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Summary 

This research finds its motivation in the design of digital integrated circuits ("chips") and 

systems comprised of multiple chips. Chips have penetrated all aspects of our life. The 

timing problem plays a fundamental role in the design of such circuits. Several methods for 

solving the timing problem are available. In delay-insensitive circuits the timing problem 

is solved by seeing to it that a circuit's correctness does not depend on assumptions about 

delays in the connecting wires between the elementary building blocks or about the response 

times of these building blocks. Delay-insensitive circuits offer the potential of numerous 

advantages. Because they are relatively unknown, further research is needed on finding 

the right balance of these advantages against possible penalties in circuit performance and 

area. 

Chip design is abstracted to the design of systems consisting of processes that commu

nicate via channels. We present two families of mathematical models for such systems of 

communicating processes, aimed at the study of delay-insensitivity. The results concerning 

the first family are not new, but those for the second family are. Also new is the framework 

for the models. It is based on the testing paradigm with three special ingredients: (i) sys

tems also play the role of test (environment), (ii) there is a predicate that characterizes 

autonomously correct systems, and (iii) a system passes a test when the composite sys

tem comprising the system-under-test and the test environment is autonomously correct. 

An important correctness concern for delay-insensitive systems is absence of interference 

(under all possible delays). The two families differ in the nature of processes from which 

systems are built and in the choice of correctness concerns. 

The development of models sketched below applies to both families. On the space 

SYS of systems, a composition operator par is given that combines two systems into one 

larger system. The testing paradigm induces a refinement relation sat and an equivalence 

relation equ on SYS. System S is a refinement of system T when the set of tests that S 

passes contains that of T. Two systems are equivalent when they refine each other, that 

is, when they pass the same tests. This yields a pre-abstract model (SYS; par, sat), for 

which equ is a congruence relation. A quotient model is then obtained by dividing out 

equ. An isomorphic model is ('DI; 11, ::;::]), where 'DI is a set of processes. This is a (fully) 

abstract model. On this model a reflection operator is defined, in terms of which the design 

equation can be solved. 

The first family of models reformulates knowledge that was developed by early workers 

including Muller, Seitz, and Clark et al., and cast in terms of Trace Theory by van de 

ix 



X SUMMARY 

Snepscheut, Udding, Ebergen, Schols, Verhoeff, and Dill among others. In its context we 

also present several applications. Furthermore, we point out some limitations, such as the 

impossibility to deal with progress. The second family improves and extends the first. 

New in the second family of models is the possibility to express progress properties of 

processes. This is done by dividing the allowed states of a process into three categories: 

(i) V'-states where the obligation for progress lies with the process (by sending output), 

(ii) Ll-states where the obligation for progress does not lie with the process but with the 

environment (by providing input), and (iii) 0-states without progress obligation. A system 

suffers from deadlock when there exists a reachable state such that no process is in a V'

state and at least one process is in a Ll-state. Absence of such deadlock is imposed as 

an additional correctness concern. The result is a pre-abstract model that extends the 

pre-abstract model of the first family. 

Aforementioned set VI of the corresponding fully abstract model can be characterized 

in several ways. In case of the second family, the characterization of VI that we give by 

means of extended JTU-Rules is new. We also give a new abstract model for the second 

family in terms of enhanced characteristic functions. The enhancement consists of making 

the codomain of these characteristic functions a simple algebra of five objects rather than 

the two-valued Boolean algebra. These characteristic functions enable us to formulate the 

extended JTU-Rules concisely. 

Finally, we give a classification of nondeterminism related to output. Determinism is 

defined on the basis of refusal sets, which are familiar from the failures model for Hoare's 

CSP. Refusal sets, however, are a derived concept in our model and not fundamental as in 

the failures modeL Our set of deterministic processes is closed under composition. New 

is the distinction that we make between static and dynamic nondeterminism. Static non

determinism corresponds to freedom in a specification that a designer may still eliminate. 

Dynamic nondeterminism cannot be eliminated because it depends on the interaction with 

the environment. An arbiter is a typical example of a process with dynamic nondetermin

ism. The set consisting of the deterministic and the statically nondeterministic processes 

is also closed under composition. 

This research is of importance because a piece of knowledge in the field of delay

insensitive systems has been formulated and expanded into a uniform theory. The theory 

provides new insights in this field and improves our ability to transfer knowledge. Finally, 

the theory should be of help for choosing building blocks and for the development of better 

design methodologies and tools. 



Samenvatting 

Dit onderzoek vindt zijn motivering in het ontwerp van digitale ge1ntegreerde schakelingen 

("chips") en systemen opgebouwd uit meerdere chips. Chips zijn doorgedrongen tot alle 

aspecten van ons leven. Het timing-probleem speelt een fundamentele rol bij het ontwerp 

van zulke schakelingen. Verschillende oplossingsmethoden zijn beschikbaar voor dit pro

bleem. In een vertragingsongevoelige schakeling wordt het timing-probleem opgelost door 

ervoor te zorgen dat de correctheid niet afhangt van veronderstellingen omtrent vertragin

gen in de verbindingsdraden tussen de elementaire bouwstenen of omtrent de reactietijden 

van deze bouwstenen. Vertragingsongevoelige schakelingen beloven tal van voordelen. Hun 

relatieve onbekendheid vereist verder onderzoek om de juiste balans tussen deze voordelen 

en mogelijke nadelen qua prestatie en oppervlakte te vinden. 

Chipontwerp abstraheren we tot het ontwerp van systemen bestaande uit processen die 

via kanalen met elkaar communiceren. We presenteren twee families van wiskundige mo

dellen voor zulke systemen van communicerende processen om vertragingsongevoeligheid 

te bestuderen. De resultaten met betrekking tot de eerste familie zijn niet nieuw, maar 

voor de tweede familie wel. Ook nieuw is de opzet van de modellen. Deze is gebaseerd op 

het testing-paradigma met drie extra ingredienten: (i) systemen vervullen ook de rol van 

test(omgeving), (ii) er is een predikaat dat autonoom correcte systemen karakteriseert en 

(iii) een systeem slaagt voor een test indien het samengestelde systeem bestaande uit het 

systeem-onder-test en de testomgeving autonoom correct is. Een belangrijke correctheids

eis voor vertragingsongevoelige systemen is afwezigheid van interferentie (bij alle mogelijke 

vertragingen). De twee families verschillen in de aard van de processen waaruit systemen 

zijn opgebouwd en in de keuze van correctheidseisen. 

De hieronder geschetste ontwikkeling van modellen is voor beide families hetzelfde. Op 

de ruimte SYS van systemen wordt een compositie--operator par gegeven die twee systemen 

verbindt tot een groter systeem. Het testing-paradigma induceert een verfijningsrelatie sat 
en een equivalentierelatie equ op SYS. Systeem S is eenverfijning van systeem T indien de 

verzameling van tests waarvoor S slaagt die van T omvat. Twee systemen zijn equivalent 

indien ze verfijningen van elkaar zijn, dat wil zeggen indien ze slagen voor dezelfde tests. 

Dit levert een pre-abstract model (SYS; par, sat), waarvoor equ een congruentierelatie is. 

Een quotient model wordt dan verkregen door uitdelen naar equ. Een hiermee isomorf 

model is (VI; 11, waarbij VI een verzameling processen is. Dit is een volledig-abstract 

model. Hierop is een reflectie-operator gedefinieerd in termen waarvan de ontwerpvergelij

king opgelost kan worden. 

xi 



xii SAMENVATTING 

De eerste familie modellen herformuleert kennis die ontwikkeld is door Muller, Seitz en 

Clark et al., en later in termen van Tracetheorie is geformuleerd door van de Snepscheut, 

Udding, Ebergen, Schols, Verhoefi en Dill. We geven in deze context ook een aantal 

toepassingen. Verder wijzen we op enkele tekortkomingen, zoals de onmogelijkheid om 

voortgang te behandelen. De tweede familie vormt een verbetering en uitbreiding van de 

eerste. 

Nieuw in de tweede familie modellen is de mogelijkheid om voortgangseigenschappen 

van processen uit te drukken. Dit gebeurt door de toegestane toestanden van een proces 

in drie klassen op te delen: (i) \7-toestanden waarbij de verplichting tot voortgang bij 

het proces ligt (door uitvoer te produceren), (ii) ~-toestanden waarbij de1verplichting tot 

voortgang niet bij het proces ligt maar bij de omgeving (door invoer aan te bieden) en 

(iii) D-toestanden zonder voortgangsverplichting. Een systeem lijdt aan deadlock indien 

een toestand bereikbaar is waarbij geen enkel proces in een \7-toestand verkeert en ten 

minste een proces in een ~-toestand is. Afwezigheid van deadlock wordt als extra correct

heidseis opgelegd. Het resultaat is een pre-abstract model dat een uitbreiding vormt van 

het pre-abstracte model in de eerste familie. 

Bovengenoemde verzameling VI van het bijbehorende abstracte modelkan op een aan

tal manieren gekarakteriseerd worden. De karakterisering van VI die we in het geval van 

de tweede familie in de vorm van uitgebreide JTU-regels geven, is nieuw. We geven voor 

de tweede familie ook een nieuw abstract model in termen van verrijkte karakteristieke 

functies met als codomein een eenvoudige algebra op vijf objecten in plaats van de gebrui

kelijke tweewaardige Boole-algebra. Deze karakteristieke functies stellen ons in staat om 

de uitgebreide JTU-regels compact te formuleren. 

Tenslotte geven we een classificatie van nondeterminisme met betrekking tot uitvoer. 

Determinisme wordt gedefinieerd op basis van 'refusal sets', die ook bekend zijn van het 

'failures' model voor Hoares CSP. 'Refusal sets' zijn echter een afgeleid begrip in ons model 

en niet fundamenteel zoals bij het 'failures' model. Onze verzameling van deterministische 

processen is gesloten onder compositie. Nieuw is het onderscheid dat we maken tussen sta

tisch en dynamisch nondeterminisme. Statisch nondeterminisme komt overeen met vrijheid 

in een specificatie die door de ontwerper geelimineerd kan worden. Dynamisch nondeter

minisme kan niet bij ontwerp geelimineerd worden omdat het afhangt van de interactie 

met de omgeving. Een arbiter is een typisch voorbeeld van een proces met dynamisch 

nondeterminisme. De verzameling bestaande uit de deterministische en de statisch nonde

terministische processen is ook gesloten onder compositie. 

Dit onderzoek is van belang omdat een stuk kennis op het gebied van vertragingsonge

voelige systemen in een uniforme theorie geformaliseerd en vervolgens uitgebreid is. Verder 

verschaft deze theorie nieuwe inzichten in het vakgebied waardoor kennis hieromtrent beter 

over te dragen is. Tenslotte client de theorie te helpen bij het kiezen van bouwstenen en 

bij het ontwikkelen van betere ontwerpmethoden en -gereedschappen. 
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Chapter 1 

Introduction 

Information-processing tools made their appearance a long time ago. For ages, timekeep

ing relied on the sundial and computing on the abacus. Not until the 17th century did 

timekeeping and computing benefit from new ideas. Christiaan Huygens built the first 

pendulum-driven clock in 1656 and later his invention of the balance wheel led to the 

pocket watch. Computing was revolutionized by John Napier's introduction of logarithms 

in 1614 and the invention of the slide rule in 1622 by William Oughtred. Slide rules reigned 

until they were replaced by scientific pocket calculators in the mid-1970s. 

An information processor interacts with its environment by signals, and enforces a 

(useful) relationship between these signals. It is said to be analog when the signals vary 

continuously in space, time, or content, as with the sundial and slide rule. This contrasts 

with digital devices, like the abacus and pocket calculator, based on discrete signals, which 

in that case are also called symbols. The distinction 'digital' versus 'analog' is somewhat 

contrived, since there are all sorts of hybrid forms as well. It is a recent accomplishment 

that, through appropriate converters, all information processing can be translated into the 

digital realm (think of the Compact-Disc technology). Nowadays digital devices are mostly 

implemented electronically. An electronic information processor is often called a circuit; a 

digital circuit is an electronic realization of a symbol manipulator. 

A digital electronic circuit consists mostly of switches and interconnection wires. The 

switches were at first implemented by electromechanical relays, the size of an average thumb 

and a switching time in the order of milliseconds. Later they were replaced by vacuum 

tubes, which were about the same size as a relay but with switching times in the order 

of microseconds. Shortly after World War II, in 1948, the transistor was invented. Fully 

packaged it had the size of a pea and could switch in the order of ten nanoseconds. A major 

breakthrough was the development of techniques to integrate a number of transistors and 

their connecting wires on a single silicon "chip", aptly called an integrated circuit (IC). 

It is stated in [GD85] that 'since 1961 the number of transistors that can be successfully 

fabricated on a single chip has doubled almost every year'. Currently, the state of the art is 

represented by 64 Mbit dynamic memories with close to 108 transistors and the DECchip 

21064 (the 'Alpha'), which is a full 64-bit microprocessor implemented by 1.68 million 

transistors (see [DEC93]). 

1 



2 CHAPTER 1. INTRODUCTION 

Modern circuits are not only complex at the structural level: also their behavior has 

become much more complex because of the increased degree of parallelism. In older micro

processors all operations were totally sequenced. Since we are approaching the upper limit 

of what is sequentially achievable, modern circuits must rely on parallelism to gain further 

speed. For instance, DEC's Alpha chip mentioned above contains separate instruction 

and data caches, and separate pipelined integer and floating-point execution units, and it 

involves 'dual instruction issue'. 

The large degree of integration on chips can only be realized by complicated and expen

sive fabrication processes. From a geometric layout, giving the precise location and size of 

each transistor and wire, a set of enlarged photographic masks is produced. These masks 

are used in numerous physical and . chemical processing steps to transfer the structural 

details of the layout onto a silicon wafer, the size of a compact disc. Each wafer, contain

ing some hundred copies of the circuit, is cut into individual chips, which are then put 

into packages, bonded to the external pins, and sealed. IC production involves inherently 

stochastic steps; that is why tests are required along the way to identify defective circuits. 

Needless to say, a circuit must be designed with great care before it is submitted 

for production. Delay-insensitive circuits are intended to improve our ability to make 

reliable and efficient circuit designs. The theory of delay-insensitive systems is applicable 

to information-processing systems in general, also to systems that are not electronically 

implemented. 

1.1 Formal Framework 

In this section, we outline the development of our theory of delay-insensitivity. Our ma

jor motivation for the study of delay-insensitivity is its relevance to the design of digital 

integrated circuits, to be explained in more detail in the next chapter. However, this is 

not the only design context where the notion of delay-insensitivity is applicable. The mod

els presented in later chapters and-especially-the methods used to construct them, are 

largely application independent. Only in a few isolated places are decisions based on the 

application to digital circuit design. These will be pointed out where relevant. Let us now 

begin with a few philosophic points. 

Three Kinds of Models 

A model should encompass everything that one cares to express about what is being 

modeled. The aim is to omit irrelevant details, though it may not always be clear in advance 

where to draw the boundary between relevant and irrelevant. A mathematical model 

may be set up as some sets of objects, and some operators and relations on these sets. Such 

a model can also be viewed as an algebra. A well-known example is the real number system, 

with the set of real numbers as objects, addition and multiplication as operators, and the 

usual ordering as relation. In the case of delay-insensitive digital circuits, the objects are 

networks of communicating processes, for which parallel composition is an operator, and 
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satisfactory substitutability, also known as refinement, is a relation. 

We distinguish three levels of abstraction when using models. These are, in order of 

increasing abstraction: 

pre-abstract, (fully) abstract, and axiomatic. 

At the pre-abstract level, there are possibly irrelevant distinctions between objects; that 

is, we consider some distinct objects equivalent for the intended application of the modeL 

At the fully abstract level, distinct objects are inequivalent, but the objects themselves 

still may have irrelevant structural detaiL At the axiomatic level, the objects have no 

explicit structure; they are implicitly characterized by axioms on their operators and re

lations. When moving from a pre-abstract to a fully abstract model, one abstracts from 

irrelevant object distinctions, by identifying equivalent objects. When moving from a fully 

abstract model to an axiomatization, one abstracts from irrelevant object structure, that is, 

from irrelevant distinctions between different models, thus identifying isomorphic models. 

For example, in the case of the real number system, the model with Cauchy sequences 

of rational numbers as objects is at the pre-abstract level: many Cauchy sequences are 

equivalent as "real numbers". The model with Dedekind cuts in the rational numbers as 

objects is at the fully abstract level: each real number is modeled by a unique Dedekind 

cut. But the Dedekind cut itself is irrelevant to the notion of "real numbers", since they 

can also be defined using, for instance, certain infinite decimal expansions. Axiomatically, 

th:e real number system can be defined (up to isomorphism) as the complete ordered field, 

which abbreviates a list of axioms. We refer to [End77, ML86] for details. 

Of course, even the objects in a pre-abstract model are ultimately defined in terms of 

axiomatically postulated objects to avoid an infinite regress. This shows that pre-abst.ract 

models are also "very" abstract. We use set theory as a foundation, albeit in an implicit 

way. (By the way, even an axiomatization can still have irrelevant structure, in that 

distinct lists of axioms can define the same class of models. This shows that axiomatic 

characterizations are not necessarily the "most" abstract descriptions.) 

The use of a pre-abstract model is often justifiable by its close relationship to intuition 

or to physics, thereby lending some plausibility to the definitions of the objects, operators, 

and relations involved. Fully abstract models can provide additional insight by the way 

in which they eliminate the irrelevant object distinctions. They are useful for proving 

fundamental properties that later can serve as axioms. They also embody a (relative) 

consistency proof of a tentative axiomatization. An axiomatic characterization is useful 

because it provides a consistent framework for carrying out abstract proofs, which do 

not rely on ad hoc structural properties of the objects. The natural development of a 

theory often goes from a pre-abstract model, via a fully abstract model, to an axiomatic 

characterization. We also follow this line but stop short of the last step. 

Testing Paradigm 

Partly as an experiment, we deviate from the "standard" development of computational 

models. The "standard" procedure we have in mind (see, for example, [LS84]), introduces 
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a set of syntactic entities, say programs, and assigns to these programs a "meaning" from 

a set of semantic entities. Each "meaning" satisfies certain specifications taken from yet 

another set. In this setting, program correctness translates into the question whether the 

program's "meaning" satisfies the given specification. 

The "standard" terminology is, at best, misleading. The suggested distinction between 

syntax and semantics makes no sense, because the question 'what is the meaning of ... ?' is 

utterly uninteresting [Pop83, pp. 261-265]. (Next thing, one will ask for the meaning of the 

meaning of ... ?) A model should cover everything one cares to express and should leave 

no room for such questions. That is why operators and relations are to be incorporated, 

including such relations expressing that a program satisfies a specification. Of course, these 

can be defined in terms of auxiliary concepts, such as labeled state-transition systems or 

predicate transformers. But these auxiliary concepts hardly deserve the name "meaning". 

So, we will not introduce "meanings" as separate entities. 

Furthermore, we wish to dispense with the distinction that is made between programs 

and specifications. A program can only operate when placed in some environment, to

gether with which it forms an autonomous system. The environment is also taken to 

be a program. Program correctness is now defined by giving criteria for the correctness of 

autonomous systems. In the case of digital integrated circuits, correctness criteria-such as 

absence of computation interference-ultimately derive from physics, that is, from physical 

models. The relevant correctness criteria are captured by relation pass on programs, 

where P pass E expresses that program P operates correctly in environment E. When 

dealing with networks of communicating processes, it is natural to confront program and 

environment with each other by parallel composition. Of course, if one insists on "stan

dard" terminology, then for a given program P, the set of E's satisfying P pass E, could 

be considered the "meaning" of P. 

Operation of a program within an environment can also be interpreted as a form of ob

servation [Hoa85, OH86] or testing [dNH83, Hen88]: P passE expresses that program P 

passes the test under environment E. Program E is then called a testing environment, test, 

observer, or experimenter. We can now define when program Pis a satisfactory substi

tute for program Q, denoted by P sat Q, namely when P passes at least the same tests 

as Q does. We note that this is based on a demonic attitude towards nondeterminism. 

If Q is viewed as a specification, then P sat Q may also be interpreted as 'P satisfies Q' 

or 'P implements Q'. Other common pronunciations of P sat Q are: 'P is at least as 

good as Q', 'P realizes Q', 'P refines Q', and 'P conforms to Q. Programs P and Q are 

(testing) equivalent when they are satisfactory substitutes for each other, that is, when 

they pass exactly the same tests. 

The appearance of an equivalence notion, instead of an equality, indicates that we are 

dealing with a pre-abstract model here. The next step is to "factor out" this equivalence 

and to study the related fully abstract model. The emphasis is on the development and 

analysis of fully abstract models. As a final step, an axiomatic characterization could be 

sought, though we will not complete that part of the journey. 
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1.2 Chapter Overview 

The last section of this chapter covers some notational issues. Chapter 2 provides back

ground information on the design of digital electronic circuits and motivates our interest 

in delay-insensitivity. Chapter 3 introduces an informal model that enables us to pose 

questions without delving into technical matters too much. 

In Chapter 4 we present a formal model concerning delay-insensitive systems, called the 

Dl Model. Actually, the DI Model encompasses two closely related models. We start with 

a pre-abstract model and subsequently develop a fully abstract model. The pre-abstract 

model is founded on a set of processes. The objects of interest are process networks, called 

systems. The set of systems is sufficiently rich to contain objects that serve as speciii

cation as well as objects that play the role of implementation1 The distinction between 

implementation and specification, however, falls outside the scope of the theory; it exists 

in the user's mind only. Systems can be composed into larger, more complex, systems. 

This composition operator models the connection of subsystems by wires. A correctness 

criterion on closed systems forms the basis for the comparison of systems employing the 

testing paradigm. It turns out that a related fully abstract model can be obtained-after 

a minor correction-as a subset of processes. Most of the results in this chapter, and also 

of the next chapter for that matter, are not new. However, we take a novel approach to 

the presentation of the model. 

Chapter 5 discusses several applications of the DI Model and reveals some of its limi

tations. We extend the DI Model in Chapter 6 to address one of these limitations, namely 

by incorporating some form of progress requirement. This Extended DI Model is, again, 

developed from a pre-abstract model into a fully abstract model. In contrast to the DI 

Model, all results concerning the Extended DI Model are believed to be new. Chapter 7 is 

more technical in nature and shows how a fully abstract model can, in fact, be derived from 

the pre-abstract model. It is based on a small algebra for trace labels. The classification 

of processes in terms of output nondeterminism is the subject of Chapter 8. This classifi

cation helps us to better understand some features of the DI Models. It also gives rise to 

an interesting distinction between static and dynamic nondeterminism. Such a distinction 

is intuitively appealing but cannot be made in, for instance, the Failures Model for CSP. 

Finally, Chapter 9 completes our treatment of delay-insensitivity. We look back at the 

results and how they were obtained, and we summarize the relationship with the work of 

others. We also point out some issues that were ignored. Along the way we suggest topics 

for further research and development. 

1.3 Notational Conventions 

Function application is written with an infix dot: f .x is the image of x under application 

of f. Function composition o is defined by (f o g).x g.(f.x) . 

1 With 'implementation' we do not refer to some physical realization, but to a design with more (internal) 
structure than a specification, for instance, in terms of a network of components. 
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A slightly unconventional notation for variable-binding constructs is used. It will be 

explained here informally. Universal quantification is denoted by 

('V£: D: E) , 

where 'V is the quantifier, £is the list of bound variables, D is the domain predicate, and 

E is the quantified expression. Both D and E will, in general, contain variables from £. 

Predicate D delineates the domain of the bound variables. Expression E should be well

defined for all values of the bound variables that satisfy D. When D is simply true or 

clear from the context it is often omitted. For instance, when variables x and y range over 

function f's domain, we can express that f is injective by 

("1/x,y::f.x f.y =>- x=y). (1.1) 

Existential quantification is likewise denoted by quantifier 3 . In the case of set for

mation we write 

{£: D: E} 

to denote the set of all values E obtained by substituting values that satisfy D for the 

variables in £. By way of example, consider for natural number k, the set { n : k ~ n : k"} 

of all powers of k with integral exponent at least k. In the conventional notation this set 

might be written as { kn I k ~ n}, where it is unclear which variables are bound. 

For expressions E and G, an expression of the form E =? G will at times be proved in 

a number of steps by the introduction of intermediate expressions. For instance, we can 

prove E =? G by proving E F and F =? G for some expression F. This derivation is 

recorded as 

E 

{ hint why E F } 

F 

=? { hint why F =? G } 

G 

In this way we avoid writing down intermediate expressions like F twice. For example, a 

proof of '/ o 9 is injective if f and 9 are injective' might go as follows. For x and y in the 

domain off o 9, hence in the domain off, we derive 

(f o g).x = (! o 9).y 

{ definition of f o g } 

g.(f.x) = g.(f.y) 

=>- { g is injective: definition (1.1) with x, y 

f.x = f.y 

=>- { f is injective } 

X y 

f.x,J.y } 

The notation 'x, y := E, F' stands for the simultaneous substitution of E and F for x 
and y respectively. 



Chapter 2 

Motivation 

Our interest in delay-insensitivity first arose in the context of digital electronic circuits, 

especially in the form of integrated circuits. In the first section we take a closer look at 

one of the main problems encountered in the design of digital integrated circuitry, namely 

the timing problem. Each of the next three sections discusses a different approach to the 

timing problem; delay-insensitivity is one of them. The final section is about specifications 

in which time only plays a role for sequencing. 

2.1 Timing Problem 

A digital integrated circuit can be viewed as a network of transistors (that is, electronic 

switches) interconnected by wires. These circuit elements interact by voltage changes, also 

called signals. The operations that take place are propagation, duplication, and switching 

of signals. By the very nature of the circuit elements, these operations are continuous 

phenomena expressible in terms of partial differential equations. 

Digital circuits, however, are intended to carry out discrete computations, as op

posed to continuous or analog computations. This is a fundamental issue in the design of 

digital circuits and the source of a number of problems. The issue can be illustrated with 

the operation of a simple digital circuit, namely an OR-gate. 

2.1.1 Example An OR-gate has two input ports, say a and b, and one output port, 

say c (see Figure 2.1). We distinguish two special voltage levels at these ports: high and 

low, where high exceeds low. We say that a port is true when its voltage level is at least 

high, and that it is false when its voltage level is at most low. 

The OR-gate strives to make its output equal to the disjunction (boolean OR) of its 

inputs. This can be accomplished with transistors and wires, but we need not know how 

that is done. By the way, notice that nothing is specified about the OR-gate's output in 

case an input is at a voltage level between low and high, which does not correspond to a 

boolean value. 

We now consider three computation scenarios of the OR-gate. All three start in the 

stable state where a is true, b is false, and, consequently, c is true (see Figure 2.1). 

7 
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Scenaxio 1 { 

a ............... s~···········································-~ 

b ...................................... / ................ . 

c ................... \ .......................... ~ 

Scenario 2 { 

a ...................................... \ ................ . 

b .......... l ............................................. . 
c 

a ............................. \ .......................... . 

b .............................. l ........................ . 

c 

Figure 2.1: Three computation scenarios for the OR-gate 

In Scenario 1, first a changes to false, subsequently c changes to false, next b changes 

to true, and then c changes back to true again. In Scenario 2, b first changes to true, c 
remains true, followed after some time by a changing to false, c still remaining true. Thus, 

depending on the relative timing of the changes on a and b, as illustrated in Scenarios 1 

and 2, there is either a downward pulse on c or no change at all. 

Consider the function that maps tb- ta, the time from change of a to change of b, into 

the minimum voltage attained by c after the first change. This function, being defined 

in terms of partial differential equations, is continuous when some (mild) restrictions on 

part of the circuitry are met. On account of the Intermediate Value Theorem (known from 

Analysis for continuous functions), the continuity of this function implies the existence of 

Scenario 3, in which also a changes to false and b changes to true-suitably timed with 

respect to each other-causing c to generate a considerable voltage dip with its minimum 

somewhere between low and high. Such a dip may elicit all sorts of complicated behavior 

at the receiving end. 

The lesson is that, in spite of its intended digital simplicity, an OR-gate is a subtle 

piece of circuitry as far as its behavioral analysis is concerned. Note that the argument 

above holds for every realization of an OR-gate. • 
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Apparently, the relative timing of signals critically influences the behavior of digital 

circuits. The designer needs to control the relative timing of signals carefully, even when 

speed is no concern and functional correctness is the only concern. This is the timing 

problem. 

2.2 Traditional Solution 

Relative timing is directly determined by the operating speed or delay of the circuit 

elements involved. The delay characteristics of a circuit depend on such diverse factors as 

l. circuit logic and topology, 

2. geometric layout, 

3. scaling and integration technology, 

4. fabrication stochastics, 

5. environmental conditions, 

6. metastability resolution, and 

7. aging. 

Here are some examples. 

l. Logic: A two-input OR-gate is usually faster than a three-input OR-gate, even with 

one of the latter's inputs fixed at false. Topology: When a four-input OR-gate is 

built from three two-input OR's, its operating speed will depend on whether they 

are connected linearly or as a balanced tree. 

2. Geometry: Even if the four-input OR-gate is implemented as a balanced tree, the 

exact layout of this tree will also affect the operating speed. Imagine putting each 

OR-gate in a different corner of the chip, and connecting them by very long wires. 

3. Technology: Each integration technology has its own characteristics. CMOS switches 

are relatively slow and economic in operation. Gallium-arsenide transistors are fast 

but require a cool environment. See [Sei79] for a discussion of scaling. 

4. Fabrication: The manufacturing process is not completely controllable. Hence, circuit 

elements manufactured from the same design by the same technology may vary in 

characteristics, such as operating speed. 

5. Environment: The operating speed depends directly on such factors as temperature 

and power supply voltage. 
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6. Metastability: All sufficiently smooth systems-and in nature that includes most 

systems-with at least two stable states have at least one metastable state (see 

[Hur75, Mar81, KC87b, KC87a]). A metastable state is like the "middle" position of 

a toggle switch, where it is carefully balanced between on and off (also see Figure 2.2). 

On the one hand, a metastable state persists when the system is left to itself. On the 

metastable 

Figure 2.2: Stable and metastable states in the field of gravity 

other hand, a small deviation from such a state will make the system diverge from it 

and move towards one of its stable states. 

In practice, a macroscopic system like an integrated circuit is never "left to itself": 

there are always small perturbations due to noise. Hence, such a system will leave a 

metastable state with probability one. The problem is that there is no upper bound 

on how long it will stay in or near the metastable state before diverging. 

A flip-flop is a (digital electronic) system with two stable states (on/off, set/reset, 0/1, 

true/false, whatever they are called). Under the right circumstances any flip-flop can 

be brought sufficiently close to, or even into, a metastable state, where it hesitates 

between 0 and 1 (this is known as the glitch phenomenon, see [CM73, Sei80J). 

The duration of this hesitation is unpredictable and can be arbitrarily large; thus, it 

translates into variable operating speed. 

7. Aging: As circuits grow older, their characteristics, including operating speed, slowly 

change. 

In summary, delays are not easily controllable because they depend on many factors. 

These dependencies increase the overall complexity of the design task. Nevertheless, the 

designer somehow needs to immunize circuit designs against delay variability. With cur

rent integration technologies this poses a serious problem because of the huge functional 

complexity of the circuits that may be manufactured. 

The traditional solution to the timing problem introduces severe constraints on the 

delays, in order to make their effects tractable. Most often a central clock serves as a 

global event sequencer and time reference, simplifying matters a little by trading two-sided 

for one-sided bounds ('wait until the next clock tick for the OR-gate's output to stabilize'; 

see [Sei80, p. 225] for an explanation). 

The traditional solution, however, has several disadvantages. The constraints imposed 

on delays directly translate into restrictions on all parameters that influence delays. The 
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substitution of a functionally equivalent but faster subcircuit (item 1 above) may require a 

complete redesign. Layout freedom (item 2) is limited. Also rescaling or the employment 

of new integration techniques (item 3) may require a redesign. Complicated tests must be 

performed to eliminate circuits suffering from fabrication failures (item 4). Power supply 

and ambient temperature (item 5) must be kept within strict limits. If a clock is present, 

then its period must be tuned to ..accommodate the worst case and it must be properly 

distributed. When metastability (item 6) plays a role, clock tuning is inherently impossible 

and one has to settle for a circuit with at best probabilistic reliability. 

2.3 Ideal Solution 

An ideal solution to the timing problem is based on decoupling correctness from delay 

variations altogether. That is, one sees to it that circuits are correct even under arbitrary, 

uncorrelated variations in all delays. The resulting circuits are called delay-insensitive. 

This ideal solution is very attractive since it does not suffer from the disadvantages 

mentioned in connection with the traditional solution. It promises freedom in subcircuit 

substitution (item 1), layout (item 2), scaling and integration technology (item 3), and 

operating conditions (item 5). Testing is still required to filter fabrication failures (item 4), 

but tests need not be so complicated. The concept of a clock is irrelevant under this 

ideal solution, so clock tuning and distribution, and the harmful consequences of the glitch 

phenomenon (item 6) can be avoided. 

Of course, delay variability not only affects functional correctness, but also directly 

relates to performance. Therefore, efficiency considerations may reintroduce limits on 

delay variability even in the ideal solution. What we have gained is a separation of concerns: 

correctness independent of delays. Of course, performance does depend on delays, but also 

on the choice of "algorithm". 

In general, however, it is hard to build transistor circuits whose correctness is completely 

independent from delays-if it is at all possible (see [vdS85, p. 77] and [Seg91]). 

aY 
~ 

Figure 2.3: CMOS inverter 

2.3.1 Example Consider a very basic circuit (see Figure 2.3): the CMOS inverting 

amplifier with input port a and output port b (see [WE93] for details on the operation of 
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CMOS transistors). We adopt the same voltage level conventions as with the OR-gate of 

Example 2.1.1. In the stable state where a is false and b is true, transistor Pis conducting 

and transistor N is non-conducting. 

Let us assume that transistor P switches much more slowly than transistor N, or, what 

amounts to the same thing, that wire ap is much slower than wire an. When a is now 

changed from false to true, the inverter temporarily gets into a state where both transistors 

are conducting. This short-circuits the power supply and possibly destroys the inverter 

when lasting too long (or, at the least, wastes energy). 

Obviously, the correctness of the inverter circuit depends on a suitable matching of 

delays, constraining such aspects as the circuit's layout, etcetera. Therefore, this inverter 

circuit is not fully delay-insensitive (assuming that it was intended for computating the 

boolean NOT; see the next section for the importance of a specification). • 

2.4 Two-Stage Solution 

Instead of aiming at correctness independent of all delays, it seems more realistic to accept 

some dependencies. This is incorporated in the following two-stage solution to the timing 

problem [Cla67, Kel74, Sei80, MFR85, vdS85]. 

First, a small but sufficiently expressive set of simple building blocks, whose correct

ness may depend on the size of internal delays to some extent, is designed, These building 

blocks are then used to design larger circuits, whose correctness is independent of the 

externally observable delays of the building blocks and interconnecting wires. 

The two-stage solution yields circuits that still give a fair amount of freedom in layout, 

substitution, scaling, and integration technology, etcetera, because it localizes the timing 

problem inside the few sufficiently simple building blocks, where it needs to be·~,y~d only 

once. See Chapter 9 for other advantages and disadvantages of this approach.·· · 

Circuits based on the two-stage solution are often called delay-insensitive, speed

independent1, or self-timed. It does not mean very much if someone states, in isolation, 

that a circuit is delay-insensitive. Even the correctness of traditional circuits is insensitive 

to delay variations to some extent (otherwise, they would be quite useless). One should 

elaborate the statement by indicating (i) which delays in the circuit are allowed to change 

(ii) by how much, (iii) in what relationship to other delays, and (iv) without affecting 

correctness with respect to what specification. In case of the ideal solution, the answers 

to (i), (ii), and (iii) are: 'all', 'an arbitrary amount', and 'uncorrelated' respectively; we 

will come back to (iv) in a moment. 

In case of the two-stage solution, the answer is less straightforward. For one thing, 

delays in all wires interconnecting the building blocks are allowed to change in an arbitrary 

uncorrelated fashion. Within the building blocks only certain changes are allowed, for 

example, those changes that affect only the externally observable delays, and, depending 

on the particular implementation, possibly others as well. 

1The term 'speed-independent' is usually reserved for a more restricted class of circuits. 
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However, we will be interested in design with, not design of, such building blocks. When 

treating the building blocks as black boxes the two-stage designs will also be considered 

delay-insensitive. 

2.5 Specifications without Time Metric 

So far, we have not said much about the kind of specifications against which circuit cor

rectness is verified. It is obvious that time can play only a limited role in specifications, for, 

otherwise, no delay-insensitive circuit can satisfy it. For instance, it does not make sense 

to specify a delay-insensitive circuit in which a certain output is to be generated within 

one microsecond, because the wire connecting the circuit's output port to another circuit's 

input port may arbitrarily delay the signal anyway. 

Although alternatives are possible, we will work with specifications that are completely 

free of a time metric [Sei80, vdS85, Udd84]. In such specifications only the order in which 

events occur, and not their precise location in time, is of importance. The events in this 

case are-roughly speaking-rapid monotonic voltage changes bringing about a change in 

boolean value. These events are called (voltage) transitions and they are considered 

atomic events, that is, events cannot "overlap" or occur "simultaneously". 

This choice for events brings with it a restriction, which we call the digital mode 

(restriction), on the allowed signal waveforms. Even if all input signals obey the digital 

mode restriction, it is still possible that the circuit's output signal violates the digital mode. 

This is illustrated by the non-digital pulse in Scenario 3 of Example 2.1.1. Such unwelcome 

signals on input ports are said to constitute computation interference [vdS85]. Correct 

usage of a delay-insensitive circuit puts a restriction on the environment's behavior as well. 

2.5.1 Example In terms of orderings on voltage transitions, the OR-gate from Exam

ple 2.1.1 can be specified by the labeled graph of Figure 2.4. An edge labeled aT stands 

Figure 2.4: State-transition diagram for OR-gate 

for a transition on port a from false to true, and al for a true-to-false transition. The 

vertexes of the graph have been labeled with the state vector abc of port values (0 for false, 
1 for true). 
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Notice that the OR-gate in state 101, which corresponds to the initial state of the 

scenarios in Example 2.1.1, is capable of processing transitions on either input. But once 

one input has been received the other cannot be accommodated. In particular, a transition 

on b in state 001 can cause computation interference for certain settings of the delays 

involved. This is modeled by the absence of an edge labeled bl from state 001 in the 

state-transition diagram. Similarly, there are no edges labeled a! and b! from state 111, 

which is a sink in the graph. 

In summary, this specification prescribes restrictions on both the OR-gate's behavior 

and that of its environment. These restrictions capture the most liberal delay-insensitive 

usage of the OR-gate. In practice, the sink part consisting of states 110 and 111 is never 

exploited. • 

The digital mode restriction also has consequences for a simple wire. Because of dispersion 

and dissipation, a sequence of two clean signal transitions at the input port of a wire can 

result in a non-digital pulse at the output port. This phenomenon is called transmission 

interference [vdS85]. Phrased differently: a wire can reliably process at most one voltage 

transition at a time. 

Absence of computation and transmission interference are correctness concerns for the 

designer of delay-insensitive circuits. Other correctness criteria, like absence of wiring 

conflicts and absence of deadlock, will be discussed later. 
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Objectives 

In this chapter we informally illustrate the objectives we have in mind when developing 

a theory of delay-insensitive systems. The theory should enable one to argue about such 

things as equivalence, composition, substitution, satisfaction, and decomposition under 

a variety of correctness concerns. The next chapter will formalize these concepts. The 

development of practical tools should be served by our investigation, but is beyond the 

scope of this work. 

The two-stage solution to the timing problem (as discussed in Chapter 2) transforms 

digital circuit design into the design of networks of communicating processes. The processes 

are to be taken from a small set of building blocks. How these building blocks are designed 

is not our concern here; that needs to be done only once and requires intimate knowledge 

of the particular implementation technology. The choice of building blocks is also left 

open. In fact, the theory presented here should be helpful in selecting an appropriate set 

of building blocks. 

Communication delays and processing delays are nondeterministic parameters. As we 

have seen, absence of computation and transmission interference are important correctness 

criteria. Notice that other applications, for instance involving software, or product flows 

in factories, also fit in this abstract framework. However, the correctness criteria involved 

may be different. 

3.1 Processes 

We will now sketch a simple formalism and informally look at some examples, illustrating 

the kind of problems that we intend to address. 

In this simple formalism, the interactions of a module and its environment are specified 

by a triple(/, 0, V) satisfying the conditions listed below. Such a triple is called a process. 

I is the process's set of input port names and 0 is its set of output port names. I and 

0 should be disjoint. V is a set, called the process's trace set, of finite-length sequences 

over I U 0; it should be non-empty and prefix-closed. The latter means that for each trace 

in V all its prefixes, (initial segments) are also in V. Trace set V specifies in which order 

15 
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communication actions can take place, that is, in which order the process can send and 

receive signals via the ports. This works as follows. 

Let t be the sequence of communication actions thus far performed by the process. Note 

that communication actions are considered atomic events and can therefore be sequenced. 

Sequence t is also called the current trace of the process. Initially, t is the empty sequence r::, 
which belongs to V by definition. If a E 0 and ta E V then the process can1 produce a 

signal on output port a and its current trace is extended to ta. If a E I and a signal is 

received on input port a then the current trace is also extended to ta, regardless of whether 

ta E V. 

When ta f. V we say that there is (computation) interference at the process. This 

should be avoided at all costs. It is an obligation of the process's environment to see to 

it that the current trace remains in V (well, actually, it is the designer's responsibility 

to use processes in appropriate environments only). Notice that a process cannot directly 

prevent its environment from supplying an input signal (it may be able to do so indirectly 

by sending output). Nor can the environment directly force the process to produce an 

output signal. All the environment can do is wait for an output signal to be sent. 

Examples of Processes 

We illustrate our process notion by five elementary examples. 

3.1.1 Example The wire with input port a and output port b (thus, a # b) is the 

process specified by triple 

({a}, {b}, {r::,a,ab,aba,abab,ababa ... }), 

where the trace set consists of all alternations of a's and b's not starting with b. The wire 

copies each input signal on its output. Its environment should not provide the next input 

until it has received the output signal. This process is also denoted by W( a; b). In this 

notation the semicolon separates the input symbols on the left from the output symbols 

on the right. • 

We often find it convenient to define a trace set by a state graph. A state graph is a 

directed graph with one vertex marked as initial state and every edge labeled with a symbol. 

Moreover, for each vertex, the edges leaving that vertex should have distinct labels. The 

trace set of such a state graph consists of exactly those symbol sequences obtained by 

writing down, in order, the labels encountered in the state graph on paths that start at 

the initial state. The vertexes are also called states. In diagrams, the initial state appears 

as solidly filled circle. For instance, the trace set of W( a; b) is also given by the topmost 

state graph in Figure 3.1. 

3.1.2 Example The I-wire I{ a; b) with input a and output b is defined in Figure 3.1. 

It is essentially a wire with an initial signal on it, that is, it can initially produce an output 

1'We are on purpose a bit vague: 'can' here simply means 'is able to', not 'is guaranteed to'. 
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a 
Wire W(a; b) a------b -G> 

b 
I-Wire I( a; b) a-----o-b ~ 

Fork F(a;b,c) ~ c 

a 

Merge M( a, b; c) a~ 
b ~ c ~ 

C-Element C(a, b; c) ~ a 

Figure 3.1: Diagrams (middle) and state graphs (right) of some processes 

signal, after which it will behave like W( a; b). The environment should wait for the first 

output before sending the first input. • 

3.1.3 Example The fork F( a; b, c) with input a and two outputs b and c is defined in 

Figure 3.1. It duplicates each input signal on both output ports. The environment should 

wait until it has seen both outputs before supplying the next input. • 

3.1.4 Example The merge M( a, b; c) with two inputs a and b, and output c is defined 

in Figure 3.1. It duplicates any input signal on its output port. The environment should 

ensure mutual exclusion of the inputs. The next input may be provided only after the 

occurrence of the output. • 

3.1.5 Example The C-element C(a, b; c) with two inputs a and b, and output c is 
defined in Figure 3.1. It waits until both inputs have received one signal and then produces 

an output signal. The order of the inputs is not prescribed. The environment should wait 

until it has received the output before initiating the next cycle. • 

3.2 Systems of Processes 

Input and output port names of a process are dummies in the sense that they may be 

renamed to obtain a related process. Thus, both W( a; c) and W(b; c) are instances of a wire 
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process. The port names will be used to indicate connectivity in networks. 

In our simple formalism, a network (or system) is just a set of processes such that each 

port name occurs at most once as input and at most once as output. Consider a port 

name that occurs in some of the processes. If the port name occurs exactly once, then it 

is considered an external port of the system, available for connection to the environment. 

Otherwise, it occurs exactly twice (once as input and once as output) and the two ports 

with that same name are considered connected by a wire. We do not include such a 

wire explicitly in the system as a wire process, but as far as operation is concerned the 

connection is intended to behave like a wire process. This wire is internal to the system, 

that is, the communications on it are not observable by the environment. 

We are interested in the analysis of the behavior of process networks. We will do so 

only intuitively in the remainder of this chapter by looking at some examples and raising 

some questions. 

Examples of Systems 

A set consisting of a single process is a system. It has no internal wires. We will often 

identify process P with the singleton system {P}. 

The typewriter font will· be used for symbol constants. Thus, a, b, and c are three 

(distinct) symbols, and W(a; b) and W(b; c) are two instances of wire processes. Figure 3.2 

presents four systems that we discuss next. The dashed lines represent internal wires. 

3.2.1 Example Set S1 defined by 

S1 = { W(a;c), W(b;c)} 

is not a system because it is malformed: port name c occurs twice as output. 

3.2.2 Example Set S2 defined by 

S2 = { I(a;b), I(b;c) } 

• 

is a system. It has an external input port a, an (implicit) internal wire connecting the 

b-ports, and an external output port c. Even if the environment refrains from sending 

inputs, this system may suffer from computation interference: 1-wire I (a; b) can produce 

a signal on port b, which subsequently can arrive at 1-wire I(b; c) before the latter has 

produced its c-signal. Therefore, S2 can misbehave in any environment and, hence, it is 

completely useless. • 

3.2.3 Example System S3 defined by 

S3 = { F(a;b,c), C(b,c;d)} 

is, in a sense, equivalent to wire W(a; d). We reason as follows. When S3 is provided with 

an a-input there is no possibility of interference and the fork may eventually produce b-
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a ____ ...., 

·: c 

b-----·· 

b a-a--···--o-- c 

b 
~-···-(;;\__ 
a~c~d 

b 
~----~ 
a~ c~d 

Figure 3.2: Diagrams of four systems S1 through S4 
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and c-outputs. When both b- and c-signals have arrived as inputs at the C-element, it 

may produce a d-output. After this, and no earlier2
, another cycle can take place. 

We will be more specific about the kind of equivalence we have in mind later on. • 

3.2.4 Example System S4 defined by 

S4 = { F(a;b,c), M(b,c;d) } 

is not equivalent to wire W(a;d). When provided with an a-input the system may suffer 

from computation interference at the merge, because mutual exclusion of its inputs is then 

not guaranteed. However, if the environment refrains from supplying inputs altogether, 

then no interference can ensue and no outputs will be produced. Hence, system S4 is 

equivalent to the process ( {a}, { d}, { e} ). • 

3.2.5 Example Now consider system S5 depicted in Figure 3.3 and defined by 

Ss= {C(a,b;c), F(c;d,e)}. 

It has external input ports a and b and external output ports d and e; an internal wire 

connects the c-ports. Does there exist an equivalent process? 

a~c~d 
b-&---····~e 

Figure 3.3: Diagram of Ss 

A first attempt might lead to process P5 whose trace set is defined by the state graph 

given in Figure 3.4. Vertexes labeled with the same number represent a single state of the 

the environment supplies the next a-input before receiving the d-output then there is a possibility 

of interference. 
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state graph. Label 0 occurs multiply; labels 1, 2, and 3 are for reference purposes only. 

Process P5 indeed captures some aspects of system S5 , but we would not want to consider 

it equivalent. The argument is as follows. 

0 0 

Figure 3.4: State graphs for P5 

According to P5 , interference is possible when the environment supplies the next input 

after receiving a single output from the fork (see states 2 and 3 in the state graph). 

Admittedly, in this state, the system cannot cope with inputs on both a and b, because 

the C-element is then enabled to output c, which may subsequently interfere with the fork. 

However, it can handle a single external input; the C-element should be "kept quiet" until 

the other output appeared from the fork. All the environment has to guarantee in this 

state is mutual exclusion of the inputs. 

1 1 

Figure 3.5: State graph for Q5 

These features are incorporated in the state graph of Figure 3.5 (note that the initial 

state is in the center), which defines the trace set of process Q5• We claim that Q5 is 

equivalent to S5• This equivalence can be proved within the formal model of Chapter 4. 

A different way of arguing against the equivalence of S5 and P5 is that an environment 

that has no possibility of interference with S5 may suffer from interference with P5• For 

instance, the environment obtained by exchanging the roles of input and output in Q5 will 

do. On the other hand, it is the case that every environment that has no possibility of 

interference with P5 also has no possibility of interference with S5• Therefore, S5 can be 

substituted for P5 in any context without introducing any possibility of interference. One 

could also say that S5 satisfies or implements specification P5 (without being equivalent to 

~· . 
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a _____ b 

d._ ___ c 

Figure 3.6: State graph for P6 (left) and diagram of 86 (right) 

3.2.6 Example Consider process P6 with input ports a and b, output ports c and d, 

and trace set defined by the state graph in Figure 3.6. It defines a four-phase communica

tion protocol and is readily implemented by two wires, as in system 56 shown in Figure 3.6 

and defined by 

86 { W(a;b), W(c;d) } . 

However, P6 and 86 are obviously not equivalent: 86 can handle an initial input via port c 

(without interference), but P6 cannot. • 

3.2. 7 Example Finally, consider system 87 and processes P7 and Q7 defined by 

87 = { (0,{a,b},{c:,a,b}), ({b},0,{c:,b})} 

P1 = (0, {a}, {c:, a}) , 

Q7 (0,{a},{c:}). 

System 87 has one external output port named a, and one internal wire connecting the 

b-ports. It consists of a process that may produce a signal on either of its output ports a 

or b but not on both, and a process that is willing to receive a signal on its only input 

port b and that does nothing afterwards. 

a 

<=> - a 

b 

b 

~ EJ-a 
Figure 3.7: Diagrams with state graphs for 87, P7 , and Q7 

It has been our implicit attitude so far that processes have no obligation to produce 

output when they are capable of doing so. Consequently, 87 is equivalent to P7 and not 

equivalent to Q7 • We could postulate that, in an environment supplying no input, a process 

capable of producing output will eventually do so; further input, however, might of might 

not remove the obligation of the process to produce output. In that case, 87 can no longer 
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be considered equivalent to P7 , because P7 then is a process that is guaranteed to produce 

a a-signal, whereas s7 might produce an a-signal or might fail to produce it (namely if 

internally the choice for b was made). S7 then is equivalent to a "mixture" of P7 and Q7 . 

An extension of the model in Chapter 6 will provide a better way to deal with this (see 

Example 6.2.1). • 

3.3 Questions to Be Addressed 

The examples above raise such questions as: 

• When are two systems equivalent? 

• What correctness concerns should we consider? 

• When is one system a satisfactory substitute for another? 

• Can we define a composition operator that takes a pair of processes and yields a 

process that is equivalent to the pair? 

• In case such a composition operator cannot be defined, how should we extend the 

space of processes so that composition can be defined? 

• Does a finite set of building blocks suffice to implement all interesting systems? 



Chapter 4 

DI Model 

In this chapter we present and analyze a model, called the DI Model, that formalizes the 

concepts introduced in the preceding chapter. We start by defining processes and systems. 

System structure and operation are treated separately. Next we define a pre-order on 

systems expressing when one system is "at least as good" as another. The composition and 

comparison of systems are the key concepts of the DI Model. Subsequent sections analyze 

these concepts to get a better understanding of the DJ Model. For that purpose we present 

a partial order on processes, composites and canonical representatives, DI processes, and 

the JTU-Rules. The final two sections deal with the computation of composites and the 

solution of the design equation. 

It is not our aim to cover all mathematical details of the DI Model. The Extended 

DI Model of Chapter 6 is treated in more detail; especially Chapter 7 delves into the 

mathematics of these models. In the current chapter, most results are stated without 

proof. In some cases the proofs are simple, but more often they are rather tedious or 

even complicated. Some of the proofs have appeared in [UV88, CUV89a, Ver89J. We also 

present some proofs in Appendix B. 

4.1 Processes 

Let E be an infinite set of symbols. Typically, variables a, b, and c range over E, and 

symbols a, b, and c are (distinct) constants in E. A finite subset of E is called an alphabet. 

A process P is a triple (iP, oP, tP) such that 

1. iP and oP are disjoint alphabets: iP n oP 0, 

2. tP ~ (iP u oP)*, 

3. tP is non-empty and prefix-closed. 

We call iP the input alphabet, oP the output alphabet, and tP the trace set of P. 
We define the alphabet aP of P by aP iP U oP. The set of all processes is denoted by 

PRVC. Typically, variables P, Q, and R range over PRVC. 

23 
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The input and output alphabets specify the structural properties of a process. Its trace 

set specifies the behavioral properties. The current "state" of process P is characterized 

by a trace t E tP. The intention of the trace set is as follows. 

• For a E oP, we have ta E tP if and only if P can send an output signal via a in 

state t. 

• For a E iP, we have ta E tP if and only if P can receive an input signal via a in 

state t. 

This intention will become clearer when we define the operation of a system below. The 

trace set prescribes restrictions (for proper operation) on the process itself and on its 

environment. It can be viewed as a combination of pre- and post-conditions. 

The reflection operator ...., is defined on PRCJC by 

v-.P = (oP, iP, tP) . (4.1) 

Thus, reflection interchanges input and output alphabet; the trace set is not affected. 

Reflection is its own inverse. The empty process ( 0, 0, { c:}) is the only process equal to 

its own reflection. 

For trace set V and trace t, trace set V /t (pronounced as 'V after t') is defined by 

V/t = {u:tuEV:u}. ( 4.2) 

This operator is well-known from the theory of automata and formal languages. The after

operator is lifted to processes as follows. For process P and trace t E tP, process P / t is 

defined by 

Pjt (iP,oP, tPjt). (4.3) 

Thus, 'aftering' preserves input and output alphabet, and affects only the trace set (which 

is indeed again non-empty and prefix-closed on account of t E tP; for t (j. V we have 

V Jt = 0). Observe that P /e P and P Jtju = P /tu provided that tu E tP. Reflection 

and 'aftering' commute, in the sense that for trace t E tP, we have 

""(P jt) ("'P)jt. (4.4) 

Hence, we may omit the parentheses. 

Other examples of processes are the ones given in Chapter 3: wire W(a; b), 1-wire I( a; b), 
fork F(a; b, c), merge M( a, b; c), and C-element C(a, b; c). We have such identities as 

I( a; b) = ""'W(b;a), 

W(a; b)/a = I( a; b), 

I( a; b)/b = W(a; b), 

C(a,b;c) = ""F(c; a, b)/c. 

For a given process, different traces may correspond to equivalent "states", in the sense 

that the future looks the same after these traces. Formally, traces t and u of process P are 
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equivalent in this sense when PIt = PIu. For instance, c: and ab are equivalent traces of 

wire W( a; b). The processes P lt where t ranges over tP may be viewed as the (abstract) 

states of P, and P = PI c: as the initial state. Occurrence of signal a takes P from state 

PIt to PI ta provided that ta E tP. Accordingly, the minimal state graph of process P 
is defined as the edge-labeled directed graph 

( {t: t E tP: Pit}, {t, a: ta E tP: (Pit, a,Pita)}), (4.5) 

with P le: as initial state. It is called the minimal state graph because there exist no state 

graphs for P with fewer vertices. It is unique up to graph isomorphism. The state graphs 

that we have given in Chapter 3 are all minimal. 

4.2 Structure of Systems 

A system is a finite set, say S, of processes such that for all a E I: we have 

1. # {P: PES 1\ a E iP: P} ~ 1 and 

2. # {P: PES 1\ a E oP: P} ~ 1, 

where # V is the size of set V. The set of all systems is denoted by SYS. Typically, 

variables S, T, and U range over SYS. 

For system S we define a number of alphabets as follows: 

iS = U{P:PES:iP} (input alphabet), 

oS = U{P:PES:oP} (output alphabet), 

aS iSUoS (alphabet), 

nS iS noS (internal alphabet), 

xS iS +oS (external alphabet), 

xiS iS--.... oS (external input alphabet), 

xoS oS--.... iS (external output alphabet), 

where U V denotes the union of the elements of set V1
, and binary operators -;- and --.... on 

sets denote the symmetric and asymmetric set difference respectively. System S is called 

closed when xS = 0. 

Consider processes P and Q in systemS. If symbol a occurs in oPniQ then the a-port 

of P drives the a-port of Q via an implicit internal wire. If symbol a occurs in oP--.... iS 

then the a-port of P is an external output port of S. If symbol a occurs in iQ--.... oS then 

the a-port of Q is an external input port of S. 

4.2.1 Example Trivial examples of systems are 0 (without processes and closed), and 

for process P also {P} and {P, '-"P}. The latter is a closed system. Note that for P = ...,..,p, 
system { P, ...,..,p} consists of only one (empty) process. 

1The elements of V are themselves also sets. 
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System S defined by 

s { ({a,b},{c},{e}), ({c},{d,e},{e}) } (4.6) 

has two external input ports a and b, an internal wire c, and two external output ports d 

and e. .. 

To express that one output drives two (or more) inputs, one needs to introduce explicit 

forking processes. Similarly, to express that two (or more) outputs drive a single input, 

one needs to introduce, for instance, explicit merging processes. 

The internal symbols of a system are considered dummies. We call two systems iso

morphic whenever they can be transformed into each other by systematically renaming 

internal symbols. For instance, system T defined by 

T == { ({a,b},{x},{e}), ({x},{d,e},{e})} (4.7) 

is isomorphic to systemS defined in (4.6), because T can be obtained from S by renaming 

internal symbol c to x. Being isomorphic is an equivalence relation. From now on we 

abstract from this equivalence, that is, two isomorphic systems will be treated as equal. 

Nevertheless, we will continue to work with representatives of the equivalence classes. 

Systems S and T are called connectable whenever 

xiS n xi T == 0 and xo·s n xo T == 0 . (4.8) 

The internal symbols of connectable systems S and T can be renamed systematically, 

yielding systems S' and T' respectively, such that 

aS' n n T' 0 and nS' n aT' 0 . 

In that case, S' u T' is again a system and it is independent of the particular renamings 

involved. It is called the composition of S and T and is denoted by Spar T. Thus, par 

is a partial binary operator on SYS defined only for connectable systems. 

Composition of two systems introduces an internal wire for each symbol that is an 

external output of one system and an external input of the other. Composition is com

mutative and has the empty system 0 as unit. It is associative provided that no symbol 

occurs in the external alphabets of more than two of the composed systems. The next 

example shows what can go wrong when a symbol occurs in more than two alphabets. The 

situation is similar to that of the blending operator in [vdS85]. 

4.2.2 Example Consider processes P, Q, and R defined by 

P == ({a},0,{e,a}), 
Q (0,{a},{e,a}), 
R ({a}, 0, {e}). 

Process P has one input port a and is willing to receive a signal. Process Q has one output 

port a and can send a signal ( Q '-"'P). Process R has one input port a but cannot process 
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a signaL Note that symbol a occurs in all three processes. On the one hand, in system S1 

defined by 

S1 = ({P}par{Q})par{R}, 

an internal wire is introduced between P and Q (it has to be renamed from a to something 

else, say x, for composition with { R}, see Figure 4.1); furthermore, a is an external port 

--------------------1 I I 
I 1 

: [fl-l--@J [BJ----t- a 
I I 
~§L _________________ : 

--------------------1 I 1 
I 1 

a-+--[f] ~: 
I I 

I 82 I 

--------------------' 
Figure 4.1: Diagrams for S1 (left) and S2 (right) 

of S1 connected to R. On the other hand, in system S2 defined by 

S2 = { P} par ( { Q} par { R}) , 

a is an external port connected to P, whereas an internal wire, say y, is introduced be

tween Q and R (see Figure 4.1). Systems S1 and S2 are non-isomorphic (since they cannot 

be transformed into each other by renaming internals). It will turn out that they are not 

equivalent in a broader sense either (see Section 4.4). • 

Apparently, the internal connection pattern can vary with the order of composition. Note 

that in the example above, { P, Q, R} is not a system and { P} par { R} is not defined 

because P and R are not connectable due to an input conflict on a. It is straightforward 

to prove that 

'(Spar T) par U is defined and closed' 

'Spar (T par U) is defined and closed'. 

Furthermore, if (Spar T) par U is closed, then no symbol occurs in more than two external 

alphabets. 

4.2.3 Note LetS and T be two connectable systems. Intuitively one would expect the 

number of processes in Spar T to equal the sum of the numbers of processes in S and T. 
This is, in general, the case; the only exception occurs when the empty process ( 0, 0, { c:}) 

is a member of both Sand T. In that case, one copy of the empty process vanishes under 

composition. This does not invalidate the model, since the empty process is "harmless" 

anyway. One way to overcome this flaw is to define systems as bags of processes instead 

of sets (see [Ver94]). We have not used bags because of the additional burden of using a 

bag calculus. • 
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4.3 Operation of Systems 

In this section we consider how systems operate. The operation of a system involves the 

interaction of its processes and interconnecting wires. First we define system operation 

under the assumption that the interconnecting wires have no delay, that is, the sending 

of a transition onto a wire coincides with its reception at the other end. This is called 

isochronic operation (for lack of a better name). Then we define system operation 

assuming that wires may incur delays; this we call anisochronic operation. 

The isochronic operation of system S is characterized by its reachable traces. The set 

reach.S uf reachable traces of S is defined inductively a~ the £;;-least Lrace set satisfying 

• e: E reach.S and 

• if t E reach.S, PES, a E oP, and tafaP E tP then ta E reach.S. 

Here, ta faP (pronounced as 'ta projected on aP') denotes the trace obtained from ta 

by removing all symbols not in aP (see [vdS85]). Note that reach.S £;; (aS)*. 

The empty trace e: models the "initial state" of system S. The (global) state ta of S 

induces the (local) state ta raP at process P. State changes can occur whenever a process 

can produce output in its current (local) state. If for process PES, symbol a E oP, and 

trace t E reach.S, we have tataP E tP, then we say that 'output a is enabled in P after t'. 

If for process Q E S, symbol a E iQ, and trace t E reach.S, we have tafaQ E tQ, then 

we say that 'input a is acceptable for Q after t'. When an enabled output is actually 

produced, it appears as input at the receiving end, regardless of whether that input is 

acceptable for the receiver in the current state. 

Not all reachable traces are regarded as equally desirable. Reachable trace t is called 

interfering when there exists a process PE S with traP rf. tP, that is, when the local 

state that t induces at P is not in agreement with P's specification. The set of interfering 

traces of S is denoted by intf.S. Note that e: rf. intj.S, since traP c: E tP for every 

process P. 

System S is said to be free of interference when 

intf.S = 0, (4.9) 

that is, when it has no interfering traces. 

4.3.1 Example Consider process P and systemS defined by 

P (0,{a,b},{c:,a,ab}), 

S = {P,"'P}. 

Process P has no input ports and two output ports a and b. It can send a signal along a 

followed by a signal along b. Process ...,....pis willing to accept two inputs, first along a then 

along b. The reachable traces of S are now given by 

reach.S = {c:,a,ab} . 

None of these traces is interfering and, hence, S is free of interference. • 
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4.3.2 Example In case system S is given by 

S { I(a;b), I(b;a) } , 

we have 

reach.S = {c-, a, b} . 

The only non-interfering trace is €, because traces starting with a are interfering on account 

of I( a; b) and those starting with b on account of I(b; a). Either process can initially 

send an output but not accept an input. Once an output has been produced there is 

interference and thereafter neither process can produce further output. Thus, S is not free 

of interference. • 

In order to define system operation under the assumption that connecting wires may 

incur delays, we add explicit wire processes to model the behavior of the (implicit) internal 

wires. For that purpose, the symbols in S must first be renamed. Given process P, define 

renaming pp of aP by 

pp.a = {a; 
a. 

if a E iP 
( 4.10) 

if a E oP 

Such a renaming is lifted to processes: process pp.P is obtained from P by replacing each 

symbol a in P, (that is, in the alphabets and in the traces) by pp.a. We now define 

system S, called the wired version of S, by 

S = {P:PES:pp.P}U{a:aEnS:W(a!;a?)}U (4.11) 
{a : a E xiS: W( a; a?)} U {a: a E xoS: W(a!; a)} . 

The definition of S is a little more general than required at this point: there are wires to 

and from external ports as well. This is useful later on in Theorem 4.4.2. If S is closed 

then S is closed as well, and the last two sets of additional wires in the definition of S 
are empty. Note that symbol a! is the output port of some renamed "ordinary" process, 

connected to the input port of wire W(a!; a?) or W(a!; a). Isochronic operation of Swill be 

referred to as anisochronic operation of S. 

4.3.3 Example Consider again process P and systemS from Example 4.3.1. SystemS 

in this case amounts to 

{ (0,{a!,b!},{c-,a!,a!b!}), ({a?,b?},0,{c-,a?,a?b?}), W(a!;a?), W(b!,b?) } . 

Note that S is closed and that both symbols a and b are internal, giving rise to two 

additional wire processes in S. The reachable traces of S are readily computed as 

reach.S = { c, a!, a!b!, a!b!a?, a!b!a?b?, 

a!b!b?, a!b!b?a?, 

a!a?, a!a?b!, a!a?b!b? } . 

Thus a!a?b!b? is in reach.S and it is not interfering. However, a!b!b? is reachable and 

interfering. Hence, S is not free of interference. • 
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The example above gives a system S that is free of interference, whereas S is not. The 

reason for the difference is that under anisochronic operation the additional wires in S need 

not preserve the order in which signals are sent. One thing that complicates the design 

of delay-insensitive systems is precisely that no assumptions are to be made about wire 

delays (other than that they are not negative). 

4.3.4 Example For system S of Example 4.3.2 we have 

S { I(a?;b!), I(b?;a!), W(a!;a?), W(b!;b?) } . 

Each trace of the form (b!a!b?a?)" (for any n ~ 0) is a non-interfering trace of Further

more, these traces put the system in a state equivalent to the initial state (in the sense that 

the future possibilities are the same). However, traces of the form (b!a!b?a?)nb!b? are also 

traces of S, but they are interfering. Thus, S has both an infinite number of interfering 

and non-interfering traces ( S is obviously not free of interference). Recall that r:: is the only 

non-interfering trace of S. o1 

4.3.5 Example Consider process P = (0,{a},{r::,a,aa}) and systemS {P,'-'"'P}. 

Process P has one output port a on which it sends two signals in succession. Process ""'p 

can accept two inputs on a. Therefore, system S is free of interference; but S is not, since 

P causes interference at the additional wire W(a!; a?) inS. o1 

This example shows another system S that is free of interference, but for which S is 

not. The reason now is not that wires may disturb signal order, but that a wire can 

safely transmit only one signal at a time. Interference caused at a wire input is called 

transmission interference. 

We would like to make some remarks on our approach to system behavior. 

4.3.6 Note First of all, our (operational) semantics is based on interleaving of con

current atomic events. That is, events that are not "causally" related are put in some 

(arbitrary) order in the execution sequence. In this model the only effect of variation in 

delays (within the modeled processes) can be variation in order (of symbols in traces). 

Secondly, we have not taken the trouble to model the behavior of a system accurately 

after the occurrence of interference. The reason is that interference is to be avoided accord

ing to the correctness criterion introduced in the next section. Once there is interference, 

we do not care what happens afterwards; the game has been lost anyway. 

Thirdly, the definitions of reach and intf can also be applied to systems that are not 

closed. Consider, for example, process P defined by 

P ({a}, {b}, {c:, b, ba}). 

System {P} is not closed and reach.{P} equals {c, b}, because there is no process to 

provide input a. Note that reach.{P} # tP. Furthermore, intf.{P} is empty: there is 

no process that fails to accept output b. Thus, { P} is free of interference. In a sense 

the definitions of reach and intf applied to a system that is not closed assume some very 
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benign, but unrealistic, environment that accepts all outputs and sends no inputs. We are 

not interested in this interpretation. The next section will deal with systems that are not 

closed in a different way. • 

We finish this section with two theorems, whose proofs illustrate how tedious the details 

of our model can be. Theorem 4.3. 7 gives an alternative characterization of interference 

based on weaving. Theorem 4.3.8 relates interference of S and The weaving operator 

weave (see [vdS85]) may be defined for systems by 

weave.S {t: t E (aS)* 1\ (V P: PES: traP E tP): t}. (4.12) 

For process P, we have weave.{P} = tP. For closed systemS, we have 

weave.S s; reach.S , (4.13) 

since in a closed system each symbol is an output of some process. Statement (4.13) does 

not necessarily hold when S is not closed, as witnessed by system { P} of Note 4.3.6. Thus, 

closed system S is free of interference if and only if 

reach.S weave.S. (4.14) 

The next theorem characterizes interference in terms of weave.S rather than the inductively 

defined set reach.S. 

4.3. 7 Theorem Closed system S is free of interference if and only if 

(V t, a, P: t E weave.S 1\ PE S 1\ a E oP 1\ ta laP E tP: ta E weave.S) . (4.15) 

Proof: See Appendix B.O.l. • 
Note that the universal quantification ( 4.15) is also equivalent to 

(Vt,a,P, Q: t E weave.S APES A Q E S 1\ a E oPniQ 1\ tafaP E tP 

: talaQ E tQ), 

since each output is an input to some process and tat A t I A whenever a ~ A. When 

system S is not free of interference, this can be shown by exhibiting processes P and Q 
in S, symbol a in oP n iQ, and a trace t E weave.S, such that output a is enabled in P 

after t and input a is not acceptable for Q after t. This can be phrased concisely as 'P 
causes interference at Q on port a after trace t'. 

4.3.8 Theorem For closed system S we have 

'S is free of interference' =? 'S is free of interference' . 

Proof idea: When wire delay plays a role, that delay may be zero as well, which corresponds 

to isochronic operation. Hence, any interfering trace t E reach.S corresponds to some 

interfering trace t' E reach.S (replace each occurrence of symbol a in t by a! a? to obtain t') . .. • 
In general, the reverse implication does not hold as illustrated by Examples 4.3.1, 4.3.3, 

and 4.3.5. Theorem 4.7.7, however, states a condition under which the reverse implication 

does hold. 
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4.4 Correctness, Satisfaction, and Equivalence 

We consider only the operation of closed systems, that is, of systems whose ports are all 

properly connected. We disallow dangling inputs and outputs because these may pick up or 

radiate stray signals, or may cause other types of malfunctioning. If an input is to be "kept 

quiet" then one should express that by hooking it up to a "quiet" process. Furthermore, 

we insist on absence of interference during operation. 

This is captured in the following definition of our correctness concern. System S is 

correct (as an autonomous system, that is, requiring no additional environment for its 

operation), denoted by Correct.S, when S is closed and free of interference: 

Correct.S = 'S is closed and free of interference' . 

Because it is based on S, this definition involves anisochronic operation of S, that is, with 

additional wires. Thus, correctness requires absence of interference for all possible delays. 

Isochronic operation plays a role again in Theorem 4.7.7. 

We say that system S is a satisfactory replacement for system T whenever T (being 

part of any larger system) can be replaced by S without disturbing the correctness (of the 

larger system). We denote this by S sat T. Note that if T is part of some larger system, 

then the larger system can be written as T par U for some system U. Formally, relation 

sat on sys is defined by 

S sat T =: ("if U: U E SYS: Correct.(S par U) ..;:= Correct.(T par U)). (4.16) 

We postulate that Correct.(S par U) does not hold ifS par U is not defined. 

We can interpret S sat T also as 'system S satisfies specification T'. Consequently, 

sat is also called a satisfaction or refinement relation. Relation sat is a pre-order, that 

is, sat is reflexive and transitive (but not necessarily antisymmetric). Hence, equivalence 

of systems, denoted by equ, can be defined by 

S equ T = S sat T A T sat S , ( 4.17) 

that is, S and T are equivalent when they are satisfactory replacements for each other. 

Relation equ is an equivalence relation on sys (it is reflexive, transitive, and symmetric). 

Of course, we have 

S equ T =: ("if U : U E SYS: Correct.(S par U) Correct.(T par U)). (4.18) 

Furthermore, equ is a congruence with respect to par and sat, that is, composition and 

satisfaction "do not cross equ-class boundaries". Formally, this is expressed as follows. For 

systems S, S', T, and T' with S equ S' and T equ T' we have 

S par T equ S' par T' and 

S sat T S' sat T 1 
• 

[For a proof of the first equivalence see Appendix B.] Consequently, we can abstract from 

equ-equivalence in the algebra (SYS; par, sat} and obtain the so-called quotient algebra 

{SYS; par, sat}/ equ. 
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Verifying that S sat T, or S equ T, holds according to the definition is a cumbersome 

task, because of the quantification over all systems in (4.16). Proving that S sat T does 

not hold can be done by exhibiting a suitable system U such that T par U is correct but 

S par U is not correct. 

4.4.1 Example Reconsider systems S1 and S2 introduced in Example 4.2.2. We claim 

and, hence, S1 is not equivalent to S2 . 

To prove the second conjunct, consider system U = { ""R}. System U has one output 

port a and it will not send a signal. Observe that both systems S1 par U and S2 par U are 

well-defined and closed. However, S1 par U is correct ((S1 par Ut is free of interference), 

but s2 par u is not (since in (S2 par ur, process pq.Q causes interference at PR·R). 

The first conjunct is, in this particular case, not difficult to prove, because for any 

system u such that s2 par u is well-defined and closed, s2 par u is not free of interference 

(as indicated above). Hence, for all systems U we have •Correct.(S2 par U), and this 

trivially yields S sat S2 for any system S. In a sense, S2 is the worst imaginable system: 

no environment can keep it from running into interference. • 

4.4.2 Theorem For any system S we have 

S equ S. 

Proof idea: By operational reasoning, the additional wires in S may be coalesced with 

the wires that are introduced for anisochronic operation of S, that is, when considering 

isochronic operation of (spar ur. • 

4.4.3 Note It is possible to define Correct, sat, and equ for isochronic operation as 

well: 

Correctiso .S _ 'S is closed and free of interference' , 

S sati•o T (VU: U E SYS: Correct;80 .(S par U) {= Correcti•o.(T par U)), 

S equiso T _ (VU: U E SYS: Correcti•o.(S par U) Correcti•o.(T par U)). 

The proof of the preceding theorem, can then be based on repeated application of the 

following equivalence for distinct symbols a, b, and c: 

{ W(a; b), W(b; c)} equiso { W(a; c)}. ( 4.19) 

• 
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4.5 Partial Order on Processes 

In the next section, we will pick a canonical representative from each equ-equivalence class 

of systems. To prepare the road, this section focuses on processes. Relation !;;; on P'ROC 

is defined by 

Pr;;Q iP = iQ 1\ oP = oQ 1\ 

(V t, a : a E iP 1\ ta E tP 1\ t E tQ : ta E tQ) 1\ 

(V t, a : a E oP 1\ t E tP 1\ ta E tQ : ta E tP) 

In words, the requirements for P r;; Q can be expressed as follows. 

1. P and Q have the same input alphabets and the same output alphabets. 

(4.20) 

2. For all states t E tP n tQ, the set of inputs that P can receive in state t is included 

in the set of inputs that Q can receive in state t ( "P can receive no more inputs 

than Q"). 

3. For all states t E tP n t Q, the set of outputs that P can send in state t contains the 

set of outputs that Q can send in state t ( "P can send at least the outputs that Q 
can send"). 

P r;; Q expresses that Q is "at least as good as" P with respect to interference under 

isochronic operation. 

Relation r;; is a partial order on P'ROC, that is, it is reflexive, antisymmetric, and 

transitive (this is a non-trivial result; see Appendix B for a proof). 

The !;-minimal elements of P'ROC are processes P with 

tP = (oP)* , 

and the r;;-maximal elements are processes P with 

tP = (iP)*. 

Reflection turns the order around: 

Pr;;Q (4.21) 

Furthermore, induces a complete lattice structure in each set of processes with the 

same input-output alphabets. To express this more precisely we define P'ROC(I, 0) for 

alphabets I and 0 by 

PROC(I, 0) { P : P E PROC 1\ iP = I 1\ oP = 0 : P} . 

Poset (P'ROC(I, 0); is a complete lattice, in the sense that every subset V has a 

greatest lower bound (denoted by n V) and a least upper bound (denoted by U V). See 

[UV88J for proofs. 
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Note that processes in distinct P1UJC(I, 0) are incomparable under ~ and do not 

have common lower or upper bounds. Hence, (P'ROC; ~) is not a lattice. Therefore, we 

introduce .1. (pronounced 'bottom') and its reflection T (pronounced 'top') as additional 

processes, where .1. is the ~-least process and T the ~-greatest. The expanded set of 

processes is again denoted by P'ROC. Consequently, (P'ROC; ~) now is a complete lattice. 

Processes .1. and T have no input and output alphabets and no trace set, and we 

consider them to be members of all P'ROC(I, 0). For connection purposes (that is, under 

composition by par), however, they should be regarded as having empty input-output 

alphabets. The rules for system correctness become slightly more complicated and are 

postulated in the next paragraph. 

A system that contains process T is correct no matter what else it contains (even 1..). 

Process T acts as a miraculous panacea. A system that does not contain process T but that 

does contain 1.. is incorrect, no matter what else it contains. Process 1.. spoils everything, 

except when T is present. At this point it is not clear why we choose to let top win over 

bottom. You may choose otherwise, but then top will turn out to be equivalent to the 

empty process and later we need a "real top" to define canonical representatives (worst 

friend of bottom) and to make factorization work in all cases. 

Without proof we state two important properties of 

4.5.1 Theorem Predicate Correct is n-continuous (hence, ~-monotonic) in the follow

ing sense. For system 8 and process set W ~ P'ROC we have 

(V P: PE W: Correct.(S par {P})) = Correct.(8 par {n W}). 

Consequently, Correct is also ~-monotonic, that is, for system 8 and processes P and Q 
w~P~Qwh~ · 

Correct.(8 par {P}) =} Correct.(8 par { Q}). 

• 
4.5.2 Theorem For processes P and Q we have 

P-;;JQ 'system {P, '-"'Q} is well-defined, closed, and free of interference' . 

Note that interference, here, involves isochronic operation of the system, that is, the im

plicit internal wires are delayless. • 

4.5.3 Note In the light of Note 4.4.3, the preceding theorem can be rephrased as 

Correcti•o.{P, Q} (4.22) 

Further analysis of isochronic operation would reveal that for processes P and Q we also 

have 

P sati.9o Q P -;;J Q , 

P equ"" Q _ P Q . 

• 
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4.6 Composites and Canonical Representatives 

This section deals again with systems. We show how to pick a canonical representative 

in each equivalence class of systems and how to express par and sat in terms of these 

representatives. This forms the basis of the fully abstract model presented in the next 

section. 

For each equivalence class this representative has the form of a special singleton system 

(consisting of just one process). The class of systems S for which 

(VU: U E SYS: -.Correct.(S par U)) (4.23) 

is a somewhat special case. No matter what environment these systems are placed in, they 

do not give rise to a correct system. Examples are {I (a; b), I (b; c)} and {I (a; b), I (b; a)}; 

the latter is closed, the former not. 

That all systems satisfying (4.23) are indeed equivalent becomes even more obvious 

when we introduce the notion of a system's pass set. Placing system S in an environment U 

to yield system S par U can be viewed as a form of observation or testing. System S 

passes test U whenever Correct.(S par U) holds. For system S its pass set pass.S is 

defined by 

pass.S { U : U E SYS 1\ Correct.(S par U) : U} , (4.24) 

that is, pass.S consists of all tests that S passes. Obviously we have 

S sat T _ pass.S ;;::>pass. T and 

S equ T pass.S =pass. T . 

The exceptional systems mentioned above are characterized by pass.S = 0 and, hence, they 

form an equivalence class on their own. These systems are not very interesting (nevertheless 

they are present in the model). 

We now concentrate on the singleton tests in the pass sets. For system S define the 

process set Friends.S, called the friends of S, by 

Friends.S {P: PE P1?..CJC 1\ Correct.(S par {P}): P}. ( 4.25) 

Note that T E Priends.S for any S. If T E S then Friends.S P'ROC. If T ~ S then all 

friends of S have the same input and output alphabets, in the sense that 

Priends.S <;:: PROC(I, 0) 

for some disjoint alphabets I and 0. On account of the [;-monotonicity of correctness 

(Theorem 4.5.1), Friends.S is ~-upward closed: for processes P and Q with P ~ Q we 

have 

P E Friends.S =? Q E Friends.S . (4.26) 
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On account of the n-continuity of correctness, Friends.S has a least element (since its 

greatest lower bound is a friend of S as well). Consequently, Friends.S is completely 

determined by its least element. 

Define (S], called the composite of S, by 

[S]I ..... n Friends.S , (4.27) 

that is, as the reflection of its least friend. Note that if Friends.S = {T} then [S] 
J... Thus, [-] is a mapping from SYS to P'ROC (with bottom and top). For distinct 

processes P and Q we will often write P 11 Q for [{P, Q}]l. Composition 11 is a partial2 

binary operator on P'ROC. 

The canonical representative of the equ-cla..'ls containing system S is defined as 

singleton system {[S)}. We give three examples to illustrate the concepts. 

4.6.1 Example Consider systems S1 through S4 defined below. All four have no ex

ternal inputs and two external outputs {a, b }. System S1 consists of two processes, while 

the others are singleton systems. 

sl { (0, {a}, {c, a}), (0, {b}, {c, b}) } ' 

s2 { ( 0' {a, b}' { £' a, ab}) } ' 

s3 { (0,{a,b},{c,b,ba})}' 

s4 { (0,{a,b},{c:,a,b,ab,ba}) } 

We claim that these four non-isomorphic systems are in the same equ-class. Here are some 

friends of all four: 

P1 T, 

P2 ({a,b},0,{a,b}*) 

P3 ({a,b},0,{<::,a,b,ab,ba}) 

Note that process P4 =({a, b}, 0, {c:, a, ab}), which is the reflection of the process in S2 , is 

not a friend of either of the four systems, because the (implicit) wires between the system 

and its environment { P4 } may interchange the order of the a- and b-signals, thus giving 

rise to interference at the test environment when a arrives after b. 

The following two statements follow immediately from the definitions: 

S equ T =? Friends.S Friends. T , 

S sat T =? Friends.S ;:2 Friends. T . 

The reverse implications also hold but are not trivial; for all we know, tests with more than 

one process might play a crucial role in equ and sat. Theorem 4.6.4 below, however, resolves 

this issue: only singleton tests are important. Accordingly, to establish the equivalence of 

the four systems, it suffices to prove that their friends are the same. 

2Composition 11 could be extended to a total operator by defining P 11 Q = j_ whenever systems {P} 
and { Q} are not connectable. 
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We claim that P3 is this common least friend. Observe that all friends of the systems 

involved have empty output alphabets. We will use the following, straightforward, property 

of~ that applies to this case. For alphabet I and processes P and Q in PROC(I, 0) we 

have 

P ~ Q := tP ~ tQ. ( 4.28) 

All that is left to do is verifying whether any traces can be eliminated from tP3 while 

maintaining friendship with the systems. This gives rise to a finite case analysis. It turns 

011t that :00 '·rncAs can be removed without introducing interference. Thus, the canonical 

representative of the equ-class containing the four systems happens to be { ""P3} = S4 . • 

4.6.2 Example Now consider systems Ss through Ss, obtained from S1 through S4 

above by reflecting all the processes involved: 

Ss { ({a},0,{c:,a}), ({b},0,{c:,b})} 

S6 = { ( {a, b}, 0, { E, a, ab}) } , 

S7 { ( {a, b}, 0, { E, b, ba}) } , 

Ss { ( {a, b}, 0, { c:, a, b, ab, ba}) } 

These four systems are again non-isomorphic. In this case, however, it will turn out that 

only Ss and Ss belong to the same equivalence class. Here are six candidates for friends: 

Ps (0, {a, b}, {c:}) , 

P6 (0,{a,b},{c:,a}) , 

P7 (0, {a, b}, {c:, b}) , 

Ps (0,{a,b},{c:,a,ab}) 

P9 (0,{a,b},{c:,b,ba}) 

P10 (0,{a,b},{c:,a,b,ab,ba}) 

A little investigation reveals the following friendships: 

Ps p6 p7 Ps Pg Pw 

Ss yes yes yes yes yes yes 

s6 yes yes no no no no 

s7 yes no yes no no no 

Ss yes yes yes yes yes yes 

Looking at processes P6 and P7 , we see that neither S6 sat S7 nor S7 sat S6 holds. Further

more, from the preceding example we already know that Ps, P9 , and P10 are equivalent (as 

singleton systems: S2 = { Ps}, S3 = { P9 }, and S4 = { P10 }) and, hence, their membership 

in some set Friends.S comes and goes as a block. 

All friends of these systems have empty input alphabets. This situation is covered 

by a similar property of ~ as (4.28) above. For alphabet 0 and processes P and Q in 

PROC(0, 0) we have 

P ~ Q = tP 2 tQ. (4.29) 
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Note that the direction of the trace set inclusion is now reversed. A little more work, 

attempting to add traces while maintaining friendship, yields the following results: 

n Friends.S5 

n Friends.S6 

n Friends.S7 

n Friends.Ss 

plO, 

p6, 

p7 , 

= P1o · 

Consequently, S8 is the canonical representative of its equ-class, but 86 and S7 are not the 

representatives of their respective classes. Since ........ p10 ;;;) ........ p6 and v.P10 ;;;) ""P7 , we have, 

according to Theorem 4.6.4, also Ss sat 86 and S8 sat 87 • • 

Things become rapidly more complicated when more symbols are involved. Our third 

example is still manageable and considers systems with both external input and output. 

4.6.3 Example Here are four systems, similar to the ones we have seen in the preceding 

two examples, but with external input a and external output b: 

S9 { ({a}, 0, {c:, a}), (0, {b}, {c:, b}) } 

S10 { ({a},{b},{c:,a,ab}) } , 

S11 { ({a},{b},{c:,b,ba})}, 

s12 = { ({a},{b},{c:,a,b,ab,ba})} 

Again, these systems are non-isomorphic and they do not fall into the same equ-class. The 

following six processes are candidates for friends: 

Pu ({b},{a},{c:}) , 

pl2 ({b},{a},{c:,a}) , 

pl3 = ({b}, {a}, {c:, b}) 

pl4 ({b}, {a}, {c:, a, ab}) , 

pl5 = ({b},{a},{c:,b,ba}) 

Pt6 = ({b},{a},{c:,a,b,ab,ba}) 

The actual friendships are: 

Pn Ptz Pt3 Pt4 p15 pl6 

Sg no no yes no yes yes 

Sw yes no yes yes yes yes 

Sn no no yes no yes no 

Stz no no yes no ye$ yes 

From that table above we infer that S10, S11 , and S12 belong to three different equ-classes, 
while Sg and Stz look equivalent. Because both input and output are involved, proper

ties ( 4.28) and ( 4.29) are not applicable and it is more difficult to find the least friends. 
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Section 4.8 addresses the general case of computing the least friend. The idea is to de

crease input capability and increase output capability while maintaining friendship. One 

then finds as least friends: 

n Friends.S9 pl6' 

n Friends.S10 pl4' 

n Friends.Sn pl5' 

n Friends.S12 pl6. 

Thus, S9 and S12 are indeed equivalent. Furthermore, we have S10 = { ""'P14 }, S11 = { ""'P15 }, 

and S12 = { ""P16 }; these are the canonical representatives of their equ-classes. On account 

of Theorem 4.6.4 and ""P14 ;;;) v-.P16 '""P1s we have Sw sat S12 and S12 sat Su. • 

The following theorem motivates our choice of canonical representatives. 

4.6.4 Theorem For systems S and T we have 

s 
[S) 
S equ T 

S sat T 

[Spar T] 

equ {[SJI} , 

= n {P: PE PROC /\ S equ {P}: P}, 

[S]=(TJ, 

[S] ;;;) [T] , 

[S] 11 [T] . 

.. 
The first statement in this theorem expresses that the canonical representative of S is 

indeed in the same equ-class as S. The second statement roughly says that the compos

ite equals the ~-minimum of all singleton systems equivalent to S. The third statement 

expresses that the canonical representative is unique for each equ-class. The fourth state

ment, proved in Chapter 7 as Theorem 7.3.10, says that satisfaction corresponds to the 

;)-order on composites. Similarly, the fifth statement expresses that par corresponds to 11 

on composites. 

4.6.5 Note The implications from left to right in the third and fourth statement are 

elementary. Concerning the fourth statement, for instance, we derive 

S sat T 

= { definition of sat } 

('</ U: U E SYS: Correct.(S par U) Correct.(T par U)) 

==? { definition of Friends } 

Friends.S ;::::> Friends. T 

==? { property of greatest lower bound } 

n Friends.S ~ n Friends. T 
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{ reflection turns ~ around, definition of [-] } 

[S] ;;;) [T] 

Antisymmetry of ~ then takes care of the third statement. 

41 

• 
Composites simplify the verification of satisfaction and equivalence. Consider systems S 

and T. When T is interpreted as a specification, then'S satisfies T' and'S implements T' 
are expressed by 'S sat T'. To ascertain this according to the definition of sat, involves 

a quantification over all systems (acting as testing environments for S and T). For each 

such environment U, one needs to compare Correct.(S par U) and Correct.( T par U), 

which involves another quantification over all reachable traces of the system. In case 

the composites of S and T are known, the problem simply boils down to ascertaining 

[S] ;;;) [T], which involves just a quantification over all process traces of the composites. 

4. 7 DI Processes and the JTU-Rules 

As we have argued in Chapter 2, it does not make much sense to speak about a delay

insensitive system as such; delay-insensitivity is with respect to some specification. That 

is exactly what 'S sat T' expresses. Delay-insensitivity is implicit in the definition of 

correctness: the definition of 'free of interference' involves anisochronic operation under all 

possible delay conditions. Thus, if we say that some (closed) system S is free of interference, 

then that really includes the qualification 'independent of values for delays in connecting 

wires and other processes', that is, delay-insensitively. 

The canonical processes defined in the preceding section suffice to describe processes, 

since any other process is equivalent to a canonical process. These particular canonical 

processes have certain nice properties. Since these are the the only processes needed 

(everything can be done in terms of them), and since they serve to describe and design 

"delay-insensitive" systems, let us call them delay-insensitive, or DI, processes. 

By definition, processes that occur as composites of systems are called DI processes. 

The set 1JI of DI processes is therefore defined by 

1JI = { S : S E SY S : [ S]} . 

A fundamental result concerning 1JI is given in the following theorem. 

4. 7.1 Theorem We have 

(SYS;par,sat)/equ is isomorphic to ('DI; II,;;;J). 

(4.30) 

Proof Mapping ~:-] is an surjective homomorphism from (SYS; par, sat) to ('DI; 11, ;;;J) . 

• • 
That is, expressions over the algebra (SYS; par, sat) modulo equ-equivalence can be trans

formed into logically equivalent expressions over the algebra ('DI; 11, ;;;J). The latter algebra 

is called a fully-abstract model, because equivalence now boils down to equality. 
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4.7.2 Example The statement 

(VS, U :: (:1 T :: Spar T sat U)) 

where S, T, and U range over SYS, corresponds to the logically equivalent statement 

(V P, R :: (3 Q :: P 11 Q;) R)) 

where P, Q, and R range over VI. 

The next theorem gives some alternative characterizations of VI. 

4.7.3 Theorem (Characterization of DJ processes) 
The following statements concerning process P are equivalent. 

1. PE VI, that is, (3S: SE SYS: [S] = P), 

2. P = n { Q: Q E PROC A {P} equ { Q}: Q}, 

3. [{P}] P, 

4. Correct.{ P, "'P}, 

5. P satisfies the JTU-Rules W, X, Y, and Z given below. 

• 

The first statement is just the definition of 'P is DI', namely that P is the composite of 

some system. The second statement expresses that P is the !;-minimum of "its" equ-class, 

that is, the class containing { P}. The third statement says that Pis its "own" composite. 

The fourth statement expresses that P is free of interference with its reflection. Finally, 

the fifth statement is a closure property of P's trace set that is easy to verify for P's state 

graph (see below). • 

The JTU-Rules are named after Jan Tijmen Udding, who first stated them in [Udd84]. 

The equivalence of the last two statements in Theorem 4.7.3 is non-trivial and proven 

in [Ver89]. 

We now define the four JTU-Rules. Let P be a process. The equivalence relation 

induced by the partition {iP, oP} in aP is denoted by We leave out the subscript 

when it is obvious from the context. That is, a ;::::; b expresses that a and b have the same 

direction with respect toP (either both a and bare inputs of P, or both are outputs) and 

a ;I, b expresses that a and b have opposite direction (one is an input and the other an 

output). 

• P satisfies Rule W when for all traces s and symbols a we have 

saa f/. tP. 

• P satisfies Rule X when for all traces s and t, and symbols a and b with a ;;:; b we 

have 

sabt E tP sbat E tP. 
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• P satisfies Rule Y when for all traces s and t, and symbols a, b, and c with a ;ii5 c 

and b ;:;:; a we have 

sactb E tP 1\ scat E tP ::::? scatb E tP . 

• P satisfies Rule Z when for all traces s, and symbols a and c with a ;ii5 c we have 

sa E tP 1\ se E tP ::::? sac E tP 1\ sea E tP . 

Rule W expresses that no signal may occur twice in immediate succession (because this 

would cause interference at the connecting wires). Rule X expresses that the order of 

signals in the same direction is irrelevant for future possibilities. Rule Y expresses that 

the order of signals in opposite direction is only to a limited extent relevant for future 

possibilities (some, but not all, possibilities after one order are also possible after the other 

order; this will be clarified below in Theorem 4. 7.4). Rule Z expresses that signals of 

opposite direction cannot "disable" each other. Often a simpler version of Rule Y holds: 

• P satisfies Rule Y' when for all traces s and t, and symbols a and c with a ;ii5 c, 

sa E tP, and seE tP we have 

sact E tP = scat E tP . 

Note that Y' implies Y. Rule Y' expresses that if two signals of opposite direction can 

both occur, then their order is irrelevant for future possibilities. 

a a 
W: a~--· o .... ;r .. JoO xA 

b··.. ..··a 
''\,··· 

b 
Y: 

~------r.o---······JoO 

Z: 

··· ... c 

'" __ :P 

.. -··a 

Y'A Z: 

b 

•· ... c 

::> 
c ... ····a 

Figure 4.2: JTU-Rules in terms of state graphs: a ;:;:; b and a ;ii5 c 
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Figure 4.2 illustrates the JTU-Rules in terms of state graphs. In this figure, symbols a 

and b have the same direction, and symbols a and e have opposite direction. If the 

solid edges are present in a DI state graph, then the dotted edges are also present (or 

not present when crossed, in case of Rule W) in the given relationship to the other edges. 

Beware figures: they are often misleading. For instance, the double-arrowed edges labeled t 
represent a-possibly empty-path of edges, and these two paths could coincide in the state 

graph. Rule Y' has been illustrated in conjunction with Z because that is more convenient. 

On account of the JTU-Rules, DI state graphs often contain rhombuses with opposite 

edg~s ber~ring the same labeL To avoid clutter, we omit at times some edge labels in DI 

state graphs; these labels can then be restored by giving opposite edges in each rhombus 

the same labeL 

In terms of the after-operator, Rules X, Y, and Y' can be formulated as follows. 

4. 7.4 Theorem Process P satisfies Rule X if and only if for all traces s and symbols a 
and b with a ;;:; b we have 

sab E tP => sba E tP A Plsab = Plsba. 

Process P satisfies Rule Y if and only if for all traces s and symbols a E iP and c E oP 

we have 

sac E tP A sea E tP => Plsac!;;; Plsca. 

Process P satisfies Rule Y' if and only if for all traces s and symbols a and c with a ii:5 c 
we have 

sac E tP A sea E tP => PI sac= PI sea. 

Proof We will only do Rule Y. Let P be a process satisfying Rule Y. Assume sac E tP 

and sea E tP for trace s, input a, and output c. We prove PI sac !;;; PI sea. The input 

alphabets of these processes are equal to iP and the output alphabets to oP. For trace t 
and output b we derive 

t E tPisae A tb E tPisca 

{ definition of after-operator } 

sact E tP A seatb E tP 

=> { Rule Y with a, c := c, a } 

sactb E tP 

{ definition of after-operator } 

tb E tPisac 

Similarly, one may derive for trace t and input b: 

tb E tPisac A t E tPisca => tb E tPisca. 

On account of the definition of !;;;, we thus have PI sac ~ PI sea. • 
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The formulation of Rule Y in terms of the after-operator expresses that the environment 

has "more control" over a process when it waits for output c before sending input a rather 

than the other way round, because PI sea is "at least as good as" PI sac. The JTU-Rules 

can be further "condensed", but we postpone that until Section 7.2. 

The elementary processes introduced in Chapter 3 are all in VI, since they satisfy the 

JTU-Rules as is readily verified from their state graphs. In fact, they all satisfy Rule Y' 
as well. 

4.7.5 Theorem VI is closed under composition and reflection. 

Proof Of course, VI is closed under composition, since by definition P 11 Q = [ { P, Q}] E 

VI for any processes P and Q. On account of the equivalence of statements 0 and 3 (or 4) 

in Theorem 4.7.3, VI is also closed under reflection. • 

The set of DI processes satisfying Rule Y' is also closed under reflection. However, it is 

not closed under composition. This came as a surprise at the time Udding formulated his 

rules. Here follows a simple example. 

4.7.6 Example Consider DI processes P and Q given by their state graphs in Fig

ure 4.3. System {P, Q} has external input a, external outputs b and c, and internal 

P: 
a X ~ y b Pll Q: 

a b 

•t: c c c c c c c 

X y a b b 
e-o -

Q 
Q:~ 

Figure 4.3: Two DI processes (left) and their composite (right) 

connections x and y. Thus, at least five additional wires are involved in the operation of 

this system and its environment. Both P and Q satisfy Rule Y'. When their composite 

P 11 Q is determined (shown in Figure 4.3; also see Section 4.8) it turns out not to satisfy 

Rule Y'. Verify that Rule Y is satisfied by P 11 Q. We would also like to point out that 

P and Q satisfy the requirements for composition in [Udd84] and that, after a suitable 

translation, P 11 Q = P b Q, where b is the blending operator of [Udd84]. 

Note that if the environment waits for output c from system {P, Q} before offering it 

input a, then the system is guaranteed not to produce output b. On the other hand, if 

the environment immediately offers a, then the system will produce c eventually (it may 

already have done so, but c can still be "on its way") and output b is possible but not 

guaranteed. The DI Model lacks some features to argue about such progress properties of 

systems. We will pay more attention to this limitation in Section 5.5. • 
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Many tasks simplify considerably when DI processes are involved. The next two the

orems illustrate this. The first theorem gives a condition under which isochronic and 

anisochronic operation are equivalent. It motivates the following definition. A DI system 

is a system such that of each pair of connected processes at least one is in VI. 

4. 7. 7 Theorem (Fundamental property of D I processes) 

For closed DI system S we have 

'§ is free of interference' 'S is free of interference' . 

Proof idea: The effects of additional wires are already incorporated in a DI process. • 

Compare this to Theorem 4.3.8, which says that the implication from left to right holds in 

general. On account of Theorem 4.4.2, system S is equivalent to its wired version S. Sys

tem S is Dl, because the additional wires are in VI. Therefore, every system is equivalent 

to some DI system, by the suitable introduction of explicit DI wires. 

4. 7.8 Example Note that processes P and V\p of system S in Examples 4.3.1 and 4.3.3 

are not DI, since they do not satisfy Rule X. Indeed, system S is free of interference, and 

S is not free of interference. 

Processes P and V\p are equivalent to DI processes Q and R respectively, given by 

Q (0,{a,b},{c:,a,b,ab,ba}), 

R ( {a, b}, 0, { E, a}) . 

That is, {P} equ { Q} and {'-"P} equ {R}. Note, however, that Q =/= V\R. This provides a 

counterexample for the validity of [{V\PH "'[{P}). • 

4.7.9 Theorem For system Sand DI process P we have 

S equ {P} _ 

S sat {P} 

S sat {P} 

[S] = p' 

[S];;;) p' 

Correct.(S par { V\P}) . 

• 
It is instructive to find a counterexample for each of the statements in Theorem 4. 7.9 with 

P rf. VI. The implications from right to left hold in general. 

The first two statements of the theorem above are a direct consequence of Theo

rems 4.6.4 and 4.7.3. They show the advantage of specifying a system by means of a DI 

process rather than an arbitrary process. The third statement expresses that S sat {P} 

holds if and only if ""p is a friend of S. This is more remarkable than it may at first 

seem. The definition of S sat T involves Correct.(S par U) and Correct.(T par U) where 

U ranges over SYS. In the particular case of DI singleton system {P} for T, it suffices to 

compute just Correct.( Spar { ,...,p}) (note that P is reflected). 
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4.8 Computing the Composite 

Given systemS one can compute its composite [S) by (i) starting with some friend of Sand 

(ii) repeatedly reduci!lg it (that is, making it smaller with to!;;;;) while maintaining 

friendship, until (iii) no further reduction is possible (this yields the least friend), and 

finally (iv) reflecting the result. 

For step (i) first try process (xoS, xiS, (xoS)*), the largest (easiest) candidate below T. 

If that does not work then Friends.S = {T} and, hence, [SJ ..L. Step (ii) is often best 

done by making small reductions at a time. 

A process can be reduced with respect to !;;;; in two ways. One way is to restrict its 

willingness to receive inputs (by removing input edges in its state graph). The other way 

is to increase its capability to send outputs (by adding output edges in its state graph; but 

after this output all inputs should be accepted in order not to have reduced the process 

too much). 

Observe that the least friend is in VI. Using the JTU-Rules, it is easy to verify whether 

the "current" friend in step (ii) of the computation above is in VI. If the "current" friend 

does not satisfy the JTU-Rules, then it should be possible to reduce it further. 

Theorem 4.7.7 is helpful when system S consists of DI processes only. When looking 

for friends of S it is easy to choose the appropriate input and output alphabets, the 

main problem being interference. If S consists of DI processes only, then the condition of 

Theorem 4.7.7 is met by the closed system Spar {P}. Therefore, in order to determine 

whether (Spar {P}r is free of interference, it suffices to restrict oneself to isochronic 

operation. 

4.8.1 Example Reconsider processes P and Q of Example 4.7.6. We show in some 

detail how to compute P 11 Q. 
Friends of {P, Q}, if any, have output alphabet 0 = {a} and input alphabet I= {b, c }. 

Note that x and y are internal to { P, Q}. Since both P and Q are DI processes we can 

restrict ourselves to isochronic operation when checking for interference, as pointed out 

above. The first candidate to try for friendship is (I, 0, I*) (see Figure 4.4, state graph R1). 

Since { P, Q, RI} has no interference, R 1 is a friend. It is not the least friend, since it can 

be reduced (in many ways). Removing as many input edges as possible, while preserving 

friendship, yields R2• Input c cannot be removed since P would then cause interference. A 

further reduction is still possible by adding outputs. Adding just one a at the initial state 

(yielding R3 ), however, reduces it by too much, since P causes interference at R3 . Adding 

output a and after that accepting all inputs again, yields R4 • l4. is a friend of {P, Q}, but 

it is not DI and, hence, not the least friend. Some of the inputs after a can be removed, 

yielding R5 , which is also a friend but still not DI. Addition of an output a after the initial 

input c and after that a all inputs again, yields R6 • This is again a smaller friend, but 

again not DI. It turns out that all inputs after the output a that was just added can be 

removed. The result is DI and cannot be reduced further. Its reflection is the composite 

shown on the right in Figure 4.3. 
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R,e: 

Rs:F1Ja b 
c c c 

b 

a b Rt;: .__o()-_10() 
c c 

b 

c 

b 

c 

Figure 4.4: Candidates for friends of {P, Q} 

Observe that the following ordering relationships hold: 

Furthermore R5 ::J R3 , and R3 is incomparable to both R6 and the least friend. With a 

little bit of experience bigger reduction steps are possible. • 

4.8.2 Example Reconsider Example 3.2.5, concerning a C-element with forked output. 

It is now easy to verify according to the definitions that both v-.P5 and '-"Qs are DI friends 

of S5 , and that v-.P5 ::J '-"Q5• Although a bit tedious, exhaustive trial confirms that v-.Q5 

cannot be reduced further while maintaining friendship. Hence, v-.Q5 is the least friend 

and Q5 is the composite of S5 • • 

Theorem 7.3.7 provides an alternative approach to the computation of composites (also 

see Note 7.3.9). 

4.9 Design Equation 

A designer is often confronted with the following problem. Given is a specification in the 

form of some process R. The designer conjectures that a particular process Q is part of 

an implementation, that is, the designer attempts to find a solution of the form P 11 Q for 

some still unknown process P. What is a specification for P? Obviously, P should satisfy 

PIIQ;;;!R. ( 4.31) 

We call this the design equation, since designers often encounter it. It expresses that P 

composed with Q satisfies specification R. The next theorem characterizes all solutions of 

this design equation. 
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4.9.1 Theorem (Factorization Theorem) 

For processes P, Q, and R in VI we have 

P 11 Q ""J R P '-'"'( Q 11 "'R) · 

Appendix B gives a proof that makes this theorem easier to memorize. 
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• 
It is called a factorization theorem because "factor" Q is "divided" out of R to obtain 

an explicit specification for P. In general, composition has no inverse, but the inequality 

expressed by the design equation (4.31) can be solved within VI. In [Fan86], Fang intro

duces the notion of 'decomposition by factoring' and gives a (very operational) definition 

without proofs. The form of the Factorization Theorem reveals a Galois connection (see 

[Bir84, DP90]) between functions _ 11 Q and '-"'( Q 11 '""'-)· Factorization is similar to the 

weakest prespecification, which solves a design equation involving sequential composi

tion (see [HJ86, HJ87]). 

It is possible that the designer makes a wrong choice for Q, in the sense that there is 

no solution with this Q. In that case one finds Q 11 v-.R = .l and, hence, the specification 

for P boils down to P ;J T. This means that the only "solution" is P = which is not 

a feasible solution, since T is an imaginary process. The introduction of the imaginary 

processes .l and T makes these sorts of case distinctions unnecessary. 

Also note that taking the least solution for P, namely P = '-"'( Q 11 "'R), and plugging 

it into the design equation need not yield an equality. That is, in general we do not have 

R. (4.32) 

The reason is that Q may already be "too good" to implement R minimally. No choice 

of P may be able to "annihilate" the excess goodness present in Q. A trivial example is 

obtained for Q T # R. In this case, we find that the least solution of (4.31) equals 

V"( Q 11 "'R) = ""T that is, every process P is a solution. Consequently, taking .l 

for P, we find P 11 Q T # R. 

Examples 5.1.5 and 5.2.2 illustrate how the Factorization Theorem can be used for 

designing. Example 5.5.4 shows what may happen when an inappropriate factor is chosen. 

We finish this section with a theoretical application of the Factorization Theorem, which 

holds more generally for Galois connections. 

4.9.2 Theorem Composition 11 on VI is n-continuous (distributes over arbitrary n 

and, hence, is !;-monotonic), that is, for PE VI and W ~VI we have 

n{Q: Q E W: P 11 Q}. 

Proof Let P be a DI process and W a subset of VI. It suffices to prove for all DI 

processes R 

P 11 n W ;J R :::: n { Q : Q E W : P 11 Q} ;J R . 

For DI process R we derive 
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P 11 n w;] R 

{ Factorization Theorem } 

n W;] '-"(P 11 v-R) 

{ property of n } 

(V Q: Q E W: Q;] ""(P 11 ""'R)) 

{ Factorization Theorem } 

(V Q : Q E W : Q 11 P R) 

{ property of n } 

n{Q:QEW:PIIQ} 

CHAPTER 4. DI MODEL 
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Chapter 5 

Applications 

In the preceding chapter we have presented and analyzed the DI Model for the specification, 

composition, and refinement of delay-insensitive systems. In this chapter we will discuss 

some applications of the DI Model. In particular we look at composition and design prob

lems. Along the way we introduce additional building blocks and study the phenomenon 

of output choice. Finally, we point out the limitations of the DI Model. 

Most of the results in this chapter are not new, though everything is presented in a new 

and consistent framework. Also many of the (counter)examples are new. A good source 

for additional examples is [Ebe89]. 

5.1 Composition and Design Examples 

So far we have introduced only a few kinds of building blocks, namely wires, I-wires, forks, 

merges, and C-elements. Not much can be accomplished with systems constructed of these 

building blocks alone. Before presenting additional building blocks we will look at some 

simple composition and design examples. 

5.1.1 Example Let us consider the processes with a single port, say a. These can be 

used as terminators to avoid dangling inputs and outputs. Four kinds of terminators may 

be distinguished, depending on whether a is an input or an output, and whether the trace 

Figure 5.1: Diagrams (left) and designs (right) for the four terminators 
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set is { c:} or { c:, a p. A terminator with input is called a sink and with output a source. 

We use the prefix 0- for terminators with trace set { c:} and 1- for trace set { £, a}. 

Diagrams for the terminators are shown on the left in Figure 5.1. Possible aesigns in 

terms of building blocks are given on the right, though in hardware realizations one would 

prefer other designs. • 

5.1.2 Example Figure 5.2 shows two systems consisting of two merges each. It is easy 

to prove that the composites of both are equal to the three-input merge with inputs 

{a, b, c }, output d, and a trace set generated by the regub~' expression ( (a+ b + c )d)*, 

where union is denoted by+ (with the weakest binding power), catenation by juxtaposition, 

and Kleene closure by • (with the strongest binding power). The trace set generated by 

regular expression RE consists of all symbol sequences matching RE, and all of their 

prefixes (initial segments). 

d d 

Figure 5.2: Two systems of two merges 

Even though the two systems are equivalent within the DI Model, one may be preferred 

over the other because of performance differences, for example when one of the inputs 

occurs much more often or is more time critical than the other inputs. • 

Similarly, one can obtain a three-output fork and three-input C-element, with trace sets 

generated by the regular expressions (a(b, c, d))* and ((a, b, c )d)* respectively, where the 

comma operator (with a binding power stronger than union and weaker than catenation) 

denotes arbitrary interleaving. Larger multiple-input merges and C-elements, and multiple

output forks can be constructed by further cascading the binary versions into larger trees. 

In spite of the simplicity of these five building blocks, it is often non-trivial to compute 

the composite of systems built from them. 

d 

Figure 5.3: System of fork, 2 C-elements, and merge 

1 A trace set with aa is not interesting because, in the case of input, it is equivalent to { e, a} and, in 
the case of output, to ..L. 



5.1. COMPOSITION AND DESIGN EXAMPLES 53 

5.1.3 Example Consider the system of Figure 5.3 consisting of a fork, two C-elements, 

and a merge. You are challenged to compute the composite. 

The state graph of the composite is depicted in Figure 5.4. Note that the state labeled 3 

has no outgoing edges, because supplying a b-input might result in interference at the 

merge. Also note that the states labeled 4 and 5 are distinct, because different inputs are 

acceptable. • 

1 

2 

Figure 5.4: State graph of composite 

5.1.4 Example A rendez-vous is a process P with two inputs {a, b} and two outputs 

{ d, e}. Its diagram is shown on the left Figure 5.5 and its state graph on the right (the 

initial state is at the center). Observe that the state graph satisfies the JTU-Rules and, 

hence, P E VI. 

a-J.l-b 

d-LJ-e 

1 1 

Figure 5.5: Diagram and DI state graph of rendez-vous 

The communication behavior of P restricted to {a, d} is generated by the regular ex

pression (ad)*; similarly, restricted to {b, e} by (be)*. Consequently, the rendez-vous can 

operate in a "split environment" where each half alternates output and input. The rendez

vous synchronizes the cycles of the two halves. It is also known as passivator in the 

handshake circuits to which Tangram is compiled (see [vB93]). 
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System 55 in Example 3.2.5, consisting of a C-element with forked output (see Fig

ure 3.3), refines the rendez-vous: 55 sat {P} because [S5 ]J ;;;) P (see Figure 3.5 for the 

composite Q5 of 55). In fact, 55 is strictly better than required by specification P, that 

is, •(55 equ {P}). An informal argument for this is that 55 is capable of processing in

put b after output d and also input a after output e. More formally, consider process R 

with inputs { d, e}, outputs {a, b}, and a trace set generated by the regular expression 

(a, b)(db, ea). For this R we have 

•Correct.{ P, R} 1\ Correct.(S5 par { R}) 

and, hence, •( {P} sat 55 ) holds. 

Figure 5.6: Diagrams of systems T (left) and U (right) 

(5.1) 

Although the C-element with forked output is a compact implementation of the rendez

vous, it cannot be distributed symmetrically over the two parties it synchronizes. System T 

presented on the left in Figure 5.6 is an attempt at a distributed implementation (the 

dashed line indicating the distribution). However, if one computes [T] then it turns out 

to yield process P5 of Figure 3.4, which is not a refinement of the rendez-vous. Informally 

speaking, if the environment offers input a immediately after T has output d, then this 

may cause interference. 

By suitably combining two copies of T one obtains system U on the right in Figure 5.6. 

The composite of system U turns out to be Q5 and, thus, U is a proper implementation 

of the rendez-vous. System U can be distributed over the two parties it synchronizes as 

indicated by the dashed line. Note that the resulting two halves are connected by four 

wires. • 
This example was inspired by [vdSU86] and shows that even the simple systems using only 

C-elements and forks involve subtle behavioral complications. Another case is provided in 

Example 5.2.1. 

The fork is the only building block so far with more than one output. We now consider 

another such process, having input a, outputs {b, c}, and a trace set generated by the 

regular expression ( abac )*. It is called a toggle, because each odd occurrence of input a 
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5.7: Diagram and DI state graph of toggle T(a; b, c) 

triggers output b, each even occurrence triggers c. This toggle cannot be constructed from 

the building blocks so far. 

From now on we consider the toggle a building block. The toggle T( a; b, c) with input a 

and two outputs b and c is defined by the DI state graph in Figure 5.7. Its diagram is 

shown on the left. Note that we have 

T(a;b,c)fab = T(a;c,b). (5.2) 

A four-output toggle with trace set ( abacadae )* is easily built from three basic toggles. 

A three-output toggle with trace set ( abacad)* can be obtained from a four-output toggle 

and a merge by feeding back one output: 

{ M( a, e; x), T(x; y, z), T(y; b, d), T(z; c, e) } . (5.3) 

5.1.5 Example Design a 2-phase-to-4-phase converter R with inputs {a,d}, out

puts {b, c}, and trace set ( acdcdb )*. Its environment can be split into two parties, one 

with communication behavior (ab)*, the other with (cd)*. The converter sees to it that 

each ab-cycle (consisting of two phases, one a and one b) encloses two cd-cycles (having 

four phases). 

A rather naive design technique that sometimes works is based on output analysis. 

In this approach, one considers each output of the circuit to be designed and analyses the 

conditions under which it is to be produced. The phase converter has outputs b and c. 

Inspecting the regular expression specifying this circuit, one sees that output b is produced 

by the second d-input, and that output c is produced by either the a-input or the first 

d-input. Consequently, we need a toggle to split the d-in put into odd and even occurrences, 

and a merge to combine the two "causes" for the c-output. This results in the design shown 

on the left in Figure 5.8. 

0 d c 2 d 3 b 0 a 
c 

a a a 

X 1 d b 
- 1 

c c c 
d 

b ( 

0 2 3 

Figure 5.8: Diagram and state graph of design for phase converter 
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We emphasize that a design obtained by output analysis must always be verified af

terwards, for instance, by computing the composite and comparing it to the specification. 

Example 5.2.1 illustrates what may go wrong. 

It is a nice exercise to compute M 11 T, where M:::: M( a, x; c) and T = T(d; x, b). The 

state graph of the composite is shown on the right in Figure 5.8. Because specification R is 

in VT, we can immediately infer from Theorem 4.7.9 that Rand M 11 Tare not equivalent. 

In fact, also according to Theorem 4.7.9, {M, T} sat R holds since M 11 T ;) R. The 

refinement can also be deduced from Correct.{M, T,v-.R}. This illustrates the advantage 

of having DI specifications. 

We can also tackle this design problem by factorization. Suppose we somehow guess 

the need for toggle T = T(d; x, b), where xis some internal symbol. We are now interested 

in the specification P of the remainder that composed with toggle T refines converter R. 

According to the Factorization Theorem (Theorem 4.9.1), specification P is obtained by 

computing 

P = '""(TII"'R). 

Note that by definition, P n Friends.{ T, '-"R}. Process P has inputs {a, x} and output c, 

and its trace set turns out to be generated by the regular expression ( acxc )*, which is the 

reflection of a toggle and can be refined by merge M M( a, x; c). This is the same design 

as before, but now it is correct by construction. • 

5.2 More Building Blocks 

There are still many of systems that cannot be constructed from our building blocks so 

far. For instance, is it possible to make a first-rest discriminator, with input a, outputs 

{b, c}, and trace set ab(ac)*? (Why not?) The following building blocks extend the range 

of possibilities. 

H--.. eo 

H--.. cl 

b 

b 

Figure 5.9: Diagram and DI state graph of latch L(ao, a1, b; eo, c1) 

Figure 5.9 shows the diagram and DI state-graph of latch L(ao, a1, b; eo, c1). The dia

gram and DI state graph of decision-wait D( ao, a1, b0 , b1; Coo, cob c10, en) is given in Fig

ure 5.10. These processes can be viewed as generalizations of the C-element. The latch 

temporarily stores a binary decision, and is sometimes also referred to as switch. The 

decision-wait waits for two binary decisions and reports which of the four combinations 

occurred. 
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ao 

....----coo 

co1 

i-..;_+-- C1Q 

C11 
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Figure 5.10: Diagram and DI state graph of decision-wait D(ao, ab b0 , b1; c00 , CoiJ c10 , c11 ) 

5.2.1 Example Let us try to design latch L L(ao,a1,b;co,c1) by the technique of 

output analysis. Output c; is produced by the combined occurrence of inputs a, and b. 

Thus, we need a fork on input b and two C-elements to combine each a, with a copy of b. 

This gives rise to system T depicted in Figure 5.11. 

b 

Figure 5.11: System T that does not implement a latch 

Unfortunately, T does not implement latch L, that is, •( T sat { L}), because for 

process R with inputs { c0 , cl}, outputs { ao, a1 , b}, and a trace set generated by the regular 

expression a0bc0 a1 , we have 

Correct.{L, R} /\ -.Correct.(T par {R}). (5.4) 

The second conjunct holds because of interference at R. Less formally one might phrase 

this by saying that T can produce an "incorrect" output by doing aobc0a1 c1 , because 

output from the lower C-element remains enabled after the first b-input. 

One could also takeR with trace set generated by aobc0 a0 b. This R also satisfies (5.4), 

though now there is interference at T. It reveals that T cannot process all inputs required 

by specification L. 

Yet another way to ascertain -,(T sat {L}) is to recall Theorem 4.7.9 and to observe 

that LE VI and -,Correct.(T par {""L}). One could also compute [T]J and compare it 

~~ . 
This example shows that designing by output analysis does not always work, for it failed 

to give us a decomposition of the latch. In fact, the latch cannot be implemented by the 

earlier building blocks at all (a nice proof of this folk theorem is still lacking). The latch 

can, however, be obtained from a decision-wait together with some terminators to hide 
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unneeded ports (use a C-element, or fork, with feedback for this purpose). The latch may, 

thus, be viewed as a 2 x 1-decision-wait. The decision-wait cannot be made from latches 

and the earlier building blocks (this is another folk theorem). 

It is possible to construct larger latches (latching n inputs) from basic latches, for 

instance, through factorization. 

5.2.2 Example We briefly show how to derive a design for the ternary latch L3 with 

inputs { a0 , a1, a2 , b}, outputs { e0 , e11 e2 }, and a trace set generated by 

(5.5) 

We guess that latch L = L(x, a2 , b; y, c2), where symbols x and y are internal, might be 

useful. Factorization yields specification P for the remainder; P has inputs { a0 , a1, y} and 

outputs { e0 , e1 , x}. Computing -(L 11 ..,...£3 ) yields a trace set generated by 

( aoxyeo + a1xyc1)* . (5.6) 

Doing an output analysis of the expression suggests that output x may be produced by a 

merge of inputs a0 and a1. However, these inputs are no doubt still needed to generate 

the corresponding c-outputs. Therefore we also introduce two forks F0 = F( ao; d0 , eo) and 

F1 = F(a1; d11 e1), and merge M= M( do, d1; x), where symbols {do, dt, eo, e1} are internal. 

The composite Q = F0 11 F1 11 M has a trace set generated by 

(ao(do,x) + at(dt,x))* . (5.7) 

Factorizing P with respect to the further guess Q, yields a process with inputs {eo, e1 , y}, 
outputs { e0 , et}, and a trace set generated by 

((eo,y)co+(et,y)et)*. (5.8) 

This is easily recognized as latch L(e0 ,et,y;c0 ,cl). Thus we have derived the design in 

Figure 5.12. • 

ao.__,~----~~----~ 

al.--,~~--~~----~ 

u-+--.,. eo 

U·-1----i.,. Ct 

b 

Figure 5.12: Design for a ternary latch 

Similarly, larger decision-waits can be constructed, not only of type m x n but also with 

more than two dimensions, such as 2 x 2 x 2 (see Figure 5.13). 

The next example explains a design technique based on the idea of a state machine. 
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dooo 

doo1 

do1o 
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d1oo 
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du1 

Figure 5.13: Design for 2 x 2 x 2-decision-wait 

5.2.3 Example Reconsider the problem of designing the phase converter of Exam

ple 5.1.5. The phase converter can be considered to have three states. In the first state, 

it only expects input a and reacts to it with output c and a change to the second state. 

In the second state, it responds to input d with output c again, going to the third state. 

Finally, in the third state, it produces output b on input d and returns to the first state. 

This suggests a design based on a state machine. 

There are many ways to encode the state of such a state machine. The so-called one

hot code introduces a wire for each state. Only the wire corresponding to the current 

state is "active". A 2 x 3-decision-wait is used to determine the combination of input and 

state. Some additional circuitry translates this "combination" signal into the appropriate 

outputs and selects the next state. An I-wire takes care of selecting the initial state. 

a 

d 

Figure 5.14: State-machine design for phase converter 

The resulting design is presented in Figure 5.14. The dashed box encloses the out

put and next-state circuitry. Assuming the environment adheres to its obligations, some 

combinations of input and state do not occur. The corresponding outputs of the decision

wait are connected to 0-sinks. In contrast to the design in Example 5.1.5, this design is 

equivalent to the specification. • 
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In spite of their generality, state machines cannot be used for all design problems. In 

particular, it is difficult to deal with concurrent inputs. Section 5.4 describes a (partial) 

solution. Also, state machine designs are often inefficient. Choosing a better state space 

may improve the design, but may complicate the correctness argument. For the phase con

verter in the preceding example, one could do with two states, because the environment's 

choice of input also provides state information. 

The state-machine approach can be applied successfully to the design of a toggle and a 

first-rest discriminator. In both cases there is only one input and there are just two states, 

so a latch suffices. For the first-rest discriminator a 1-source is needed. 

5.3 Output Choice 

None of the building blocks so far involves a choice between outputs: if in some state either 

of two outputs can be produced then both outputs can be produced "together", that is, in 

either order. Put differently, the occurrence of one output does not disable another output. 

More formally, we say that symbols a and c of process P are mutually non-disabling 

when for all traces s we have 

sa E tP 1\ se E tP :::} sac E tP 1\ sea E tP . (5.9) 

Furthermore, we introduce two additions to Rule Z and two additions to Rule Y: 

• P satisfies Rule when all pairs of distinct output symbols are non-disabling; 

• P satisfies Rule zin when all pairs of distinct input symbols are non-disabling; 

• P satisfies Rule yout when for all traces s and t, input a, and outputs b and c we 

have 

sactb E tP 1\ scat E tP :::} scatb E tP . 

• P satisfies Rule yin when for all traces s and t, output a, and inputs b and c we 

have 

sactb E tP 1\ scat E tP :::} scatb E tP . 

Rule zout expresses that process P has no output choice, and Rule z•n expresses the 

absence of input choice. Recall that Rule Z requires that all symbol pairs of opposite 

direction are non-disabling. The conjunction of Rules Z, zov.t, and zin will be called 

Rule Z'. Thus, we have 

Z' =: z 1\ zo•tt 1\ (5.10) 

Rule Z expresses that all pairs of distinct symbols are non-disabling. A similar relationship 

holds for the four forms of Rule Y: 

Y' (5.11) 
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Rules zin and yin are introduced only for completeness' sake and do not play an important 

role. 
All building blocks so far satisfy Rules zout, yout, and yin. All but the merge even 

satisfy Rule zin. The merge process requires of the environment a choice between inputs. 

That Rule Y' is not preserved under composition was already shown in Example 4. 7.6. 

Process P of that example, however, does not satisfy Rule zout, since it involves a choice 

between outputs x and c. Here is different example illustrating that output choice is not 

crucial. For yet another example, see Example 5.4.2. 

5.3.1 Example Figure 5.15 shows the state graphs of DI processes P, Q, and their 

composite PII Q. Process Pis willing to accept input b only after it has output x. Process Q 
produces output a upon receiving input x or c. 

Figure 5.15: DI state graphs of processes P and Q, and their composite 

Both P and Q satisfy Rule Y' and also Rule Z', so there is no choice between out

puts. The composite of P and Q, which happens to be the reflection of the composite in 

Example 4.7.6, satisfies Rule Z' but not Rule yin. Of course, it does satisfy Rule Y (and 

also yout, see Theorem 5.3.3 below). • 

The set of DI processes satisfying Rule Z' is not closed under composition either. 

Examples 3.2.5 and 4.8.2, featuring the C-element with forked output, show that input 

choice can arise through composition of processes that do not involve any choice. The C

element and fork satisfy Z' but the composite does not, since it requires the environment 

to choose between inputs a and bin states 2 and 3 (see state graph of Q5 in Figure 3.5). 

Also not closed under composition is the set of Dl processes satisfying Rule zout. This 

is illustrated by the following example. 

5.3.2 Example Consider DI processes P and Q defined in Figure 5.16. Both processes 

satisfy Rule zout, though neither Y' nor yout is satisfied. Their composite, however, does 

not satisfy Rule zout: there is a choice between outputs c and d. It is impossible for P 
to be in the lower part of its state graph while Q is in the higher part, since that would 

require both processes to have received a signal before having sent any. 

Note that, in a sense, there is a possibility of deadlock in system { P, Q}. Deadlock 

occurs when both processes start doing output, with P ending up in state 2 and Q in 

state 3, after which both processes are waiting for input. This scenario is possible because 

of the delaying nature of connecting wires. • 
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c 

a P: 

d 

Q: PIIQ< 

Figure 5.16: DI state graphs of processes P and Q, and their composite 

The next theorem, finally, provides a closure result for processes without output choice. 

5.3.3 Theorem The set of Dl processes satisfying Rules yout and zout is closed under 

composition. 

Proof See [Waa89]. • 
The Extended DI Model of Chapter 6 sheds more light on these issues. 

5.4 Still More Building Blocks 

On account of Theorem 5.3.3 and the fact that all building blocks so far satisfy Rules yout 

and zout' additional building blocks are needed to construct (the equivalent of) systems 

with output choice. Below we present three additional building blocks involving output 

choice. 

Figure 5.17: Diagram and DI state graph of undetermined selector U( a; b, c) 

Figure 5.17 shows the diagram and DI state-graph specification of undetermined 

selector U( a; b, c) with input a and two outputs b and c. The undetermined selector 

responds to each input a with a single output on either b or c. In state 1, the specification 

only prescribes that a choice be made between outputs b and c, not which one to choose. 

The user of such a process cannot know from the specification alone what choice will be 

made. For all one knows, the choice may depend on the flip of a coin or the same output 

may be produced every time. The specification is said to exhibit (output) nondeterminism. 

Observe that the undetermined selector is related to a merge process: 

U(a;b,c)fa = '-"'M(b,c;a). 



5.4. STILL MORE BUILDING BLOCKS 63 

Without ill effect, the undetermined selector can be replaced by, for instance, a toggle, 

because T(a; b, c);;;;) U(a; b, c). Hence, a designer can always eliminate the nondeterminism 

introduced by undetermined selectors. An undetermined selector might be used because, 

at the current stage, it is not clear which deterministic refinement of the undetermined 

selector is most suitable. 

0 0 

a1 

4 4 

Arbiter bt 7 

5 5 

a1 

6 6 

bt 

0 1 2 3 

0 1 

Sequencer 

al eo 0 
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eo 2 

b 
Ct Ct 
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0 1 

Figure 5.18: Diagrams and DI state graphs of arbiter and sequencer 

The kind of output choice present in the undetermined selector is less useful than 

that of the following processes. Figure 5.18 shows the diagrams and DI state-graphs of 

arbiter A(ao, a1; b0 , b1) and sequencer S(ao, ab b; eo, c1). These processes also involve 

output choice: for the arbiter in state 7 and for the sequencer in state 3. Thus, they also 

exhibit nondeterminism. In this case, however, the nondeterminism cannot be eliminated 

by the designer without violating the (intuitive) progress conditions. This will be explained 

in more detail in Chapter 6. 

The arbiter communicates with two parties, say P0 and P 1. The parties negotiate with 

the arbiter to obtain a privilege, which the arbiter grants to only one of them at a time. 

P; is hooked up through a; and b;, The first input a; requests the privilege. The first 

output b; grants the privilege. The second input a; releases the privilege. Finally, the 

second output b; acknowledges the release, allowing the cycle to start anew. The "hole" 

in the center of the state graph expresses that the privilege is to be granted to at most 

one party at a time. The specification does not express anything about fairness: whenever 

there are two outstanding requests the arbiter is free to grant either of them, no matter 

who got the privilege last time. 
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The sequencer is a refinement of the latch. Since both are defined by a DI process, this 

statement boils down to 

In fact, the sequencer improves the latch, in that the environment is not required to 

choose between inputs f1() and a1• Whenever the sequencer is offered all three inputs 

"simultaneously", it is free to choose which a; to "pass" to the corresponding c;-output 

and which one to "hold" till the next b-input. Therefore, input b is called the 'next' input. 

The sequencer, thus, sequences inputs a, to outputs c; "clocked" by input b. The raison 

d'etre of the switch is that its implementation in terms of transistors is cheaper than that 

of the sequencer. 

The undetermined selector can be made from a sequencer. The arbiter can be designed 

in terms of the sequencer, and the other way round. Also larger arbiters and sequencers 

can be constructed (see [Ebe90]). A sufficiently large sequencer can be used at the input 

end of a state-machine design to take care of concurrent inputs. Its 'next' input is derived 

from the state wires by a merge. See [JNH93] for a more detailed exposition. 

Let us now consider how much we can make with the building blocks that have been 

presented so far. Can we construct all finite-state processes, that is, processes with finite 

minimal state graphs? It is conjectured that the following five kinds of building blocks, 

namely 

1-wire, merge, fork, decision-wait, and arbiter, 

suffice to implement all finite-state processes (see [Ebe89j2), taking into account "obvious 

progress requirements" to rule out "bogus" implementations (using, for instance, the do

nothing-wrong process mentioned in the next section). In fact, it is still an open problem 

whether there exists a "small" set of building blocks to implement all finite state processes, 

let alone a set of building blocks with efficient hardware realizations. 

Below we motivate each of the five kinds of building blocks in the conjecture. We call 

set V of DI processes refinement closed when 

(V P, Q : P E V 1\ P;) Q : Q E V) , (5.12) 

that is, when every process that can be implemented with some process from V itself also 

belongs to V. Observe that the set of processes with no more inputs than outputs is closed 

under composition and refinement. Among the five kinds, all but the merge have no more 

inputs than outputs and, hence, the merge is indispensable. Similarly, the set of processes 

with no more outputs than inputs is closed under composition and refinement. All but the 

fork belong to this set, so the fork is also indispensable. The set of passive processes that 

do not start with output is closed under composition and refinement too. The 1-wire is 

the only process among the five kinds that is not passive and, thus, it is indispensable. The 

arbiter is also indispensable, but the argument must be postponed till Chapter 8 where 

2Ebergen uses RCEL components instead of decision-waits. 
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output nondeterminism is analyzed in greater detail. The arbiter is the only process with 

output choice; the other four are in the set of processes satisfying Rules Y""1 and Z""1
• This 

set is closed under composition by Theorem 5.3.3. Unfortunately, it is not closed under 

refinement: the toggle, for instance, belongs to this set and it implements an undetermined 

selector, which does not belong to the set. A conclusive argument for the decision-wait 

is still lacking. All we can say is that serious attempts to construct it from the other four 

have failed (give it a try on a rainy day). 

The arbiter and sequencer are "expensive" building blocks, which should be avoided 

whenever possible. Unfortunately, some finite-state specifications require an arbiter for 

their realization with the set of building blocks mentioned above, even though no arbitra

tion seems to be involved. Here is an example. 

5.4.1 Example The one-all, nicknamed O'Neall, has inputs {a, b }, outputs { c, d}, 

and a trace set given by the DI state graph of Figure 5.19. The c-output is produced after 

one input, and the d-output after all inputs have been received. Compare this to process Q 

of Example 5.3.1. 

c 

Figure 5.19: Diagram and DI state graph of one-all 

Note that it satisfies Rules Y' and Z'. No realization (that also takes "obvious progress 

requirements" into account) is known for the one-all in terms of the building-blocks pre

sented so far avoiding arbiter and sequencer. The one-all is easy to implement with a 

sequencer (but that seems overkill). Maybe it should be added to the set of building 

b~ks. • 

The three building blocks introduced in this section····namely the undetermined selector, 

arbiter, and sequencer-all satisfy Rule Y' (but not Rule Z""1
, of course). The next 

example again proves that Y' is not preserved under composition but now by using only 

building blocks, and no ad hoc processes as in Examples 4.7.6 and 5.3.1. 

5.4.2 Example Figure 5.20 shows on the left the diagram of a sequencer whose outputs 

are merged into a single output. The state graph of the composite of this system is shown 

on the right. The reader is urged to verify this. 

The composite does not satisfy Rule Y' since states 1, 2, and 3 are distinct. More 

particularly, consider the state reached by trace an. In this state both input b is acceptable 

and output c is enabled. According to Rule Z, they can then occur in either order. 

However, the order cb leads, via state 0, to state 2, and the order be leads to state 3. In 
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Figure 5.20: Diagram and state graph for sequencer with merged outputs 

state 2, input a is acceptable, which is not the case in state 3. Thus, Rule Y' is violated. 

On account of symmetry, a similar situation occurs at the state reached by trace bn. • 

5.5 Limitations 

The DI Model gives a precise meaning to such notions as process specification, composition, 

and satisfaction. However, in many ways the model is not suited for solving realistic design 

problems. For one thing, it may be inconvenient to specify systems by means of trace sets 

(though state graphs and regular expressions alleviate the inconvenience to some extent). 

For another thing, it is often cumbersome to do composition and to verify satisfaction 

(though one's ability does improve with practice). But there are worse shortcomings, 

having to do with expressiveness. 

a,..,. --G=i=fu--c--1------;• ... b 

~-· 
a ____________ .....,.b 

Figure 5.21: Systems D (at the top), L (in the middle), and M (at the bottom) 

5.5.1 Example Consider systems D, L, and M shown in Figure 5.21. Each has an 

external input a and an external output b. According to the DI Model the composites of 
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these systems equal wire W( a; b). However, systems D and L are "unreliable" wires, in the 

sense that they may "break down" at any moment, that is, fail to make progress, though 

the specification does not say when. Both may also behave correctly. System D can stop 

altogether (deadlock) and system L may get into an infinite loop (livelock). 

System M is a special case, for which one can argue both ways. The looped-back I-wire 

behaves independently of the a-b-wire and, thus, one would say there is no livelock. On the 

other hand, the looped-back 1-wire consumes energy at an unknown rate and it may drain 

the batteries in no time. The DI Model does not take these considerations into account. • 

5.5.2 Example Consider process P =({a}, {b}, {c:, a}). It has input a, output b, and 

consumes a single input without producing output. In the DI Model, P implements a wire, 

that is, we have 

{P} sat { W(a;b) } , 

because W(a;b) E VI and Correct.{P,'-"'W(a;b)} (see Theorem 4.7.9). Process Pis even 

worse as a wire implementation than systems D and L of the preceding example, since it 

cannot even behave correctly. However, as far as interference is concerned it is no worse 

than the wire. In fact, it is better in that respect, just because it produces no output. • 

In general, each process P has a (best) implementation, namely (iP, oP, (iP)*), which 

is also known as the do-nothing-wrong process. This is obviously not acceptable. 

Sometimes it is not so clear that an implementation is unacceptable. 

5.5.3 Example Tangram (see [vB93]) has a sequential and a parallel operator. The 

handshake processes used for the translation of these operators are named SEQ and 

PAR respectively. Both have inputs { a0 , b1 , et} and outputs { a11 b0 , e0 }. The trace 

set of SEQ is generated by the regular expression (a0b0b1e0 c1al)*, and that of PAR by 

(a0 (b0b1 , c0 e1)a1)*. The a-ports signal initiation and completion of the operator and the 

b- and e-ports signal initiation and completion of its left and right operands. 

SEQ and PAR are easily implemented with building blocks: 

{ W(ao;bo), W(b1 ;co), W(c1;a1) } sat {SEQ}, 

{ F(ao;bo,co), C(bt,e1;a1) } sat {PAR}. 

However, in the DI Model we also have {SEQ} sat {PAR}. This is not acceptable, unless 

the specification for PAR is indeed intended to allow the implementer the freedom to 

choose an order for the b- and c-cycles. The reason that SEQ is not acceptable as an 

implementation of PAR is that the operands of the parallel operator might communicate 

on a channel and thus they would deadlock if the operator's implementation would insist 

that the left operand terminates successfully before the right operand is started. • 

Finally, we give a an example that shows an anomaly of the Factorization Theorem, which 

is again attributable to the lack of progress as a correctness concern. 
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5.5.4 Example Consider process R with inputs {a,b} and outputs {x,y,z}, and a 

trace set generated by the regular expression (axbz +by)*. We wish to design R in terms 

of the building blocks. Let us attempt a design involving fork F = F( a; x, c), where c is 

some internal symbol. 

According to the Factorization Theorem (Theorem 4.9.1), the remainder, say P, is now 

specified by v.( F 11 '-"R). Process P has inputs {b, c} and outputs {y, z}. Its trace set 

turns out to be generated by the regular expression ( (b, c )z )*. Note that it contains no y. 

In particular, once P has received input b but not c, it must not produce any output. If 

input c does occur, then R should output just z and, otherwise, just y. Since P cannot 

"know' whether c will ever arrive, it cannot safely produce any output at all after receiving 

just input b. 

Process P can, for instance, be implemented by the following system of building blocks: 

{ C(b,c;z), F(d;e,y), W(e;d) } . 

The C-element takes care of output z and the fork with feedback wire keep output y quiet. 

Together with fork F this results in a four-building-block design for R. As far as interference 

is concerned there is nothing wrong with this design. If, however, we look at progress, then 

this design is obviously not acceptable, since it fails to produce output y when called for. 

Example 6.3.5 shows that when progress is taken into account the attempted design with 

fork F is bound to fail, since it yields P = T. 

Can it be done "right"? Yes. How R reacts to input b depends on whether or not 

input a has occurred. Therefore, R is easily designed as a state machine with two states, 

involving a 2 x 2-decision-wait. This is left as an exercise. • 

These examples show that the DI Model presented in Chapter 4 does not deal with 

progress concerns. The process space is not rich enough to distinguish all relevant differ

ences between systems. Consequently, the satisfaction relation is too weak to trust in blind 

faith. The DI Model will be extended in Chapter 6 to overcome most of these shortcomings. 

A limitation of a different nature is that so-called isochronic forks cannot be modeled 

in the DI Model. Under isochronic operation a single signal can be transferred without 

delay from one process to another. However, when signals need to be duplicated, an 

explicit fork process is required. Such a fork has two outgoing branches whose delays are 

independent. Some circuit designs rely for their correctness on the assumption that the 

two branches of the fork have (almost) equal delays (see [vB92]). The DI Model has no 

counterparts for such isochronic forks. It is not hard to extend the model to incorporate 

isochronic forks and their kin, but we will not do so. Such an extension could be based on 

sets of symbols as atomic events instead of isolated symbols. 



Chapter 6 

Extended DI Model 

The DI Model of Chapter 4 has some limitations as pointed out in Section 5.5. In this 

chapter we introduce the Extended DI Model, which incorporates a progress concern

besides the concern for interference. 

We first extend the notion of a process and adapt the notions of system operation and 

correctness accordingly. From that point on, satisfaction and equivalence just follow in the 

familiar way. Canonical representatives are again defined in terms of a partial order on 

processes, giving rise to the notion of DI processes. Then we treat the characterization, 

composition, and factorization of these DI processes. The JTU-Rules have to be modified 

slightly. In Chapter 7, we introduce enhanced characteristic functions as an alternative 

way of describing process behavior. These functions shed new light on the partial order and 

JTU-Rules. Finally, Chapter 8 looks into the classification of DI processes, in particular 

with respect to output nondeterminism. 

We will use the same notation as in Chapter 4 for related entities. Whenever it is 

necessary to distinguish "old" and "new" entities, we subscript entities from Chapter 4 

with o and entities defined in this chapter with (3. 

6.1 Processes 

Let I: again be an infinite set of symbols, serving as a source for alphabets and traces. 

The trace set of a process in the DI Model of Chapter 4 partitions the universe of traces 

into two parts: the "allowed" traces (inside the trace set) and the "disallowed" traces (those 

outside). To capture a progress concern we subdivide the class of allowed traces into three 

subclasses: "transient" traces (those corresponding to states that the process is obliged to 

leave by producing some output), "input-demanding" traces (those which the process is 

not obliged to leave, but where it demands input; that is, for which the obligation to leave 

the corresponding state lies with the environment, namely by supplying some input) and 

"indifferent" traces (those for which neither process nor environment have an obligation to 

proceed). 

Thus, the processes in the Extended DI Model will put each trace into one of four 

69 
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categories. In keeping with the DI Model we leave the disallowed traces implicit. For

mally, a process P now is a quintuple (iP, oP, "\7 P, DP, t:.P) such that the following six 

requirements are met: 

1. iP and oP are disjoint alphabets, 

2. "\7 P, DP, and t:.P are pairwise disjoint trace sets, 

3. tP s:;; (aP)* (see below for the definitions of aP and tP), 

4. tP is non-empty and prefix-closed, 

5. (V t : t E "\7 P : (3 a : a E oP: ta E tP)), 

6. (Vt:tEflP:(3a:aEiP:taEtP)), 

where aP = iPUoP is the alphabet of Pas before, and tP "\7 PUDPut:.P is the trace 

set of P. Traces in "\7 P are called transient traces, those in flP (input- )demanding 

traces, and those in DP indifferent traces. Requirement 5 expresses that in a transient 

trace some output is enabled. Similarly, requirement 6 expresses that in a demanding trace 

some input is acceptable. 

The distinction between transient, indifferent, and demanding traces will be formalized 

when system operation is defined. The symbolism behind "\7, and fl can be memorized 

as follows. The transient triangle "\7 will eventually topple. The demanding delta fl does 

not. The indifferent box D has a flat base like fl but is upside-down symmetric. 

The set of all processes is denoted again by P"ROC. Reflection is the binary operator '"" 

on P"ROC defined by 

v-.P = (oP,iP,flP,DP,"\7P). (6.1) 

It interchanges inputs and outputs, and also transient and demanding traces, whereas the 

indifferent traces are invariant under reflection. P"ROC is closed under reflection. 

The after-operator is defined as follows. For process P and trace t E tP, process P / t 
is given by 

P/t = ( iP, oP, "\7Pjt, DP/t, 6.Pjt). (6.2) 

Recall that for trace set V and trace t, trace set V /t equals {u: tu E V: u}. Observe 

that P /t is indeed a process because of t E tP; in: particular, it satisfies requirements 5 

and 6. Reflection and 'aftering' enjoy the properties one would expect. 

In state graphs, the transient states will be labeled with "\7, the demanding states 

with 6., and the indifferent states with D. Of course, a state may be labeled "\7 only if it 

has an outgoing output edge; similarly, 6. requires an outgoing input edge. We hold on 

to the convention to render initial states solidly filled. The definition of the minimal state 

graph of a process is directly taken from the DI Model. 
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Figure 6.1: Labeled state graphs of three wires 
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6.1.1 Example Wire processes P and Q have input a and output b. The traces of P 

are generated by the left-hand labeled state graph of Figure 6.1. P does not care about 

receiving input (indicated by 0 in the initial state), but once input has arrived it is obliged 

to respond with output (indicated by \7 in the other state). It is a reliable wire. 

The traces of process Q are generated by the middle labeled state graph of Figure 6.1. 

Q does not care about input either, and after each input, it may respond with output 

but it might also not respond (indicated by 0 in the state after receiving input). It is an 

unreliable wire. The composite of system D in Example 5.5.1 is better described by Q. 
The state graph on the right-hand side of Figure 6.1 belongs to input-demanding unre

liable 1-wire R with output a and input b. It may, but need not, produce output (indicated 

by 0 in the initial state), and if it does produce output then it insists on input (indicated 

by ~ in the other state). R is the reflection of the reliable wire P on the left, and it will 

turn out to be the severest test that P passes. • 

6.1.2 Note The main reason for distinguishing input-demanding traces from indifferent 

traces, is that testing environments will be taken from the same process space. By being 

input-demanding, a test can distinguish between a process that is guaranteed to send 

output and a process that just may send output or not. This will be clarified in the next 

section where system operation is defined. A related argument is that the Factorization 

Theorem requires a process space that is closed under reflection. Because the expression 

"'( Q 11 v.R) appears in the Factorization Theorem, we also see that there will be a need for 

combining transient and input-demanding traces in a single process. 

Input-demanding states are also useful for another purpose. Recall the two-input-two

output arbiter A( a, b; c, d), which takes alternating request-release signals on its inputs 

{a, b} and produces alternating grant-acknowledge signals on its outputs { c, d}. If such 

an arbiter is used to provide mutually exclusive access to a resource, then it might be a 

good idea to specify the arbiter with a "desire" for release signals, in order to express that 

the resource should be released eventually. 

Furthermore, one might wonder whether it makes sense to have states labeled both \7 

and ~- Such a state, of course, should have both outgoing input and output edges. It 

would express that the process is guaranteed to produce output and that the environment 

is obliged to supply input. However, this is equivalent to labeling the state with \7 only. 

The input "desire" never gives rise to a deadlock, since the state will be left by the process 

anyway. Again, this will become clearer once system operation has been defined. • 

There is a "natural" mapping, say 1/J, from P'ROC p (the process space of this chapter) 

to P'ROCa (the process space of Chapter 4) that abstracts from progress aspects. It is 
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defined by 

'if;.P 

CHAPTER 6. EXTENDED DI MODEL 

(6.3) 

A mapping from PROCa to PROC13 is called an embedding. Embedding t.p is said to be 

trace-set preserving when 

(V P: PE PROCa: '1/J.(~.p.P) P). (6.4) 

There exist many trace-set-preserving embeddings. We discuss two of them here. The first 

such embedding I.{Jo is defined for P E PROCa by 

(6.5) 

where the right-hand side is trivially in PROC13 • Process Q E PROC 13 with 'VQ 0 is 

called minimally transient. Process Q with no demanding traces, that is with Ll Q 0, 

is said to be minimally demanding. A process Q is both minimally transient and mini

mally demanding if and only if 0 Q t Q. Such a process is called maximally indifferent 

or simply indifferent. Embedding t.po is uniquely determined by the requirements that it 

be trace-set preserving and that its images be maximally indifferent processes. It is briefly 

referred to as the indifferent embedding. 

The indifferent embedding is mainly interesting for theoretical purposes, since it pre

serves most aspects. For instance, it preserves reflection, in the sense that 

t.po.('-"P) (6.6) 

Since t.p0 is trace-set preserving, 'if; is a left inverse of t.p0 , that is ('1/Jot.po).P = P, Therefore, 

the pair (t.po, 'if;) is a retraction (see [HS86]). 

The second embedding t.pv is defined by 

t.pv.P (iaP,oaP, V, W,0), (6.7) 

where V= { t, a: a E oaP A ta E taP: t} and W =taP'- V. V consists of all traces for 

which some output is enabled and, hence, V cannot be extended without violating process 

requirement 5. It is easily verified that indeed t.pv.P E PROC 13 • Process Q E PROCfJ 
with 

'VQ = {t,a:aEoQAtaEtQ:t} (6.8) 

is called maximally transient. A process that is both minimally demanding and maxi

mally transient is said to be progressive. This second embedding is the unique trace-set

preserving embedding that maps onto progressive processes. It is briefly referred to as the 

progressive embedding. The pair ('f!v, 'if;) is also a retraction. 

We now carry over all building blocks introduced so far, by the progressive embedding. 

Note that this embedding does not preserve reflection. For instance, the (progressive 

embeddings of) W( a; b) and I( a; b) are no longer each other's reflection. 

Here is another example to illustrate the increase in expressive power of the Extended DI 

Model. This example also explains how processes that are neither minimally nor maximally 

transient may arise 
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6.1.3 Example Figure 6.2 depicts the labeled state graphs of processes P0 through P3 , 

each with input a, output b, and a trace set generated by the regular expression a, b. The 

four processes are minimally demanding, but they differ with respect to their transient and 

indifferent traces. 

Figure 6.2: Labeled state graphs of P0 through P3 with input a and output b 

Each of the four processes can accept input a and produce output b independently 

(the occurrence of a and b is not "coupled" as far as interference is concerned). P0 is 

minimally transient (output b might occur but then again it might not occur) and P3 is 

maximally transient (output b is guaranteed to occur, no matter what). P1 and P2 are 

neither minimally nor maximally transient. In P11 occurrence of input a will guarantee 

the-otherwise unreliable-output b. In P2 , however, occurrence of input a may jeopardize 

the-otherwise reliable-output b. 

It is not difficult to envisage how P0 and P3 arise as composites of systems built from 

(progressive) building blocks, but this is much less straightforward for P1 and P2 . Why 

would such in-between processes as P1 and P2 be needed? 

b~ 
Figure 6.3: Systems S1 (left) and S2 (right) 

Figure 6.3 shows systems S1 and S2 , whose composites are claimed to be P1 and P2 

respectively. These systems consist of progressive building blocks (the two kinds of boxes 

labeled 1 are processes that either accept up their input once, or are guaranteed to produce 

their output once). That the composites of these systems are indeed P1 and P2 cannot yet 

be verified, but with the help of some intuition one should at least get the idea. 

For S11 it is clear that input a will guarantee output b, whereas b is not guaranteed 

without a because a signal may get "stuck" at the C-element. In S2 , when no a-input is 

offered, the arbiter will grant the internal request, thus guaranteeing output b. However, 

when the environment supplies input a, there is a "race" between two requests at the 

arbiter; which request gets granted is now undetermined. • 

In the light of the preceding example, it appears that the set of all progressive processes 

is not closed under composition. In contrast to this, the set of all maximally indifferent 

processes is closed. We will come back to this in Chapter 8 (in particular, in Theorem 8.1.8). 
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6.2 Operation and Correctness of Systems 

The structure of systems is the same as before, though now systems are constructed from 

new processes. The operation of systems is refined as follows. 

First we deal with isochronic operation. Let S be a closed system. The reachable traces 

reach.S and interfering traces intf.S of S are defined as before, and also the statement'S 

is free of interference' retains its earlier definition. 

Each non-interfering trace of S is put into one of three, pairwise disjoint, sets VS, OS, 

or D.S, according to the following definition. For trace t E reach.S-..... intf.S we postulate 

t E VS (3 P : P E S : t faP E V P) , 

t E OS := (V P : P E S : t faP E OP) , 

t E D.S := (V P : P E S : t faP ft V P) 1\ (3 P : P E S : t faP E D.P) . 

To paraphrase, if there exists at least one process P E S such that t faP E V P, then 

trace t is transient in S. Otherwise, if there is no such P and there exists at least one 

process Q E S such that tfaQ E D.Q, then t is demanding in S. Otherwise, if there are 

no such P or Q, that is, if tfaR E OR for each process R E S, then t is indifferent in S. 

System S is called free of deadlock when 

D.S = 0, (6.9) 

that is, when S has no demanding traces. Since S is closed, the presence of a demanding 

trace constitutes a potential deadlock, because no process will see to it that this state does 

not persist and there is at least one process that insists on progress. Keep in mind that 

there is no (implicit) environment that might keep the system going. 

6.2.1 Example Consider closed systemS= {P, Q,R} where 

P (0,{a,b},{c},{a,b},0) 

Q ({a},0,0,{a},{c}), 

R ({b},0,0,{b},{c}). 

Process P will produce either output a or output b, after which it is indifferent. Pro

cess Q insists on receiving input a, after which it also is indifferent. Similarly, R insists 

on receiving b, after which it becomes indifferent. Compare this to system S7 par { P7 } of 

Example 3.2.7. 

As one may readily verify, we have for S: 

reach.S weave.S = {c, a, b}, 

vs {c}' 

os 0, 

D.S = {a, b}. 

Consequently, system 's is free of interference but not free of deadlock. Both Q and R 

desire input, but P satisfies only one such desire. • 
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Anisochronic operation of S is again defined as isochronic operation of S (the wired ver

sion of S). The extra wires introduced inS are taken to be progressive, that is, maximally 

transient and minimally demanding. 

Freedom of deadlock is imposed as an additional correctness concern. That is, we define 

Correct.S by 

Correct.S 'S is closed, and free of interference and deadlock' . 

Note that correctness is (again) based on Misochronic operation. Satisfaction and equiv

alence are defined as before, involving the modified notions of process and correctness. 

6.2.2 Example Wires P and Q of Example 6.1.1 are not equivalent in the Extended 

Dl Model, because P passes tests that Q fails. One such test is input-demanding I-wire R 

defined in the same example. We have 

Correct.{P, R} A -,Correct.{ Q, R}. 

The latter holds because unreliable wire Q deadlocks with R: R insists on input after a 

(a! E l:::..pR.R), which Q need not provide (a? E DpQ.Q) and, therefore, we have a!a? E 

!:::..{ Q, R}-: In fact, this shows -.( Q sat P). We do have P sat Q. .. 

6.2.3 Example For processes SEQ and PAR from Example 5.5.3 we have {SEQ} sata 
{PAR} in the DI Model. For the progressive embeddings of SEQ and PAR we no longer 

have {SEQ} satf3 {PAR} in the Extended DI Model. This is corroborated by testing 

environment U with 

Note that the reflected wire is a demanding 1-wire. We have for this test 

-.Correct.({SEQ} 11 U) A Correct.({PAR} 11 U), 

because SEQ deadlocks with U, whereas PAR does not. 

If one wishes to express that the implementer of PAR has the freedom to order the 

b- and c-cycles, then the four states of PAR reached by aob0 , aobob1 , aoc0 , and aoc0 c1 

should be made indifferent instead of transient. .. 

Let us have a quick look at the relationship between the concepts of this section and 

their relatives in the DI Model of Chapter 4. An abstraction or embedding of one process 

space in another is lifted to system spaces by elementwise application. It is easy to verify 

the following statements for appropriate systems S: 

weavef3.S = weave0 .('1jJ.S), 

Correctf3.S :;;:} Correcta.('I/J.S) , 

!:::..( r.p.S) 0, 

Correcta.S - Correct13 .( r.p.S) , 
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where lP is either the progressive or the indifferent embedding. The latter two equalities 

hold because for all processes P E P"ROCp involved, we have D.P = 0. Thus, it seems as 

if we have not gained much by extending the model. 

When considering satisfaction, the picture changes drastically. For S and T 

in sys"' and the indifferent embedding l{lo, we have 

S sat 01 T = l{lo.S satp ipo. T . (6.10) 

Note that the tests involved in satf3 range over SYSf3 and not just over ipo.SYSa. Since 

only indifferent processes are compared, tests R with D..R =f. 0 do not affect the outcome. 

Consequently, we have that 

(SYSa; par"" sata} is isomorphic to (ipo.SYSu; par {1> satp) . (6.11) 

This shows that we can find the old model as a submodel of the extended model, namely 

through the indifferent embedding. The Extended DI Model is indeed an extension of the 

DI Model, although the indifferent view is not what we had in mind with, for instance, the 

building blocks. 

Equation 6.10, however, does not hold when we take the progressive embedding IPv 

instead of t.po. We do have 

(6.12) 

but the implication from left to right is, in general, not valid. Here, tests R with D..R =f. 0 

play a crucial role. A counterexample to the reverse implication of (6.12) is provided by 

Example 5.5.3 above. 

Through the progressive embedding, the Extended DI Model can be viewed as a "non

conservative" extension of the DI Model: the progressive embedding provides a more ap

propriate interpretation for the building blocks, which-by necessity-does not preserve 

such aspects as the sat relation. 

6.2.4 Note System D in Example 5.5.1 and process P in Example 5.5.2 also fail test 

R "''PV'·W(a; b) and, hence, they are not good wire implementations. In the Extended 

DI Model the anomaly has disappeared. Systems Land M in Example 5.5.1, however, 

pass test R, because they never fail to do something (internally). In fact, they are still 

equivalent to W(a; b). This may be considered an anomaly, which falls outside the scope of 

our work. 

In order to deal with livelock one might treat internal symbols more explicitly and 

introduce infinite traces. Again three kinds can be distinguished: those traces that the 

system is obliged to avoid, those the environment is obliged to avoid, and those that need 

not be avoided. Livelock is characterized by a reachable infinite trace that should have 

been avoided. For example, a "fair" undetermined selector U( a; b, c) maps infinite traces 

of the form t(abt and t(ac)"', where ta E reach.U(a; b, c), toT. 

Not every such mapping is an acceptable process description. For instance, the pro

gressive wire W( a; b) may not map (ab)"' to T because that constitutes a contradictory 

requirement, which cannot be met. See [Ros88] for some of the subtleties that may emerge 

in such an approach to liveness. • 
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6.3 Canonical Representatives 

The Extended DI Model gives rise to a new notion of canonical representatives and DI 

processes. We begin again with partial order [;;:; on PROC. At this point, the definition 

of [;;:; may seem to fall from the sky, but in Chapter 7 we show how it can be derived from 

the definition of system operation. 

For processes P and Q we define P [;;:; Q by 

P [;;:; Q =: iP = iQ A oP = oQ A (6.13) 

(V t, a : a E iP A ta E tP A t E tQ : ta E tQ) A 

(V t, a: a E oP A t E tP A ta E tQ: ta E tP) A 

(V t : t E '\1 P A t E tQ : t E '\1 Q) A 

(V t : t E tP A t E ~Q : t E ~P) 

The first four conjuncts are taken from [;;:;,. New are the last two conjuncts, which can be 

rephrased as follows. 

• For all states t E tPntQ, if Pis transient in t, then so is Q ("Pis no more transient 

than Q"). 

• For all states t E tP n tQ, if Q is demanding in t, then so is P ("Pis at least as 

demanding as Q"). 

Relation [;;:; is a partial order on PROC. In Chapter 7, we look at some technical aspects 

of this order. 

6.3.1 Example For processes P0 through P3 of Example 6.1.3, we have P0 [;;:; P1 [;;:; P3 

and P0 [;;:; P2 [;;:; P3 . Processes P1 and P2 are incomparable. • 

To make process P smaller with respect to [;;:;, one should not change its input and 

output alphabets, but one may (i) increase its output capability, (ii) decrease its input 

willingness, (iii) make it less transient (transfer a trace from '\1 P to Dp ), (iv) make it 

more demanding (transfer a trace from DP to ~P), or any combination of the preceding. 

Methods (ii) and (iv) are conflicting, since a process must be willing to receive at least one 

input in a demanding state. Hence, there exists no least process in the set of processes with 

fixed input and output alphabet. This contrasts with the DI Model, where such processes 

do exist. Because reflection turns the order around, a similar situation holds for greatest 

processes. 

6.3.2 Example Consider processes P, Q, and R defined by 

P ({a},0,0,{c,a},0), 

Q = ({a},0,0,{a},{c}), 

R = ({a},0,0,{c},0). 

These processes have only one port, namely input a. P accepts one a but does not desire 

it, Q insists on one a, and R does not accept input at all. R is obtained from P by 

method (ii) above, and Q by method (iv). Thus we have Q c P and R c P. Both Q 

and Rare [;;;-minimal processes, and their set of common lower bounds is empty. • 
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The preceding example also shows that 'P'ROC(I, 0), the set of processes with inputs I 

and outputs 0, is not a complete lattice (only in the trivial case I= 0 = 0). As before, 

we add the two "virtual" processes J. (as process) and T (as !;-greatest process) 

to force completeness. For instance, the greatest lower bound of Q and R in Example 6.3.2 

above is J.. 

This time it is more complicated to verify that the thus expanded set of processes, 

which we denote by 'P'ROC again, is indeed a complete lattice. We will come back to 

this in Chapter 7. Nevertheless, everything proceeds as before. We will not repeat all 

definitions and theorems. The definitions of pass, Friends, [-], 11, and VI carry over in a 

straightforward way. The JTU-Rules, however, have to be adapted. We do so in the next 

section. First we look at three composition examples. 

6.3.3 Example We reconsider the composition appearing in Example 4.7.6. The pro

gressive embeddings of P and Q are presented on the left in Figure 6.4. On the right is 

a~~ 
X y 

Q 

Figure 6.4: Labeled state graphs of P, Q, and their composite P 11 Q 

depicted the composite P 11 Q. It can be obtained in a manner similar to that explained in 

Section 4.8 for the DI Model. In the Extended DI Model, however, there are two additional 

ways for reducing a process with respect to !;;;;. The first way is to make it less transient 

(by changing a \7-label to a 0-label in its state graph). The second way is to make it more 

demanding (by changing a 0-label to a ~-label; but this requires that the affected state 

has an input edge). 

It should be noted that the composite is not maximally transient, since the state reached 

by ac is labeled 0 and not \7. When it is changed to \7, the reflection is no longer a friend, 

because, for instance, trace a!c!a?c? is then demanding. • 

The preceding example shows that the progressive embedding does not preserve VI, that 

is, in general, we do not have P E VI"' :::;.. r.py-.P E VIr3. Theorem 8.1.10 characterizes 

the conditions under which the implication is valid. 

6.3.4 Example Let us study system S whose diagram appears on the left in Figure 6.5. 

The composite of S is shown on the right. If the environment waits for output c (which 

will come) and after receiving c sends input a, then output b is guaranteed. However, if 
the environment starts with sending input a, then there is a race between two requests 

and output b is still guaranteed but output c is not, though c may still appear (recall that 

the arbiter does not grant a second request until the first is released, which is not done 
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c 

b 

Figure 6.5: System S (left) and labeled state graph of its composite (right) 

here). Thus the states reached by ea and ac are not the same (their labels differ). As 

far as "future" traces are concerned, these states are equivalent, that is, in the DI Model 

they would be the same state. Also note that [8] 13 does not satisfy Rule Yft, whereas the 

abstraction P '1/;.[S)p does satisfy Rule Y~ because P/ac P/ca. • 

6.3.5 Example As promised, we consider again the design problem put forward in 

Example 5.5.4, but now in the context of the Extended DI Model. We attach the progressive 

interpretation to specification R. 
Let us again attempt the design with (progressive) fork F = F(a; x, c). On account 

of the Factorization Theorem, whichl is again valid, the remainder is specified by P = 
'-"(F 11 '""R). Figure 6.6 shows the labeled (DI) state graphs of ..,.,Rand F. We are interested 

in the least friend of system { "'R, F}. It is a process with inputs {b, c} and outputs {y, z}. 

Figure 6.6: State graphs of ""R and F 

In Example 5.5.4 we figured out that-within the DI Model-the trace set of P is 

generated by ((b, c)z)*. In the Extended DI Model, however, even the progressive version 

of this process is not a friend of {'-"'R, F}, because after output b there is still a demand 

for input in ""'R. A friend of { '""R, F} must be willing to receive input b, and after that it 

must produce some output to meet the input desire of "'R. However, it is impossible to 

know at this point which of the two outputs y or z may safely be produced. Therefore, 

only process T is a friend, and the design equation P: P 11 F ;;;! R has T as only solution, 

indicating that there are no "satisfactory" solutions (for a design of R using fork F). • 

The last example shows that forS E SYStJ, in general, we do not have '1/J.[S]p ['1/J.S),. 

However, the indifferent embedding <po preserves composites, that is, for S E SYSa we 

have <pa.[S].,, = [<po.S)fJ. 
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6.4 Extended JTU-Rules 

Characterization Theorem 4.7.3 also holds in the Extended DI Model provided that the 

JTU-Rules are properly extended as well. In particular, we have P E VI if and only if P 
satisfies the extended JTU-Rules. Here they are. 

• P satisfies Rule W when for all traces s and symbols a we have 

saa rf. tP. 

• P satisfies Rule X when for all traces s and t, and symbols a and b with a ;::;:; b we 

have 

sabt E tP = sbat E tP , 

sabt E V' P _ sbat E V' P , 

sabt E !::J.P = sbat E !::J.P . 

• P satisfies Rule Y when for all traces s and t, and symbols a, b, and c with a :;;5 c 

and b ;::;:; a we have 

sactb E tP 1\ scat E tP => scatb E tP , 

scat E V' P 1\ sa et E tP => sact E V' P 

scat E !::J.P 1\ sact E tP => sact E !::J.P 

if a E oP 1\ c E iP , 

if a E iP 1\ c E oP . 

• P satisfies Rule Z when for all traces s, and symbols a and c with a :;;5 c we have 

sa E tP 1\ se E tP =? sac E tP 1\ sea E tP . 

The formulation of Rules W and Z has not changed. Rules X and Y have both been 

extended with two conditions concerning transient and demanding traces. Since Rule X 

implies 

sabt E DP =: sbat E DP , 

it can again be interpreted as expressing that the order of signals in the same direction 

is irrelevant for future possibilities (where 'future possibilities' not only concern trace-set 

membership, but also whether it is transient, indifferent, or demanding). Under this mod

ified interpretation of 'future possibilities', also the interpretation of Rule Y is maintained. 

Again, often a simpler version of Rule Y holds: 

• P satisfies Rule Y' when for all traces s and t, and symbols a and c with a :;;5 c, 

sa E tP, and seE tP we have 

sact E tP 

sact E V' P 

sact E !::J.P 

scat E tP , 

scat E V' P , 

scat E !::J.P . 
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Note that Y' implies Y. Rule Y' expresses that if two signals of opposite direction can 

both occur, then their order is irrelevant for future possibilities. 

The composites in Examples 6.3.3 and 6.3.4 above satisfy Rule Y but not Y'. In terms 

of the after-operator, Rules X, Y, and Y' can again be rephrased in accordance with 

Theorem 4.7.4. We will elaborate on this in the next section. 

6.4.1 Theorem (Fundamental property of DJ processes) 

For closed system S such that of each pair of connected processes at least one is in VI, we 

have 

'S is free of interference and deadlock' 

'S is free of interference and deadlock' 

Proof idea: The effects of additional wires are already incorporated in a DI process. Es

pecially see the proof of Theorem 4.7.3 in Section 7.2. • 

6.4.2 Example Reconsider the processes of Example 5.3.2. The initial states of P 

and Q can be labeled 'V to indicate that these processes will eventually produce output 

when no input is supplied. Also the states reached by a? (in P) and b? (in Q) can be 

labeled with \7. However, states 2 and 3 cannot be labeled 'V (nor ~) because they have 

no outgoing edges, so they must be labeled D. 

In order to make the processes as transient as possible, one might be tempted to label 

states 1 and 4 with \7. This, however, would not yield a DI process, that is, the result is not 

a canonical representative, since it fails Rule Y. The reason is that states 2 and 3 are not 

labeled \7. States 1 and 4 must be labeled D (again ~ is impossible). As a consequence, 

the initial state of composite P 11 Q will be labeled D as well and not \7, revealing that 

P 11 Q may fail to do any output. 

This is true even under isochronic operation, since P and Q are DI processes (see 

Theorem 6.4.1). When states 1 and 4 are labeled \7, the processes are no longer DI and 

deadlock can only be "detected" under anisochronic operation. • 
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Chapter 7 

Enhanced Characteristic Functions 

The partial order !;;;; and also the JTU-Rules can be understood better when processes 

are described in a different way. This chapter introduces an alternative representation for 

processes. We work in the context of the Extended DI Model, though everything can be 

translated to the DI Model as well. In contrast to other chapters, it looks more at the 

details of the underlying mathematics. 

As pointed out in the introduction of Chapter 6, a process partitions the universe of 

traces into four parts. A slightly more convenient partition-one that takes into account 

how a process operates in a system-splits the trace set's complement (the disallowed 

traces) into traces that correspond either to unreachable or to interfering states (also 

see [Ver89]). A trace is unreachable if it "steps" outside the trace set via an output. 

The process is disallowed (in fact, unable) to produce these traces. A trace is interfering 

if it "steps" outside via an input. The obligation to avoid these traces lies with the 

environment. These two classes exchange roles under reflection. A process can, thus, be 

viewed as attaching one of five labels to each trace: unreachable, transient, indifferent, 

demanding, or interfering. Let us develop this idea more formally. 

An enhanced characteristic function (ECF) is a mapping from the set I:* of all 

traces to A = {T, V, 0, .6., ..L}, where A is just a set of suggestive squiggles representing 

the five trace labels. The set of all ECFs is denoted by t:C:F. Typically, variables f, g, 
and h range over t:C:F. Observe that for every trace t E tP, where Pis a process different 

from T and ..L, we have 

t (/: tP = (3 to, a, t1 : t toat1 1\ to E tP 1\ to a (/: tP : a E aP) , (7.1) 

because tP is non-empty and prefix-closed. In fact, to, a, and t1 on the right-hand side are 

uniquely determined by t when the left-hand side holds. For process PE PROC-.... {T, ..L} 
we now define its ECF f P by 

l 
T if (3 to, a, t1 : t faP toat1 I\ toE tP I\ to a (/: tP: a E oP) 

V if t faP E V P 

fP.t = 0 if ttaP E OP 

.6. if t taP E D.P 

..L if (3 to, a, t1 : traP = toat1 I\ to E tP 1\ toa (/: tP : a E iP) 

83 
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Note the projection oft on aP. The images V, o, and A are directly associated with the 

three components V P, OP, and AP respectively. The images T and .l are associated with 

traces that stepped outside the trace set via an output or an input respectively. The reason 

for defining ECFs with domain E* instead of (aP)* is that this simplifies the treatment of 

composition. 

The ECFs of processes T and .l are simply defined by fT.t = T and f.l.t = .l. 

7.1 Composition and Correctness for Trace Labels 

We first study the set A of trace labels a little more. Variables A, tt, and v range over A. 

Composition, denoted by 11, is the binary operator on A defined in Table 7.1. This 

operator forms the basis for characterizing correct system operation. The intuition is as 

follows. For a trace to be unreachable under the composition of two processes, it must 

11 T V 0 A .l 

T T T T T T 

V T V V V .l 

0 T V 0 A .l 

A T V A A .l 

.l T .l .l .l .l 

Table 7.1: Composition operator 11 on A 

be unreachable by at least one; thus, T prevails. For a trace to be interfered under the 

composition, it must be reachable for both and interfered for at least one; thus, .l prevails 

for non-T arguments. For a trace to be transient under composition, it must be reachable 

and not interfered for both, and transient for at least one. For a trace to be deadlocked, it 

must be reachable, not interfered, and not transient for both, and demanding for at least 

one. For a trace to be indifferent, it must be indifferent for both. 

7.1.1 Theorem Composition operator 11 on A is commutative, associative, idempotent, 

and has 0 as unit. Furthermore, it has T as zero and there are no zero divisors under 11, 

that is, 

Alltt=T:: A=TVtt=T. 

Proof Consider the order :5 on A defined by 

and observe that composition 11 corresponds to taking the minimum under this order. The 

binary minimum operator is commutative, associative, idempotent and has D, being the 

:5-greatest element, as unit, and being the :;-least element, as zero. Finally, a minimum 

operator has no zero divisors. • 
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In view of its associativity, commutativity, idempotence, and unit element, we can extend 11 

to a unary operator on sets over A. The ECF fS of system S is now defined by tracewise 

composition: 

fS.t II{P: pEs: fP.t} 0 (7.2) 

If, furthermore, we define Correct on A by 

Correct.>. (7.3) 

then we have 

Gorrect.S (V t : t E 2:* : Correct.(fS.t)) . (7.4) 

This characterization of correctness abstracts from the operational view. On A we also 

define pass-sets and a corresponding satisfaction relation sat and equivalence equ: 

pass.).. = {tt: Correct.(>. lit£): tt} , 

).. sat tt - pass.>. 2 pass.J.t , 

>. equ tt pass.>.= pass.J.t . 

The pass-sets of A are tabulated on the left in Table 7.2. Notice that these pass-sets are 

T 
>. pass.>. I 
T {T, \7, 0, Ll, .l} \7 

\7 {T, \7, o, Ll } I 
0 

0 {T, \7, 0 } I 
Ll {T, \7 } Ll 

.l {T } I 
.l 

Table 7.2: The pass-sets for A and the Hasse diagram for ~on A 

unique, that is, pass.>. = pass.J.t if and only if >. = J.t. Hence, relation sat induced by pass 
is a partial order. We also denote it by ;;;!. The Hasse diagram of is given on the right 

in Table 7.2. Obviously, (A;~) is a complete lattice. Relation equ on A boils down to 

equality. 

Observe that each pass-set of A has a ~-minimum. Reflection"" on A is defined by 

..,.,). = min(pass.>.) (7.5) 

and is tabulated in Table 7.3. 
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A T \7 0 D. _L 

'-"'A _L D. 0 \7 T 

Table 7.3: Reflection operator "" on A 

Everything involving A has been built up from 11 and Correct. The partial order !;;;; and 

reflection "" are derived concepts. From Tables 7.1, 7.2, and 7.3 we can readily infer a 

number of properties, such as 

.A E pass.M ). ;;;;] '""M ' (7.6) 

Correct.>. ). ;;;;] ......,o ) (7.7) 

"""'A = A, (7.8) 

.A!;;;M ..,). ;;;] ..,..,M , (7.9) 

,\ 11 M;;;] V - A;;;] '-"(MII""'V). (7.10) 

In fact, these properties can be proved without relying on the specific definitions of 11 and 

Correct. All that is needed are (i) the properties of 11 mentioned in Theorem 7.1.1, (ii) that 

each pass-set has a minimum, and (iii) the definitions of pass, and '-" (see [Ver94]). 

7.2 Neighbor-Swap Rule 

Partial order and reflection ......, on A can be lifted to t:C:F by tracewise application. This 

makes (t:CF; a complete lattice as well. 

Reflection on PROC is related to reflection on t:CF: 

f(,_,..,P) V'>fp . (7.11) 

Less obviously, the partial order !;;;; on PROC turns out to be related to !;;;; on t:CF: 

p Q iP = iQ A oP oQ A fP !;;;; fQ . (7.12) 

From this equivalence it is immediately obvious that !;;;; is a partial order on PROC. 

7.2.1 Theorem For connectable systems Sand T such that Spar T is closed and DI, 

and nS n nT = 0 (in which case no renaming is needed forS parT), we have 

Gorrect.(S par T) = fS;;;;] ...,.,fT , 

Proof Bearing in mind the properties of the preceding section, we derive 

Correct.(S par T) 

{ Equation 7.4 and Theorem 6.4.1, using that Spar T is closed and DI } 

('it:: Correct.(f(S par T).t)) 

{ second property above (correctness on A } 

(7.13) 
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(V t :: f(S par T).t ""D) 

{ the assumptions imply Spar T S U T } 

(V t :: f(S U T).t ;J ""D) 

{ definition of f for systems } 

(V t :: fS.t 11 fT.t ;! ""D) 
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{ last property above (factorization on A), using that ""'""D = D is the unit of 11} 

(V t :: fS.t ;J '-"(fT.t)) 

{ definition of ;J for ECFs } 

fS;! ""fT 

• 

Using ECFs, the after-operator can also be defined sensibly for traces not in the trace 

set. For ECF f and trace t, ECF f jt (pronounced 'j after t') is defined by 

(! jt).u = f. tu . (7.14) 

Thus, for process P and trace t (/. tP, we have (fP)jt = fT if fP.t T, and (fP)/t = f..l 

if f P. t = .L Therefore, we define P / t for t (/. tP by 

Pjt = fP.t. (7.15) 

Observe that these definitions imply (fP)jt = f(P jt). 

Theorem 4.7.4 reformulates JTU-Rules X, Y, and Z in terms of the after-operator. 

With the extended after-operator, these three rules can be combined into a single rule. It 

is called the neighbor-swap rule and defined as follows: 

• Process P satisfies Rule N S when for all traces s and symbols a and b we have 

aEoPVbEiP::::} Pjsab;JPjsba. 

Note the disjunction on the left. For process P, relation 'i:::,p on aP defined by 

a E oP V bE iP (7.16) 

happens to be a pre-order (we omit the subscript when P is clear from the context). The 

corresponding equivalence is given by ;:;::;, expressing that symbols have the same direction. 

The neighbor-swap rule is equivalent to 

(Vs, a, b, t: a?::, b : fP.sabt ;J fP.sbat) . (7.17) 

7.2.2 Theorem The conjunction of Rules X, Y, and Z is equivalent to Rule NS. 
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Proof That Rule N'S implies the other three follows immediately from Theorem 4.7.4. 

Assuming process P satisfies Rules X, Y, and Z, we show that it satisfies the neighbor

swap rule. On account of symmetry (under reflection) we may also assume that a E oP. 
We distinguish the cases b E oP and b E iP. 

Case bE oP: If sab E tP, then Theorem 4.7.4 applies and together with Rule X yields 

PI sab == P lsba, so we are done. Now assume sab ~ tP. We infer 

sa E tP A sab ~ tP =? PI sab T , 

s E tP A sa !f. tP =? PI sab T , 

s ~ tP =? PI sab PI sba . 

In all three cases we thus find P lsab ;;;) P lsba. 
Case b E iP: If sa E tP and sb E tP, then Rule Z yields sab E tP and sba E tP. 

In that case, Theorem 4.7.4 applies and together with Rule Y gives P lsab ;;;) P lsba. Now 

assume sa ~ tP (the case sb ~ tP follows by symmetry under reflection). We infer 

sE tP A sa !f. tP =? Plsab T, 

s !f. tP =? PI sab = P lsba . 

In both cases we again find PI sab ;;;) P lsba, which completes the proof. .. 
Finally, we outline a derivation of the equivalence of characterizations 4 and 5 of Theo

rem 4. 7.3 when translated into the Extended DI Model. That is, we prove that process P 

satisfies the extended JTU-Rules if and only if Correct.{?, ""P}. 

Proof We define relation ~on (aP)* as the smallest transitive relation satisfying 

a ;(: b = sabt ~ sbat (7.18) 

for all traces s and t and symbols a and b. It depends on iP and oP but not on tP. 
Relation ~ is a pm-order. An interpretation of ~ is given below (it is related to the 

composability relation of [Udd84] and the reordering relations of [CM84, JHJ89]). First 

we derive 

'P satisfies Rules X, Y, and Z' 

{Theorem 7.2.2, Equation 7.17} 

(Vs, a, b, t : a;(: b: fP.sabt ;;;) fP.sbat) 

{ induction on the definition of ~ in terms of ;(: } 

(Vu, v: u ~ v: fP.u;;;) fP.v) 

{ property of ;;;) on A } 

(Vu,v: u ~ v: fP.uu..,fP.v;;;) D) 

{ property of "" for ECFs } 

(Vu, v: u ~ v: fP.u 11 f(..,P).v;;;) D) 

The last expression taken together with Rule W is equivalent to Correct.{?, '-"'P}, because 

u ~ v characterizes the indifferent states of the wire interface between P and ..,.,p, and 

fP.u uf( v-.P).v ;;;) D expresses that in 'state' ( u, v) there is neither interference at P or v-.P, 
nor deadlock. Rule W takes care of interference at the wire interface. .. 
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7.3 GLBs and Composites 

Every process has an ECF, but not every ECF is obtainable from a process. We will now 

characterize the ECFs of processes and explain how to compute greatest lower bounds and 

composites using ECFs. 

For ECF f and disjoint alphabets I and 0, the seven predicates E; are defined by 

Eo: ttA =utA => f.t f.u where A= Ju 0 

f.t T => j.tu T 

E2: f.t ..l => f.tu ..l 

E3: f. tu TAuEI* => f.t = T 

E4: f.tu = ..l A u E 0* => f.t ..l 

Es: f.t V' => (3 a : a E 0 : f.ta =f:. T) 

E6: f.t ~ => (3 a : a E I : f.ta =f:. .L) 

where each predicate should be read as universally quantified over traces t and u. Note 

that E2, £4, and E6 are the "reflections" of £1> £3, and Es respectively; eo is its own 

"reflection". Predicate Eo expresses that the f -images depend only on symbols in I U 0. 
Predicates £1 and £2 express that T and ..l "persist". Predicates E3 and E4 together capture 

(indirectly) that a trace "stepping outside the trace set" via an output is mapped to and 

via an input to .L Predicates £5 and E6 derive from requirements 5 and 6 for processes. 

We write £1,k for the conjunction of E1 and £k. The subsets EC:F;(I, 0) of EC:F corre

sponding to the predicates £; are defined by 

EC:F;(I, 0) = {! : E; :!} · (7.19) 

Similarly, we write EC:F 1 ,~c(I, 0) for the intersection of EC:F1(1, 0) and £C:Fk(I, 0). 

The next theorem gives a one-one correspondence between processes in PROC(I, 0) 

and ECFs in EC:F0, ... ,6(1, 0). 

7.3.1 Theorem (Characterization of process ECFs) 
For process P we have 

fP E EC:F0 , ... ,6(iP,oP). 

Conversely, if f E EC:Fo, ... ,6 (1, 0), then quintuple 

( 1, o, r-.v, J-.o, r-.~), 

where .A= { t : f.t =A: t}, is a process with ECF f. 

(7.20) 

• 
The tree of ECF f is a vertex- and edge-labeled directed graph, where the edge-labeled 

directed graph is given by 

( E*, {t, a:: (t, a, ta)}) (7.21) 

and f is the vertex-labeling. Such a graph is a tree with root c. 
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7.3.2 Example Let I= {a,b} and 0 = {c,d}. Figure 7.1 presents corresponding 

parts of the trees of six ECFs /1 through f6 (the bold vertex labels will be explained in a 

moment). ECFs j 1 and h may be obtained from suitable processes: they are postulated to 

satisfy fo through e6. 

!: 

~
c! a? 

3: V .L 

t d! b? 

Cl .L 

c! a? 

k v-r-!Jio.l 
~ d! b? 

Cl .L 

Figure 7.1: Subgraphs of ECFs /1 through /6 

ECF fa is the greatest lower bound in t:C:F of j 1 and h, that is, taken tracewise. It 

is does not satisfy t:6 ; see the state with the bold 6-label. Every ECF g obtained from 

a process such that g !;:; fa, labels that bold state with ..l. Therefore, to find the greatest 

lower bound of !I and h in fP'ROC, this label should be changed. to ..l. The result is shown 

as f4. However, /4 fails to satisfy t:4 (at the bold state). The only way to eliminate this 

violation without increasing the ECF, is to change the bold '\7-label to yielding fs. Now, 

/ 5 violates t:2 , which can be repaired by changing the bold D-label (and all its successors) 

to ..l as well. The final result is k This shows how the greatest lower bound in P'ROC 

may be approximated by successive reductions. • 

The question remains whether the approximations suggested in the previous example ac

tually converge to a process. That this is indeed the case is a little delicate and can be 

understood as follows. 

Let I and 0 be disjoint alphabets; these are implicit parameters to the definitions in 

the remainder of this subsection. Fori E {0, 2, 4, 6}, define transformations <1?; on t:C:F by 

<l?o.f. t n{u:t[A uiA: f.u} where A= I U 0 

4?2.f. t { t.t if to, tl : t = totl :f. to = ..l) 
= otherwise 

<}? 4.f. t { f.t if (3 u: u e o·: f.t = ..l) 
otherwise 

4?6 .f. t { t.t if f. t = 6 1\ (\if a : a E I : f. ta = 
otherwise 
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7.3.3 Example For the ECFs of Example 7.3.2 we have 14 <J.>6}3, /5 = <I>4.j4 , and 

/6 = <J.>2.fs. .. 

The next theorem states some properties of the transformations <I>;, in particular how they 

relate to the predicates [j. 

7.3.4 Theorem Fori E {0,2,4,6} we have 

1. <I>; is !;-monotonic, 

2. <I>;.f!; j, 

3. <l.>;.j = f if and only if f E £CF,(I, 0), 

4. g!; f with g E f:CF2,4,6(I, 0) implies g!; 4!;.!, 

5. f E £CF1,3,s(I, 0) implies 4!;.f E £CF1,3,5(J, 0). 

Define transformation <I> on f:CF as the composition of the four 4!;: 

4! = i1>o o <J.>2 o 4!4 o <J.>6 . 

.. 

Transformation <I> inherits all properties of the four <I>;, except that property 3 should be 

restated as 

3'. <J.>.f = f if and only if f E £CFo,2,4,6(J, 0). 

By iterating 4! sufficiently "often" a fixpoint is reached (see [CC79]): there exists a least 

ordinal "' such that <I>" .j is a fixpoint of <I>. It turns out that w iterations, where w is the 

least infinite ordinal, suffices. In fact, for ECFs derived from finite-state processes, a finite 

number of iterations will do. Define transformation L-J on £CF by 

From the next theorem we may infer that for f E f:CF1,3,5(J, 0), lJJ is the greatest process 
ECF at most f, that is, we have 

LfJ = u{g:gEf:CFo, ... ,6(J,O) A 9 !;j :g}. (7.22) 

7.3.5 Theorem We have 

1. l-J is !;-monotonic, 

2. Lf J !; f) 

3. lJ J = f if and only if f E f:CFo,2,4,6(I, 0), 

4. 9 !; f with g E £CF2,4,6(1, 0) implies g !; Lf J, 
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5. f E £C:Fl,3,s(l, 0) implies lfJ E £C:Fo, .. ,6(J, 0). .. 
7.3.6 Example The premise in statement 5 of Theorem 7.3.5 is indispensable. For 

instance, assume a E I, f.c D, and f.t = T for t # c:; in particular f.a = T. In 

that case, f rt £C:F1,3,5(l, 0) because f violates £3. Moreover, if!i .f = f and, hence, also 

l!J=f. .. 

Let W <;;;: P'ROC. We are interested in computing the greatest lower bound of W with 

respect to ~ on P'ROC. Without loss of generality we may assume W n {T, .l} = 0, 

since n W n ( W " {T}) and .l E W =? n W .l. Moreover we may assume W <;;;: 

P'ROC(I, 0), because if W contains processes P and Q for which (iP,oP) # (iQ,oQ), 

then n W = .l. 

7.3.7 Theorem Let W <;;;: P'ROC(I, 0). Then ECF f defined by 

f = n {P: PE W: fP}, 

where the greatest lower bound is taken in £C:F, (by tracewise application) is in £C:F1,3,5 , 

and n W is the process in P'ROC (I, 0) corresponding to ECF lf J . 
Furthermore, for systemS we have that its ECF fS is in £C:F1,3,5 and its composite [S]] 

is the process in P'ROC(xiS, xoS) corresponding to ECF LfS J, where L -J is taken with 

I= xiS and 0 xoS. 

Proof For the first statement it suffices to verify that for V <;;;: £C:F1,3,5(I, 0) we have 

n V E £C:F1,3,5(J, 0), where n is taken in £C:F (tracewise). This verification is merely 

tedious, and omitted here. 

A similar verification yields that for system S we have fS E £C:F1,3,5 (J, 0), where 

I = xiS and 0 = xoS. For the final proof obligation, we now derive 

[S] 

{ definition of [-1 } 

vo n Friends.S 

{ definition of Friends } 

vo n {R: RE P'ROC 1\ Correct.(S par {R}): R} 

{ reflection turns ~ around, P'ROC is closed under reflection } 

u{R: RE P'ROC 1\ Correct.(S par {'-""R}): R} 

= { Theorem 7.2.1 } 

u {R: RE P'ROC A fS -:;;1 fR: R} 

{ lfJ is the greatest process ECF at most f, using that fS E £C:F1,3,5(l, 0)} 

'process corresponding to LfS J' 
.. 
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7.3.8 Note In Example 7.3.2 we have seen that the ECF of the greatest lower bound 

of two processes is not necessarily obtained by taking the tracewise greatest lower bound. 

The tracewise greatest lower bound f may still be too large and must be lowered to lf J . 
It turns out that in the DI Model of Chapter 4, greatest lower bounds can be taken 

tracewise without further lowering. In the Extended DI Model this fails because of condi

~~. . 
7.3.9 Note When considering finite-state specifications, the tracewise composition op

erator 11 on t:C:F (11 appears in the definition of fS) involves a product construction, whereas 

the transformation l-J involves a power construction. This says something about the com

plexity of computing [S]. • 

Finally we prove the fourth statement of Theorem 4.6.4. 

7.3.10 Theorem For connectable systems S and U such that Spar U is closed we 

have 

Correct.(S par U) = [S] ;;;) '-"[ U] . 

For systems S and T we have 

SsatT = [S];;;J[T]J. 

Proof On account of Theorem 4.4.2 and by appropriate renaming of the internal symbols 

in§ and D, we can find systems S' and U' such that nS' n nU'= 0, S equ S', U equ U', 

and S' par U' is Dl. We derive 

Correct.(S par U) 

{ construction of S' and U' } 

Correct.(S' par U') 

{ Theorem (7.2.1 } 

fS' ;;;J '""fU' 

{Theorem 7.3.5, using that '""fU' E £CF2,4,6(J, 0)} 

lfS'J ;;;J '""fU' 

{ reflection turns ;;;) around } 

'""lfS'J ~ fU' 

{Theorem 7.3.5, using that lfS'J E £CF1,3,s(J, 0) } 

'-"lfS'J ~ lf U' J 
{ reflection turns ;;;) around, [ T] = l f T J } 

[S'];;;) '""[U'] 

{ construction of S' and U', Note 4.6.5 } 

[S]J ;;;J '""[ U] 
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Concerning the second statement we now derive 

S sat T 

{ definition of sat } 

(VU:: Correct.(S par U) ~ Correct.(T par U)) 

{ first statement } 

(V U :: [ S]J ;;;) "' [ U] ~ [ T] ;;;) "' [ U]) 

=> { instantiate with U := { "'[ T]J }, using that 7JT is closed under "' } 

~ { transitivity of ~ } 

[S] ;;-! [T] 

This concludes the proof. • 
7.3.11 Note There is some freedom in defining the predicates E; that characterize the 

ECFs of processes. For instance, Ea could be changed to 

f.tu = T A ufi = c: => f.t = T, (7.23) 

without affecting the conjunction Eo A Ea, because Eo implies 

u f(I U 0) = c: => f.t = f.tu . (7.24) 

It may, however, make a difference in the analysis of the related closure transformations <I>;. 

Our choice of E; 's involved some fine tuning. We do not claim that there is a recipe for 

fine tuning, nor that it is always possible to determine fixpoints by taking limits based on 

separate closure properties. • 

7.3.12 Note The juggling with alphabets I and 0, in particular in Theorem 7.3.7, 

could have been avoided by considering triples (I, 0,!). For instance, the set PROC' 

defined by 

PROC' = { I, O,J: f E EC:Fl,a,s(I, 0): (I, 0,!) } 

could be used as a new process space, from which systems can be built in the usual way. 

In fact, it is even nicer to describe process structure not by the two alphabets I and 0, 

but by a mapping e from 1: to 

{T, 0, !, ?, +, ..L} , 

where 0 stands for 'unused', ! for 'external output',? for 'external input', +for 'internal', 

..L for 'conflicting', and T for the reflection of ..L. Processes are then described by pairs 

(e,f) satisfying certain predicates. This idea is worked out in more detail in [Ver94]. 

PROC' is closed under composition and taking greatest lower bounds, both done trace

wise. However, it is not closed under reflection and, in general, we do not have 

(7.25) 

In spite of the additional processes in PROC'-these are also used as test environments

the satisfaction relation on the subspace of PROC' corresponding to PROC is the same 

as sat. An advantage of the extended space PROC' is that greatest lower bounds and 

composites (now corresponding to PROC) may be approximated in smaller steps that 

stay within the process space. • 
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Output Nondeterminism 

A process specification captures both the obligations of the process (regarding output) 

and the obligations of its environment (regarding input). The output obligations play a 

role similar to that of the post-condition in programming, whereas the role of the input 

obligations resembles that of the pre-condition. In programming, the post-condition often 

provides better guidance for design than the pre-condition. Similarly, the output obliga

tions are generally more important for design of delay-insensitive systems than the input 

obligations. 

In this chapter, we take a closer look at nondeterminism and its relation to design 

freedom in the context of the Extended DI Model. Taking the introductory observa

tions at heart, we will focus on nondeterminism related to output, in particular. Input 

nondeterminism-think, for instance, of the merge process-is less interesting. 

8.1 Output Refusal Sets 

We will define output (non)determinism in terms of refusal sets, which are familiar from 

the Failures Model for CSP (see [Hoa85]). For process P, we say that alphabet A, A :; oP, 

is an output refusal set, or briefly a refusal, at trace t, t E tP, when 

(:J u: u E (oP "-A)*: fP.tu E {D,~}). (8.1) 

The idea is that alphabet A :; oP is a refusal at t E tP, if process P, after doing t, can 

evolve to a state, by doing output, where it has no further output obligations, without 

having done any of the outputs in A. 

8.1.1 Note In the Extended DI Model, it does not make much sense to introduce input 

refusal sets. Whenever a process may refuse an input, the environment had better not send 

it at all, acting as if the process cannot accept the input. Consider, for example, system 

S { W( a; b), W(b; c) } . When analyzing the operation of this system, one will find an 

execution scenario in which the environment sends two a-inputs in a row before receiving 

output without causing interference. This happens if the first wire has transferred its signal 

to the second wire before the second a-input arrives. However, this same behavior of the 

95 
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environment may also result in interference. Hence, the environment should refrain from 

sending the second a-input before receiving the c-output. 

Of course, one may look at the output refusal sets of the reflection to say something 

about the nondeterminism in the environment of the process. .a 

The definition of refusals can be extended to traces not in tP as follows. For process P, 

alphabet A ~ oP is a refusal at trace t, when 

(3u: u E (oP' A)*: fP.tu!;;; (8.2) 

Let u:; analyze fhis definition. If for some u E (oF;)* we have fP.i... l., then fP.t = l. 
on account of property £4 of process ECFs. This shows that (8.2) is indeed an extension 

of (8.1). If fP.t T, then for any u E (oP)* we have fP.tu Ton account of property £1. 

Hence there are no refusals at such t. If fP.t [; 0, in particular if fP.t = l., then any 

A ~ oP is a refusal at t. Apparently the extreme cases with t rj. tP are not very interesting. 

Definition (8.2) is preferred because it simplifies proofs. For instance, the following 

statement is an immediate consequence of (8.2): If alphabet A ~ oP is a refusal at trace t 

for process P and P ;;;! Q, then A is also a refusal at t for Q. 

8.1.2 Example Figure 8.1 shows the state graphs of the fifteen DI processes with out

puts {a, b} and no inputs. In some of the state graphs, dotted edges appear. These tran

sitions step outside the trace set and have been included to simplify comparison under [;. 

The two columns in the middle are mutually symmetric under swapping of a and b. 

b 
•-o 

r-1 0 EI a~ Po ~ 
o-o -o 

•-o 
El 

•-v •-v 
~ p4 ~ l~l l~l o-o 

•-o ·-1;1 r;~:T 
,. ...... ,..T 

~ Ps : : Pg : · Pn · 
V y V 'f V 'f 

D······>T T······>T o-----·>T T······>T 

r~ r-l F~T . pl3 • 

V 'f V 'f 
D······>T T----··>T ······>T 

Figure 8.1: State graphs of all DI processes with two outputs 
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It may be surprising that all these processes can actually be made from building blocks. 

For instance, in process P1, neither output is guaranteed initially, but output b is guaran

teed after a. However, output a is not guaranteed after b. Figure 8.2 shows a system with 

composite P1. 

Figure 8.2: System with composite P1 

Table 8.1 lists the refusals at c of processes P0 through P14 . 

process 

Po .. 3, Ps .. n 

P4, P12 

Ps, P13 

PG, P14 
p7 

refusals at trace c 

0, {a}, {b}, {a, b} 
0,{a},{b} 
0,{a} 
0,{b} 
0 

Table 8.1: Refusals of P0 through P14 

• 

Refusals are "downward closed", in the sense that if for process P, alphabet A ~ oP is 
a refusal at trace t, and alphabet B ~ A, then also B is a refusal at t. Hence, only 

~-maximal refusals are interesting. 

Refusals "partly propagate backward over outputs", in the sense that if for process P, 

alphabet A ~ oP is a refusal at trace ta with a E oP, then A " {a} is a refusal at t. 
For process P, refusal A ~ oP at t E tP is called trivial when 

(Vu : u E ( oP)* 1\ tu E tP : u I A =c) , (8.3) 

that is, when P, after doing t, cannot produce any of the outputs in A. 

8.1.3 Example Table 8.2lists the trivial refusals at c of the processes in Example 8.1.2. 

Note that there is no process with precisely 0, {a}, and {b} as trivial refusals. Also note 

process 

Po .. s, P12 

Pg, P13 

P10, P14 

Pn 

trivial refusals at c 

0 

0,{a} 
0, {b} 
0, {a}, {b}, {a, b} 

Table 8.2: Trivial refusals of P0 through P14 

that the four ~-maximal processes P7, P 11 , P 13, and P 14 are the only ones for which all 

refusals at c are trivial. • 
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Here are some general properties of trivial refusals. If A <:;.: oP is a trivial refusal at t and 

B <:;.: A, then B is also a trivial refusal at t. If 0 is a refusal at t, then it is a trivial refusal. 

If A and B are trivial refusals at t, then so is A U B. However, if A <:;.: oP satisfies (8.3), 

then it is not necessarily a refusal at t as the next example shows. 

8.1.4 Example Consider process P = (0, {a, b }, {a}* u {b }*, 0, 0). P has outputs a 

and b, and all its traces are transient. It will either constantly output a or constantly b. 

Alphabet A = {b} satisfies (8.3) for trace t = a, but A is not a refusal at t (since all traces 

are transient). 

In fact, P has no refusals anywhere. At the initial state c, cne might expect the 

refusal<; 0, {a}, and {b} (but not {a, b}). Observe that Pis not a DI process, since it 

violates Rule W. .. 

The definition of refusal set can be modified to deal more properly with anomalous processes 

like in the preceding example, but this requires an additional quantification. Anyway, it 

would not make a difference for DI processes as shown by the following theorem. The 

theorem characterizes a trivial refusal of a DJ process as a set of outputs that are all 

non-successors. This is also in line with the Failures Model for CSP. 

8.1.5 Theorem Let P be a DI process. Alphabet A <:;.: oP is a trivial refusal at t E tP 

if and only if 

(V a : a E A : ta (/; tP) . (8.4) 

Proof That (8.4) holds for a trivial refusal at t E tP follows immediately from (8.3), the 

definition of 'trivial'. 

Assuming A <:;.: oP, t E tP, and (8.4), we show that A is a trivial refusal at t. The 

set V of all traces u E ( oP)* such that tu E tP is finite because P is a DI process, in 

particular because oP is finite and Rule W is satisfied. Let u E V be of maximal length, 

then tu tt \7 P. Furthermore, u E (oP" A)*, because if symbol a E A occurs in u, then 

on account of Rule X, we infer ta E tP from tu E tP, contradicting assumption (8.4). 

Therefore, A is a refusal at t. In fact, for every u E V we have ufA = € on account of 

Rule X and (8.4). Consequently, A is a trivial refusal at t. o1 

From now on we will restrict our attention to DI processes. We call DI process P (out

put) deterministic when all its output refusal sets are trivial, that is, when it can only 

"refuse" to produce output that is disallowed anyway. Put differently, whenever an output

deterministic process is capable of producing an output, it will eventually produce that 

output. The definition of output-deterministic processes in terms of output refusal sets is 

the same as that of deterministic processes based on refusal sets in CSP. In the Extended 

DI Model, however, refusals are a derived concept, whereas in the Failures Model for CSP 

they are fundamental (this is also reported in [Jos92]). Furthermore, in CSP the deter

ministic processes are maximal under the refinement order and this is not the ca..se in the 

Extended DI Model, because an output-deterministic process need not be maximal with 

respect to input processing. 
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Below we will give an alternative characterization of output-deterministic DI processes. 

For that purpose, the definitions of Rules zout (no output choice), Z'" (no input choice), 

and Z' (choice-free) are carried over to the Extended DI Model as they are. For the sake 

of convenience, we repeat the definitions of maximally transient and Rule zov.t: 

• Process P is maximally transient when for all traces s and outputs a we have 

sa E tP ::::? s E '\7 P , 

• Process P satisfies Rule zov.t when for all traces s and distinct outputs a and b we 

have 

sa E tP A sb E tP sab E tP A sba E tP . 

8.1.6 Theorem (Characterization of Output-Deterministic Processes) 

DI process P is output deterministic if and only if it is maximally transient and satisfies 

Rule Z 0
"

1
• 

Proof We start by proving that if P is maximally transient and satisfies zout then all its 

refusals are trivial. Assume A oP is a refusal at t E tP. According to Theorem 8.1.5, 

it suffices to prove (8.4). Assuming a E A, we show ta (j. tP. Since A is a refusal at t, let 

u E (oP)* such that fP.tu E {0, .0.}. We derive 

tu E tP A tu (j. '\7 P 

::::? { P is maximally transient, using tu E tP and a E oP } 

tu E tP A tua (j. tP 

::::? { P satisfies Rule zaut, u does not contain a E oP } 

ta (j. tP 

This completes the first part. Now we do the second part: If all of P's refusals are trivial, 
then pis maximally transient and satisfies zout. 

First we prove that P is maximally transient. Assuming a E oP and ta E tP we prove 

t E '\7 P. From the assumptions we infer that {a} is not a refusal at t, since it would 

not be trivial on account of ta E tP. If fP.t!;;;; D, then {a} would be a refusal set at t. 
Consequently, we have t E '\7 P. 

Finally we prove that P satisfies Rule zov.t. Let a and b be distinct outputs, such 

that ta E tP and tb E tP. As above, {a} is not a refusal at t. Hence, {a} is not a 

refusal at tb either. (for, otherwise, {a} would be a refusal at t on account of b (j. {a} and 

backward propagation over bE oP). Therefore, tba E tP, because, otherwise, {a} would 

be a (trivial) refusal at tb. Similarly, we have tab E tP, which concludes the proof. • 

An immediate consequence of this theorem is that the (progressive embeddings of the) 

undetermined selector, arbiter, and sequencer are not output deterministic, since they fail 

Rule zout, whereas all other building blocks are output deterministic. Also the one-all of 

Example 5.4.1 is output deterministic. 
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I 

I T 

progressive and '·~
0

•••• both progressive 

not indiff~:.::' ... ··········.: ::.::·· ·<~:;·~ ~-- ·-~~:.':d:~ecent 

5 

neither progressive 

nor indifferent 

0 

indifferent and 
not progressive 

Figure 8.3: Hasse diagram for order on 2-output DI processes 

8.1.7 Example Figure 8.3 depicts the Hasse diagram of relation!;:; on the fifteen pro

cesses P0 through P14 in Example 8.1.2. The dotted edges indicate the relationship to T 

(including T, the Hasse diagram is a hypercube). The !;:;-maximal processes are P7 , Pn, 

P13 and P14 . These four are the only output-deterministic processes. P12 is also maximally 

transient but it has output choice (that is, it violates Rule Z 0
"

1
). Note that Pn is both 

maximally and minimally transient. P0 is the least process. .1 

The following theorem generalizes Theorem 5.3.3, which expresses that the set of DI pro

cesses satisfying Rules Y~" 1 and Z~" 1 is closed under composition. Instead of Y~" 1 we now 

require the processes to be maximally transient, that is, output deterministic. 

8.1.8 Theorem The set of output-deterministic DI processes is closed under composi

tion. Proof idea: Use Theorem 8.1.6 and enhanced characteristic functions. .1 

To see the relationship with Theorem 5.3.3 we extend Rules yout and yin to the Extended 

DI Model as follows: 

• P satisfies Rule yout when for all traces s and t, outputs a and b, and input c we 

have 

scatb E tP 1\ sact E tP :::} sactb E tP , 

sact E \7 P 1\ scat E tP :::} scat E \7 P . 

• P satisfies Rule yin when for all traces s and t, inputs a and b, and output c we 

have 

scatb E tP 1\ sact E tP :::} sactb E tP , 

sact E D.P 1\ scat E tP :::} scat E D.P . 
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Note that again we have 

Y' =: y 1\ yout 1\ yin . (8.5) 

The relationship between output determinism and Rule yout follows from the next theorem. 

8.1.9 Theorem Every output-deterministic DI process satisfies Rule yout. 

Proof According to Theorem 8.1.6, P has only trivial refusals. Consider traces s and t, 

input a, and outputs b and c. First we derive 

sactb E tP 1\ scat E tP 

= { P has only trivial refusals } 

'{ b} is not a refusal at sact E tP' 1\ scat E tP 

* { P satisfies the neighbor-swap rule (7.17), using c E oP and (8.2)} 

' { b} is not a refusal at scat E tP' 

{ P has only trivial refusals } 

scatb E tP 

Next we derive 

scat E V' P 1\ sact E tP 

* { P is a process (requirement 5) } 

(:3 d : d E oP : scatd E tP 1\ sact E tP) 

* { P satisfies Rule Y, using a ;1:, c and c ;:;::; d } 

(:3 d : d E oP : sactd E tP) 

* { P is maximally transient } 

sact E V'P 

This concludes the proof that P satisfies Rule yout. • 
In the DI Model, failure to satisfy Rule yout is the shadow cast by lack of progress, which 

is not otherwise noticeable in that setting. The Extended DI Model treats progress more 

explicitly. The invalid implication mentioned below Example 6.3.3 can now be qualified. 

8.1.10 Theorem Process PE VIa. satisfies Rule y~ut if and only if <pv.P E VI13 • • 

8.2 Static versus Dynamic Output Nondeterminism 

We proceed with a classification of output nondeterminism, something which could not 

be done properly for output choice in the DI Model. Let P be a DI process that is 

not output deterministic. We say that P has static output nondeterminism when 

there exists an output-deterministic DI process Q with Q ;;;) P, that is, when P has an 
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output-deterministic implementation. Otherwise, we say that P has dynamic output 

nondeterminism, that is, when P has no output-deterministic implementation. 

The undetermined selector has static output nondeterminism, since it is refined by a 

toggle. The arbiter and the sequencer have dynamic output nondeterminism, which will 

be explained in the next example. 

8.2.1 Example Figure 8.4 shows the labeled DI state graphs of processes P and Q. 
When P has received a single input, it must respond with the corresponding output. This 

is also the case for Q. Upon receiving both inputs, however, there is no obligation to 

)Jroduce output (Din state 2) and P may produce either of the two outputs but not both, 

while Q may also produce both. Observe that we have P;;;;! Q. 

a:[]:b 
c d 

Q,!T\. 
dJ~co 

c...._,_ c-c 

"c 7 

Figure 8.4: State graphs of P (middle) and Q (right) 

The state graphs of the arbiter and the sequencer (after input n) contain subgraphs 

similar to that of P, except that they are labeled V in state 2. Of course, if process P 

(with D in state 2) has no output-deterministic implementations, then neither has the 

process with V in state 2 (any implementation of the latter would also be an implementation 

of the former). 

We claim that P and Q have dynamic output nondeterminism. Obviously, P is not 

output deterministic, because it is neither maximally transient nor does it satisfy Rule zout 

(check state 2). Q is not output deterministic either, since it is not maximally transient 

(states 3, 4, and 6), though it does satisfy zout. Note that P satisfies yout but Q does not. 

There are essentially two methods of making processes more output deterministic. 

1. In a state where output is possible but not required (that is, where progress is not 

maximal), one may either (a) suppress some outputs, or (b) guarantee output by 

making the state transient. 

2. In a transient state requiring a choice between outputs, one may eliminate all but 

one of the mutually exclusive outputs. 

However, one should also see to it that the result is still a DI process. 

The only "output-nondeterministic" states of Q are states 3, 4, and 6, where progress 

is not maximal. We first focus on states 4 and 6. Only the first method applies here. 

These states cannot be made transient (method lb) because that would violate Rule Y 
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(since states 5 and 7 are indifferent). There remains method la: suppressing the outputs 

in states 4 and 6. Doing so yields process P. 

The only "output-nondeterministic" state of P is state 2. Again only the first method 

applies. Output elimination (la) does not work, because of Rule Z and the fact that states 0 

and 1 are transient. Output guaranteeing (lb) does apply. Doing so yields a process that 

is still not output deterministic (it is maximally transient but does not satisfy zout). Now 

only the second method might be of help. However, neither of the outputs in state 2 can be 

eliminated as was already pointed out. Therefore, P and Q have no output-deterministic 

implementation and, hence, their output nondeterminism is dynamic. • 

The existence-in the Extended DI Model-of processes with dynamic output nondeter

minism contrasts with CSP, where every process has deterministic implementations. 

Static output nondeterminism can be eliminated by the designer. The nondeterminism 

is then resolved at design-time. Dynamic output nondeterminism can only be resolved at 

run-time. It is intertwined with the bebavior of the environment, hence the name. Whether 

or not such nondeterminism is actually encountered during operation depends on the in

teraction between the process and its environment. For instance, an arbiter's operation 

is deterministic as long as no more than one request is made at a time. Nondeterminism 

only plays a role when two requests are made "simultaneously". It cannot be resolved at 

design-time precisely because simultaneity is not a well-definable concept in the DI Models. 

The refinement closure of process set V is defined as the process set 

{P, Q: PE V A P;;;! Q: Q}, (8.6) 

obtained from V by adding all processes refined by processes of V. The refinement closure 

of the set of output deterministic DI processes will be denoted by nCO'D. It consists 

of the DI processes that are output deterministic and the ones that have static output 

nondeterminism. That we need building blocks outside 'RCO'D for implementing dynamic 

output nondeterminism, follows from the fact that ncov is closed under refinement and 

composition. The latter is a consequence of Theorem 8.1.8 and the next theorem. 

8.2.2 Theorem The refinement closure of a composition closed set of DI processes is 

itself composition closed. 

Proof Let V be a composition closed set of DI processes and let W be its refinement 
closure. For processes P and Q we derive 

PEWAQEW 

{ W is refinement closure of V } 

(3 P', Q' : P' E V A Q' E V : P' ;;;) P A Q' ;;;! Q) 

{ V is composition closed and composition is ;;;J-monotonic (Theorem 4.9.2) } 

(3P', Q': P'll Q' E V: P'll Q';;;! P 11 Q) 

{ W is refinement closure of V } 

PIIQE w 
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This shows that W is also composition closed. • 
The following two theorems give sufficient conditions for a process to be in 'RCO'D. The 

proof of the first theorem relies solely on method lb mentioned above for making a process 

more output deterministic, whereas that of the second theorem uses methods la and 2 

only. 

8.2.3 Theorem If DI process P satisfies Rules yout and zout, then it is in 'RCO'D. 

Proof Consider process Q = <pv.('l/J.P). Q is obtained from P by changing each trace 

where output is enabled into a transient trace and by changing all remaining traces into 

indifferent traces. On account of Theorem 8.1.10, ·using that Q satisfies yout, we have 

Q E VI. By construction, Q implements P ( Q ;;;) P), Q is maximally progressive, and Q 
satisfies Rule zout. Thus, Q is an output-deterministic implementation of P, which shows 

P e ncov. • 

That the converse does not hold is shown by the undetermined selector, which is in 'RCO'D 

but does not satisfy zout. 

For process P, we say that refusal A ~ oP at trace ta E tP propagates backward 

over input a E iP when A is also a refusal at t. In general, this need not be the case, 

as is exemplified by process P2 of Example 6.1.3, for which {b} is a refusal at a but not 

at r::. Note that P2 has static output non determinism on account of the preceding theorem 

(indeed, P3 of Example 6.1.3 is an output-deterministic implementation). It is easy to 

verify that the refusals of an output-deterministic process propagate backward over all 

inputs. 

8.2.4 Theorem If the refusals of DI process P propagate backward over all inputs, 

then p is in ncov. 

Proof We will construct an output-deterministic implementation of P. The construction 

is by induction on the number n of outputs a E oP such that {a} is a non-trivial refusal 

at some trace t E tP. Bear in mind that the output alphabet of P is finite. If n = 0 then 

P is output deterministic on account of Theorem 8.1.5. Assuming n > 0 we show how P 
can be refined while reducing n. 

Let {a} ~ oP be a non-trivial refusal at t E tP and, hence, ta E tP. Consider 

process Q obtained from P by removing all traces uav E tP for which {a} is a refusal 

at u, that is, we have 

(8.7) 

where V = { u, v: uav E tP 1\ '{a} is a refusal at u': uav }. We claim that Q is a DI 

process and that "its n" has decreased. That Q is indeed a process we infer from the fact 

that if u E 'V P and {a} is a non-trivial refusal at u, then there is another output b with 

ub E tP (for otherwise {a} would not be refusal at u). Q satisfies Rule W because no 

traces have been added. Concerning Rules X and Y, observe that for traces s and u, and 

symbols b and c such that b E oP V c E iP, we have 
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'A is refusal at sbct' 

=> { P satisfies neighbor-swap rule 7.17, using bE oP V c E iP and (8.2) } 

'A is refusal at scbt' 

Rule Z is satisfied precisely because refusals propagate backward over inputs: if for input b, 

traces sbav E tP have been removed (because {a} is a refusal at sb), then also traces sav 
will have been removed (because {a} is also a refusal at s ). Consequently,· Q is DI. By 

construction, if {a} is a refusal at u E t Q, then it is trivial. Trivial refusals in P are also 

trivial in Q. Therefore, the number of outputs a such that {a} is a non-trivial refusal in Q 

is less than n. (N.B. The number may have gone down by more than one. Undetermined 

selector U( a; b, c) has both {a} and {b} as non-trivial refusals at c. Eliminating output a, 

removes refusal {b} altogether and makes refusal {a} trivial.) • 

Again the converse does not hold, as shown by P2 above. However, we conjecture that the 

set 1lPBI, consisting of all DI processes such that their refusals propagate backward over 

all inputs, is closed under composition. Thus, in order to construct a process equivalent 

to above, at least one process outside 1lPBI is needed. An arbiter would suffice, but 

also lies outside RCOV and, hence, seems more than is asked for. Is there a useful building 

block in 1lCOV' 1lPBI? 
It would be interesting to have a characterization---comparable to Theorem 8.1.6 for 

output determinism-of the dividing line between static and dynamic output nondeter

minism. 
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8.3 Closure Results 

What could be more appropriate than to close the theoretical developments with a table of 

closure results? Given a set of DI processes, one might wonder whether it is closed under 

refinement, composition, and reflection. Table 8.3 summarizes these closure properties for 

many of the DI process sets that we have considered. 

'-"-closed 

yes 

#iP #oP yes yes yes 

#iP ~ #oP yes yes DO 

#iP ~ #oP yes yes no 

passive yes yes no 

finite state DO yes yes 

Y' no no yes 

Z' no no yes 
zout no no no 
yout 1\ zout no a: yes ((3?) no 

indifferent no yes yes 

progressive no no no 

deterministic DO yes no 

ncov yes yes DO 

nPBI no no 

Table 8.3: Closure results for some Dl process sets 



Chapter 9 

Conclusion 

We now look back at our work, evaluate it, and relate it to the work of others. We also 

discuss some practical aspects of delay-insensitive systems that have been ignored in the 

preceding chapters. Along the way we suggest interesting topics for further investigation. 

9.1 Retrospect 

In Chapter 2 we pointed out that the timing problem is a fundamental issue in the design of 

digital circuitry. Delay-insensitivity is a solution to the timing problem. In the ideal case, 

the correctness of a delay-insensitive circuit is completely independent of delay assump

tions. However, this is not practically feasible. More realistic is the two-stage solution, 

where circuits are designed as networks of building blocks. The timing problem is confined 

to the building blocks: their correct internal operation may depend on timing, but the 

correctness of their cooperation is independent of delays. The of building blocks 

is considered a separate topic (also see Section 9.4 below). Therefore, we have restricted 

ourselves to specifications that are free of a time metric, that is, in which time plays a role 

for sequencing only. 

Our starting point for a model of delay-insensitive systems is a set P'ROC of processes. 

These processes act as specifications for building blocks and systems. In the DI Model of 

Chapter 4, a process is characterized by a triple (I, 0, V), where I and 0 are finite sets 

of symbols (representing the communication ports: I for inputs, 0 for outputs) and V is 

a non-empty prefix-closed set of finite-length symbol sequences (representing the allowed 

orders for communication events). Finite symbol sets are called alphabets, and finite

length symbol sequences are called traces. A network of processes is modeled as a set 

of processes satisfying certain structural conditions, capturing that there are only point

to-point connections from output ports to input ports. Such sets of processes are called 

systems. The set SYS of systems can be viewed as generalizing PROC. By convention, 

output a of process P in system S is connected to input a of process Q in S; that is, 

connections are modeled by common symbols. These common symbols are considered 

dummies and may be renamed consistently. 

107 
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The connection of two systems into a larger system is modeled by composition operator 

par on SYS. Operator par is simply set union, after appropriate renaming of internal 

connections to avoid name clashes. The operation of a closed system (without external 

ports) gives rise to reachable traces and interfering traces. A system is called free of 

interference when no reachable trace is interfering. Interference arises when a process is 

sent input that is not acceptable. Predicate Correct captures autonomous correctness of 

systems, and requires that the system be well-defined, closed, and free of interference. For 

systems S and T, predicate Correct.(S par T) can be interpreted as expressing that S 

passes !ccst T. In order to compare systems, the satisfaction relation .cat is introduced. We 

say that S is a satisfactory substitute, denoted by S sat T, when every test that T passes 

is also passed by S, or in a formula: 

S sat T ('r/ U: U E SYS: Correct.(S par U) * Correct.(T par U)). (9.1) 

A system containing T can always be written as T par U for some suitable U and, hence, 

S sat T holds when in every correct system containing T, T can be replaced by S without 

destroying the correctness. Relation sat is a testing pre-order. 

Thus we obtained model (SYS; par, sat), in which we can talk about systems and their 

composition and comparison. A typical design problem might be formulated as follows. 

Given systems T and U find system S such that 

Spar T sat U. (9.2) 

Often, U will be a singleton system, consisting of just one process, and T will be taken 

from a prescribed subset BB of P1UJC. Thus, U is the overall specification, T describes 

part of a design in terms of building blocks, and S is what is needed to complete the design. 

We refer to (9.2) as the design equation. 

Systems S and T are equivalent, denoted by S equ T, when they are satisfactory 

substitutes for each other. Since equivalence is not the same as equality, (SYS; par, sat} is 

a pre-abstract model. Because equ is compatible with both par and sat, we can consider 

the quotient (SYS; par, sat)/ equ, which is a fully abstract model. The quotient turns out 

to be isomorphic to (VI; 11, ;;;!), where VI is an appropriate subset of PROC, 11 derives 

from a binary operator on PROC, and ;;;] derives from a partial order on PROC. The 

subset VI can be characterized by the so-called JTU-Rules, and ;;;] is easily expressible in 

terms of alphabets and trace sets. However, composition 11 is more complicated. Within 

the fully abstract model based on VI, the design equation can be solved, since we have 

PIIQ;;;JR (9.3) 

That is, the least solution of the equation in P on the left is obtained as '-"( Q 11 '""R), 

where '"" is a unary operator on PROC called reflection. Reflection interchanges the roles 

of input and output, but does not affect the trace set. Note that composition 11 has no 

inverse and, hence, the equation P 11 Q R in P is not always solvable given Q and R. 

That the design equation is solvable is, in fact, a fortunate consequence of our choice for 

PROC. Apparently, PROC is sufficiently large (or small) to allow a reflection operator. 
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This is, for instance, not the case for the Failures Model of CSP. It would be interesting 

to study the extension of process spaces to incorporate the minimal solutions of the design 

equation (also see [Pra91]). 

In search of a suitable set of building blocks, the possibilities of a number of elementary 

processes are investigated in Chapter 5. In particular, we have identified several subsets 

of processes that are closed under composition. In order to implement processes outside 

such a closed set, a building block outside that set is required. It was pointed out that 

a satisfactory set of building blocks to realize all finite-state processes is still not avail

able. Also the three classes around the C-element, latch, and decision-wait have not been 

characterized satisfactorily. It should be noted that there are actually two kinds of search 

problems. The first asks for a (minimal) set of building blocks that suffices to implement 

all processes within a certain set. The second asks for a (minimal) set of building blocks 

that suffices to construct an equivalent of each process within a certain set. The first is 

more practical, the latter has mainly theoretical importance. 

The DI Model has several shortcomings, one of them being that progress is not a 

correctness concern. The Extended DI Model of Chapter 6 incorporates a progress concern. 

It is constructed along the same lines as the DJ Model of Chapter 4. The trace set of a 

process P is now divided into three trace sets, comprising the transient ('V P), the indifferent 

(DP), and the input-demanding (D.P) traces. The distinction between the first two is that 

in a transient trace the process is obliged to produce some output, whereas in an indifferent 

trace it may fail to do so. Input-demanding traces are similar to indifferent traces as far 

as output production is concerned, but the environment is obliged to provide some input. 

These can be viewed as arising from the reflection of transient traces (similar to negative 

money being money owed). A process space that is closed under reflection is desirable for 

the existence of the minimal solution of the design equation. 

The fully abstract version of the Extended DI Model is very similar to that of the DJ 

Model. The JTU-Rules and the partial order !; are easily extended. The whole structure 

can be better understood when processes are represented by enhanced characteristic func

tions (ECFs) mapping traces to the trace labels T, 'V, D., and 1.. A simple algebra 

on the trace labels captures composition and correctness, and generates definitions for or

der !; and reflection ""· The order and reflection are then lifted to ECFs. ECFs allow a 

concise formulation of the JTU-Rules, in the form of the neighbor-swap rule. Normalizing 

transformations on ECFs can be used to compute compositions and greatest lower bounds. 

Chapter 8 continues the investigation started in Chapter 5. In particular, it focuses 

on output (non)determinism. Inspired by the Failures Model for CSP, we define output 

refusal sets. Alphabet A is an output refusal set at trace t in process P when, after 

doing t, P can do some outputs not in A and arrive in a state where it has no further 

output obligations. Output refusal set A at trace t is called trivial, when the process is 

unable to do any of the outputs in A. A process is said to be output deterministic when 

it has only trivial output refusal sets. The output-deterministic -DI processes are exactly 

the maximally transient DI processes satisfying Rule zout (no output choice). The set 

of output-deterministic DI processes is closed under composition. However, not every DI 

process has an output-deterministic DI implementation (in CSP every process has a deter-
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ministic implementation). Examples are the arbiter and sequencer. They are said to exhibit 

dynamic output nondeterminism. This contrasts with the static output nondeterminism of 

the undetermined selector, which can be eliminated in an implementation. Dynamic out

put nondeterminism cannot be eliminated at design time, because it is intertwined with 

the behavior of the environment. We have not encountered the distinction between static 

and dynamic nondeterminism elsewhere. There is a vague resemblance with the notion 

of confusion in the theory of Petri nets (see [Rei85]). The complete characterization of 

dynamic output nondeterminism is still an open problem. 

9.2 Evaluation 

Our development of a theory for delay-insensitive systems involved several fundamental 

decisions. In some cases the consequences of our decisions are pleasing; in other cases we 

still have reservations. First we discuss some items on the positive side of the scales. 

We like the line of development that starts with a pre-abstract model and from there 

continues to a fully abstract model, possibly culminating in an axiomatic model. This 

approach enables one to set up a formal model without knowing in advance what is needed 

for a fully abstract model. Furthermore, it may simplify the link to other models, such as 

continuous physical models. 

We are also satisfied with the use of the testing paradigm to set up pre-abstract mod

els. The testing paradigm may be viewed as a primitive but powerful method to define 

observations on processes. A requirement is that the set of tests is sufficiently rich. Our 

desire to include the tests in the set of processes led us to distinguish indifferent and 

input-demanding traces in the Extended DI Model. We could, in fact, have started with 

maximally transient processes and a separate set of maximally input-demanding tests. 

There are, however, some technical complications with such a separation. For instance, 

the proof that equ is a congruence relation with respect to par would no longer work as 

shown in Appendix B. Nevertheless, the resulting fully abstract model would then have 

processes with a mixture of transient and indifferent traces, but it would not be closed 

under reflection. Later we found out that this means that the minimal solution of the 

design equation need not exist in the model. Thus it was fortunate to insist on one set for 

both processes and tests. 

We consider the development of the Extended DI Model-in particular, the definitions 

of deadlock, the partial order ~' and the extended JTU-Rules-as rather elegant. The 

introduction of enhanced characteristic functions (ECFs), which split the complement of 

the trace set symmetrically, is very useful. ECFs shed more light on the mathematical 

underpinnings of the DI Models. Furthermore, it is intriguing that so many properties can 

be lifted from a small algebra on trace labels to ECFs. Also the fact that three JTU-Rules 

can be combined into the neighbor-swap rule is a nice result. Finally, the treatment of 

output (non)determinism brought up several interesting points. 

Let us now mention some items that we feel are on the negative side of the scales. The 

treatment of system structure has been quite ad hoc. Composition operator par is a partial 
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operator and involvE>,s renaming of dummies (internal connections). It is in general not as

sociative. Moreover, it is not immediately clear how to generalize it when other connection 

rules apply (such as an output being able to drive at most three inputs). Many definitions 

and theorems involve conditions that deal with system structure (such as systems being 

connectable), though we have not always made them completely explicit. One example 

is the definition of sat (see Equation 9.1 above), which involves a quantification over all 

systems U, including those U for which S par U, or T par U, is not a system. We have 

postulated that Correct does not hold in those cases, but this is hardly a satisfactory so

lution. An alternative approach (see (Ver94]) is to define systems as bags of processes and 

to make the names of internal connections visible on the outside (though not the internal 

communication events). This way, system structure can be dealt with by testing as well. 

We can introduce mappings, similar to ECFs, from the symbol universe to symbol labels 

(also see Note 7.3.12). 

We would have preferred to analyze isochronic operation first, as suggested in Note 4.4.3. 

We have not done so because this would further increase the notational complexity and 

slow down the pace. It is also felt as a drawback that isochronic connectors and forks 

cannot be handled. A way to overcome this is to take sets of symbols as atomic events. 

Symbols within such an event are required to "happen at the same step". An isochronic 

fork with input a and two outputs b and c might then be described as an alternation of 

events {a} and {b,c}. 

ECFs are a neat way of describing processes and their cooperation in systems. However, 

the tediousness and sheer number of all details concerning ECFs was disappointing. That 

is why we have not presented the theory in terms of ECFs from the very beginning. 

The Extended DI Model improves the DI Model, but it also has its shortcomings. 

Further extensions of the models might include infinite systems (as limits of unbounded 

sets of finite systems) and infinite traces (to deal with livelock). In both cases nasty 

technical problems lurk ahead. For instance, if we have P; ;:::] Q; for all natural i, do we 

then also have 

{ i : 0 ~ i : P;} sat { i : 0 ~ i : Qi} , (9.4) 

that is, how do we deal with infinite substitutions? 

We would have liked to give axiomatic characterizations of our models, but the amount 

of work involved was prohibitive. The groundwork has been laid in the form of properties 

relating composition, refinement, greatest lower bounds, reflection, and 'aftering' (for in

stance, the Factorization Theorem). See the discussion of the DI Algebra below for other 

work in this direction. 

9.3 Related Work 

The framework of the DI Models is entirely my own. It is based on the testing paradigm, 

which, in fact, I discovered myself, but I later also traced it to [dNH83] and even to 

Leibniz (see opening quotation). The following, necessarily concise, overview indicates 



112 CHAPTER 9. CONCLUSION 

the relationship to those theoretical works that influenced me most. For a comprehensive 

bibliography see [Pee]. 

The idea to characterize a process by its alphabet (communication ports) and trace 

set (allowed sequences of communication events) derives from Trace Theory introduced 

in [vdS85] and further developed in [Kal86]. The idea to model delay-insensitive circuits 

in this context is already mentioned in [vdS85]. The application of Trace Theory to the 

description and design of delay-insensitive circuits goes back to [Udd84, Ebe89]. For that 

purpose, they split the alphabet into inputs and outputs. . 

In [Udd84], the starting point is the set VI of delay-insensitive (DI) processes, defined 

in terms of the JTU-Rules, as we have called them. Two of the main accomplishments 

of that work are the formulation of the JTU-Rules and the proof that for P E VI, the 

(wired) system { P, "'p} ~ is free of interference. However, systems and their operation 

are not formalized in general, and the composition operator, appearing in the form of 

the blending operator, has a very restricted range of applicability, involving the notion of 

independent alphabets. There is also no satisfaction relation on processes. Three subsets 

of DI processes are distinguished, namely 

C1 { P : P E VI 1\ P satisfies Rules Y' and Z' : P} , 

C2 = {P: PE VI 1\ P satisfies Rules Y' and zout: P} , 

C3 { P: PE VI 1\ P satisfies Rule Y' : P} . 

It is shown that classes C1 and C2 are closed under the restrictive form of composition, 

whereas class C3 is not closed. Note that under our more general form of composition 

neither of these classes is closed (see Example 5.3.1). Instead, we have pointed out that 

the set of DI processes satisfying Rules yout and zout is closed under general composition 

(see Theorem 5.3.3). Progress is not covered. 

In [Ebe89], isochronic system operation, appearing in the form of the weaving operator, 

is fundamental. Connecting wires need not be introduced explicitly when all processes are 

taken to be DI (compare our Theorem 4.7.7). Composition of processes is not defined 

as an operator, but there is a refinement relation, going by the name of decomposition 

relation. It expresses when one system is a decomposition (satisfactory substitute) of 

another system. The decomposition relation resembles the satisfaction relation sat of our 

DI Model. However, there are some subtle differences. It is recognized in [Ebe89] that sat 

allows obviously undesirable implementations (see our Examples 5.5.1 and 5.5.2), which 

can be ascribed to lack of progress. For that reason, the decomposition relation requires 

the implementation to be able to produce exactly the same outputs as the specification. 

This excludes toggle T(a;b,c) as decomposition of fork F(a;b,c), which in the DI Model 

is a proper refinement. However, there are also undesirable consequences. On the one 

hand, toggle T(a; b, c) is not considered a decomposition of undetermined selector U(a; b, c). 

On the other hand, system D of Example· 5.5.1 is considered a decomposition of a wire. 

Thus, decomposition does not treat progress satisfactorily. These issues are discussed 

in greater depth in [Pee90]. Specifications in [Ebe89] are expressed mostly in terms of 

regular expressions extended with a few extra operators. The extensions allow some nice 
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design techniques (also see [Ebe88]). It is proved, by construction, that a large class of 

specifications can be decomposed efficiently using a few simple building blocks (though the 

one-all of Example 5.4.1 requires an arbiter). 

The following three works have contributed to the development of our DI Model. In 

[UV88], the partial order!;;;; on processes is introduced and studied in the context of closed 

two-process systems. In [CUV89b], general systems are analyzed. It also discusses the 

design equation and its minimal solution. Most of the proofs are carried out by induction on 

the reachability of traces. In [Ver89], enhanced characteristic functions are introduced and 

used to prove the equivalence of 'P satisfies the JTU-Rules' and 'wired system {P, '-"P}
is free of interference'. 

In [Dil89], processes are characterized by their input and output alphabets together 

with two trace sets. The canonical process description (I, 0, S, F) of [Dil89], corresponds 

to our process (I, 0, S) in the DI Model. Trace set F consists of the traces mapped to ..L 

(interfering) by the enhanced characteristic function of the process. System operation is 

not explicitly formalized, but a composition operator on processes is given. The main 

reason for introducing the more general processes with two trace sets is to simplify the 

definition of composition. This can be compared to our larger process space £CF1,3,5 

of Chapter 7, which is closed under tracewise composition and taking of greatest lower 

bounds. A refinement relation, called conformation, is defined. It corresponds directly 

to our satisfaction relation sat in the DI Model. A major contribution of [Dil89] is the 

development and implementation of a tool to verify delay-insensitive designs. Specifications 

and designs are described in terms of state graphs, for which a LISP front-end is provided 

as well. An attempt is also made to deal with progress, but we do not consider it very 

successfuL 

In [Jos92], a process model is introduced that distinguishes input and output, and that 

also captures a progress concern. A process has an input and an output alphabet, and a 

trace set. The trace set is not necessarily prefix-closed and consists of so-called failures 

(traces in which the process may fail to produce output). These traces correspond to the 

iqdifferent traces in our Extended DI Model. Two requirements on processes are crucial 

to the modeling of interference: output alphabet 0 is non-empty and the prefix-closure of 

trace set F is receptive, that is, closed under input extension. Input a after trace t now 

leads to interference when the set 

{ u: u E 0* 1\ tau E F: t} 

is infinite. Thus, the prefix-closure of trace set F consists of what we have called the 

allowed and the interfered traces (those not mapped on T by the enhanced characteristic 

function of the process). We find the requirement of non-empty output alphabets some

what contrived. In [Jos92], it is observed that, due to the input-output distinction, the 

refusal sets of the Failures Model for CSP have been "simplified out of existence". Compo

sition involves isochronic operation, though the latter is not defined separately. Additional 

closure conditions may be imposed on processes to deal with anisochronic operation. These 

conditions involve the reordering of symbols in traces in the same vein as ~ at the end of 
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Section 7.2, but this is not related to the JTU-Rules. The model has a refinement rela

tion based on inclusion of trace sets (failures). It corresponds to the satisfaction relation 

sat of our Extended DI Model, but there are two major differences between the process 

model of [Jos92] and the Extended DI Model. First of all, there is no reflection operator 

on the receptive processes. Consequently, the design equation cannot always be solved 

within that model, the main reason being that input demand is not expressible. Secondly, 

livelock (unbounded internal communication and non-terminating recursion) is modeled to 

coincide with interference. We find this view of livelock too pessimistic, though we agree 

that ignoring livelock, as we do in the DI Models, is too optimistic. 

In [JU90, JU93], an algebra for the specification and design of delay-insensitive circuits 

is described, called the DJ Algebra. It is closely related to [Jos92]. The DI Algebra can 

be viewed as a language in which processes are specified by expressions constructed from 

constants and operators, such as guarded choice and recursion. Process equivalence and 

refinement are defined axiomatically by a number of laws. These laws capture interference 

and also a progress concern. It should be noted that the syntax and the set of laws have 

not yet fully stabilized. A major advantage of the DI Algebra is that design verification 

and, in particular, process composition can be done by calculation. In [Luc94], several 

useful meta-theorems are presented. However, the DI Algebra has its shortcomings as 

welL There are few (syntactic) heuristics for design. Some processes are easy to specify 

but others are relatively hard to specify, such as larger decision-waits and data converters. 

Compare also processes P5 and Q5 of Example 3.2.5, whose "progressive" counterparts in 

the DI Algebra of [JU90] are given by 

P 5 a?; b?; ( d!; [a? -+ ..L 0 b? -+ ..L 0 skip -+ e!; P5] n 
e!; [a?-+ ..L 0 b?-+ ..L 0 skip -+ d!; P5] ) , 

Qs = a?; b?; d!; e!; Qs . 

The introduction of output guards and 'else' clauses reduces the complexity of P5 a little. 

It can also be excessively difficult to prove inequality of processes. See the discu&<>ion 

of [Jos92] above, for model distinctions concerning livelock and reflection. It would be 

interesting to extend the DI Algebra with a reflection operator; [Luc94] reports on work 

in this direction. The problems with the introduction of a reflection operator may be 

explained as follows in terms of enhanced characteristic functions (ECFs) (see Chapter 7, 

especially Note 7.3.12). In a sense, DI Algebra expressions correspond to ECFs satisfying 

predicates £1, £3 , and £5 . The intended normal form of expression E is Lf J, where f 
is the ECF corresponding to E. The (normalizing) laws correspond, in a way, to our 

transformations <1>;. For instance, the law c!; ..L = ..L resembles <1>4 . Unfortunately, the 

space spanned by £1, £3 , and £5 is not closed under reflection. Furthermore, reflection and 

l-J do not commute (see Equation 7.25). Therefore, reflection is only easy to define for 

near-normal forms, which also satisfy the even £; and which are invariant under l-J. A 

different approach is required to generalize reflection. 
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9.4 Towards Circuits 

To complement Chapter 2, we now discuss some practical aspects of delay-insensitivity 

when applied to the design of digital integrated circuits. 

Our main concern has been the design of delay-insensitive systems using some set of 

building blocks. The realization of the building blocks has been considered a separate 

problem, falling outside the scope of our theory. The advantage of this two-stage approach 

is that, on the level of systems of building blocks, the correctness of these systems does 

not depend on assumptions about delays. However, building blocks need to be built to get 

a working system. 

For instance, an integrated circuit can be produced from such a design only if all the 

building blocks have been realized in terms of transistor networks. When designing these 

building blocks, we encounter the timing problem again. More detailed models of circuit 

operation are required to design them and prove their implementation correct, though this 

needs to be done only once for each building block. For approaches to the design of building 

blocks we refer to [MFR85, RMCF88, vB92]. The relationship between the (discrete) DI 

Models and (continuous) physical circuit models has been largely ignored and needs to be 

pursued more seriously. 

Another issue that has been ignored is the initialization of the building blocks at power 

up. Somehow each state-holding device, such as the C-element and toggle, needs to be put 

into its proper initial state. For some building blocks it is possible to come up with an 

implementation whose initialization is accomplished by applying appropriate voltage levels 

to the inputs. For example, a C-element, which is a sequential circuit, can be implemented 

in such a way that when its inputs are forced low, the output will go low as well and the 

C-element ends up in a uniquely determined state. This is not possible for the toggle. The 

I-wire poses a related problem. It is supposed to produce a transition after power up. Often 

this just means that the component it is connected to requires a slightly different initial 

state. But if, for example, an 1-wire is driving a C-element, the property of "automatic" 

initialization when low inputs are applied no longer holds for the combination, and it may 

end up in the wrong initial state. 

Realistic circuit design methodologies also require an answer to the "testing problem". 

Even when a circuit is fabricated according to a correct design, there may still be variations 

in the final product due to the inherently stochastic nature of the manufacturing processes. 

Too large variations may yield unreliable or malfunctioning circuits, which should be elimi

nated as soon as possible. The standard approach to the detection of fatal fabrication faults 

is testing, that is, operating the product according to some predefined input sequences for 

which the expected outputs are known. The "testing problem" is that of finding a small 

set of input sequences such that from the corresponding outputs a reasonable estimate 

about the circuit's reliability can be made. For clocked circuits it is easier to control and 

observe the internal state of the circuit; this may result in simpler tests. On the other 

hand, in delay-insensitive circuits, which are based on transition signaling, it suffices to 

test whether each wire can make transitions in both direction (assuming the stuck-at fault 

model). Testing of delay-insensitive circuits is still an area of active research. Especially 
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the "VLSI-programming" approach to delay-insensitive circuit design looks promising in 

this respect [RS93]. 

It might be interesting to search for a link between fault testing and the satisfaction 

relation based on the testing paradigm. A high-level fault model that comes to mind is 

that where the effect of a fault is to change a V-label into a 0-label. Usually, such a fault 

will change an implementation into a non-implementation; this is then detectable by a 

specific testing environment. 

The topic of manipulating data (as opposed to control signals) in delay-insensitive 

circuits -think, for instance, of computations involving integers-- has been not been 

addressed here. Encoding of data for delay-insensitive transmission is treated in [Ver88]. 

Performance 

The average speed of delay-insensitive circuits is determined by the average case, whereas 

the clock of synchronous circuits must be tuned to the worst case. Therefore, one would 

expect delay-insensitive circuits to "rim faster" than their clocked counterparts. In practice, 

however, delay-insensitive circuits do not perform that well. One reason for this is that the 

design assumptions are very pessimistic, requiring extra communication actions to ensure 

proper synchronization of interacting subcomputations, usually via some back-and-forth 

handshake protocol. 

This pessimistic approach is also responsible for the additional area that current delay

insensitive circuits require. For instance, encoding n-bit values with a double-rail code 

requires 2n wires. It is expected that further research will enable us to make faster and 

smaller delay-insensitive circuits in the future. 

On the positive side, the circuits designed with such pessimistic assumptions are quite 

robust. For example, they can tolerate considerable variations in power supply voltage and 

ambient temperature. 

Another beneficial property of delay-insensitive circuits is that they dissipate little 

power when implemented in CMOS technology. A CMOS transistor dissipates power only 

when it switches. In a delay-insensitive circuit transitions occur only when and where 

they contribute to the computation (as opposed to the always-ticking dock). This makes 

delay-insensitive CMOS circuits particularly suitable for low-power applications. 

Because there is no clock, the spectrum of electromagnetic radiation generated by 

delay-insensitive circuits is more evenly spread out than for synchronous circuits. 

Our approach to the design of delay-insensitive circuits separates functional correct

ness concerns from efficiency concerns. Thus, it is easy to replace subsystems by faster 

implementations if that would be beneficial to the speed of the overall computation. Op

timization for speed can be accomplished by "local fiddling", without jeopardizing the 

correctness of the entire circuit. 
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Acceptance 

For a wider acceptance of delay-insensitive circuits it is necessary that-besides attention 

for education and theory construction-a whole range of support tools be developed. The 

features of the Extended DI Model can be incorporated into appropriate tools without 

much difficulty. 

The VLSI-programming approach taken by Philips (see [vBNRS88, vBKR+9t]) ad

dresses the issue of tools in a new way. A system designer writes a TAN GRAM program 

in terms of communicating processes. The TANGRAM compiler translates this program 

into a network of so-called handshake components. The delay-insensitivity of the resulting 

networks is guaranteed by the use of four-phase handshake protocols and double-rail data 

encoding (see [vB93]). Separate tools allow the system designer to evaluate and tune a 

design, for instance, on the basis of speed, area, and power estimates. 

Much more could be said about the acceptance of delay-insensitive circuits, such as the 

importance of interfacing to existing technologies, in particular, clocked circuits. We will 

leave it at this. 

The issues discussed in this section show that our initial motivations for looking into delay

insensitive design techniques were not always to the point. On the one hand, some expected 

benefits are in fact negligible or even negative. On the other hand, some positive results 

came in areas that were not foreseen. 

It should be born in mind that our theory is applicable not only to the design of 

digital electronic circuits. The theory is very general and a source of interesting and 

beautiful mathematics (and art, for that matter). It may find renewed applications when 

future technologies, possibly involving optical or quantum phenomena, are developed for 

information processors. 
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Appendix A 

Ordered Sets and Lattices 

In this appendix we briefly summarize some basic definitions and theorems from the theory 

of ordered sets and lattices. For more details the reader is referred to [Bir84, DP90]. 

A.l Relations 

Let R be a binary relation on set V, that is, R V x V. It is customary to write u R v 

for ( u, v) E R. Here is a table of common terminology for relations: 

R is called 

reflexive 

anti-reflexive 

symmetric 

antisymmetric 

transitive 

whenever 

(\;/u :: u R u) 

(\;/u :: •(uR u)) 

(\;/ u, v :: u R v v R u) 

(\;/ u, V : u R V 1\ V R u : u = V) 

(\;/u,v,w: uR v 1\ vR w: uR w) 

where all quantified variables range over V. For relation R on V we have 

'R is symmetric' _ (\;/ u, v : u 'f v 1\ u R v : v R u) , 

'R is antisymmetric' (\;/ u, v : u # v 1\ u R v : -.( v R u)) . 

This clarifies that the relationship between 'symmetric' and 'antisymmetric' is the same as 

that between 'reflexive' and 'anti-reflexive', namely that of strong negation. 

A.2 Ordered Sets 

A relation is called a pre-order when it is refiexive and transitive. A relation is called an 

equivalence relation when it is a symmetric pre-order. For pre-order ~ on set V, the 

relation "" defined by 

u~vl\v~u (A.l) 

119 
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for all u and v in V, is an equivalence relation on V. 

A relation is called a partial order, or briefly an order, when it is an antisymmetric 

pre-order. For partial order ~on V we call {V;~) a (partially) ordered set or poset. 

The converse of denoted by ;;;! , is defined by 

u;;;Jv v~u (A.2) 

for all u and v in V. {V; ~) is a poset if and only if (V;;;;!) is a poset. 

Partial order ~ is called total when 

u~v V v~u (A.3) 

for all u and v in V. 

We define relation c on V by 

ucv (A.4) 

for all u and v in V. Note that relation C is anti-reflexive and transitive (and, hence, also 

antisymmetric). An anti-reflexive and transitive relation is called a strict order. Thus, 

every partial order corresponds to a strict order. The reverse also holds. If some relation C 

on V is a strict order, then relation defined by 

u~v UCVVU V (A.5) 

for all u and v in V, is a partial order on V. 

Let (V; be a poset and U a subset of V. ( U; ~'}, where is the restriction of ~ to U, 

is also a poset. Note: It is customary to denote the restricted order again by ~. 

Let v and w be members of V. We call v a lower bound of U when 

(Vu : u E U : v ~ u) . (A.6) 

We abbreviate this to v ~ U when confusion is unlikely (keep in mind that U could also 

be a member of V, besides being a subset). We have v ~ 0 for all v. Dually, v is called 

an upper bound of U when 

(Vu: u E U: u ~ v) , (A.7) 

abbreviated to U ~ v. We call v least in U or minimum of U when v E U and v ~ U. 

Dually, v is called greatest in U or maximum of U when v E U and U ~ v. If a 

minimum (maximum resp.) of U exists then it is unique. The minimum (maximum resp.) 

of U -if it exists-is denoted by min U ( max U resp.). We have min { v} = max { v} = v. 

We call v minimal in U when v E U and 

(Vu: u E U A u ~ v: u = v). (A.8) 

Dually, we call v maximal in U when v E U and 

(Vu ; u E U A u ;;;! v : u = v) . (A.9) 
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If v is least in U then v is minimal in U. The converse does not hold generally. 

We call v greatest lower bound, or infimum, of U when v is greatest in the set of all 

lower bounds of U. If a greatest lower bound of U exists then it is unique and we denote 

it by n U. We also write v n w for n { v, w}. Dually, v is called least upper bound, or 

supremum, of U when v is least in the set of all upper bounds of U. It is denoted by U U 

when it exists, and we also write vU w for U { v, w }. If min U (max U resp.) exists, then 

nU (U U resp.) also exists and they are equal. If nU (u resp.) exists and is in U, then 

min U (max U resp.) also exists and they are equal. For poset (V; we have 

n0 max V, 

U0 min V, 

nv min V, 

uv max V, 

that is, the left-hand side exists if only if the right-hand side exists, and if both exist, they 

are equal. Element v is the greatest lower bound of U if and only if 

(V w : w E V : w V = w ~ U) . (A.lO) 

Dually, v is the least upper bound of U if and only if 

(Vw:wE V:v~w U w). (A.ll) 

A.3 Lattices 

We call poset (V;~} a lattice when v n wand vU w exist for all v, w E V. Let (V; be 

a lattice. We can view nand U as (total) binary operators on V. Operators nand U are 

commutative, associative, and idempotent (as binary operators). Furthermore, we have 

u~vnw u~vl\u~w, (A.l2) 

uUv ~ w u~wl\v~w. (A.l3) 

for all u, v, w E V. Consequently, we also have 

u~v - unv=u, (A.l4) 

u~v uUv=v, (A.l5) 

for all u, v E V. 

We call ( V; ~) a complete lattice when n U and U U exist for every subset U of V. 

Poset (V; ~) is a complete lattice if and only if nU exists for every subset U of V. For 

finite V, poset (V; ~) is a complete lattice if and only if n 0 (i.e. max V) exists and v n w 
exists for all v and w in V. A finite lattice is a complete lattice. 

This concludes our overview of the theory of ordered sets. 
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Appendix B 

Some Proofs 

In this appendix we have collected some proofs concerning the DI Model. 

The following theorem characterizes interference in terms of weave.S rather than the 

system's reachable traces. 

B.O.l Theorem (See Theorem 4.3. 7) Closed system S is free of interference if and 

only if 

(Vt, a, P: t E weave.S APES A a E oP A tafaP E tP: ta E weave.S). (B.l) 

Proof We prove the two implications separately. 

Assuming the left-hand side'S is closed and free of interference', we prove the right

hand side (B.l). Fort, a, and P we derive 

t E weave.S A PES A a E oP 1\ tafaP E tP 

{ weave.S reach.S on account of the assumption and (4.14) } 

t E reach.S A PES 1\ a E oP A tafaP E tP 

=? { definition of reach.S } 

ta E reach.S 

{ weave.S reach.S on account of the assumption and (4.14)} 

ta E weave.S 

Hence, the right-hand side holds. 

Now assume the right-hand side (B.l). We show that S is free of interference by proving 

(Vs : s E reach.S : s E weave.S) 

by structural induction on s. 

Base: s = e:. Assume e: E reach.S. We have e: E weave.S because e: E tP for any P (since 

trace sets of processes are non-empty and prefix-closed). 

Step: s = ta for some trace t and symbol a. The induction hypothesis is t E reach.S => 
t E weave.S. Fors we derive 

123 
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s E reach.S 

{s=ta} 

ta E reach.S 

{ definition of reach.S } 

(3 P : P E S : t E reach.S A a E oP A ta faP E tP) 

==? { induction hypothesis } 

(3 P : P E S : t E weave.S A a E oP A ta faP E tP) 

==? { right-hand side assumed } 

ta E weave.S 

{ ta s } 

sE weave.S 

This concludes the induction, thereby completing the proof. 

The next theorem expresses that equ is a congruence with respect to par. 

.. 

B.0.2 Theorem (See Section 4-4) For systems S, S', T, and T' with S equ S' and 

T equ T' we have 

S par T equ S' par T' . (B.2) 

Proof First of all, observe that on account of the properties of par mentioned below 

Example 4.2.2, we have 

Correct.((S parT) par U) = Correct.(S par (T par U)) (B.3) 

for systems S, T, and U. Now letS, S', T, and T' be systems with S equ S' and T equ T'. 

We derive for system U: 

= 

Correct.((S par T) par U) 

{ observation (B.3) } 

Correct.(S par (T par U)) 

{ S equ S' assumed, property (4.18) of equ } 

Correct.(S' par (T par U)) 

{ observation (B.3) and cornmutativity of par } 

Correct.(T par (S' par U)) 

{ T equ T' assumed, property (4.18) of equ } 

Correct.(T' par (S' par U)) 

{ observation (B.3) and commutativity of par } 

Correct.((S' parT') par U)) 

Therefore, we have Spar T equ S' par T' on account of (4.18). • 
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The following lemma is used when proving that (PROC; ~) is a partially ordered set. 

B.0.3 Lemma For processes P, Q, and R (not _1. or T) we have 

P ~ Q ~ R ::::;. tP n tR ~ tQ . 

Proof Assuming P ~ Q ~ R, we prove 

(\ifs : s E tP A s E tR: s E tQ) 

by structural induction on s. Note that the assumption implies 

iP = iQ = iR A oP oQ =oR. 

Base: s r::. On account of Q E PROC we haves= r:: E tQ. 

Step: s ta for some trace t and symbol a. The induction hypothesis is 

t E tP A t E tR ::::;. t E t Q . 

We now derive 

sE tP As E tR 

{ s ta } 

ta E tP A ta E tR 

{ P, R E PROC, hence tP and tR are prefix-closed } 

t E tP A t E tR A ta E tP A ta E tR 

::::;. { induction hypothesis (B. 7) } 

t E t Q A ta E tP A ta E tR 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

::::;. { case analysis on a E iQ V a E oQ, using respectively P Q or Q R } 

ta E tQ 

{ta=s} 

sE tQ 

This concludes the proof. 

B.0.4 Theorem (See Section 4.5) (PROC; ~} is a poset. 

Proof We show that relation ~ on PROC is a partial order. 

1. P ~ P follows immediately from the definition of~. Hence, ~ is reflexive. 

• 

2. Assuming P ~ Q A Q ~ P, we show P = Q. The assumption implies iP iQ and 

oP = oQ. Thus, it remains to prove tP = tQ. We derive 

P~QAQ~P 
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{calculus} 

Pr;;;Q PI\Qr;;;Pr;;;Q 

{ Lemma B.0.3 (twice) } 

tP n tP ~ t Q 1\ t Q n t Q ~ tP 

{ set theory } 

tP =tQ 

This proves the antisymmetry of r;;;. 

3. Assuming P r;;; Q 1\ Q r;;; R, we show P r;;; R. The assumption implies 

iP iQ iR 1\ oP = oQ = oR . (B.8) 

So it remains to prove the third and fourth conjunct in definition ( 4.20) with Q := R. 
We do only the third conjunct, since the fourth follows from symmetry. 

From Lemma B.0.3 and the assumption we infer tP n tR ~ tQ. Now we derive for 

trace t and symbol a 

a E oP 1\ t E tP 1\ ta E tR 

{ R E PROC, hence tR is prefix-closed } 

a E oP 1\ t E tP 1\ t E tR 1\ ta E tR 

=? {tPntR~tQ} 

a E oP 1\ t E tQ 1\ ta E tR 

=? { oP = oQ and Q r;;; R } 

a E oP 1\ ta E tQ 

'* {Pr;;;Q} 

ta E tP 

This completes the proof of !;;;'s transitivity. 

• 
The following lemma is fundamental to the understanding of the Factorization Theorem. 

B.0.5 Lemma For DI processes P and Q we have 

P;;;) Q = Gorrect.{P, '-"'Q}. 

Proof Follows from Theorems 4.5.2 and 4.7.7. • 
B.0.6 Theorem (See Theorem ,f..9.1) For DI processes P, Q, and R we have 

P 11 Q ;;;) R = P ;;;) "'( Q 11 '-"'R) . 

Proof We derive 



P 11 Q ;J R 

{ Lemma B.0.5 } 

Correct.{P 11 Q,v-.R} 

{ P 11 Q equ { P, Q} } 

Correct.{P, Q, ..,-,R} 

{ {Q,...,..,R} equ Q 11 ""R} 

Correct.{P, Q 11 ""R} 

{ ...,.., is its own inverse } 

Correct.{P, ""'-"( Q 11 ""R)} 

{ Lemma B.0.5 } 

PII :1 '-'"'( Q 11 v.R) 

127 
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- yout, 60, 100 

- z, 43,80 

-Z',60 
-zi",6o 
- zout, 60 

S(ao, ab b; eo, c1) (sequencer), 63 

sat (satisfaction) 

on SYS, 32 

on A, 85 

satisfaction relation, 32 

sequencer (process), 63 

sink, 52 

source, 52 

state graph, 16 

edge labels omitted from -, 44 

labeled 70 

minimal 25 

vertex numbers in-; 19 

static output nondeterminism, 101 

symbol, 23 

symmetric relation, 119 

sys (set of all systems), 25 

system, 25 

DI-, 46 

T(a; b, c) (toggle), 55 

t (trace set of), 23, 70 

terminator, 51 

testing, 36, 116 

timing problem, 9 

toggle, 54 

total, 120 

trace set, 23, 70 

transient trace, 70 

transitive relation, 119 

tree of ECF, 89 

U(a; b, c) (undetermined selector), 62 

undetermined selector, 62 

upper bound, 120 

W(a; b) (wire), 16 

weakest prespecification, 49 

weaving operator, 31, 112 

wire, 16 

wired system, 29 

x (external alphabet of), 25 

xi (external inputs of), 25 

xo (external outputs of), 25 
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1. The testing paradigm is not only suitable for comparing behavioral 

aspects of systems, but also for comparing structural aspects. 

See this dissertation and [1]. 

[1} Tom Verhoeff, The Testing Paradigm Applied to System Structure, 
Computing Science Notes 94/10, EUT, March 1994. 

2. In contrast to what is claimed in [2], nondeterminacy cannot always 

be reduced. 

See Chapter 8 of this dissertation. 

f2] Edsger W. Dijkstra, A Detailed Derivation of a Very Simple Program, 
EWD1162, October 1993. 

3. Let p(a, b, c, d) be the probability that in a bridge game the players 

North, East, South, and West have a, b, c, and d spades, respec

tively. Let q(a, b, c, d) be the probability that a hand at bridge, say of 

North, will consist of a spades, b hearts, c diamonds, and d clubs. 

Since p(a, b, c, d) = q(a, b, c, d), the answers to exercises 32 and 34 in 

Section II.10 of [3] are inexcusably misleading. 

[3] William Feller, An Introduction to Probability Theory and Its Appli
cations, Third Edition, Volume 1, John Wiley & Sons, 1968. 

4. Rubik's Magic, the puzzle with the eight ingeniously hinging tiles, 

has 1351 spatial configuration classes, of which only two are planar. 

[4] Tom Verhoeff, Magic and Is Nho Magic, Cubism for Fun, Nr. 15, 

1987. [The title, including h, is inspired by Simon Stevin's motto 

Wonder en is gheen wonder.' 

5. Even for linked lists, Quicksort is a faster sorting algorithm than 

Merge sort. 

[5] Tom Verhoeff, Quicksort for Linked Lists, Computing Science 

Notes 93/03, EUT, January 1993. 



6. The Prisoner's Dilemma-a discrete non-zero-sum two-player game, 
formulated for instance in [ 6]-has an interesting continuous version, 
which implies that, for a strategy to do well, the severity of retaliation 
should be strictly less than the severity of provocation. It remains to 
be explained why people often behave in the opposite way. 

[6] Robert Axelrod, The Evolution of Cooperation, Basic Books, 1984. 

[7] Tom Verhoeff, A Continuous Version of the Prisoner's Dilemma, 
Computing Science Notes 93/02, EUT, January 1993. 

7. In TEX (see [8]), vertical alignment of boxes is harder to adjust than 
horizontal alignment: the former requires glue juggling, the latter 
not. This can be attributed to an unnecessary break of symmetry 
in the design of T]jX. The reference point of a box is restricted to lie 
either on the left-most side of the box or, for negative width, on the 
right-most side. Its vertical position, being determined by height and 
depth, is not so restricted. 

[8] Donald E. I<nuth, The Tp){book, Addison-Wesley, 1984. 

8. (a) Computing science students ought to pay ample attention to 
mathematics. 

(b) Mathematics students ought to pay ample attention to comput
ing science. 

9. The three options accept, accept after rewriting, and reject, usually 
available to referees of journal articles for expressing their judgment, 
should be extended with the option reject after rewriting. 

10. Inclusion of a frivolous index entry in a dissertation helps eliminate 
errors. 

11. Manual Therapy, in spite of its name, is practised mostly by brain. 


