature of the brain can and should be exploited in physiologically 

realistic models to better understand brain function and to advance the field of arti

ficial neural networks. The many uses of oscillations in the brain already identified 

in this emerging field include short term memory representations, dynamic binding 

of separate but related activity and the perceptual benefits of low-intensity chaotic 

activity.

The Freeman model of olfactory perception accounts for selective attention in 

terms of global patterns of chaotic activity across the olfactory bulb that emerge 

from a low level chaotic background [7, 8, 9, 10, 11, 47, 52]. Olfactory perception 

begins with internally generated low level chaotic oscillation that by virtue of the 

character of its dynamics has the ability of selecting the class of receptor input 

that leads to specific global patterns. When such input arrives, the activity grows 

forcing out alternative lobes of a more complex basal chaotic attractor. The resulting 

pattern corresponds to a specific stimulus in the class being attended. This process 

therefore relies on a background chaotic state that will carry the information needed 

to identify the desired class of global activity.
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A similar problem is classification with the related tasks of generalizing and in

stantiating. As depicted in the olfactory perception model described above, classes 

are represented transiently through neuron activity. The information content of the 

background activity determines how selective is the focus of attention and thus the 

size of the represented class. Not only size but also the constituency of the class of 

attended input can be changed as rapidly as change can occur in the background 

activity. Moreover, even as a stimulus that leads to a global pattern response is 

an instance of the attended input class, the corresponding response is likewise an 

instance of a class of responses. Following this interpretation, a class in the modified 

model might be thought of as a set of possible outcomes reachable by an active frag

ment. Since the fragment also conveys the probabilities of these outcomes, this sort 

of class has properties similar to a fuzzy set. These classes would have the advan

tage that they could be quickly formed or destroyed without any permanent changes 

made to the network. This is quite different from approaches that must modify con

nection weights to form classes. Such classifications are generalized by widening the 

corresponding attraction basin. For example making small random changes to the 

connection weights of a feedforward network constructed using the corner classifier 

algorithm [20] produces generalized classes around the existing corners.

By extrapolating the problem of perception to the problem of interaction among 

the various functional regions of the brain, one sees a possible analogy where each 

region might pay selective attention to the activity of other regions. But associated 

with the problem of interaction is the well known dilemma that although neural 

networks are massively parallel devices, they effectively do only one thing at a 

time. Methods, such as staggered memory retrieval, though giving the illusion of
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concurrency, do not actually solve this problem. This is because every element of 

the network at any moment is actively involved in the same computation whether 

or not staggering or its equivalent is used. In theory, a representation that involves 

only a fragment of a complete network interconnection structure leaves portions not 

used and, therefore, free to be utilized by other processes without interaction.

With the discovery that the stability of a subsystem can be independent of the 

stability of the rest of the system [36], it is speculated by the author that interaction 

of neural activity between subsystems of an overall cognitive system may be possible 

even while some uncertainty exists in the patterns of the activity.

There are a number of useful things that may result from this approach. First of 

all it has been shown that sets of active neurons can identify specific stable states of 

full network activity using only a fragment of the network [20, 53, 54]. The fragment 

size needed is related to the redundancy with which stable states are encoded but 

may be smaller if information is supplied in the form of a prescribed update order. 

A fragment may represent a window of attention directed onto the portion of the 

network that is active. It may also allow the network to operate on a general group 

of points rather than a single point. In this case the points covered by the quiet 

neurons are the generalized group. Finally, fragmented activity combined with low 

network connectivity promises to be an approach for concurrent processing in a 

reconfigurable network structure that may be hierarchically organized into many 

levels above that of the individual neuron.

j _ _
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6 .2  F u t u r e  R e s e a r c h

Our theory is the conclusion of our investigation and the beginning of even brighter 

possibilities. The models developed, extensively studied and used in this dissertation 

to illustrate aspects of our theory are what inspired our theory. What is needed 

now is that they be brought together. A single model, as outlined in Chapter 2, 

incorporating all of these aspects and suitable for simulation, would be a desirable 

extension of the work we have begun. The computational requirement of such a 

simulation is expected to be considerable due to the great number of second order 

differential equations anticipated to model even a small part of the cerebral cortex. 

But the requirement is probably not beyond that of a massively parallel, high speed, 

supercomputer.

Before such a simulation is attempted, one may wish to explore alternative rules, 

besides the one we suggest, for guiding the mechanism that extracts economic rep

resentations from the ensemble information our proposed chaotic base condition 

provides. Since our rule places a restriction on the make up of the ensemble, it 

would be better if something more general could be found.

Finally, the best way to continue with our work is to develop new artificial neural 

network models that incorporate the principles of our theory, directing them toward 

practical applications. Problems in control theory, signal classification and pattern 

recognition can serve to test the performance of such models if developed. We firmly 

believe that the representation of uncertainty as described by our theory and the 

means for obtaining economic representations that it suggests will establish chaotic 

neurodynamic modeling as the preferred approach for many applications.
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A p p e n d ix  A  

S im u l a t io n s  o f  t h e  L a m in a r  S t r u c t u r e  
M o d e l

The following four figures illustrate the response of our simulated lam inar structure 

model to sinusoidal input. Bach figure shows two 8 by 8 arrays. The top array 

depicts the time series response and the bottom represents the Fourier response. A 

discussion of these figures is found in Chapter 3.
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TIME SERIES
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Figure A.2: w\ =  t/2 5 , — 7r/22, <j> =  0, distance =  3
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Figure A.3: ui  =  U2 =  7r/25, <f> =  tt/4, distance =  3
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Figure A.4: u/i =  =  ir/25, <f> =  ir, distance =  3
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A p p e n d ix  B  

F u n c t io n  Va r ia t io n  : C o m p l e t e

The following eight pages show the steady states reached in a series of simulations 

of automatic cluster formation. The simulation was run a total of 40 times with 

a different random initial state for each. The initial and final states of each run 

are shown flanking a three-dimensional chart. This chart indicates the number of 

iterations for which each array element was in the active state (+1) during that run.

The complete lateral interaction function (all three parts), described in Chapter 

4, was used with r i =  3, r2 =  14 and r3 =  41. No bias was used and the threshold 

was set at zero.

The percent of the 41 by 41 array found to be active in the final steady state 

was on average 46.80 with a minimum of 45 and a maxim um  of 49. The number of 

iterations required to reach steady state was on average 14.23 with a m inim um  of 9 

and a maximum of 21.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure B.l: Complete Function : Set 1
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Figure B.2: Complete F\mction : Set 2
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Figure B.3: Complete Function : Set 3
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Figure B.4: Complete Function : Set 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure B.5: Complete Function : Set 5
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Figure B.6: Complete Function : Set 6
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Figure B.7: Complete Function.: Set 7
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Figure B.8: Complete Function : Set 8
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A p p e n d ix  C  

F u n c t io n  V a r ia t io n  : R e d u c e d

The following eight pages show the steady states reached in a series of simulations 

of automatic cluster formation. The simulation was run a total of 40 times with 

a different random initial state for each. The initial and final states of each run 

are shown flanking a three-dimensional chart. This chart indicates the number of 

iterations for which each array element was in the active state (+1) during that run.

A reduced lateral interaction function (two parts), described in Chapter 4, was 

used with =  3 and r2 =  14. No bias was used and the threshold was set at zero.

The percent of the 41 by 41 array found to be active in the final steady state 

was on average 21.47 with a minimum of 5 and a maximum of 30. The number of 

iterations required to reach steady state was on average 29.58 with a minimum of 7 

and a maximum of 99. Simulations were stopped at 99 iterations twice, indicating 

that a  stable state was never reached for these two particular runs.
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Figure C.l: Reduced Function : Set 1
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Figure C.2: Reduced FVmction : Set 2
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Figure C.3: Reduced Function : Set 3
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Figure C.4: Reduced Function : Set 4
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Figure C.5: Reduced Function : Set 5
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Figure C.6: Reduced Function : Set 6
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A p p e n d ix  D  

S e l f  P a r t it io n in g  o n  W a lsh  P a t t e r n s

This appendix shows the steady states reached in a series of s i m u l a t i o n s  of automatic 

cluster formation. A total of 136 regular patterns were selected from the set of Walsh 

patterns for a 41 by 41 binary array. Patterns not selected represent complementary 

patterns and diagonal reflections. Each page shows 10 initial states, except the last 

which shows 6. To the right of each initial state is a three-dimensional chart. The 

chart indicates the number of iterations for which each array element was in the 

active state (+1) during that particular run.

The complete lateral interaction function (all three parts), described in Chapter 

4, was used with t*i =  3, r2 =  14 and r3 =  41. No bias was used and the threshold 

was set at zero.

There were 7 runs that were not stable after 99 iterations, (the stopping point in 

the simulation) indicating that stability was never reached. The minimum number 

of iterations for a run was zero. It occurred for the all zero initial state which was 

immediately stable. Many cases required fewer than 5 iterations to reach stability.
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Figure D.l: Walsh Pattern Response : Set 1
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Figure D.3: Walsh Pattern Response : Set 3
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Figure D.9: Walsh Pattern Response : Set 9
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Figure D.12: Walsh Pattern Response : Set 12
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Figure D.13: Walsh Pattern Response : Set 13
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Figure D.14: Walsh Pattern. Response : Set 14
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A p p e n d ix  E  

F e a t u r e  B a se d  R e t r ie v a l  R e su l t s

The following three tables illustrate the response of our feature based retrieval model 

to probed input. A discussion of these tables is found in Chapter 5.
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Table E .l: Probe Percent Correlations

probe 1 probe 2 probe 3 probe 4 probe 5 probe 6
patt. 1 50.000 0.000 50.000 50.000 100.000 50.000
patt. 2 75.000 25.000 25.000 25.000 75.000 75.000
patt. 3 75.000 25.000 75.000 25.000 75.000 25.000
patt. 4 100.000 50.000 50.000 0.000 50.000 50.000
patt. 5 25.000 25.000 25.000 75.000 75.000 75.000
patt. 6 50.000 50.000 0.000 50.000 50.000 100.000
patt. 7 75.000 75.000 25.000 25.000 25.000 75.000
patt. 8 25.000 25.000 75.000 75.000 75.000 25.000
patt. 9 50.000 50.000 100.000 50.000 50.000 0.000
patt.10 75.000 75.000 75.000 25.000 25.000 25.000
patt.ll 0.000 50.000 50.000 100.000 50.000 50.000
patt.12 25.000 75.000 25.000 75.000 25.000 75.000
patt.13 25.000 75.000 75.000 75.000 25.000 25.000
patt.14 50.000 100.000 50.000 50.000 0.000 50.000

Table E.2: Final Percent Correlations (Random)

probe 1 probe 2 probe 3 probe 4 probe 5 probe 6
patt. 1 57.143 21.429 42.857 42.857 78.571 57.143
patt. 2 78.571 0.000 21.429 21.429 100.000 78.571
patt. 3 78.571 42.857 64.286 21.429 57.143 35.714
patt. 4 100.000 21.429 42.857 0.000 78.571 57.143
patt. 5 35.714 42.857 21.429 64.286 57.143 78.571
patt. 6 57.143 21.429 0.000 42.857 78.571 100.000
patt. 7 78.571 42.857 21.429 21.429 57.143 78.571
patt. 8 21.429 57.143 78.571 78.571 42.857 21.429
patt. 9 42.857 78.571 100.000 57.143 21.429 0.000
patt.10 64.286 57.143 78.571 35.714 42.857 21.429
p att.ll 0.000 78.571 57.143 100.000 21.429 42.857
patt.12 21.429 57.143 35.714 78.571 42.857 64.286
patt.13 21.429 100.000 78.571 78.571 0.000 21.429
patt.14 42.857 78.571 57.143 57.143 21.429 42.857
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Table E.3: Final Percent Correlations (FBR)

probe 1 probe 2 probe 3 probe 4 probe 5 probe 6
patt. 1 57.143 0.000 42.857 42.857 100.000 57.143
patt. 2 78.571 21.429 21.429 21.429 78.571 78.571
patt. 3 78.571 21.429 64.286 21.429 78.571 35.714
patt. 4 100.000 42.857 42.857 0.000 57.143 57.143
patt. 5 35.714 21.429 21.429 64.286 78.571 78.571
patt. 6 57.143 42.857 0.000 42.857 57.143 100.000
patt. 7 78.571 64.286 21.429 21.429 35.714 78.571
patt. 8 21.429 35.714 78.571 78.571 64.286 21.429
patt. 9 42.857 57.143 100.000 57.143 42.857 0.000
patt.10 64.286 78.571 78.571 35.714 21.429 21.429
p att.ll 0.000 57.143 57.143 100.000 42.857 42.857
patt.12 21.429 78.571 35.714 78.571 21.429 64.286
patt.13 21.429 78.571 78.571 78.571 21.429 21.429
patt.14 42.857 100.000 57.143 57.143 0.000 42.857
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