

A theory of delay-insensitive systems

Citation for published version (APA):
Verhoeff, T. (1994). A theory of delay-insensitive systems. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR416309

DOI:
10.6100/IR416309

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.6100/IR416309
https://doi.org/10.6100/IR416309
https://research.tue.nl/en/publications/1f854bc8-79dc-4579-93bf-e25561898c57

A Theory of

Delay-Insensitive Systems

Tom Verhoeff

A Theory of

Delay-Insensitive Systems

Tom Verhoeff

Eindhoven University of Technology

Department of Mathematics and Computing Science

Copyright © 1994 by Tom Verhoeff, Eindhoven, The Netherlands.

All rights reserved. No part of this publication may be stored in a retrieval system, trans

mitted, or reproduced, in any form or by any means, including but not limited to photocopy,

photograph, magnetic or other record, without prior agreement and written permission of

the author.

Cover: Koos Verhoeff's impression of the state graph in Figure 3.5, render~d in PostScript

with Mathematica by the author. The beams have a triangular cross section. The sculp

ture enjoys the 24 symmetries of the group s4, which is also the symmetry group of the

tetrahedron. The Mathematica program on the back can be used to generate other views.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Verhoeff, Tom

A theory of delay-insensitive systems / Tom Verhoeff.

Eindhoven : Eindhoven University of Technology,

Department of Mathematics and Computing Science. - Ill.

Proefschrift Eindhoven. - Met lit. opg., reg. - Met

samenvatting in het Nederlands.

ISBN 90-386-0353-3

Trefw.: communicerende processen ; wiskundige modellen.

A Theory of

Delay-Insensitive Systems

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

AAN DE TECHNISCHE UNIVERSITEIT EINDHOVEN,

OP GEZAG VAN DE RECTOR MAGNIFICUS,

PROF.DR. J.H. VAN LINT,

VOOR EEN COMMISSIE AANGEWEZEN DOOR

HET COLLEGE VAN DEKANEN

IN HET OPENBAAR TE VERDEDIGEN OP

VRIJDAG 20 MEI 1994 OM 16.00 UUR

DOOR

TOM VERHOEFF

GEBOREN TE RIJSWIJK, Z.H.

Dit proefschrift is goedgekeurd door

de promotor

prof.dr. M. Rem

en de copromotor

dr.ir. J.T. Udding

Acknowledgment: The research for this dissertation was partially supported by EXACT

(ESPRIT Project 6143) and ACiD (ESPRIT Working Group 7225).

To my parents: Bertha & Koos

'Eadum sunt, quorum unum potest substitui alteri salve veritate.'

[Things are equal that can be substituted for

one another without changing correctness.]

Gottfried Wilhelm Leibniz, 1646-1716

Contents

Summary

Samenvatting (Dutch Summary)

Curriculum Vitae

1 Introduction

1.1 Formal Framework

1.2 Chapter Overview .

1.3 Notational Conventions .

2 Motivation

2.1 Timing Problem .

2.2 Traditional Solution .

2.3 Ideal Solution

2.4 Two-Stage Solution .

2.5 Specifications without Time Metric

3 Objectives

3.1 Processes

3.2 Systems of Processes

3.3 Questions to Be Addressed .

4 DI Model

4.1 Processes

4.2 Structure of Systems .

4.3 Operation of Systems .

4.4 Correctness, Satisfaction, and Equivalence

4.5 Partial Order on Processes

4.6 Composites and Canonical Representatives

4.7 DI Processes and the JTU-Rules.

4.8 Computing the Composite

4.9 Design Equation

vii

ix

xi

xiii

1

2

5

5

7

7

9

11

12

13

15

15

17

22

23

23

25

28

32

34

36

41
47

48

viii

5 Applications

5.1 Composition and Design Examples

5.2 More Building Blocks . ' ..

5.3 Output Choice

5.4 Still More Building Blocks

5.5 Limitations . . .

6 Extended DI Model

6.1 Processes

6.2 Operation and Correctness of Systems

6.3 Canonical Representatives

6.4 Extended JTU-Rules

7 Enhanced Characteristic Functions

7.1 Composition and Correctness for Trace Labels

7.2 Neighbor-Swap Rule .

7.3 GLBs and Composites

8 Output Nondeterminism

8.1 Output Refusal Sets

8.2 Static versus Dynamic Output Nondeterminism

8.3 Closure Results

9 Conclusion

9.1 Retrospect .

9.2 Evaluation .

9.3 Related Work

9.4 Towards Circuits

A Ordered Sets and Lattices

A.1 Relations . . .
A.2 Ordered Sets

A.3 Lattices .

B Some Proofs

References

Index

CONTENTS

51
51

56

60

62

66

69

69

74
77
80

83

84

86

89

95

95

101

106

107
107

110

111

115

119

119

119

121

123

129

135

Summary

This research finds its motivation in the design of digital integrated circuits ("chips") and

systems comprised of multiple chips. Chips have penetrated all aspects of our life. The

timing problem plays a fundamental role in the design of such circuits. Several methods for

solving the timing problem are available. In delay-insensitive circuits the timing problem

is solved by seeing to it that a circuit's correctness does not depend on assumptions about

delays in the connecting wires between the elementary building blocks or about the response

times of these building blocks. Delay-insensitive circuits offer the potential of numerous

advantages. Because they are relatively unknown, further research is needed on finding

the right balance of these advantages against possible penalties in circuit performance and

area.

Chip design is abstracted to the design of systems consisting of processes that commu

nicate via channels. We present two families of mathematical models for such systems of

communicating processes, aimed at the study of delay-insensitivity. The results concerning

the first family are not new, but those for the second family are. Also new is the framework

for the models. It is based on the testing paradigm with three special ingredients: (i) sys

tems also play the role of test (environment), (ii) there is a predicate that characterizes

autonomously correct systems, and (iii) a system passes a test when the composite sys

tem comprising the system-under-test and the test environment is autonomously correct.

An important correctness concern for delay-insensitive systems is absence of interference

(under all possible delays). The two families differ in the nature of processes from which

systems are built and in the choice of correctness concerns.

The development of models sketched below applies to both families. On the space

SYS of systems, a composition operator par is given that combines two systems into one

larger system. The testing paradigm induces a refinement relation sat and an equivalence

relation equ on SYS. System S is a refinement of system T when the set of tests that S

passes contains that of T. Two systems are equivalent when they refine each other, that

is, when they pass the same tests. This yields a pre-abstract model (SYS; par, sat), for

which equ is a congruence relation. A quotient model is then obtained by dividing out

equ. An isomorphic model is ('DI; 11, ::;::]), where 'DI is a set of processes. This is a (fully)

abstract model. On this model a reflection operator is defined, in terms of which the design

equation can be solved.

The first family of models reformulates knowledge that was developed by early workers

including Muller, Seitz, and Clark et al., and cast in terms of Trace Theory by van de

ix

X SUMMARY

Snepscheut, Udding, Ebergen, Schols, Verhoeff, and Dill among others. In its context we

also present several applications. Furthermore, we point out some limitations, such as the

impossibility to deal with progress. The second family improves and extends the first.

New in the second family of models is the possibility to express progress properties of

processes. This is done by dividing the allowed states of a process into three categories:

(i) V'-states where the obligation for progress lies with the process (by sending output),

(ii) Ll-states where the obligation for progress does not lie with the process but with the

environment (by providing input), and (iii) 0-states without progress obligation. A system

suffers from deadlock when there exists a reachable state such that no process is in a V'

state and at least one process is in a Ll-state. Absence of such deadlock is imposed as

an additional correctness concern. The result is a pre-abstract model that extends the

pre-abstract model of the first family.

Aforementioned set VI of the corresponding fully abstract model can be characterized

in several ways. In case of the second family, the characterization of VI that we give by

means of extended JTU-Rules is new. We also give a new abstract model for the second

family in terms of enhanced characteristic functions. The enhancement consists of making

the codomain of these characteristic functions a simple algebra of five objects rather than

the two-valued Boolean algebra. These characteristic functions enable us to formulate the

extended JTU-Rules concisely.

Finally, we give a classification of nondeterminism related to output. Determinism is

defined on the basis of refusal sets, which are familiar from the failures model for Hoare's

CSP. Refusal sets, however, are a derived concept in our model and not fundamental as in

the failures modeL Our set of deterministic processes is closed under composition. New

is the distinction that we make between static and dynamic nondeterminism. Static non

determinism corresponds to freedom in a specification that a designer may still eliminate.

Dynamic nondeterminism cannot be eliminated because it depends on the interaction with

the environment. An arbiter is a typical example of a process with dynamic nondetermin

ism. The set consisting of the deterministic and the statically nondeterministic processes

is also closed under composition.

This research is of importance because a piece of knowledge in the field of delay

insensitive systems has been formulated and expanded into a uniform theory. The theory

provides new insights in this field and improves our ability to transfer knowledge. Finally,

the theory should be of help for choosing building blocks and for the development of better

design methodologies and tools.

Samenvatting

Dit onderzoek vindt zijn motivering in het ontwerp van digitale ge1ntegreerde schakelingen

("chips") en systemen opgebouwd uit meerdere chips. Chips zijn doorgedrongen tot alle

aspecten van ons leven. Het timing-probleem speelt een fundamentele rol bij het ontwerp

van zulke schakelingen. Verschillende oplossingsmethoden zijn beschikbaar voor dit pro

bleem. In een vertragingsongevoelige schakeling wordt het timing-probleem opgelost door

ervoor te zorgen dat de correctheid niet afhangt van veronderstellingen omtrent vertragin

gen in de verbindingsdraden tussen de elementaire bouwstenen of omtrent de reactietijden

van deze bouwstenen. Vertragingsongevoelige schakelingen beloven tal van voordelen. Hun

relatieve onbekendheid vereist verder onderzoek om de juiste balans tussen deze voordelen

en mogelijke nadelen qua prestatie en oppervlakte te vinden.

Chipontwerp abstraheren we tot het ontwerp van systemen bestaande uit processen die

via kanalen met elkaar communiceren. We presenteren twee families van wiskundige mo

dellen voor zulke systemen van communicerende processen om vertragingsongevoeligheid

te bestuderen. De resultaten met betrekking tot de eerste familie zijn niet nieuw, maar

voor de tweede familie wel. Ook nieuw is de opzet van de modellen. Deze is gebaseerd op

het testing-paradigma met drie extra ingredienten: (i) systemen vervullen ook de rol van

test(omgeving), (ii) er is een predikaat dat autonoom correcte systemen karakteriseert en

(iii) een systeem slaagt voor een test indien het samengestelde systeem bestaande uit het

systeem-onder-test en de testomgeving autonoom correct is. Een belangrijke correctheids

eis voor vertragingsongevoelige systemen is afwezigheid van interferentie (bij alle mogelijke

vertragingen). De twee families verschillen in de aard van de processen waaruit systemen

zijn opgebouwd en in de keuze van correctheidseisen.

De hieronder geschetste ontwikkeling van modellen is voor beide families hetzelfde. Op

de ruimte SYS van systemen wordt een compositie--operator par gegeven die twee systemen

verbindt tot een groter systeem. Het testing-paradigma induceert een verfijningsrelatie sat
en een equivalentierelatie equ op SYS. Systeem S is eenverfijning van systeem T indien de

verzameling van tests waarvoor S slaagt die van T omvat. Twee systemen zijn equivalent

indien ze verfijningen van elkaar zijn, dat wil zeggen indien ze slagen voor dezelfde tests.

Dit levert een pre-abstract model (SYS; par, sat), waarvoor equ een congruentierelatie is.

Een quotient model wordt dan verkregen door uitdelen naar equ. Een hiermee isomorf

model is (VI; 11, waarbij VI een verzameling processen is. Dit is een volledig-abstract

model. Hierop is een reflectie-operator gedefinieerd in termen waarvan de ontwerpvergelij

king opgelost kan worden.

xi

xii SAMENVATTING

De eerste familie modellen herformuleert kennis die ontwikkeld is door Muller, Seitz en

Clark et al., en later in termen van Tracetheorie is geformuleerd door van de Snepscheut,

Udding, Ebergen, Schols, Verhoefi en Dill. We geven in deze context ook een aantal

toepassingen. Verder wijzen we op enkele tekortkomingen, zoals de onmogelijkheid om

voortgang te behandelen. De tweede familie vormt een verbetering en uitbreiding van de

eerste.

Nieuw in de tweede familie modellen is de mogelijkheid om voortgangseigenschappen

van processen uit te drukken. Dit gebeurt door de toegestane toestanden van een proces

in drie klassen op te delen: (i) \7-toestanden waarbij de verplichting tot voortgang bij

het proces ligt (door uitvoer te produceren), (ii) ~-toestanden waarbij de1verplichting tot

voortgang niet bij het proces ligt maar bij de omgeving (door invoer aan te bieden) en

(iii) D-toestanden zonder voortgangsverplichting. Een systeem lijdt aan deadlock indien

een toestand bereikbaar is waarbij geen enkel proces in een \7-toestand verkeert en ten

minste een proces in een ~-toestand is. Afwezigheid van deadlock wordt als extra correct

heidseis opgelegd. Het resultaat is een pre-abstract model dat een uitbreiding vormt van

het pre-abstracte model in de eerste familie.

Bovengenoemde verzameling VI van het bijbehorende abstracte modelkan op een aan

tal manieren gekarakteriseerd worden. De karakterisering van VI die we in het geval van

de tweede familie in de vorm van uitgebreide JTU-regels geven, is nieuw. We geven voor

de tweede familie ook een nieuw abstract model in termen van verrijkte karakteristieke

functies met als codomein een eenvoudige algebra op vijf objecten in plaats van de gebrui

kelijke tweewaardige Boole-algebra. Deze karakteristieke functies stellen ons in staat om

de uitgebreide JTU-regels compact te formuleren.

Tenslotte geven we een classificatie van nondeterminisme met betrekking tot uitvoer.

Determinisme wordt gedefinieerd op basis van 'refusal sets', die ook bekend zijn van het

'failures' model voor Hoares CSP. 'Refusal sets' zijn echter een afgeleid begrip in ons model

en niet fundamenteel zoals bij het 'failures' model. Onze verzameling van deterministische

processen is gesloten onder compositie. Nieuw is het onderscheid dat we maken tussen sta

tisch en dynamisch nondeterminisme. Statisch nondeterminisme komt overeen met vrijheid

in een specificatie die door de ontwerper geelimineerd kan worden. Dynamisch nondeter

minisme kan niet bij ontwerp geelimineerd worden omdat het afhangt van de interactie

met de omgeving. Een arbiter is een typisch voorbeeld van een proces met dynamisch

nondeterminisme. De verzameling bestaande uit de deterministische en de statisch nonde

terministische processen is ook gesloten onder compositie.

Dit onderzoek is van belang omdat een stuk kennis op het gebied van vertragingsonge

voelige systemen in een uniforme theorie geformaliseerd en vervolgens uitgebreid is. Verder

verschaft deze theorie nieuwe inzichten in het vakgebied waardoor kennis hieromtrent beter

over te dragen is. Tenslotte client de theorie te helpen bij het kiezen van bouwstenen en

bij het ontwikkelen van betere ontwerpmethoden en -gereedschappen.

Curriculum Vitae

1958
1960-61

1965-70
197Q-76

1976-85

1977-80
1980-82

1982-85

1985-87
1987-94
1988

Born on October 24 in Rijswijk, Znid-Holland (NL)

Cleveland, Ohio (USA)

Elementary school: van Nijenrodeschool, The Hagne (NL)

High school: Hertog-Jan College, Valkenswaard (NL)

Diploma: Gymnasium-/3

University: Eindhoven University of Technology (NL)

Diploma: Master's Degree in Mathematics

Teaching assistant on various subjects at EUT

Software developer at Vollwood Computer B.V., Waalre (NL)

Research assistant on various projects at EUT

Teaching assistant doing Ph.D. research at EUT

Assistant professor at EUT, Dept. of Math. and C.S.

Visiting research associate at Washington University,

Dept. of C.S. in St. Louis, Mo. (USA)

Current address:

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven

The Netherlands

E-mail: wstomv(Dwin. tue. nl

xiii

xiv CURRICULUM VITAE

Chapter 1

Introduction

Information-processing tools made their appearance a long time ago. For ages, timekeep

ing relied on the sundial and computing on the abacus. Not until the 17th century did

timekeeping and computing benefit from new ideas. Christiaan Huygens built the first

pendulum-driven clock in 1656 and later his invention of the balance wheel led to the

pocket watch. Computing was revolutionized by John Napier's introduction of logarithms

in 1614 and the invention of the slide rule in 1622 by William Oughtred. Slide rules reigned

until they were replaced by scientific pocket calculators in the mid-1970s.

An information processor interacts with its environment by signals, and enforces a

(useful) relationship between these signals. It is said to be analog when the signals vary

continuously in space, time, or content, as with the sundial and slide rule. This contrasts

with digital devices, like the abacus and pocket calculator, based on discrete signals, which

in that case are also called symbols. The distinction 'digital' versus 'analog' is somewhat

contrived, since there are all sorts of hybrid forms as well. It is a recent accomplishment

that, through appropriate converters, all information processing can be translated into the

digital realm (think of the Compact-Disc technology). Nowadays digital devices are mostly

implemented electronically. An electronic information processor is often called a circuit; a

digital circuit is an electronic realization of a symbol manipulator.

A digital electronic circuit consists mostly of switches and interconnection wires. The

switches were at first implemented by electromechanical relays, the size of an average thumb

and a switching time in the order of milliseconds. Later they were replaced by vacuum

tubes, which were about the same size as a relay but with switching times in the order

of microseconds. Shortly after World War II, in 1948, the transistor was invented. Fully

packaged it had the size of a pea and could switch in the order of ten nanoseconds. A major

breakthrough was the development of techniques to integrate a number of transistors and

their connecting wires on a single silicon "chip", aptly called an integrated circuit (IC).

It is stated in [GD85] that 'since 1961 the number of transistors that can be successfully

fabricated on a single chip has doubled almost every year'. Currently, the state of the art is

represented by 64 Mbit dynamic memories with close to 108 transistors and the DECchip

21064 (the 'Alpha'), which is a full 64-bit microprocessor implemented by 1.68 million

transistors (see [DEC93]).

1

2 CHAPTER 1. INTRODUCTION

Modern circuits are not only complex at the structural level: also their behavior has

become much more complex because of the increased degree of parallelism. In older micro

processors all operations were totally sequenced. Since we are approaching the upper limit

of what is sequentially achievable, modern circuits must rely on parallelism to gain further

speed. For instance, DEC's Alpha chip mentioned above contains separate instruction

and data caches, and separate pipelined integer and floating-point execution units, and it

involves 'dual instruction issue'.

The large degree of integration on chips can only be realized by complicated and expen

sive fabrication processes. From a geometric layout, giving the precise location and size of

each transistor and wire, a set of enlarged photographic masks is produced. These masks

are used in numerous physical and . chemical processing steps to transfer the structural

details of the layout onto a silicon wafer, the size of a compact disc. Each wafer, contain

ing some hundred copies of the circuit, is cut into individual chips, which are then put

into packages, bonded to the external pins, and sealed. IC production involves inherently

stochastic steps; that is why tests are required along the way to identify defective circuits.

Needless to say, a circuit must be designed with great care before it is submitted

for production. Delay-insensitive circuits are intended to improve our ability to make

reliable and efficient circuit designs. The theory of delay-insensitive systems is applicable

to information-processing systems in general, also to systems that are not electronically

implemented.

1.1 Formal Framework

In this section, we outline the development of our theory of delay-insensitivity. Our ma

jor motivation for the study of delay-insensitivity is its relevance to the design of digital

integrated circuits, to be explained in more detail in the next chapter. However, this is

not the only design context where the notion of delay-insensitivity is applicable. The mod

els presented in later chapters and-especially-the methods used to construct them, are

largely application independent. Only in a few isolated places are decisions based on the

application to digital circuit design. These will be pointed out where relevant. Let us now

begin with a few philosophic points.

Three Kinds of Models

A model should encompass everything that one cares to express about what is being

modeled. The aim is to omit irrelevant details, though it may not always be clear in advance

where to draw the boundary between relevant and irrelevant. A mathematical model

may be set up as some sets of objects, and some operators and relations on these sets. Such

a model can also be viewed as an algebra. A well-known example is the real number system,

with the set of real numbers as objects, addition and multiplication as operators, and the

usual ordering as relation. In the case of delay-insensitive digital circuits, the objects are

networks of communicating processes, for which parallel composition is an operator, and

1.1. FORMAL FRAMEWORK 3

satisfactory substitutability, also known as refinement, is a relation.

We distinguish three levels of abstraction when using models. These are, in order of

increasing abstraction:

pre-abstract, (fully) abstract, and axiomatic.

At the pre-abstract level, there are possibly irrelevant distinctions between objects; that

is, we consider some distinct objects equivalent for the intended application of the modeL

At the fully abstract level, distinct objects are inequivalent, but the objects themselves

still may have irrelevant structural detaiL At the axiomatic level, the objects have no

explicit structure; they are implicitly characterized by axioms on their operators and re

lations. When moving from a pre-abstract to a fully abstract model, one abstracts from

irrelevant object distinctions, by identifying equivalent objects. When moving from a fully

abstract model to an axiomatization, one abstracts from irrelevant object structure, that is,

from irrelevant distinctions between different models, thus identifying isomorphic models.

For example, in the case of the real number system, the model with Cauchy sequences

of rational numbers as objects is at the pre-abstract level: many Cauchy sequences are

equivalent as "real numbers". The model with Dedekind cuts in the rational numbers as

objects is at the fully abstract level: each real number is modeled by a unique Dedekind

cut. But the Dedekind cut itself is irrelevant to the notion of "real numbers", since they

can also be defined using, for instance, certain infinite decimal expansions. Axiomatically,

th:e real number system can be defined (up to isomorphism) as the complete ordered field,

which abbreviates a list of axioms. We refer to [End77, ML86] for details.

Of course, even the objects in a pre-abstract model are ultimately defined in terms of

axiomatically postulated objects to avoid an infinite regress. This shows that pre-abst.ract

models are also "very" abstract. We use set theory as a foundation, albeit in an implicit

way. (By the way, even an axiomatization can still have irrelevant structure, in that

distinct lists of axioms can define the same class of models. This shows that axiomatic

characterizations are not necessarily the "most" abstract descriptions.)

The use of a pre-abstract model is often justifiable by its close relationship to intuition

or to physics, thereby lending some plausibility to the definitions of the objects, operators,

and relations involved. Fully abstract models can provide additional insight by the way

in which they eliminate the irrelevant object distinctions. They are useful for proving

fundamental properties that later can serve as axioms. They also embody a (relative)

consistency proof of a tentative axiomatization. An axiomatic characterization is useful

because it provides a consistent framework for carrying out abstract proofs, which do

not rely on ad hoc structural properties of the objects. The natural development of a

theory often goes from a pre-abstract model, via a fully abstract model, to an axiomatic

characterization. We also follow this line but stop short of the last step.

Testing Paradigm

Partly as an experiment, we deviate from the "standard" development of computational

models. The "standard" procedure we have in mind (see, for example, [LS84]), introduces

4 CHAPTER 1. INTRODUCTION

a set of syntactic entities, say programs, and assigns to these programs a "meaning" from

a set of semantic entities. Each "meaning" satisfies certain specifications taken from yet

another set. In this setting, program correctness translates into the question whether the

program's "meaning" satisfies the given specification.

The "standard" terminology is, at best, misleading. The suggested distinction between

syntax and semantics makes no sense, because the question 'what is the meaning of ... ?' is

utterly uninteresting [Pop83, pp. 261-265]. (Next thing, one will ask for the meaning of the

meaning of ... ?) A model should cover everything one cares to express and should leave

no room for such questions. That is why operators and relations are to be incorporated,

including such relations expressing that a program satisfies a specification. Of course, these

can be defined in terms of auxiliary concepts, such as labeled state-transition systems or

predicate transformers. But these auxiliary concepts hardly deserve the name "meaning".

So, we will not introduce "meanings" as separate entities.

Furthermore, we wish to dispense with the distinction that is made between programs

and specifications. A program can only operate when placed in some environment, to

gether with which it forms an autonomous system. The environment is also taken to

be a program. Program correctness is now defined by giving criteria for the correctness of

autonomous systems. In the case of digital integrated circuits, correctness criteria-such as

absence of computation interference-ultimately derive from physics, that is, from physical

models. The relevant correctness criteria are captured by relation pass on programs,

where P pass E expresses that program P operates correctly in environment E. When

dealing with networks of communicating processes, it is natural to confront program and

environment with each other by parallel composition. Of course, if one insists on "stan

dard" terminology, then for a given program P, the set of E's satisfying P pass E, could

be considered the "meaning" of P.

Operation of a program within an environment can also be interpreted as a form of ob

servation [Hoa85, OH86] or testing [dNH83, Hen88]: P passE expresses that program P

passes the test under environment E. Program E is then called a testing environment, test,

observer, or experimenter. We can now define when program Pis a satisfactory substi

tute for program Q, denoted by P sat Q, namely when P passes at least the same tests

as Q does. We note that this is based on a demonic attitude towards nondeterminism.

If Q is viewed as a specification, then P sat Q may also be interpreted as 'P satisfies Q'

or 'P implements Q'. Other common pronunciations of P sat Q are: 'P is at least as

good as Q', 'P realizes Q', 'P refines Q', and 'P conforms to Q. Programs P and Q are

(testing) equivalent when they are satisfactory substitutes for each other, that is, when

they pass exactly the same tests.

The appearance of an equivalence notion, instead of an equality, indicates that we are

dealing with a pre-abstract model here. The next step is to "factor out" this equivalence

and to study the related fully abstract model. The emphasis is on the development and

analysis of fully abstract models. As a final step, an axiomatic characterization could be

sought, though we will not complete that part of the journey.

1.2. CHAPTER OVERVIEW 5

1.2 Chapter Overview

The last section of this chapter covers some notational issues. Chapter 2 provides back

ground information on the design of digital electronic circuits and motivates our interest

in delay-insensitivity. Chapter 3 introduces an informal model that enables us to pose

questions without delving into technical matters too much.

In Chapter 4 we present a formal model concerning delay-insensitive systems, called the

Dl Model. Actually, the DI Model encompasses two closely related models. We start with

a pre-abstract model and subsequently develop a fully abstract model. The pre-abstract

model is founded on a set of processes. The objects of interest are process networks, called

systems. The set of systems is sufficiently rich to contain objects that serve as speciii

cation as well as objects that play the role of implementation1 The distinction between

implementation and specification, however, falls outside the scope of the theory; it exists

in the user's mind only. Systems can be composed into larger, more complex, systems.

This composition operator models the connection of subsystems by wires. A correctness

criterion on closed systems forms the basis for the comparison of systems employing the

testing paradigm. It turns out that a related fully abstract model can be obtained-after

a minor correction-as a subset of processes. Most of the results in this chapter, and also

of the next chapter for that matter, are not new. However, we take a novel approach to

the presentation of the model.

Chapter 5 discusses several applications of the DI Model and reveals some of its limi

tations. We extend the DI Model in Chapter 6 to address one of these limitations, namely

by incorporating some form of progress requirement. This Extended DI Model is, again,

developed from a pre-abstract model into a fully abstract model. In contrast to the DI

Model, all results concerning the Extended DI Model are believed to be new. Chapter 7 is

more technical in nature and shows how a fully abstract model can, in fact, be derived from

the pre-abstract model. It is based on a small algebra for trace labels. The classification

of processes in terms of output nondeterminism is the subject of Chapter 8. This classifi

cation helps us to better understand some features of the DI Models. It also gives rise to

an interesting distinction between static and dynamic nondeterminism. Such a distinction

is intuitively appealing but cannot be made in, for instance, the Failures Model for CSP.

Finally, Chapter 9 completes our treatment of delay-insensitivity. We look back at the

results and how they were obtained, and we summarize the relationship with the work of

others. We also point out some issues that were ignored. Along the way we suggest topics

for further research and development.

1.3 Notational Conventions

Function application is written with an infix dot: f .x is the image of x under application

of f. Function composition o is defined by (f o g).x g.(f.x) .

1 With 'implementation' we do not refer to some physical realization, but to a design with more (internal)
structure than a specification, for instance, in terms of a network of components.

6 CHAPTER 1. INTRODUCTION

A slightly unconventional notation for variable-binding constructs is used. It will be

explained here informally. Universal quantification is denoted by

('V£: D: E) ,

where 'V is the quantifier, £is the list of bound variables, D is the domain predicate, and

E is the quantified expression. Both D and E will, in general, contain variables from £.

Predicate D delineates the domain of the bound variables. Expression E should be well

defined for all values of the bound variables that satisfy D. When D is simply true or

clear from the context it is often omitted. For instance, when variables x and y range over

function f's domain, we can express that f is injective by

("1/x,y::f.x f.y =>- x=y). (1.1)

Existential quantification is likewise denoted by quantifier 3 . In the case of set for

mation we write

{£: D: E}

to denote the set of all values E obtained by substituting values that satisfy D for the

variables in £. By way of example, consider for natural number k, the set { n : k ~ n : k"}

of all powers of k with integral exponent at least k. In the conventional notation this set

might be written as { kn I k ~ n}, where it is unclear which variables are bound.

For expressions E and G, an expression of the form E =? G will at times be proved in

a number of steps by the introduction of intermediate expressions. For instance, we can

prove E =? G by proving E F and F =? G for some expression F. This derivation is

recorded as

E

{ hint why E F }

F

=? { hint why F =? G }

G

In this way we avoid writing down intermediate expressions like F twice. For example, a

proof of '/ o 9 is injective if f and 9 are injective' might go as follows. For x and y in the

domain off o 9, hence in the domain off, we derive

(f o g).x = (! o 9).y

{ definition of f o g }

g.(f.x) = g.(f.y)

=>- { g is injective: definition (1.1) with x, y

f.x = f.y

=>- { f is injective }

X y

f.x,J.y }

The notation 'x, y := E, F' stands for the simultaneous substitution of E and F for x
and y respectively.

Chapter 2

Motivation

Our interest in delay-insensitivity first arose in the context of digital electronic circuits,

especially in the form of integrated circuits. In the first section we take a closer look at

one of the main problems encountered in the design of digital integrated circuitry, namely

the timing problem. Each of the next three sections discusses a different approach to the

timing problem; delay-insensitivity is one of them. The final section is about specifications

in which time only plays a role for sequencing.

2.1 Timing Problem

A digital integrated circuit can be viewed as a network of transistors (that is, electronic

switches) interconnected by wires. These circuit elements interact by voltage changes, also

called signals. The operations that take place are propagation, duplication, and switching

of signals. By the very nature of the circuit elements, these operations are continuous

phenomena expressible in terms of partial differential equations.

Digital circuits, however, are intended to carry out discrete computations, as op

posed to continuous or analog computations. This is a fundamental issue in the design of

digital circuits and the source of a number of problems. The issue can be illustrated with

the operation of a simple digital circuit, namely an OR-gate.

2.1.1 Example An OR-gate has two input ports, say a and b, and one output port,

say c (see Figure 2.1). We distinguish two special voltage levels at these ports: high and

low, where high exceeds low. We say that a port is true when its voltage level is at least

high, and that it is false when its voltage level is at most low.

The OR-gate strives to make its output equal to the disjunction (boolean OR) of its

inputs. This can be accomplished with transistors and wires, but we need not know how

that is done. By the way, notice that nothing is specified about the OR-gate's output in

case an input is at a voltage level between low and high, which does not correspond to a

boolean value.

We now consider three computation scenarios of the OR-gate. All three start in the

stable state where a is true, b is false, and, consequently, c is true (see Figure 2.1).

7

8 CHAPTER 2. MOTIVATION

Scenaxio 1 {

a s~···-~

b /

c \ ~

Scenario 2 {

a \

b l
c

a \

b l

c

Figure 2.1: Three computation scenarios for the OR-gate

In Scenario 1, first a changes to false, subsequently c changes to false, next b changes

to true, and then c changes back to true again. In Scenario 2, b first changes to true, c
remains true, followed after some time by a changing to false, c still remaining true. Thus,

depending on the relative timing of the changes on a and b, as illustrated in Scenarios 1

and 2, there is either a downward pulse on c or no change at all.

Consider the function that maps tb- ta, the time from change of a to change of b, into

the minimum voltage attained by c after the first change. This function, being defined

in terms of partial differential equations, is continuous when some (mild) restrictions on

part of the circuitry are met. On account of the Intermediate Value Theorem (known from

Analysis for continuous functions), the continuity of this function implies the existence of

Scenario 3, in which also a changes to false and b changes to true-suitably timed with

respect to each other-causing c to generate a considerable voltage dip with its minimum

somewhere between low and high. Such a dip may elicit all sorts of complicated behavior

at the receiving end.

The lesson is that, in spite of its intended digital simplicity, an OR-gate is a subtle

piece of circuitry as far as its behavioral analysis is concerned. Note that the argument

above holds for every realization of an OR-gate. •

2.2. TRADITIONAL SOLUTION 9

Apparently, the relative timing of signals critically influences the behavior of digital

circuits. The designer needs to control the relative timing of signals carefully, even when

speed is no concern and functional correctness is the only concern. This is the timing

problem.

2.2 Traditional Solution

Relative timing is directly determined by the operating speed or delay of the circuit

elements involved. The delay characteristics of a circuit depend on such diverse factors as

l. circuit logic and topology,

2. geometric layout,

3. scaling and integration technology,

4. fabrication stochastics,

5. environmental conditions,

6. metastability resolution, and

7. aging.

Here are some examples.

l. Logic: A two-input OR-gate is usually faster than a three-input OR-gate, even with

one of the latter's inputs fixed at false. Topology: When a four-input OR-gate is

built from three two-input OR's, its operating speed will depend on whether they

are connected linearly or as a balanced tree.

2. Geometry: Even if the four-input OR-gate is implemented as a balanced tree, the

exact layout of this tree will also affect the operating speed. Imagine putting each

OR-gate in a different corner of the chip, and connecting them by very long wires.

3. Technology: Each integration technology has its own characteristics. CMOS switches

are relatively slow and economic in operation. Gallium-arsenide transistors are fast

but require a cool environment. See [Sei79] for a discussion of scaling.

4. Fabrication: The manufacturing process is not completely controllable. Hence, circuit

elements manufactured from the same design by the same technology may vary in

characteristics, such as operating speed.

5. Environment: The operating speed depends directly on such factors as temperature

and power supply voltage.

10 CHAPTER 2. MOTIVATION

6. Metastability: All sufficiently smooth systems-and in nature that includes most

systems-with at least two stable states have at least one metastable state (see

[Hur75, Mar81, KC87b, KC87a]). A metastable state is like the "middle" position of

a toggle switch, where it is carefully balanced between on and off (also see Figure 2.2).

On the one hand, a metastable state persists when the system is left to itself. On the

metastable

Figure 2.2: Stable and metastable states in the field of gravity

other hand, a small deviation from such a state will make the system diverge from it

and move towards one of its stable states.

In practice, a macroscopic system like an integrated circuit is never "left to itself":

there are always small perturbations due to noise. Hence, such a system will leave a

metastable state with probability one. The problem is that there is no upper bound

on how long it will stay in or near the metastable state before diverging.

A flip-flop is a (digital electronic) system with two stable states (on/off, set/reset, 0/1,

true/false, whatever they are called). Under the right circumstances any flip-flop can

be brought sufficiently close to, or even into, a metastable state, where it hesitates

between 0 and 1 (this is known as the glitch phenomenon, see [CM73, Sei80J).

The duration of this hesitation is unpredictable and can be arbitrarily large; thus, it

translates into variable operating speed.

7. Aging: As circuits grow older, their characteristics, including operating speed, slowly

change.

In summary, delays are not easily controllable because they depend on many factors.

These dependencies increase the overall complexity of the design task. Nevertheless, the

designer somehow needs to immunize circuit designs against delay variability. With cur

rent integration technologies this poses a serious problem because of the huge functional

complexity of the circuits that may be manufactured.

The traditional solution to the timing problem introduces severe constraints on the

delays, in order to make their effects tractable. Most often a central clock serves as a

global event sequencer and time reference, simplifying matters a little by trading two-sided

for one-sided bounds ('wait until the next clock tick for the OR-gate's output to stabilize';

see [Sei80, p. 225] for an explanation).

The traditional solution, however, has several disadvantages. The constraints imposed

on delays directly translate into restrictions on all parameters that influence delays. The

2.3. IDEAL SOLUTION 11

substitution of a functionally equivalent but faster subcircuit (item 1 above) may require a

complete redesign. Layout freedom (item 2) is limited. Also rescaling or the employment

of new integration techniques (item 3) may require a redesign. Complicated tests must be

performed to eliminate circuits suffering from fabrication failures (item 4). Power supply

and ambient temperature (item 5) must be kept within strict limits. If a clock is present,

then its period must be tuned to ..accommodate the worst case and it must be properly

distributed. When metastability (item 6) plays a role, clock tuning is inherently impossible

and one has to settle for a circuit with at best probabilistic reliability.

2.3 Ideal Solution

An ideal solution to the timing problem is based on decoupling correctness from delay

variations altogether. That is, one sees to it that circuits are correct even under arbitrary,

uncorrelated variations in all delays. The resulting circuits are called delay-insensitive.

This ideal solution is very attractive since it does not suffer from the disadvantages

mentioned in connection with the traditional solution. It promises freedom in subcircuit

substitution (item 1), layout (item 2), scaling and integration technology (item 3), and

operating conditions (item 5). Testing is still required to filter fabrication failures (item 4),

but tests need not be so complicated. The concept of a clock is irrelevant under this

ideal solution, so clock tuning and distribution, and the harmful consequences of the glitch

phenomenon (item 6) can be avoided.

Of course, delay variability not only affects functional correctness, but also directly

relates to performance. Therefore, efficiency considerations may reintroduce limits on

delay variability even in the ideal solution. What we have gained is a separation of concerns:

correctness independent of delays. Of course, performance does depend on delays, but also

on the choice of "algorithm".

In general, however, it is hard to build transistor circuits whose correctness is completely

independent from delays-if it is at all possible (see [vdS85, p. 77] and [Seg91]).

aY
~

Figure 2.3: CMOS inverter

2.3.1 Example Consider a very basic circuit (see Figure 2.3): the CMOS inverting

amplifier with input port a and output port b (see [WE93] for details on the operation of

12 CHAPTER 2. MOTIVATION

CMOS transistors). We adopt the same voltage level conventions as with the OR-gate of

Example 2.1.1. In the stable state where a is false and b is true, transistor Pis conducting

and transistor N is non-conducting.

Let us assume that transistor P switches much more slowly than transistor N, or, what

amounts to the same thing, that wire ap is much slower than wire an. When a is now

changed from false to true, the inverter temporarily gets into a state where both transistors

are conducting. This short-circuits the power supply and possibly destroys the inverter

when lasting too long (or, at the least, wastes energy).

Obviously, the correctness of the inverter circuit depends on a suitable matching of

delays, constraining such aspects as the circuit's layout, etcetera. Therefore, this inverter

circuit is not fully delay-insensitive (assuming that it was intended for computating the

boolean NOT; see the next section for the importance of a specification). •

2.4 Two-Stage Solution

Instead of aiming at correctness independent of all delays, it seems more realistic to accept

some dependencies. This is incorporated in the following two-stage solution to the timing

problem [Cla67, Kel74, Sei80, MFR85, vdS85].

First, a small but sufficiently expressive set of simple building blocks, whose correct

ness may depend on the size of internal delays to some extent, is designed, These building

blocks are then used to design larger circuits, whose correctness is independent of the

externally observable delays of the building blocks and interconnecting wires.

The two-stage solution yields circuits that still give a fair amount of freedom in layout,

substitution, scaling, and integration technology, etcetera, because it localizes the timing

problem inside the few sufficiently simple building blocks, where it needs to be·~,y~d only

once. See Chapter 9 for other advantages and disadvantages of this approach.·· ·

Circuits based on the two-stage solution are often called delay-insensitive, speed

independent1, or self-timed. It does not mean very much if someone states, in isolation,

that a circuit is delay-insensitive. Even the correctness of traditional circuits is insensitive

to delay variations to some extent (otherwise, they would be quite useless). One should

elaborate the statement by indicating (i) which delays in the circuit are allowed to change

(ii) by how much, (iii) in what relationship to other delays, and (iv) without affecting

correctness with respect to what specification. In case of the ideal solution, the answers

to (i), (ii), and (iii) are: 'all', 'an arbitrary amount', and 'uncorrelated' respectively; we

will come back to (iv) in a moment.

In case of the two-stage solution, the answer is less straightforward. For one thing,

delays in all wires interconnecting the building blocks are allowed to change in an arbitrary

uncorrelated fashion. Within the building blocks only certain changes are allowed, for

example, those changes that affect only the externally observable delays, and, depending

on the particular implementation, possibly others as well.

1The term 'speed-independent' is usually reserved for a more restricted class of circuits.

2.5. SPECIFICATIONS WITHOUT TIME METRIC 13

However, we will be interested in design with, not design of, such building blocks. When

treating the building blocks as black boxes the two-stage designs will also be considered

delay-insensitive.

2.5 Specifications without Time Metric

So far, we have not said much about the kind of specifications against which circuit cor

rectness is verified. It is obvious that time can play only a limited role in specifications, for,

otherwise, no delay-insensitive circuit can satisfy it. For instance, it does not make sense

to specify a delay-insensitive circuit in which a certain output is to be generated within

one microsecond, because the wire connecting the circuit's output port to another circuit's

input port may arbitrarily delay the signal anyway.

Although alternatives are possible, we will work with specifications that are completely

free of a time metric [Sei80, vdS85, Udd84]. In such specifications only the order in which

events occur, and not their precise location in time, is of importance. The events in this

case are-roughly speaking-rapid monotonic voltage changes bringing about a change in

boolean value. These events are called (voltage) transitions and they are considered

atomic events, that is, events cannot "overlap" or occur "simultaneously".

This choice for events brings with it a restriction, which we call the digital mode

(restriction), on the allowed signal waveforms. Even if all input signals obey the digital

mode restriction, it is still possible that the circuit's output signal violates the digital mode.

This is illustrated by the non-digital pulse in Scenario 3 of Example 2.1.1. Such unwelcome

signals on input ports are said to constitute computation interference [vdS85]. Correct

usage of a delay-insensitive circuit puts a restriction on the environment's behavior as well.

2.5.1 Example In terms of orderings on voltage transitions, the OR-gate from Exam

ple 2.1.1 can be specified by the labeled graph of Figure 2.4. An edge labeled aT stands

Figure 2.4: State-transition diagram for OR-gate

for a transition on port a from false to true, and al for a true-to-false transition. The

vertexes of the graph have been labeled with the state vector abc of port values (0 for false,
1 for true).

14 CHAPTER 2. MOTIVATION

Notice that the OR-gate in state 101, which corresponds to the initial state of the

scenarios in Example 2.1.1, is capable of processing transitions on either input. But once

one input has been received the other cannot be accommodated. In particular, a transition

on b in state 001 can cause computation interference for certain settings of the delays

involved. This is modeled by the absence of an edge labeled bl from state 001 in the

state-transition diagram. Similarly, there are no edges labeled a! and b! from state 111,

which is a sink in the graph.

In summary, this specification prescribes restrictions on both the OR-gate's behavior

and that of its environment. These restrictions capture the most liberal delay-insensitive

usage of the OR-gate. In practice, the sink part consisting of states 110 and 111 is never

exploited. •

The digital mode restriction also has consequences for a simple wire. Because of dispersion

and dissipation, a sequence of two clean signal transitions at the input port of a wire can

result in a non-digital pulse at the output port. This phenomenon is called transmission

interference [vdS85]. Phrased differently: a wire can reliably process at most one voltage

transition at a time.

Absence of computation and transmission interference are correctness concerns for the

designer of delay-insensitive circuits. Other correctness criteria, like absence of wiring

conflicts and absence of deadlock, will be discussed later.

Chapter 3

Objectives

In this chapter we informally illustrate the objectives we have in mind when developing

a theory of delay-insensitive systems. The theory should enable one to argue about such

things as equivalence, composition, substitution, satisfaction, and decomposition under

a variety of correctness concerns. The next chapter will formalize these concepts. The

development of practical tools should be served by our investigation, but is beyond the

scope of this work.

The two-stage solution to the timing problem (as discussed in Chapter 2) transforms

digital circuit design into the design of networks of communicating processes. The processes

are to be taken from a small set of building blocks. How these building blocks are designed

is not our concern here; that needs to be done only once and requires intimate knowledge

of the particular implementation technology. The choice of building blocks is also left

open. In fact, the theory presented here should be helpful in selecting an appropriate set

of building blocks.

Communication delays and processing delays are nondeterministic parameters. As we

have seen, absence of computation and transmission interference are important correctness

criteria. Notice that other applications, for instance involving software, or product flows

in factories, also fit in this abstract framework. However, the correctness criteria involved

may be different.

3.1 Processes

We will now sketch a simple formalism and informally look at some examples, illustrating

the kind of problems that we intend to address.

In this simple formalism, the interactions of a module and its environment are specified

by a triple(/, 0, V) satisfying the conditions listed below. Such a triple is called a process.

I is the process's set of input port names and 0 is its set of output port names. I and

0 should be disjoint. V is a set, called the process's trace set, of finite-length sequences

over I U 0; it should be non-empty and prefix-closed. The latter means that for each trace

in V all its prefixes, (initial segments) are also in V. Trace set V specifies in which order

15

16 CHAPTER 3. OBJECTIVES

communication actions can take place, that is, in which order the process can send and

receive signals via the ports. This works as follows.

Let t be the sequence of communication actions thus far performed by the process. Note

that communication actions are considered atomic events and can therefore be sequenced.

Sequence t is also called the current trace of the process. Initially, t is the empty sequence r::,
which belongs to V by definition. If a E 0 and ta E V then the process can1 produce a

signal on output port a and its current trace is extended to ta. If a E I and a signal is

received on input port a then the current trace is also extended to ta, regardless of whether

ta E V.

When ta f. V we say that there is (computation) interference at the process. This

should be avoided at all costs. It is an obligation of the process's environment to see to

it that the current trace remains in V (well, actually, it is the designer's responsibility

to use processes in appropriate environments only). Notice that a process cannot directly

prevent its environment from supplying an input signal (it may be able to do so indirectly

by sending output). Nor can the environment directly force the process to produce an

output signal. All the environment can do is wait for an output signal to be sent.

Examples of Processes

We illustrate our process notion by five elementary examples.

3.1.1 Example The wire with input port a and output port b (thus, a # b) is the

process specified by triple

({a}, {b}, {r::,a,ab,aba,abab,ababa ... }),

where the trace set consists of all alternations of a's and b's not starting with b. The wire

copies each input signal on its output. Its environment should not provide the next input

until it has received the output signal. This process is also denoted by W(a; b). In this

notation the semicolon separates the input symbols on the left from the output symbols

on the right. •

We often find it convenient to define a trace set by a state graph. A state graph is a

directed graph with one vertex marked as initial state and every edge labeled with a symbol.

Moreover, for each vertex, the edges leaving that vertex should have distinct labels. The

trace set of such a state graph consists of exactly those symbol sequences obtained by

writing down, in order, the labels encountered in the state graph on paths that start at

the initial state. The vertexes are also called states. In diagrams, the initial state appears

as solidly filled circle. For instance, the trace set of W(a; b) is also given by the topmost

state graph in Figure 3.1.

3.1.2 Example The I-wire I{ a; b) with input a and output b is defined in Figure 3.1.

It is essentially a wire with an initial signal on it, that is, it can initially produce an output

1'We are on purpose a bit vague: 'can' here simply means 'is able to', not 'is guaranteed to'.

3.2. SYSTEMS OF PROCESSES 17

a
Wire W(a; b) a------b -G>

b
I-Wire I(a; b) a-----o-b ~

Fork F(a;b,c) ~ c

a

Merge M(a, b; c) a~
b ~ c ~

C-Element C(a, b; c) ~ a

Figure 3.1: Diagrams (middle) and state graphs (right) of some processes

signal, after which it will behave like W(a; b). The environment should wait for the first

output before sending the first input. •

3.1.3 Example The fork F(a; b, c) with input a and two outputs b and c is defined in

Figure 3.1. It duplicates each input signal on both output ports. The environment should

wait until it has seen both outputs before supplying the next input. •

3.1.4 Example The merge M(a, b; c) with two inputs a and b, and output c is defined

in Figure 3.1. It duplicates any input signal on its output port. The environment should

ensure mutual exclusion of the inputs. The next input may be provided only after the

occurrence of the output. •

3.1.5 Example The C-element C(a, b; c) with two inputs a and b, and output c is
defined in Figure 3.1. It waits until both inputs have received one signal and then produces

an output signal. The order of the inputs is not prescribed. The environment should wait

until it has received the output before initiating the next cycle. •

3.2 Systems of Processes

Input and output port names of a process are dummies in the sense that they may be

renamed to obtain a related process. Thus, both W(a; c) and W(b; c) are instances of a wire

18 CHAPTER 3. OBJECTIVES

process. The port names will be used to indicate connectivity in networks.

In our simple formalism, a network (or system) is just a set of processes such that each

port name occurs at most once as input and at most once as output. Consider a port

name that occurs in some of the processes. If the port name occurs exactly once, then it

is considered an external port of the system, available for connection to the environment.

Otherwise, it occurs exactly twice (once as input and once as output) and the two ports

with that same name are considered connected by a wire. We do not include such a

wire explicitly in the system as a wire process, but as far as operation is concerned the

connection is intended to behave like a wire process. This wire is internal to the system,

that is, the communications on it are not observable by the environment.

We are interested in the analysis of the behavior of process networks. We will do so

only intuitively in the remainder of this chapter by looking at some examples and raising

some questions.

Examples of Systems

A set consisting of a single process is a system. It has no internal wires. We will often

identify process P with the singleton system {P}.

The typewriter font will· be used for symbol constants. Thus, a, b, and c are three

(distinct) symbols, and W(a; b) and W(b; c) are two instances of wire processes. Figure 3.2

presents four systems that we discuss next. The dashed lines represent internal wires.

3.2.1 Example Set S1 defined by

S1 = { W(a;c), W(b;c)}

is not a system because it is malformed: port name c occurs twice as output.

3.2.2 Example Set S2 defined by

S2 = { I(a;b), I(b;c) }

•

is a system. It has an external input port a, an (implicit) internal wire connecting the

b-ports, and an external output port c. Even if the environment refrains from sending

inputs, this system may suffer from computation interference: 1-wire I (a; b) can produce

a signal on port b, which subsequently can arrive at 1-wire I(b; c) before the latter has

produced its c-signal. Therefore, S2 can misbehave in any environment and, hence, it is

completely useless. •

3.2.3 Example System S3 defined by

S3 = { F(a;b,c), C(b,c;d)}

is, in a sense, equivalent to wire W(a; d). We reason as follows. When S3 is provided with

an a-input there is no possibility of interference and the fork may eventually produce b-

3.2. SYSTEMS OF PROCESSES

a ____,

·: c

b-----··

b a-a--···--o-- c

b
~-···-(;;__
a~c~d

b
~----~
a~ c~d

Figure 3.2: Diagrams of four systems S1 through S4

19

and c-outputs. When both b- and c-signals have arrived as inputs at the C-element, it

may produce a d-output. After this, and no earlier2
, another cycle can take place.

We will be more specific about the kind of equivalence we have in mind later on. •

3.2.4 Example System S4 defined by

S4 = { F(a;b,c), M(b,c;d) }

is not equivalent to wire W(a;d). When provided with an a-input the system may suffer

from computation interference at the merge, because mutual exclusion of its inputs is then

not guaranteed. However, if the environment refrains from supplying inputs altogether,

then no interference can ensue and no outputs will be produced. Hence, system S4 is

equivalent to the process ({a}, { d}, { e}). •

3.2.5 Example Now consider system S5 depicted in Figure 3.3 and defined by

Ss= {C(a,b;c), F(c;d,e)}.

It has external input ports a and b and external output ports d and e; an internal wire

connects the c-ports. Does there exist an equivalent process?

a~c~d
b-&---····~e

Figure 3.3: Diagram of Ss

A first attempt might lead to process P5 whose trace set is defined by the state graph

given in Figure 3.4. Vertexes labeled with the same number represent a single state of the

the environment supplies the next a-input before receiving the d-output then there is a possibility

of interference.

20 CHAPTER 3. OBJECTIVES

state graph. Label 0 occurs multiply; labels 1, 2, and 3 are for reference purposes only.

Process P5 indeed captures some aspects of system S5 , but we would not want to consider

it equivalent. The argument is as follows.

0 0

Figure 3.4: State graphs for P5

According to P5 , interference is possible when the environment supplies the next input

after receiving a single output from the fork (see states 2 and 3 in the state graph).

Admittedly, in this state, the system cannot cope with inputs on both a and b, because

the C-element is then enabled to output c, which may subsequently interfere with the fork.

However, it can handle a single external input; the C-element should be "kept quiet" until

the other output appeared from the fork. All the environment has to guarantee in this

state is mutual exclusion of the inputs.

1 1

Figure 3.5: State graph for Q5

These features are incorporated in the state graph of Figure 3.5 (note that the initial

state is in the center), which defines the trace set of process Q5• We claim that Q5 is

equivalent to S5• This equivalence can be proved within the formal model of Chapter 4.

A different way of arguing against the equivalence of S5 and P5 is that an environment

that has no possibility of interference with S5 may suffer from interference with P5• For

instance, the environment obtained by exchanging the roles of input and output in Q5 will

do. On the other hand, it is the case that every environment that has no possibility of

interference with P5 also has no possibility of interference with S5• Therefore, S5 can be

substituted for P5 in any context without introducing any possibility of interference. One

could also say that S5 satisfies or implements specification P5 (without being equivalent to

~· .

3.2. SYSTEMS OF PROCESSES 21

a _____ b

d._ ___ c

Figure 3.6: State graph for P6 (left) and diagram of 86 (right)

3.2.6 Example Consider process P6 with input ports a and b, output ports c and d,

and trace set defined by the state graph in Figure 3.6. It defines a four-phase communica

tion protocol and is readily implemented by two wires, as in system 56 shown in Figure 3.6

and defined by

86 { W(a;b), W(c;d) } .

However, P6 and 86 are obviously not equivalent: 86 can handle an initial input via port c

(without interference), but P6 cannot. •

3.2. 7 Example Finally, consider system 87 and processes P7 and Q7 defined by

87 = { (0,{a,b},{c:,a,b}), ({b},0,{c:,b})}

P1 = (0, {a}, {c:, a}) ,

Q7 (0,{a},{c:}).

System 87 has one external output port named a, and one internal wire connecting the

b-ports. It consists of a process that may produce a signal on either of its output ports a

or b but not on both, and a process that is willing to receive a signal on its only input

port b and that does nothing afterwards.

a

<=> - a

b

b

~ EJ-a
Figure 3.7: Diagrams with state graphs for 87, P7 , and Q7

It has been our implicit attitude so far that processes have no obligation to produce

output when they are capable of doing so. Consequently, 87 is equivalent to P7 and not

equivalent to Q7 • We could postulate that, in an environment supplying no input, a process

capable of producing output will eventually do so; further input, however, might of might

not remove the obligation of the process to produce output. In that case, 87 can no longer

22 CHAPTER 3. OBJECTIVES

be considered equivalent to P7 , because P7 then is a process that is guaranteed to produce

a a-signal, whereas s7 might produce an a-signal or might fail to produce it (namely if

internally the choice for b was made). S7 then is equivalent to a "mixture" of P7 and Q7 .

An extension of the model in Chapter 6 will provide a better way to deal with this (see

Example 6.2.1). •

3.3 Questions to Be Addressed

The examples above raise such questions as:

• When are two systems equivalent?

• What correctness concerns should we consider?

• When is one system a satisfactory substitute for another?

• Can we define a composition operator that takes a pair of processes and yields a

process that is equivalent to the pair?

• In case such a composition operator cannot be defined, how should we extend the

space of processes so that composition can be defined?

• Does a finite set of building blocks suffice to implement all interesting systems?

Chapter 4

DI Model

In this chapter we present and analyze a model, called the DI Model, that formalizes the

concepts introduced in the preceding chapter. We start by defining processes and systems.

System structure and operation are treated separately. Next we define a pre-order on

systems expressing when one system is "at least as good" as another. The composition and

comparison of systems are the key concepts of the DI Model. Subsequent sections analyze

these concepts to get a better understanding of the DJ Model. For that purpose we present

a partial order on processes, composites and canonical representatives, DI processes, and

the JTU-Rules. The final two sections deal with the computation of composites and the

solution of the design equation.

It is not our aim to cover all mathematical details of the DI Model. The Extended

DI Model of Chapter 6 is treated in more detail; especially Chapter 7 delves into the

mathematics of these models. In the current chapter, most results are stated without

proof. In some cases the proofs are simple, but more often they are rather tedious or

even complicated. Some of the proofs have appeared in [UV88, CUV89a, Ver89J. We also

present some proofs in Appendix B.

4.1 Processes

Let E be an infinite set of symbols. Typically, variables a, b, and c range over E, and

symbols a, b, and c are (distinct) constants in E. A finite subset of E is called an alphabet.

A process P is a triple (iP, oP, tP) such that

1. iP and oP are disjoint alphabets: iP n oP 0,

2. tP ~ (iP u oP)*,

3. tP is non-empty and prefix-closed.

We call iP the input alphabet, oP the output alphabet, and tP the trace set of P.
We define the alphabet aP of P by aP iP U oP. The set of all processes is denoted by

PRVC. Typically, variables P, Q, and R range over PRVC.

23

24 CHAPTER 4. DI MODEL

The input and output alphabets specify the structural properties of a process. Its trace

set specifies the behavioral properties. The current "state" of process P is characterized

by a trace t E tP. The intention of the trace set is as follows.

• For a E oP, we have ta E tP if and only if P can send an output signal via a in

state t.

• For a E iP, we have ta E tP if and only if P can receive an input signal via a in

state t.

This intention will become clearer when we define the operation of a system below. The

trace set prescribes restrictions (for proper operation) on the process itself and on its

environment. It can be viewed as a combination of pre- and post-conditions.

The reflection operator, is defined on PRCJC by

v-.P = (oP, iP, tP) . (4.1)

Thus, reflection interchanges input and output alphabet; the trace set is not affected.

Reflection is its own inverse. The empty process (0, 0, { c:}) is the only process equal to

its own reflection.

For trace set V and trace t, trace set V /t (pronounced as 'V after t') is defined by

V/t = {u:tuEV:u}. (4.2)

This operator is well-known from the theory of automata and formal languages. The after

operator is lifted to processes as follows. For process P and trace t E tP, process P / t is

defined by

Pjt (iP,oP, tPjt). (4.3)

Thus, 'aftering' preserves input and output alphabet, and affects only the trace set (which

is indeed again non-empty and prefix-closed on account of t E tP; for t (j. V we have

V Jt = 0). Observe that P /e P and P Jtju = P /tu provided that tu E tP. Reflection

and 'aftering' commute, in the sense that for trace t E tP, we have

""(P jt) ("'P)jt. (4.4)

Hence, we may omit the parentheses.

Other examples of processes are the ones given in Chapter 3: wire W(a; b), 1-wire I(a; b),
fork F(a; b, c), merge M(a, b; c), and C-element C(a, b; c). We have such identities as

I(a; b) = ""'W(b;a),

W(a; b)/a = I(a; b),

I(a; b)/b = W(a; b),

C(a,b;c) = ""F(c; a, b)/c.

For a given process, different traces may correspond to equivalent "states", in the sense

that the future looks the same after these traces. Formally, traces t and u of process P are

4.2. STRUCTURE OF SYSTEMS 25

equivalent in this sense when PIt = PIu. For instance, c: and ab are equivalent traces of

wire W(a; b). The processes P lt where t ranges over tP may be viewed as the (abstract)

states of P, and P = PI c: as the initial state. Occurrence of signal a takes P from state

PIt to PI ta provided that ta E tP. Accordingly, the minimal state graph of process P
is defined as the edge-labeled directed graph

({t: t E tP: Pit}, {t, a: ta E tP: (Pit, a,Pita)}), (4.5)

with P le: as initial state. It is called the minimal state graph because there exist no state

graphs for P with fewer vertices. It is unique up to graph isomorphism. The state graphs

that we have given in Chapter 3 are all minimal.

4.2 Structure of Systems

A system is a finite set, say S, of processes such that for all a E I: we have

1. # {P: PES 1\ a E iP: P} ~ 1 and

2. # {P: PES 1\ a E oP: P} ~ 1,

where # V is the size of set V. The set of all systems is denoted by SYS. Typically,

variables S, T, and U range over SYS.

For system S we define a number of alphabets as follows:

iS = U{P:PES:iP} (input alphabet),

oS = U{P:PES:oP} (output alphabet),

aS iSUoS (alphabet),

nS iS noS (internal alphabet),

xS iS +oS (external alphabet),

xiS iS--.... oS (external input alphabet),

xoS oS--.... iS (external output alphabet),

where U V denotes the union of the elements of set V1
, and binary operators -;- and --.... on

sets denote the symmetric and asymmetric set difference respectively. System S is called

closed when xS = 0.

Consider processes P and Q in systemS. If symbol a occurs in oPniQ then the a-port

of P drives the a-port of Q via an implicit internal wire. If symbol a occurs in oP--.... iS

then the a-port of P is an external output port of S. If symbol a occurs in iQ--.... oS then

the a-port of Q is an external input port of S.

4.2.1 Example Trivial examples of systems are 0 (without processes and closed), and

for process P also {P} and {P, '-"P}. The latter is a closed system. Note that for P = ...,..,p,
system { P, ...,..,p} consists of only one (empty) process.

1The elements of V are themselves also sets.

26 CHAPTER 4. DI MODEL

System S defined by

s { ({a,b},{c},{e}), ({c},{d,e},{e}) } (4.6)

has two external input ports a and b, an internal wire c, and two external output ports d

and e. ..

To express that one output drives two (or more) inputs, one needs to introduce explicit

forking processes. Similarly, to express that two (or more) outputs drive a single input,

one needs to introduce, for instance, explicit merging processes.

The internal symbols of a system are considered dummies. We call two systems iso

morphic whenever they can be transformed into each other by systematically renaming

internal symbols. For instance, system T defined by

T == { ({a,b},{x},{e}), ({x},{d,e},{e})} (4.7)

is isomorphic to systemS defined in (4.6), because T can be obtained from S by renaming

internal symbol c to x. Being isomorphic is an equivalence relation. From now on we

abstract from this equivalence, that is, two isomorphic systems will be treated as equal.

Nevertheless, we will continue to work with representatives of the equivalence classes.

Systems S and T are called connectable whenever

xiS n xi T == 0 and xo·s n xo T == 0 . (4.8)

The internal symbols of connectable systems S and T can be renamed systematically,

yielding systems S' and T' respectively, such that

aS' n n T' 0 and nS' n aT' 0 .

In that case, S' u T' is again a system and it is independent of the particular renamings

involved. It is called the composition of S and T and is denoted by Spar T. Thus, par

is a partial binary operator on SYS defined only for connectable systems.

Composition of two systems introduces an internal wire for each symbol that is an

external output of one system and an external input of the other. Composition is com

mutative and has the empty system 0 as unit. It is associative provided that no symbol

occurs in the external alphabets of more than two of the composed systems. The next

example shows what can go wrong when a symbol occurs in more than two alphabets. The

situation is similar to that of the blending operator in [vdS85].

4.2.2 Example Consider processes P, Q, and R defined by

P == ({a},0,{e,a}),
Q (0,{a},{e,a}),
R ({a}, 0, {e}).

Process P has one input port a and is willing to receive a signal. Process Q has one output

port a and can send a signal (Q '-"'P). Process R has one input port a but cannot process

4.2. STRUCTURE OF SYSTEMS 27

a signaL Note that symbol a occurs in all three processes. On the one hand, in system S1

defined by

S1 = ({P}par{Q})par{R},

an internal wire is introduced between P and Q (it has to be renamed from a to something

else, say x, for composition with { R}, see Figure 4.1); furthermore, a is an external port

--------------------1 I I
I 1

: [fl-l--@J [BJ----t- a
I I
~§L _________________ :

--------------------1 I 1
I 1

a-+--[f] ~:
I I

I 82 I

--------------------'
Figure 4.1: Diagrams for S1 (left) and S2 (right)

of S1 connected to R. On the other hand, in system S2 defined by

S2 = { P} par ({ Q} par { R}) ,

a is an external port connected to P, whereas an internal wire, say y, is introduced be

tween Q and R (see Figure 4.1). Systems S1 and S2 are non-isomorphic (since they cannot

be transformed into each other by renaming internals). It will turn out that they are not

equivalent in a broader sense either (see Section 4.4). •

Apparently, the internal connection pattern can vary with the order of composition. Note

that in the example above, { P, Q, R} is not a system and { P} par { R} is not defined

because P and R are not connectable due to an input conflict on a. It is straightforward

to prove that

'(Spar T) par U is defined and closed'

'Spar (T par U) is defined and closed'.

Furthermore, if (Spar T) par U is closed, then no symbol occurs in more than two external

alphabets.

4.2.3 Note LetS and T be two connectable systems. Intuitively one would expect the

number of processes in Spar T to equal the sum of the numbers of processes in S and T.
This is, in general, the case; the only exception occurs when the empty process (0, 0, { c:})

is a member of both Sand T. In that case, one copy of the empty process vanishes under

composition. This does not invalidate the model, since the empty process is "harmless"

anyway. One way to overcome this flaw is to define systems as bags of processes instead

of sets (see [Ver94]). We have not used bags because of the additional burden of using a

bag calculus. •

28 CHAPTER 4. DI MODEL

4.3 Operation of Systems

In this section we consider how systems operate. The operation of a system involves the

interaction of its processes and interconnecting wires. First we define system operation

under the assumption that the interconnecting wires have no delay, that is, the sending

of a transition onto a wire coincides with its reception at the other end. This is called

isochronic operation (for lack of a better name). Then we define system operation

assuming that wires may incur delays; this we call anisochronic operation.

The isochronic operation of system S is characterized by its reachable traces. The set

reach.S uf reachable traces of S is defined inductively a~ the £;;-least Lrace set satisfying

• e: E reach.S and

• if t E reach.S, PES, a E oP, and tafaP E tP then ta E reach.S.

Here, ta faP (pronounced as 'ta projected on aP') denotes the trace obtained from ta

by removing all symbols not in aP (see [vdS85]). Note that reach.S £;; (aS)*.

The empty trace e: models the "initial state" of system S. The (global) state ta of S

induces the (local) state ta raP at process P. State changes can occur whenever a process

can produce output in its current (local) state. If for process PES, symbol a E oP, and

trace t E reach.S, we have tataP E tP, then we say that 'output a is enabled in P after t'.

If for process Q E S, symbol a E iQ, and trace t E reach.S, we have tafaQ E tQ, then

we say that 'input a is acceptable for Q after t'. When an enabled output is actually

produced, it appears as input at the receiving end, regardless of whether that input is

acceptable for the receiver in the current state.

Not all reachable traces are regarded as equally desirable. Reachable trace t is called

interfering when there exists a process PE S with traP rf. tP, that is, when the local

state that t induces at P is not in agreement with P's specification. The set of interfering

traces of S is denoted by intf.S. Note that e: rf. intj.S, since traP c: E tP for every

process P.

System S is said to be free of interference when

intf.S = 0, (4.9)

that is, when it has no interfering traces.

4.3.1 Example Consider process P and systemS defined by

P (0,{a,b},{c:,a,ab}),

S = {P,"'P}.

Process P has no input ports and two output ports a and b. It can send a signal along a

followed by a signal along b. Process ...,....pis willing to accept two inputs, first along a then

along b. The reachable traces of S are now given by

reach.S = {c:,a,ab} .

None of these traces is interfering and, hence, S is free of interference. •

4.3. OPERATION OF SYSTEMS 29

4.3.2 Example In case system S is given by

S { I(a;b), I(b;a) } ,

we have

reach.S = {c-, a, b} .

The only non-interfering trace is €, because traces starting with a are interfering on account

of I(a; b) and those starting with b on account of I(b; a). Either process can initially

send an output but not accept an input. Once an output has been produced there is

interference and thereafter neither process can produce further output. Thus, S is not free

of interference. •

In order to define system operation under the assumption that connecting wires may

incur delays, we add explicit wire processes to model the behavior of the (implicit) internal

wires. For that purpose, the symbols in S must first be renamed. Given process P, define

renaming pp of aP by

pp.a = {a;
a.

if a E iP
(4.10)

if a E oP

Such a renaming is lifted to processes: process pp.P is obtained from P by replacing each

symbol a in P, (that is, in the alphabets and in the traces) by pp.a. We now define

system S, called the wired version of S, by

S = {P:PES:pp.P}U{a:aEnS:W(a!;a?)}U (4.11)
{a : a E xiS: W(a; a?)} U {a: a E xoS: W(a!; a)} .

The definition of S is a little more general than required at this point: there are wires to

and from external ports as well. This is useful later on in Theorem 4.4.2. If S is closed

then S is closed as well, and the last two sets of additional wires in the definition of S
are empty. Note that symbol a! is the output port of some renamed "ordinary" process,

connected to the input port of wire W(a!; a?) or W(a!; a). Isochronic operation of Swill be

referred to as anisochronic operation of S.

4.3.3 Example Consider again process P and systemS from Example 4.3.1. SystemS

in this case amounts to

{ (0,{a!,b!},{c-,a!,a!b!}), ({a?,b?},0,{c-,a?,a?b?}), W(a!;a?), W(b!,b?) } .

Note that S is closed and that both symbols a and b are internal, giving rise to two

additional wire processes in S. The reachable traces of S are readily computed as

reach.S = { c, a!, a!b!, a!b!a?, a!b!a?b?,

a!b!b?, a!b!b?a?,

a!a?, a!a?b!, a!a?b!b? } .

Thus a!a?b!b? is in reach.S and it is not interfering. However, a!b!b? is reachable and

interfering. Hence, S is not free of interference. •

30 . CHAPTER 4. DI MODEL

The example above gives a system S that is free of interference, whereas S is not. The

reason for the difference is that under anisochronic operation the additional wires in S need

not preserve the order in which signals are sent. One thing that complicates the design

of delay-insensitive systems is precisely that no assumptions are to be made about wire

delays (other than that they are not negative).

4.3.4 Example For system S of Example 4.3.2 we have

S { I(a?;b!), I(b?;a!), W(a!;a?), W(b!;b?) } .

Each trace of the form (b!a!b?a?)" (for any n ~ 0) is a non-interfering trace of Further

more, these traces put the system in a state equivalent to the initial state (in the sense that

the future possibilities are the same). However, traces of the form (b!a!b?a?)nb!b? are also

traces of S, but they are interfering. Thus, S has both an infinite number of interfering

and non-interfering traces (S is obviously not free of interference). Recall that r:: is the only

non-interfering trace of S. o1

4.3.5 Example Consider process P = (0,{a},{r::,a,aa}) and systemS {P,'-'"'P}.

Process P has one output port a on which it sends two signals in succession. Process ""'p

can accept two inputs on a. Therefore, system S is free of interference; but S is not, since

P causes interference at the additional wire W(a!; a?) inS. o1

This example shows another system S that is free of interference, but for which S is

not. The reason now is not that wires may disturb signal order, but that a wire can

safely transmit only one signal at a time. Interference caused at a wire input is called

transmission interference.

We would like to make some remarks on our approach to system behavior.

4.3.6 Note First of all, our (operational) semantics is based on interleaving of con

current atomic events. That is, events that are not "causally" related are put in some

(arbitrary) order in the execution sequence. In this model the only effect of variation in

delays (within the modeled processes) can be variation in order (of symbols in traces).

Secondly, we have not taken the trouble to model the behavior of a system accurately

after the occurrence of interference. The reason is that interference is to be avoided accord

ing to the correctness criterion introduced in the next section. Once there is interference,

we do not care what happens afterwards; the game has been lost anyway.

Thirdly, the definitions of reach and intf can also be applied to systems that are not

closed. Consider, for example, process P defined by

P ({a}, {b}, {c:, b, ba}).

System {P} is not closed and reach.{P} equals {c, b}, because there is no process to

provide input a. Note that reach.{P} # tP. Furthermore, intf.{P} is empty: there is

no process that fails to accept output b. Thus, { P} is free of interference. In a sense

the definitions of reach and intf applied to a system that is not closed assume some very

4.3. OPERATION OF SYSTEMS 31

benign, but unrealistic, environment that accepts all outputs and sends no inputs. We are

not interested in this interpretation. The next section will deal with systems that are not

closed in a different way. •

We finish this section with two theorems, whose proofs illustrate how tedious the details

of our model can be. Theorem 4.3. 7 gives an alternative characterization of interference

based on weaving. Theorem 4.3.8 relates interference of S and The weaving operator

weave (see [vdS85]) may be defined for systems by

weave.S {t: t E (aS)* 1\ (V P: PES: traP E tP): t}. (4.12)

For process P, we have weave.{P} = tP. For closed systemS, we have

weave.S s; reach.S , (4.13)

since in a closed system each symbol is an output of some process. Statement (4.13) does

not necessarily hold when S is not closed, as witnessed by system { P} of Note 4.3.6. Thus,

closed system S is free of interference if and only if

reach.S weave.S. (4.14)

The next theorem characterizes interference in terms of weave.S rather than the inductively

defined set reach.S.

4.3. 7 Theorem Closed system S is free of interference if and only if

(V t, a, P: t E weave.S 1\ PE S 1\ a E oP 1\ ta laP E tP: ta E weave.S) . (4.15)

Proof: See Appendix B.O.l. •
Note that the universal quantification (4.15) is also equivalent to

(Vt,a,P, Q: t E weave.S APES A Q E S 1\ a E oPniQ 1\ tafaP E tP

: talaQ E tQ),

since each output is an input to some process and tat A t I A whenever a ~ A. When

system S is not free of interference, this can be shown by exhibiting processes P and Q
in S, symbol a in oP n iQ, and a trace t E weave.S, such that output a is enabled in P

after t and input a is not acceptable for Q after t. This can be phrased concisely as 'P
causes interference at Q on port a after trace t'.

4.3.8 Theorem For closed system S we have

'S is free of interference' =? 'S is free of interference' .

Proof idea: When wire delay plays a role, that delay may be zero as well, which corresponds

to isochronic operation. Hence, any interfering trace t E reach.S corresponds to some

interfering trace t' E reach.S (replace each occurrence of symbol a in t by a! a? to obtain t') . .. •
In general, the reverse implication does not hold as illustrated by Examples 4.3.1, 4.3.3,

and 4.3.5. Theorem 4.7.7, however, states a condition under which the reverse implication

does hold.

32 CHAPTER 4. DI MODEL

4.4 Correctness, Satisfaction, and Equivalence

We consider only the operation of closed systems, that is, of systems whose ports are all

properly connected. We disallow dangling inputs and outputs because these may pick up or

radiate stray signals, or may cause other types of malfunctioning. If an input is to be "kept

quiet" then one should express that by hooking it up to a "quiet" process. Furthermore,

we insist on absence of interference during operation.

This is captured in the following definition of our correctness concern. System S is

correct (as an autonomous system, that is, requiring no additional environment for its

operation), denoted by Correct.S, when S is closed and free of interference:

Correct.S = 'S is closed and free of interference' .

Because it is based on S, this definition involves anisochronic operation of S, that is, with

additional wires. Thus, correctness requires absence of interference for all possible delays.

Isochronic operation plays a role again in Theorem 4.7.7.

We say that system S is a satisfactory replacement for system T whenever T (being

part of any larger system) can be replaced by S without disturbing the correctness (of the

larger system). We denote this by S sat T. Note that if T is part of some larger system,

then the larger system can be written as T par U for some system U. Formally, relation

sat on sys is defined by

S sat T =: ("if U: U E SYS: Correct.(S par U) ..;:= Correct.(T par U)). (4.16)

We postulate that Correct.(S par U) does not hold ifS par U is not defined.

We can interpret S sat T also as 'system S satisfies specification T'. Consequently,

sat is also called a satisfaction or refinement relation. Relation sat is a pre-order, that

is, sat is reflexive and transitive (but not necessarily antisymmetric). Hence, equivalence

of systems, denoted by equ, can be defined by

S equ T = S sat T A T sat S , (4.17)

that is, S and T are equivalent when they are satisfactory replacements for each other.

Relation equ is an equivalence relation on sys (it is reflexive, transitive, and symmetric).

Of course, we have

S equ T =: ("if U : U E SYS: Correct.(S par U) Correct.(T par U)). (4.18)

Furthermore, equ is a congruence with respect to par and sat, that is, composition and

satisfaction "do not cross equ-class boundaries". Formally, this is expressed as follows. For

systems S, S', T, and T' with S equ S' and T equ T' we have

S par T equ S' par T' and

S sat T S' sat T 1
•

[For a proof of the first equivalence see Appendix B.] Consequently, we can abstract from

equ-equivalence in the algebra (SYS; par, sat} and obtain the so-called quotient algebra

{SYS; par, sat}/ equ.

4.4. CORRECTNESS, SATISFACTION, AND EQUIVALENCE 33

Verifying that S sat T, or S equ T, holds according to the definition is a cumbersome

task, because of the quantification over all systems in (4.16). Proving that S sat T does

not hold can be done by exhibiting a suitable system U such that T par U is correct but

S par U is not correct.

4.4.1 Example Reconsider systems S1 and S2 introduced in Example 4.2.2. We claim

and, hence, S1 is not equivalent to S2 .

To prove the second conjunct, consider system U = { ""R}. System U has one output

port a and it will not send a signal. Observe that both systems S1 par U and S2 par U are

well-defined and closed. However, S1 par U is correct ((S1 par Ut is free of interference),

but s2 par u is not (since in (S2 par ur, process pq.Q causes interference at PR·R).

The first conjunct is, in this particular case, not difficult to prove, because for any

system u such that s2 par u is well-defined and closed, s2 par u is not free of interference

(as indicated above). Hence, for all systems U we have •Correct.(S2 par U), and this

trivially yields S sat S2 for any system S. In a sense, S2 is the worst imaginable system:

no environment can keep it from running into interference. •

4.4.2 Theorem For any system S we have

S equ S.

Proof idea: By operational reasoning, the additional wires in S may be coalesced with

the wires that are introduced for anisochronic operation of S, that is, when considering

isochronic operation of (spar ur. •

4.4.3 Note It is possible to define Correct, sat, and equ for isochronic operation as

well:

Correctiso .S _ 'S is closed and free of interference' ,

S sati•o T (VU: U E SYS: Correct;80 .(S par U) {= Correcti•o.(T par U)),

S equiso T _ (VU: U E SYS: Correcti•o.(S par U) Correcti•o.(T par U)).

The proof of the preceding theorem, can then be based on repeated application of the

following equivalence for distinct symbols a, b, and c:

{ W(a; b), W(b; c)} equiso { W(a; c)}. (4.19)

•

34 CHAPTER 4. DJ MODEL

4.5 Partial Order on Processes

In the next section, we will pick a canonical representative from each equ-equivalence class

of systems. To prepare the road, this section focuses on processes. Relation !;;; on P'ROC

is defined by

Pr;;Q iP = iQ 1\ oP = oQ 1\

(V t, a : a E iP 1\ ta E tP 1\ t E tQ : ta E tQ) 1\

(V t, a : a E oP 1\ t E tP 1\ ta E tQ : ta E tP)

In words, the requirements for P r;; Q can be expressed as follows.

1. P and Q have the same input alphabets and the same output alphabets.

(4.20)

2. For all states t E tP n tQ, the set of inputs that P can receive in state t is included

in the set of inputs that Q can receive in state t ("P can receive no more inputs

than Q").

3. For all states t E tP n t Q, the set of outputs that P can send in state t contains the

set of outputs that Q can send in state t ("P can send at least the outputs that Q
can send").

P r;; Q expresses that Q is "at least as good as" P with respect to interference under

isochronic operation.

Relation r;; is a partial order on P'ROC, that is, it is reflexive, antisymmetric, and

transitive (this is a non-trivial result; see Appendix B for a proof).

The !;-minimal elements of P'ROC are processes P with

tP = (oP)* ,

and the r;;-maximal elements are processes P with

tP = (iP)*.

Reflection turns the order around:

Pr;;Q (4.21)

Furthermore, induces a complete lattice structure in each set of processes with the

same input-output alphabets. To express this more precisely we define P'ROC(I, 0) for

alphabets I and 0 by

PROC(I, 0) { P : P E PROC 1\ iP = I 1\ oP = 0 : P} .

Poset (P'ROC(I, 0); is a complete lattice, in the sense that every subset V has a

greatest lower bound (denoted by n V) and a least upper bound (denoted by U V). See

[UV88J for proofs.

4.5. PARTIAL ORDER ON PROCESSES 35

Note that processes in distinct P1UJC(I, 0) are incomparable under ~ and do not

have common lower or upper bounds. Hence, (P'ROC; ~) is not a lattice. Therefore, we

introduce .1. (pronounced 'bottom') and its reflection T (pronounced 'top') as additional

processes, where .1. is the ~-least process and T the ~-greatest. The expanded set of

processes is again denoted by P'ROC. Consequently, (P'ROC; ~) now is a complete lattice.

Processes .1. and T have no input and output alphabets and no trace set, and we

consider them to be members of all P'ROC(I, 0). For connection purposes (that is, under

composition by par), however, they should be regarded as having empty input-output

alphabets. The rules for system correctness become slightly more complicated and are

postulated in the next paragraph.

A system that contains process T is correct no matter what else it contains (even 1..).

Process T acts as a miraculous panacea. A system that does not contain process T but that

does contain 1.. is incorrect, no matter what else it contains. Process 1.. spoils everything,

except when T is present. At this point it is not clear why we choose to let top win over

bottom. You may choose otherwise, but then top will turn out to be equivalent to the

empty process and later we need a "real top" to define canonical representatives (worst

friend of bottom) and to make factorization work in all cases.

Without proof we state two important properties of

4.5.1 Theorem Predicate Correct is n-continuous (hence, ~-monotonic) in the follow

ing sense. For system 8 and process set W ~ P'ROC we have

(V P: PE W: Correct.(S par {P})) = Correct.(8 par {n W}).

Consequently, Correct is also ~-monotonic, that is, for system 8 and processes P and Q
w~P~Qwh~ ·

Correct.(8 par {P}) =} Correct.(8 par { Q}).

•
4.5.2 Theorem For processes P and Q we have

P-;;JQ 'system {P, '-"'Q} is well-defined, closed, and free of interference' .

Note that interference, here, involves isochronic operation of the system, that is, the im

plicit internal wires are delayless. •

4.5.3 Note In the light of Note 4.4.3, the preceding theorem can be rephrased as

Correcti•o.{P, Q} (4.22)

Further analysis of isochronic operation would reveal that for processes P and Q we also

have

P sati.9o Q P -;;J Q ,

P equ"" Q _ P Q .

•

36 CHAPTER 4. D1 MODEL

4.6 Composites and Canonical Representatives

This section deals again with systems. We show how to pick a canonical representative

in each equivalence class of systems and how to express par and sat in terms of these

representatives. This forms the basis of the fully abstract model presented in the next

section.

For each equivalence class this representative has the form of a special singleton system

(consisting of just one process). The class of systems S for which

(VU: U E SYS: -.Correct.(S par U)) (4.23)

is a somewhat special case. No matter what environment these systems are placed in, they

do not give rise to a correct system. Examples are {I (a; b), I (b; c)} and {I (a; b), I (b; a)};

the latter is closed, the former not.

That all systems satisfying (4.23) are indeed equivalent becomes even more obvious

when we introduce the notion of a system's pass set. Placing system S in an environment U

to yield system S par U can be viewed as a form of observation or testing. System S

passes test U whenever Correct.(S par U) holds. For system S its pass set pass.S is

defined by

pass.S { U : U E SYS 1\ Correct.(S par U) : U} , (4.24)

that is, pass.S consists of all tests that S passes. Obviously we have

S sat T _ pass.S ;;::>pass. T and

S equ T pass.S =pass. T .

The exceptional systems mentioned above are characterized by pass.S = 0 and, hence, they

form an equivalence class on their own. These systems are not very interesting (nevertheless

they are present in the model).

We now concentrate on the singleton tests in the pass sets. For system S define the

process set Friends.S, called the friends of S, by

Friends.S {P: PE P1?..CJC 1\ Correct.(S par {P}): P}. (4.25)

Note that T E Priends.S for any S. If T E S then Friends.S P'ROC. If T ~ S then all

friends of S have the same input and output alphabets, in the sense that

Priends.S <;:: PROC(I, 0)

for some disjoint alphabets I and 0. On account of the [;-monotonicity of correctness

(Theorem 4.5.1), Friends.S is ~-upward closed: for processes P and Q with P ~ Q we

have

P E Friends.S =? Q E Friends.S . (4.26)

4.6. COMPOSITES AND CANONICAL REPRESENTATIVES 37

On account of the n-continuity of correctness, Friends.S has a least element (since its

greatest lower bound is a friend of S as well). Consequently, Friends.S is completely

determined by its least element.

Define (S], called the composite of S, by

[S]I n Friends.S , (4.27)

that is, as the reflection of its least friend. Note that if Friends.S = {T} then [S]
J... Thus, [-] is a mapping from SYS to P'ROC (with bottom and top). For distinct

processes P and Q we will often write P 11 Q for [{P, Q}]l. Composition 11 is a partial2

binary operator on P'ROC.

The canonical representative of the equ-cla..'ls containing system S is defined as

singleton system {[S)}. We give three examples to illustrate the concepts.

4.6.1 Example Consider systems S1 through S4 defined below. All four have no ex

ternal inputs and two external outputs {a, b }. System S1 consists of two processes, while

the others are singleton systems.

sl { (0, {a}, {c, a}), (0, {b}, {c, b}) } '

s2 { (0' {a, b}' { £' a, ab}) } '

s3 { (0,{a,b},{c,b,ba})}'

s4 { (0,{a,b},{c:,a,b,ab,ba}) }

We claim that these four non-isomorphic systems are in the same equ-class. Here are some

friends of all four:

P1 T,

P2 ({a,b},0,{a,b}*)

P3 ({a,b},0,{<::,a,b,ab,ba})

Note that process P4 =({a, b}, 0, {c:, a, ab}), which is the reflection of the process in S2 , is

not a friend of either of the four systems, because the (implicit) wires between the system

and its environment { P4 } may interchange the order of the a- and b-signals, thus giving

rise to interference at the test environment when a arrives after b.

The following two statements follow immediately from the definitions:

S equ T =? Friends.S Friends. T ,

S sat T =? Friends.S ;:2 Friends. T .

The reverse implications also hold but are not trivial; for all we know, tests with more than

one process might play a crucial role in equ and sat. Theorem 4.6.4 below, however, resolves

this issue: only singleton tests are important. Accordingly, to establish the equivalence of

the four systems, it suffices to prove that their friends are the same.

2Composition 11 could be extended to a total operator by defining P 11 Q = j_ whenever systems {P}
and { Q} are not connectable.

38 CHAPTER 4. DI MODEL

We claim that P3 is this common least friend. Observe that all friends of the systems

involved have empty output alphabets. We will use the following, straightforward, property

of~ that applies to this case. For alphabet I and processes P and Q in PROC(I, 0) we

have

P ~ Q := tP ~ tQ. (4.28)

All that is left to do is verifying whether any traces can be eliminated from tP3 while

maintaining friendship with the systems. This gives rise to a finite case analysis. It turns

011t that :00 '·rncAs can be removed without introducing interference. Thus, the canonical

representative of the equ-class containing the four systems happens to be { ""P3} = S4 . •

4.6.2 Example Now consider systems Ss through Ss, obtained from S1 through S4

above by reflecting all the processes involved:

Ss { ({a},0,{c:,a}), ({b},0,{c:,b})}

S6 = { ({a, b}, 0, { E, a, ab}) } ,

S7 { ({a, b}, 0, { E, b, ba}) } ,

Ss { ({a, b}, 0, { c:, a, b, ab, ba}) }

These four systems are again non-isomorphic. In this case, however, it will turn out that

only Ss and Ss belong to the same equivalence class. Here are six candidates for friends:

Ps (0, {a, b}, {c:}) ,

P6 (0,{a,b},{c:,a}) ,

P7 (0, {a, b}, {c:, b}) ,

Ps (0,{a,b},{c:,a,ab})

P9 (0,{a,b},{c:,b,ba})

P10 (0,{a,b},{c:,a,b,ab,ba})

A little investigation reveals the following friendships:

Ps p6 p7 Ps Pg Pw

Ss yes yes yes yes yes yes

s6 yes yes no no no no

s7 yes no yes no no no

Ss yes yes yes yes yes yes

Looking at processes P6 and P7 , we see that neither S6 sat S7 nor S7 sat S6 holds. Further

more, from the preceding example we already know that Ps, P9 , and P10 are equivalent (as

singleton systems: S2 = { Ps}, S3 = { P9 }, and S4 = { P10 }) and, hence, their membership

in some set Friends.S comes and goes as a block.

All friends of these systems have empty input alphabets. This situation is covered

by a similar property of ~ as (4.28) above. For alphabet 0 and processes P and Q in

PROC(0, 0) we have

P ~ Q = tP 2 tQ. (4.29)

4.6. COMPOSITES AND CANONICAL REPRESENTATIVES 39

Note that the direction of the trace set inclusion is now reversed. A little more work,

attempting to add traces while maintaining friendship, yields the following results:

n Friends.S5

n Friends.S6

n Friends.S7

n Friends.Ss

plO,

p6,

p7 ,

= P1o ·

Consequently, S8 is the canonical representative of its equ-class, but 86 and S7 are not the

representatives of their respective classes. Since p10 ;;;) p6 and v.P10 ;;;) ""P7 , we have,

according to Theorem 4.6.4, also Ss sat 86 and S8 sat 87 • •

Things become rapidly more complicated when more symbols are involved. Our third

example is still manageable and considers systems with both external input and output.

4.6.3 Example Here are four systems, similar to the ones we have seen in the preceding

two examples, but with external input a and external output b:

S9 { ({a}, 0, {c:, a}), (0, {b}, {c:, b}) }

S10 { ({a},{b},{c:,a,ab}) } ,

S11 { ({a},{b},{c:,b,ba})},

s12 = { ({a},{b},{c:,a,b,ab,ba})}

Again, these systems are non-isomorphic and they do not fall into the same equ-class. The

following six processes are candidates for friends:

Pu ({b},{a},{c:}) ,

pl2 ({b},{a},{c:,a}) ,

pl3 = ({b}, {a}, {c:, b})

pl4 ({b}, {a}, {c:, a, ab}) ,

pl5 = ({b},{a},{c:,b,ba})

Pt6 = ({b},{a},{c:,a,b,ab,ba})

The actual friendships are:

Pn Ptz Pt3 Pt4 p15 pl6

Sg no no yes no yes yes

Sw yes no yes yes yes yes

Sn no no yes no yes no

Stz no no yes no ye$ yes

From that table above we infer that S10, S11 , and S12 belong to three different equ-classes,
while Sg and Stz look equivalent. Because both input and output are involved, proper

ties (4.28) and (4.29) are not applicable and it is more difficult to find the least friends.

40 CHAPTER 4. DJ MODEL

Section 4.8 addresses the general case of computing the least friend. The idea is to de

crease input capability and increase output capability while maintaining friendship. One

then finds as least friends:

n Friends.S9 pl6'

n Friends.S10 pl4'

n Friends.Sn pl5'

n Friends.S12 pl6.

Thus, S9 and S12 are indeed equivalent. Furthermore, we have S10 = { ""'P14 }, S11 = { ""'P15 },

and S12 = { ""P16 }; these are the canonical representatives of their equ-classes. On account

of Theorem 4.6.4 and ""P14 ;;;) v-.P16 '""P1s we have Sw sat S12 and S12 sat Su. •

The following theorem motivates our choice of canonical representatives.

4.6.4 Theorem For systems S and T we have

s
[S)
S equ T

S sat T

[Spar T]

equ {[SJI} ,

= n {P: PE PROC /\ S equ {P}: P},

[S]=(TJ,

[S] ;;;) [T] ,

[S] 11 [T] .

..
The first statement in this theorem expresses that the canonical representative of S is

indeed in the same equ-class as S. The second statement roughly says that the compos

ite equals the ~-minimum of all singleton systems equivalent to S. The third statement

expresses that the canonical representative is unique for each equ-class. The fourth state

ment, proved in Chapter 7 as Theorem 7.3.10, says that satisfaction corresponds to the

;)-order on composites. Similarly, the fifth statement expresses that par corresponds to 11

on composites.

4.6.5 Note The implications from left to right in the third and fourth statement are

elementary. Concerning the fourth statement, for instance, we derive

S sat T

= { definition of sat }

('</ U: U E SYS: Correct.(S par U) Correct.(T par U))

==? { definition of Friends }

Friends.S ;::::> Friends. T

==? { property of greatest lower bound }

n Friends.S ~ n Friends. T

4. 7. DI PROCESSES AND THE JTU-RULES

{ reflection turns ~ around, definition of [-] }

[S] ;;;) [T]

Antisymmetry of ~ then takes care of the third statement.

41

•
Composites simplify the verification of satisfaction and equivalence. Consider systems S

and T. When T is interpreted as a specification, then'S satisfies T' and'S implements T'
are expressed by 'S sat T'. To ascertain this according to the definition of sat, involves

a quantification over all systems (acting as testing environments for S and T). For each

such environment U, one needs to compare Correct.(S par U) and Correct.(T par U),

which involves another quantification over all reachable traces of the system. In case

the composites of S and T are known, the problem simply boils down to ascertaining

[S] ;;;) [T], which involves just a quantification over all process traces of the composites.

4. 7 DI Processes and the JTU-Rules

As we have argued in Chapter 2, it does not make much sense to speak about a delay

insensitive system as such; delay-insensitivity is with respect to some specification. That

is exactly what 'S sat T' expresses. Delay-insensitivity is implicit in the definition of

correctness: the definition of 'free of interference' involves anisochronic operation under all

possible delay conditions. Thus, if we say that some (closed) system S is free of interference,

then that really includes the qualification 'independent of values for delays in connecting

wires and other processes', that is, delay-insensitively.

The canonical processes defined in the preceding section suffice to describe processes,

since any other process is equivalent to a canonical process. These particular canonical

processes have certain nice properties. Since these are the the only processes needed

(everything can be done in terms of them), and since they serve to describe and design

"delay-insensitive" systems, let us call them delay-insensitive, or DI, processes.

By definition, processes that occur as composites of systems are called DI processes.

The set 1JI of DI processes is therefore defined by

1JI = { S : S E SY S : [S]} .

A fundamental result concerning 1JI is given in the following theorem.

4. 7.1 Theorem We have

(SYS;par,sat)/equ is isomorphic to ('DI; II,;;;J).

(4.30)

Proof Mapping ~:-] is an surjective homomorphism from (SYS; par, sat) to ('DI; 11, ;;;J) .

• •
That is, expressions over the algebra (SYS; par, sat) modulo equ-equivalence can be trans

formed into logically equivalent expressions over the algebra ('DI; 11, ;;;J). The latter algebra

is called a fully-abstract model, because equivalence now boils down to equality.

42 CHAPTER 4. DI MODEL

4.7.2 Example The statement

(VS, U :: (:1 T :: Spar T sat U))

where S, T, and U range over SYS, corresponds to the logically equivalent statement

(V P, R :: (3 Q :: P 11 Q;) R))

where P, Q, and R range over VI.

The next theorem gives some alternative characterizations of VI.

4.7.3 Theorem (Characterization of DJ processes)
The following statements concerning process P are equivalent.

1. PE VI, that is, (3S: SE SYS: [S] = P),

2. P = n { Q: Q E PROC A {P} equ { Q}: Q},

3. [{P}] P,

4. Correct.{ P, "'P},

5. P satisfies the JTU-Rules W, X, Y, and Z given below.

•

The first statement is just the definition of 'P is DI', namely that P is the composite of

some system. The second statement expresses that P is the !;-minimum of "its" equ-class,

that is, the class containing { P}. The third statement says that Pis its "own" composite.

The fourth statement expresses that P is free of interference with its reflection. Finally,

the fifth statement is a closure property of P's trace set that is easy to verify for P's state

graph (see below). •

The JTU-Rules are named after Jan Tijmen Udding, who first stated them in [Udd84].

The equivalence of the last two statements in Theorem 4.7.3 is non-trivial and proven

in [Ver89].

We now define the four JTU-Rules. Let P be a process. The equivalence relation

induced by the partition {iP, oP} in aP is denoted by We leave out the subscript

when it is obvious from the context. That is, a ;::::; b expresses that a and b have the same

direction with respect toP (either both a and bare inputs of P, or both are outputs) and

a ;I, b expresses that a and b have opposite direction (one is an input and the other an

output).

• P satisfies Rule W when for all traces s and symbols a we have

saa f/. tP.

• P satisfies Rule X when for all traces s and t, and symbols a and b with a ;;:; b we

have

sabt E tP sbat E tP.

4. 7. DI PROCESSES AND THE JTU-RULES 43

• P satisfies Rule Y when for all traces s and t, and symbols a, b, and c with a ;ii5 c

and b ;:;:; a we have

sactb E tP 1\ scat E tP ::::? scatb E tP .

• P satisfies Rule Z when for all traces s, and symbols a and c with a ;ii5 c we have

sa E tP 1\ se E tP ::::? sac E tP 1\ sea E tP .

Rule W expresses that no signal may occur twice in immediate succession (because this

would cause interference at the connecting wires). Rule X expresses that the order of

signals in the same direction is irrelevant for future possibilities. Rule Y expresses that

the order of signals in opposite direction is only to a limited extent relevant for future

possibilities (some, but not all, possibilities after one order are also possible after the other

order; this will be clarified below in Theorem 4. 7.4). Rule Z expresses that signals of

opposite direction cannot "disable" each other. Often a simpler version of Rule Y holds:

• P satisfies Rule Y' when for all traces s and t, and symbols a and c with a ;ii5 c,

sa E tP, and seE tP we have

sact E tP = scat E tP .

Note that Y' implies Y. Rule Y' expresses that if two signals of opposite direction can

both occur, then their order is irrelevant for future possibilities.

a a
W: a~--· o ;r .. JoO xA

b··.. ..··a
''\,···

b
Y:

~------r.o---······JoO

Z:

··· ... c

'" __ :P

.. -··a

Y'A Z:

b

•· ... c

::>
c ... ····a

Figure 4.2: JTU-Rules in terms of state graphs: a ;:;:; b and a ;ii5 c

44 CHAPTER 4. DI MODEL

Figure 4.2 illustrates the JTU-Rules in terms of state graphs. In this figure, symbols a

and b have the same direction, and symbols a and e have opposite direction. If the

solid edges are present in a DI state graph, then the dotted edges are also present (or

not present when crossed, in case of Rule W) in the given relationship to the other edges.

Beware figures: they are often misleading. For instance, the double-arrowed edges labeled t
represent a-possibly empty-path of edges, and these two paths could coincide in the state

graph. Rule Y' has been illustrated in conjunction with Z because that is more convenient.

On account of the JTU-Rules, DI state graphs often contain rhombuses with opposite

edg~s ber~ring the same labeL To avoid clutter, we omit at times some edge labels in DI

state graphs; these labels can then be restored by giving opposite edges in each rhombus

the same labeL

In terms of the after-operator, Rules X, Y, and Y' can be formulated as follows.

4. 7.4 Theorem Process P satisfies Rule X if and only if for all traces s and symbols a
and b with a ;;:; b we have

sab E tP => sba E tP A Plsab = Plsba.

Process P satisfies Rule Y if and only if for all traces s and symbols a E iP and c E oP

we have

sac E tP A sea E tP => Plsac!;;; Plsca.

Process P satisfies Rule Y' if and only if for all traces s and symbols a and c with a ii:5 c
we have

sac E tP A sea E tP => PI sac= PI sea.

Proof We will only do Rule Y. Let P be a process satisfying Rule Y. Assume sac E tP

and sea E tP for trace s, input a, and output c. We prove PI sac !;;; PI sea. The input

alphabets of these processes are equal to iP and the output alphabets to oP. For trace t
and output b we derive

t E tPisae A tb E tPisca

{ definition of after-operator }

sact E tP A seatb E tP

=> { Rule Y with a, c := c, a }

sactb E tP

{ definition of after-operator }

tb E tPisac

Similarly, one may derive for trace t and input b:

tb E tPisac A t E tPisca => tb E tPisca.

On account of the definition of !;;;, we thus have PI sac ~ PI sea. •

4. 7. DI PROCESSES AND THE JTU-RULES 45

The formulation of Rule Y in terms of the after-operator expresses that the environment

has "more control" over a process when it waits for output c before sending input a rather

than the other way round, because PI sea is "at least as good as" PI sac. The JTU-Rules

can be further "condensed", but we postpone that until Section 7.2.

The elementary processes introduced in Chapter 3 are all in VI, since they satisfy the

JTU-Rules as is readily verified from their state graphs. In fact, they all satisfy Rule Y'
as well.

4.7.5 Theorem VI is closed under composition and reflection.

Proof Of course, VI is closed under composition, since by definition P 11 Q = [{ P, Q}] E

VI for any processes P and Q. On account of the equivalence of statements 0 and 3 (or 4)

in Theorem 4.7.3, VI is also closed under reflection. •

The set of DI processes satisfying Rule Y' is also closed under reflection. However, it is

not closed under composition. This came as a surprise at the time Udding formulated his

rules. Here follows a simple example.

4.7.6 Example Consider DI processes P and Q given by their state graphs in Fig

ure 4.3. System {P, Q} has external input a, external outputs b and c, and internal

P:
a X ~ y b Pll Q:

a b

•t: c c c c c c c

X y a b b
e-o -

Q
Q:~

Figure 4.3: Two DI processes (left) and their composite (right)

connections x and y. Thus, at least five additional wires are involved in the operation of

this system and its environment. Both P and Q satisfy Rule Y'. When their composite

P 11 Q is determined (shown in Figure 4.3; also see Section 4.8) it turns out not to satisfy

Rule Y'. Verify that Rule Y is satisfied by P 11 Q. We would also like to point out that

P and Q satisfy the requirements for composition in [Udd84] and that, after a suitable

translation, P 11 Q = P b Q, where b is the blending operator of [Udd84].

Note that if the environment waits for output c from system {P, Q} before offering it

input a, then the system is guaranteed not to produce output b. On the other hand, if

the environment immediately offers a, then the system will produce c eventually (it may

already have done so, but c can still be "on its way") and output b is possible but not

guaranteed. The DI Model lacks some features to argue about such progress properties of

systems. We will pay more attention to this limitation in Section 5.5. •

46 CHAPTER 4. DI MODEL

Many tasks simplify considerably when DI processes are involved. The next two the

orems illustrate this. The first theorem gives a condition under which isochronic and

anisochronic operation are equivalent. It motivates the following definition. A DI system

is a system such that of each pair of connected processes at least one is in VI.

4. 7. 7 Theorem (Fundamental property of D I processes)

For closed DI system S we have

'§ is free of interference' 'S is free of interference' .

Proof idea: The effects of additional wires are already incorporated in a DI process. •

Compare this to Theorem 4.3.8, which says that the implication from left to right holds in

general. On account of Theorem 4.4.2, system S is equivalent to its wired version S. Sys

tem S is Dl, because the additional wires are in VI. Therefore, every system is equivalent

to some DI system, by the suitable introduction of explicit DI wires.

4. 7.8 Example Note that processes P and V\p of system S in Examples 4.3.1 and 4.3.3

are not DI, since they do not satisfy Rule X. Indeed, system S is free of interference, and

S is not free of interference.

Processes P and V\p are equivalent to DI processes Q and R respectively, given by

Q (0,{a,b},{c:,a,b,ab,ba}),

R ({a, b}, 0, { E, a}) .

That is, {P} equ { Q} and {'-"P} equ {R}. Note, however, that Q =/= V\R. This provides a

counterexample for the validity of [{V\PH "'[{P}). •

4.7.9 Theorem For system Sand DI process P we have

S equ {P} _

S sat {P}

S sat {P}

[S] = p'

[S];;;) p'

Correct.(S par { V\P}) .

•
It is instructive to find a counterexample for each of the statements in Theorem 4. 7.9 with

P rf. VI. The implications from right to left hold in general.

The first two statements of the theorem above are a direct consequence of Theo

rems 4.6.4 and 4.7.3. They show the advantage of specifying a system by means of a DI

process rather than an arbitrary process. The third statement expresses that S sat {P}

holds if and only if ""p is a friend of S. This is more remarkable than it may at first

seem. The definition of S sat T involves Correct.(S par U) and Correct.(T par U) where

U ranges over SYS. In the particular case of DI singleton system {P} for T, it suffices to

compute just Correct.(Spar { ,...,p}) (note that P is reflected).

4.8. COMPUTING THE COMPOSITE 47

4.8 Computing the Composite

Given systemS one can compute its composite [S) by (i) starting with some friend of Sand

(ii) repeatedly reduci!lg it (that is, making it smaller with to!;;;;) while maintaining

friendship, until (iii) no further reduction is possible (this yields the least friend), and

finally (iv) reflecting the result.

For step (i) first try process (xoS, xiS, (xoS)*), the largest (easiest) candidate below T.

If that does not work then Friends.S = {T} and, hence, [SJ ..L. Step (ii) is often best

done by making small reductions at a time.

A process can be reduced with respect to !;;;; in two ways. One way is to restrict its

willingness to receive inputs (by removing input edges in its state graph). The other way

is to increase its capability to send outputs (by adding output edges in its state graph; but

after this output all inputs should be accepted in order not to have reduced the process

too much).

Observe that the least friend is in VI. Using the JTU-Rules, it is easy to verify whether

the "current" friend in step (ii) of the computation above is in VI. If the "current" friend

does not satisfy the JTU-Rules, then it should be possible to reduce it further.

Theorem 4.7.7 is helpful when system S consists of DI processes only. When looking

for friends of S it is easy to choose the appropriate input and output alphabets, the

main problem being interference. If S consists of DI processes only, then the condition of

Theorem 4.7.7 is met by the closed system Spar {P}. Therefore, in order to determine

whether (Spar {P}r is free of interference, it suffices to restrict oneself to isochronic

operation.

4.8.1 Example Reconsider processes P and Q of Example 4.7.6. We show in some

detail how to compute P 11 Q.
Friends of {P, Q}, if any, have output alphabet 0 = {a} and input alphabet I= {b, c }.

Note that x and y are internal to { P, Q}. Since both P and Q are DI processes we can

restrict ourselves to isochronic operation when checking for interference, as pointed out

above. The first candidate to try for friendship is (I, 0, I*) (see Figure 4.4, state graph R1).

Since { P, Q, RI} has no interference, R 1 is a friend. It is not the least friend, since it can

be reduced (in many ways). Removing as many input edges as possible, while preserving

friendship, yields R2• Input c cannot be removed since P would then cause interference. A

further reduction is still possible by adding outputs. Adding just one a at the initial state

(yielding R3), however, reduces it by too much, since P causes interference at R3 . Adding

output a and after that accepting all inputs again, yields R4 • l4. is a friend of {P, Q}, but

it is not DI and, hence, not the least friend. Some of the inputs after a can be removed,

yielding R5 , which is also a friend but still not DI. Addition of an output a after the initial

input c and after that a all inputs again, yields R6 • This is again a smaller friend, but

again not DI. It turns out that all inputs after the output a that was just added can be

removed. The result is DI and cannot be reduced further. Its reflection is the composite

shown on the right in Figure 4.3.

48 CHAPTER 4. DI MODEL

R,e:

Rs:F1Ja b
c c c

b

a b Rt;: .__o()-_10()
c c

b

c

b

c

Figure 4.4: Candidates for friends of {P, Q}

Observe that the following ordering relationships hold:

Furthermore R5 ::J R3 , and R3 is incomparable to both R6 and the least friend. With a

little bit of experience bigger reduction steps are possible. •

4.8.2 Example Reconsider Example 3.2.5, concerning a C-element with forked output.

It is now easy to verify according to the definitions that both v-.P5 and '-"Qs are DI friends

of S5 , and that v-.P5 ::J '-"Q5• Although a bit tedious, exhaustive trial confirms that v-.Q5

cannot be reduced further while maintaining friendship. Hence, v-.Q5 is the least friend

and Q5 is the composite of S5 • •

Theorem 7.3.7 provides an alternative approach to the computation of composites (also

see Note 7.3.9).

4.9 Design Equation

A designer is often confronted with the following problem. Given is a specification in the

form of some process R. The designer conjectures that a particular process Q is part of

an implementation, that is, the designer attempts to find a solution of the form P 11 Q for

some still unknown process P. What is a specification for P? Obviously, P should satisfy

PIIQ;;;!R. (4.31)

We call this the design equation, since designers often encounter it. It expresses that P

composed with Q satisfies specification R. The next theorem characterizes all solutions of

this design equation.

4.9. DESIGN EQUATION

4.9.1 Theorem (Factorization Theorem)

For processes P, Q, and R in VI we have

P 11 Q ""J R P '-'"'(Q 11 "'R) ·

Appendix B gives a proof that makes this theorem easier to memorize.

49

•
It is called a factorization theorem because "factor" Q is "divided" out of R to obtain

an explicit specification for P. In general, composition has no inverse, but the inequality

expressed by the design equation (4.31) can be solved within VI. In [Fan86], Fang intro

duces the notion of 'decomposition by factoring' and gives a (very operational) definition

without proofs. The form of the Factorization Theorem reveals a Galois connection (see

[Bir84, DP90]) between functions _ 11 Q and '-"'(Q 11 '""'-)· Factorization is similar to the

weakest prespecification, which solves a design equation involving sequential composi

tion (see [HJ86, HJ87]).

It is possible that the designer makes a wrong choice for Q, in the sense that there is

no solution with this Q. In that case one finds Q 11 v-.R = .l and, hence, the specification

for P boils down to P ;J T. This means that the only "solution" is P = which is not

a feasible solution, since T is an imaginary process. The introduction of the imaginary

processes .l and T makes these sorts of case distinctions unnecessary.

Also note that taking the least solution for P, namely P = '-"'(Q 11 "'R), and plugging

it into the design equation need not yield an equality. That is, in general we do not have

R. (4.32)

The reason is that Q may already be "too good" to implement R minimally. No choice

of P may be able to "annihilate" the excess goodness present in Q. A trivial example is

obtained for Q T # R. In this case, we find that the least solution of (4.31) equals

V"(Q 11 "'R) = ""T that is, every process P is a solution. Consequently, taking .l

for P, we find P 11 Q T # R.

Examples 5.1.5 and 5.2.2 illustrate how the Factorization Theorem can be used for

designing. Example 5.5.4 shows what may happen when an inappropriate factor is chosen.

We finish this section with a theoretical application of the Factorization Theorem, which

holds more generally for Galois connections.

4.9.2 Theorem Composition 11 on VI is n-continuous (distributes over arbitrary n

and, hence, is !;-monotonic), that is, for PE VI and W ~VI we have

n{Q: Q E W: P 11 Q}.

Proof Let P be a DI process and W a subset of VI. It suffices to prove for all DI

processes R

P 11 n W ;J R :::: n { Q : Q E W : P 11 Q} ;J R .

For DI process R we derive

50

P 11 n w;] R

{ Factorization Theorem }

n W;] '-"(P 11 v-R)

{ property of n }

(V Q: Q E W: Q;] ""(P 11 ""'R))

{ Factorization Theorem }

(V Q : Q E W : Q 11 P R)

{ property of n }

n{Q:QEW:PIIQ}

CHAPTER 4. DI MODEL

..

Chapter 5

Applications

In the preceding chapter we have presented and analyzed the DI Model for the specification,

composition, and refinement of delay-insensitive systems. In this chapter we will discuss

some applications of the DI Model. In particular we look at composition and design prob

lems. Along the way we introduce additional building blocks and study the phenomenon

of output choice. Finally, we point out the limitations of the DI Model.

Most of the results in this chapter are not new, though everything is presented in a new

and consistent framework. Also many of the (counter)examples are new. A good source

for additional examples is [Ebe89].

5.1 Composition and Design Examples

So far we have introduced only a few kinds of building blocks, namely wires, I-wires, forks,

merges, and C-elements. Not much can be accomplished with systems constructed of these

building blocks alone. Before presenting additional building blocks we will look at some

simple composition and design examples.

5.1.1 Example Let us consider the processes with a single port, say a. These can be

used as terminators to avoid dangling inputs and outputs. Four kinds of terminators may

be distinguished, depending on whether a is an input or an output, and whether the trace

Figure 5.1: Diagrams (left) and designs (right) for the four terminators

51

52 CHAPTER 5. APPLICATIONS

set is { c:} or { c:, a p. A terminator with input is called a sink and with output a source.

We use the prefix 0- for terminators with trace set { c:} and 1- for trace set { £, a}.

Diagrams for the terminators are shown on the left in Figure 5.1. Possible aesigns in

terms of building blocks are given on the right, though in hardware realizations one would

prefer other designs. •

5.1.2 Example Figure 5.2 shows two systems consisting of two merges each. It is easy

to prove that the composites of both are equal to the three-input merge with inputs

{a, b, c }, output d, and a trace set generated by the regub~' expression ((a+ b + c)d)*,

where union is denoted by+ (with the weakest binding power), catenation by juxtaposition,

and Kleene closure by • (with the strongest binding power). The trace set generated by

regular expression RE consists of all symbol sequences matching RE, and all of their

prefixes (initial segments).

d d

Figure 5.2: Two systems of two merges

Even though the two systems are equivalent within the DI Model, one may be preferred

over the other because of performance differences, for example when one of the inputs

occurs much more often or is more time critical than the other inputs. •

Similarly, one can obtain a three-output fork and three-input C-element, with trace sets

generated by the regular expressions (a(b, c, d))* and ((a, b, c)d)* respectively, where the

comma operator (with a binding power stronger than union and weaker than catenation)

denotes arbitrary interleaving. Larger multiple-input merges and C-elements, and multiple

output forks can be constructed by further cascading the binary versions into larger trees.

In spite of the simplicity of these five building blocks, it is often non-trivial to compute

the composite of systems built from them.

d

Figure 5.3: System of fork, 2 C-elements, and merge

1 A trace set with aa is not interesting because, in the case of input, it is equivalent to { e, a} and, in
the case of output, to ..L.

5.1. COMPOSITION AND DESIGN EXAMPLES 53

5.1.3 Example Consider the system of Figure 5.3 consisting of a fork, two C-elements,

and a merge. You are challenged to compute the composite.

The state graph of the composite is depicted in Figure 5.4. Note that the state labeled 3

has no outgoing edges, because supplying a b-input might result in interference at the

merge. Also note that the states labeled 4 and 5 are distinct, because different inputs are

acceptable. •

1

2

Figure 5.4: State graph of composite

5.1.4 Example A rendez-vous is a process P with two inputs {a, b} and two outputs

{ d, e}. Its diagram is shown on the left Figure 5.5 and its state graph on the right (the

initial state is at the center). Observe that the state graph satisfies the JTU-Rules and,

hence, P E VI.

a-J.l-b

d-LJ-e

1 1

Figure 5.5: Diagram and DI state graph of rendez-vous

The communication behavior of P restricted to {a, d} is generated by the regular ex

pression (ad)*; similarly, restricted to {b, e} by (be)*. Consequently, the rendez-vous can

operate in a "split environment" where each half alternates output and input. The rendez

vous synchronizes the cycles of the two halves. It is also known as passivator in the

handshake circuits to which Tangram is compiled (see [vB93]).

54 CHAPTER 5. APPLICATIONS

System 55 in Example 3.2.5, consisting of a C-element with forked output (see Fig

ure 3.3), refines the rendez-vous: 55 sat {P} because [S5]J ;;;) P (see Figure 3.5 for the

composite Q5 of 55). In fact, 55 is strictly better than required by specification P, that

is, •(55 equ {P}). An informal argument for this is that 55 is capable of processing in

put b after output d and also input a after output e. More formally, consider process R

with inputs { d, e}, outputs {a, b}, and a trace set generated by the regular expression

(a, b)(db, ea). For this R we have

•Correct.{ P, R} 1\ Correct.(S5 par { R})

and, hence, •({P} sat 55) holds.

Figure 5.6: Diagrams of systems T (left) and U (right)

(5.1)

Although the C-element with forked output is a compact implementation of the rendez

vous, it cannot be distributed symmetrically over the two parties it synchronizes. System T

presented on the left in Figure 5.6 is an attempt at a distributed implementation (the

dashed line indicating the distribution). However, if one computes [T] then it turns out

to yield process P5 of Figure 3.4, which is not a refinement of the rendez-vous. Informally

speaking, if the environment offers input a immediately after T has output d, then this

may cause interference.

By suitably combining two copies of T one obtains system U on the right in Figure 5.6.

The composite of system U turns out to be Q5 and, thus, U is a proper implementation

of the rendez-vous. System U can be distributed over the two parties it synchronizes as

indicated by the dashed line. Note that the resulting two halves are connected by four

wires. •
This example was inspired by [vdSU86] and shows that even the simple systems using only

C-elements and forks involve subtle behavioral complications. Another case is provided in

Example 5.2.1.

The fork is the only building block so far with more than one output. We now consider

another such process, having input a, outputs {b, c}, and a trace set generated by the

regular expression (abac)*. It is called a toggle, because each odd occurrence of input a

5.1. COMPOSITION AND DESIGN EXAMPLES 55

5.7: Diagram and DI state graph of toggle T(a; b, c)

triggers output b, each even occurrence triggers c. This toggle cannot be constructed from

the building blocks so far.

From now on we consider the toggle a building block. The toggle T(a; b, c) with input a

and two outputs b and c is defined by the DI state graph in Figure 5.7. Its diagram is

shown on the left. Note that we have

T(a;b,c)fab = T(a;c,b). (5.2)

A four-output toggle with trace set (abacadae)* is easily built from three basic toggles.

A three-output toggle with trace set (abacad)* can be obtained from a four-output toggle

and a merge by feeding back one output:

{ M(a, e; x), T(x; y, z), T(y; b, d), T(z; c, e) } . (5.3)

5.1.5 Example Design a 2-phase-to-4-phase converter R with inputs {a,d}, out

puts {b, c}, and trace set (acdcdb)*. Its environment can be split into two parties, one

with communication behavior (ab)*, the other with (cd)*. The converter sees to it that

each ab-cycle (consisting of two phases, one a and one b) encloses two cd-cycles (having

four phases).

A rather naive design technique that sometimes works is based on output analysis.

In this approach, one considers each output of the circuit to be designed and analyses the

conditions under which it is to be produced. The phase converter has outputs b and c.

Inspecting the regular expression specifying this circuit, one sees that output b is produced

by the second d-input, and that output c is produced by either the a-input or the first

d-input. Consequently, we need a toggle to split the d-in put into odd and even occurrences,

and a merge to combine the two "causes" for the c-output. This results in the design shown

on the left in Figure 5.8.

0 d c 2 d 3 b 0 a
c

a a a

X 1 d b
- 1

c c c
d

b (

0 2 3

Figure 5.8: Diagram and state graph of design for phase converter

56 CHAPTER 5. APPLICATIONS

We emphasize that a design obtained by output analysis must always be verified af

terwards, for instance, by computing the composite and comparing it to the specification.

Example 5.2.1 illustrates what may go wrong.

It is a nice exercise to compute M 11 T, where M:::: M(a, x; c) and T = T(d; x, b). The

state graph of the composite is shown on the right in Figure 5.8. Because specification R is

in VT, we can immediately infer from Theorem 4.7.9 that Rand M 11 Tare not equivalent.

In fact, also according to Theorem 4.7.9, {M, T} sat R holds since M 11 T ;) R. The

refinement can also be deduced from Correct.{M, T,v-.R}. This illustrates the advantage

of having DI specifications.

We can also tackle this design problem by factorization. Suppose we somehow guess

the need for toggle T = T(d; x, b), where xis some internal symbol. We are now interested

in the specification P of the remainder that composed with toggle T refines converter R.

According to the Factorization Theorem (Theorem 4.9.1), specification P is obtained by

computing

P = '""(TII"'R).

Note that by definition, P n Friends.{ T, '-"R}. Process P has inputs {a, x} and output c,

and its trace set turns out to be generated by the regular expression (acxc)*, which is the

reflection of a toggle and can be refined by merge M M(a, x; c). This is the same design

as before, but now it is correct by construction. •

5.2 More Building Blocks

There are still many of systems that cannot be constructed from our building blocks so

far. For instance, is it possible to make a first-rest discriminator, with input a, outputs

{b, c}, and trace set ab(ac)*? (Why not?) The following building blocks extend the range

of possibilities.

H--.. eo

H--.. cl

b

b

Figure 5.9: Diagram and DI state graph of latch L(ao, a1, b; eo, c1)

Figure 5.9 shows the diagram and DI state-graph of latch L(ao, a1, b; eo, c1). The dia

gram and DI state graph of decision-wait D(ao, a1, b0 , b1; Coo, cob c10, en) is given in Fig

ure 5.10. These processes can be viewed as generalizations of the C-element. The latch

temporarily stores a binary decision, and is sometimes also referred to as switch. The

decision-wait waits for two binary decisions and reports which of the four combinations

occurred.

5.2. MORE BUILDING BLOCKS

ao

....----coo

co1

i-..;_+-- C1Q

C11

57

Figure 5.10: Diagram and DI state graph of decision-wait D(ao, ab b0 , b1; c00 , CoiJ c10 , c11)

5.2.1 Example Let us try to design latch L L(ao,a1,b;co,c1) by the technique of

output analysis. Output c; is produced by the combined occurrence of inputs a, and b.

Thus, we need a fork on input b and two C-elements to combine each a, with a copy of b.

This gives rise to system T depicted in Figure 5.11.

b

Figure 5.11: System T that does not implement a latch

Unfortunately, T does not implement latch L, that is, •(T sat { L}), because for

process R with inputs { c0 , cl}, outputs { ao, a1 , b}, and a trace set generated by the regular

expression a0bc0 a1 , we have

Correct.{L, R} /\ -.Correct.(T par {R}). (5.4)

The second conjunct holds because of interference at R. Less formally one might phrase

this by saying that T can produce an "incorrect" output by doing aobc0a1 c1 , because

output from the lower C-element remains enabled after the first b-input.

One could also takeR with trace set generated by aobc0 a0 b. This R also satisfies (5.4),

though now there is interference at T. It reveals that T cannot process all inputs required

by specification L.

Yet another way to ascertain -,(T sat {L}) is to recall Theorem 4.7.9 and to observe

that LE VI and -,Correct.(T par {""L}). One could also compute [T]J and compare it

~~ .
This example shows that designing by output analysis does not always work, for it failed

to give us a decomposition of the latch. In fact, the latch cannot be implemented by the

earlier building blocks at all (a nice proof of this folk theorem is still lacking). The latch

can, however, be obtained from a decision-wait together with some terminators to hide

58 CHAPTER 5. APPLICATIONS

unneeded ports (use a C-element, or fork, with feedback for this purpose). The latch may,

thus, be viewed as a 2 x 1-decision-wait. The decision-wait cannot be made from latches

and the earlier building blocks (this is another folk theorem).

It is possible to construct larger latches (latching n inputs) from basic latches, for

instance, through factorization.

5.2.2 Example We briefly show how to derive a design for the ternary latch L3 with

inputs { a0 , a1, a2 , b}, outputs { e0 , e11 e2 }, and a trace set generated by

(5.5)

We guess that latch L = L(x, a2 , b; y, c2), where symbols x and y are internal, might be

useful. Factorization yields specification P for the remainder; P has inputs { a0 , a1, y} and

outputs { e0 , e1 , x}. Computing -(L 11 ..,...£3) yields a trace set generated by

(aoxyeo + a1xyc1)* . (5.6)

Doing an output analysis of the expression suggests that output x may be produced by a

merge of inputs a0 and a1. However, these inputs are no doubt still needed to generate

the corresponding c-outputs. Therefore we also introduce two forks F0 = F(ao; d0 , eo) and

F1 = F(a1; d11 e1), and merge M= M(do, d1; x), where symbols {do, dt, eo, e1} are internal.

The composite Q = F0 11 F1 11 M has a trace set generated by

(ao(do,x) + at(dt,x))* . (5.7)

Factorizing P with respect to the further guess Q, yields a process with inputs {eo, e1 , y},
outputs { e0 , et}, and a trace set generated by

((eo,y)co+(et,y)et)*. (5.8)

This is easily recognized as latch L(e0 ,et,y;c0 ,cl). Thus we have derived the design in

Figure 5.12. •

ao.__,~----~~----~

al.--,~~--~~----~

u-+--.,. eo

U·-1----i.,. Ct

b

Figure 5.12: Design for a ternary latch

Similarly, larger decision-waits can be constructed, not only of type m x n but also with

more than two dimensions, such as 2 x 2 x 2 (see Figure 5.13).

The next example explains a design technique based on the idea of a state machine.

5.2. MORE BUILDING BLOCKS 59

dooo

doo1

do1o

doll

d1oo

dtol

duo

du1

Figure 5.13: Design for 2 x 2 x 2-decision-wait

5.2.3 Example Reconsider the problem of designing the phase converter of Exam

ple 5.1.5. The phase converter can be considered to have three states. In the first state,

it only expects input a and reacts to it with output c and a change to the second state.

In the second state, it responds to input d with output c again, going to the third state.

Finally, in the third state, it produces output b on input d and returns to the first state.

This suggests a design based on a state machine.

There are many ways to encode the state of such a state machine. The so-called one

hot code introduces a wire for each state. Only the wire corresponding to the current

state is "active". A 2 x 3-decision-wait is used to determine the combination of input and

state. Some additional circuitry translates this "combination" signal into the appropriate

outputs and selects the next state. An I-wire takes care of selecting the initial state.

a

d

Figure 5.14: State-machine design for phase converter

The resulting design is presented in Figure 5.14. The dashed box encloses the out

put and next-state circuitry. Assuming the environment adheres to its obligations, some

combinations of input and state do not occur. The corresponding outputs of the decision

wait are connected to 0-sinks. In contrast to the design in Example 5.1.5, this design is

equivalent to the specification. •

60 CHAPTER 5. APPLICATIONS

In spite of their generality, state machines cannot be used for all design problems. In

particular, it is difficult to deal with concurrent inputs. Section 5.4 describes a (partial)

solution. Also, state machine designs are often inefficient. Choosing a better state space

may improve the design, but may complicate the correctness argument. For the phase con

verter in the preceding example, one could do with two states, because the environment's

choice of input also provides state information.

The state-machine approach can be applied successfully to the design of a toggle and a

first-rest discriminator. In both cases there is only one input and there are just two states,

so a latch suffices. For the first-rest discriminator a 1-source is needed.

5.3 Output Choice

None of the building blocks so far involves a choice between outputs: if in some state either

of two outputs can be produced then both outputs can be produced "together", that is, in

either order. Put differently, the occurrence of one output does not disable another output.

More formally, we say that symbols a and c of process P are mutually non-disabling

when for all traces s we have

sa E tP 1\ se E tP :::} sac E tP 1\ sea E tP . (5.9)

Furthermore, we introduce two additions to Rule Z and two additions to Rule Y:

• P satisfies Rule when all pairs of distinct output symbols are non-disabling;

• P satisfies Rule zin when all pairs of distinct input symbols are non-disabling;

• P satisfies Rule yout when for all traces s and t, input a, and outputs b and c we

have

sactb E tP 1\ scat E tP :::} scatb E tP .

• P satisfies Rule yin when for all traces s and t, output a, and inputs b and c we

have

sactb E tP 1\ scat E tP :::} scatb E tP .

Rule zout expresses that process P has no output choice, and Rule z•n expresses the

absence of input choice. Recall that Rule Z requires that all symbol pairs of opposite

direction are non-disabling. The conjunction of Rules Z, zov.t, and zin will be called

Rule Z'. Thus, we have

Z' =: z 1\ zo•tt 1\ (5.10)

Rule Z expresses that all pairs of distinct symbols are non-disabling. A similar relationship

holds for the four forms of Rule Y:

Y' (5.11)

5.3. OUTPUT CHOICE 61

Rules zin and yin are introduced only for completeness' sake and do not play an important

role.
All building blocks so far satisfy Rules zout, yout, and yin. All but the merge even

satisfy Rule zin. The merge process requires of the environment a choice between inputs.

That Rule Y' is not preserved under composition was already shown in Example 4. 7.6.

Process P of that example, however, does not satisfy Rule zout, since it involves a choice

between outputs x and c. Here is different example illustrating that output choice is not

crucial. For yet another example, see Example 5.4.2.

5.3.1 Example Figure 5.15 shows the state graphs of DI processes P, Q, and their

composite PII Q. Process Pis willing to accept input b only after it has output x. Process Q
produces output a upon receiving input x or c.

Figure 5.15: DI state graphs of processes P and Q, and their composite

Both P and Q satisfy Rule Y' and also Rule Z', so there is no choice between out

puts. The composite of P and Q, which happens to be the reflection of the composite in

Example 4.7.6, satisfies Rule Z' but not Rule yin. Of course, it does satisfy Rule Y (and

also yout, see Theorem 5.3.3 below). •

The set of DI processes satisfying Rule Z' is not closed under composition either.

Examples 3.2.5 and 4.8.2, featuring the C-element with forked output, show that input

choice can arise through composition of processes that do not involve any choice. The C

element and fork satisfy Z' but the composite does not, since it requires the environment

to choose between inputs a and bin states 2 and 3 (see state graph of Q5 in Figure 3.5).

Also not closed under composition is the set of Dl processes satisfying Rule zout. This

is illustrated by the following example.

5.3.2 Example Consider DI processes P and Q defined in Figure 5.16. Both processes

satisfy Rule zout, though neither Y' nor yout is satisfied. Their composite, however, does

not satisfy Rule zout: there is a choice between outputs c and d. It is impossible for P
to be in the lower part of its state graph while Q is in the higher part, since that would

require both processes to have received a signal before having sent any.

Note that, in a sense, there is a possibility of deadlock in system { P, Q}. Deadlock

occurs when both processes start doing output, with P ending up in state 2 and Q in

state 3, after which both processes are waiting for input. This scenario is possible because

of the delaying nature of connecting wires. •

62 CHAPTER 5. APPLICATIONS

[

c

a P:

d

Q: PIIQ<

Figure 5.16: DI state graphs of processes P and Q, and their composite

The next theorem, finally, provides a closure result for processes without output choice.

5.3.3 Theorem The set of Dl processes satisfying Rules yout and zout is closed under

composition.

Proof See [Waa89]. •
The Extended DI Model of Chapter 6 sheds more light on these issues.

5.4 Still More Building Blocks

On account of Theorem 5.3.3 and the fact that all building blocks so far satisfy Rules yout

and zout' additional building blocks are needed to construct (the equivalent of) systems

with output choice. Below we present three additional building blocks involving output

choice.

Figure 5.17: Diagram and DI state graph of undetermined selector U(a; b, c)

Figure 5.17 shows the diagram and DI state-graph specification of undetermined

selector U(a; b, c) with input a and two outputs b and c. The undetermined selector

responds to each input a with a single output on either b or c. In state 1, the specification

only prescribes that a choice be made between outputs b and c, not which one to choose.

The user of such a process cannot know from the specification alone what choice will be

made. For all one knows, the choice may depend on the flip of a coin or the same output

may be produced every time. The specification is said to exhibit (output) nondeterminism.

Observe that the undetermined selector is related to a merge process:

U(a;b,c)fa = '-"'M(b,c;a).

5.4. STILL MORE BUILDING BLOCKS 63

Without ill effect, the undetermined selector can be replaced by, for instance, a toggle,

because T(a; b, c);;;;) U(a; b, c). Hence, a designer can always eliminate the nondeterminism

introduced by undetermined selectors. An undetermined selector might be used because,

at the current stage, it is not clear which deterministic refinement of the undetermined

selector is most suitable.

0 0

a1

4 4

Arbiter bt 7

5 5

a1

6 6

bt

0 1 2 3

0 1

Sequencer

al eo 0
2

eo 2

b
Ct Ct

3

0 1

Figure 5.18: Diagrams and DI state graphs of arbiter and sequencer

The kind of output choice present in the undetermined selector is less useful than

that of the following processes. Figure 5.18 shows the diagrams and DI state-graphs of

arbiter A(ao, a1; b0 , b1) and sequencer S(ao, ab b; eo, c1). These processes also involve

output choice: for the arbiter in state 7 and for the sequencer in state 3. Thus, they also

exhibit nondeterminism. In this case, however, the nondeterminism cannot be eliminated

by the designer without violating the (intuitive) progress conditions. This will be explained

in more detail in Chapter 6.

The arbiter communicates with two parties, say P0 and P 1. The parties negotiate with

the arbiter to obtain a privilege, which the arbiter grants to only one of them at a time.

P; is hooked up through a; and b;, The first input a; requests the privilege. The first

output b; grants the privilege. The second input a; releases the privilege. Finally, the

second output b; acknowledges the release, allowing the cycle to start anew. The "hole"

in the center of the state graph expresses that the privilege is to be granted to at most

one party at a time. The specification does not express anything about fairness: whenever

there are two outstanding requests the arbiter is free to grant either of them, no matter

who got the privilege last time.

64 CHAPTER 5. APPLICATIONS

The sequencer is a refinement of the latch. Since both are defined by a DI process, this

statement boils down to

In fact, the sequencer improves the latch, in that the environment is not required to

choose between inputs f1() and a1• Whenever the sequencer is offered all three inputs

"simultaneously", it is free to choose which a; to "pass" to the corresponding c;-output

and which one to "hold" till the next b-input. Therefore, input b is called the 'next' input.

The sequencer, thus, sequences inputs a, to outputs c; "clocked" by input b. The raison

d'etre of the switch is that its implementation in terms of transistors is cheaper than that

of the sequencer.

The undetermined selector can be made from a sequencer. The arbiter can be designed

in terms of the sequencer, and the other way round. Also larger arbiters and sequencers

can be constructed (see [Ebe90]). A sufficiently large sequencer can be used at the input

end of a state-machine design to take care of concurrent inputs. Its 'next' input is derived

from the state wires by a merge. See [JNH93] for a more detailed exposition.

Let us now consider how much we can make with the building blocks that have been

presented so far. Can we construct all finite-state processes, that is, processes with finite

minimal state graphs? It is conjectured that the following five kinds of building blocks,

namely

1-wire, merge, fork, decision-wait, and arbiter,

suffice to implement all finite-state processes (see [Ebe89j2), taking into account "obvious

progress requirements" to rule out "bogus" implementations (using, for instance, the do

nothing-wrong process mentioned in the next section). In fact, it is still an open problem

whether there exists a "small" set of building blocks to implement all finite state processes,

let alone a set of building blocks with efficient hardware realizations.

Below we motivate each of the five kinds of building blocks in the conjecture. We call

set V of DI processes refinement closed when

(V P, Q : P E V 1\ P;) Q : Q E V) , (5.12)

that is, when every process that can be implemented with some process from V itself also

belongs to V. Observe that the set of processes with no more inputs than outputs is closed

under composition and refinement. Among the five kinds, all but the merge have no more

inputs than outputs and, hence, the merge is indispensable. Similarly, the set of processes

with no more outputs than inputs is closed under composition and refinement. All but the

fork belong to this set, so the fork is also indispensable. The set of passive processes that

do not start with output is closed under composition and refinement too. The 1-wire is

the only process among the five kinds that is not passive and, thus, it is indispensable. The

arbiter is also indispensable, but the argument must be postponed till Chapter 8 where

2Ebergen uses RCEL components instead of decision-waits.

5.4. STILL MORE BUILDING BLOCKS 65

output nondeterminism is analyzed in greater detail. The arbiter is the only process with

output choice; the other four are in the set of processes satisfying Rules Y""1 and Z""1
• This

set is closed under composition by Theorem 5.3.3. Unfortunately, it is not closed under

refinement: the toggle, for instance, belongs to this set and it implements an undetermined

selector, which does not belong to the set. A conclusive argument for the decision-wait

is still lacking. All we can say is that serious attempts to construct it from the other four

have failed (give it a try on a rainy day).

The arbiter and sequencer are "expensive" building blocks, which should be avoided

whenever possible. Unfortunately, some finite-state specifications require an arbiter for

their realization with the set of building blocks mentioned above, even though no arbitra

tion seems to be involved. Here is an example.

5.4.1 Example The one-all, nicknamed O'Neall, has inputs {a, b }, outputs { c, d},

and a trace set given by the DI state graph of Figure 5.19. The c-output is produced after

one input, and the d-output after all inputs have been received. Compare this to process Q

of Example 5.3.1.

c

Figure 5.19: Diagram and DI state graph of one-all

Note that it satisfies Rules Y' and Z'. No realization (that also takes "obvious progress

requirements" into account) is known for the one-all in terms of the building-blocks pre

sented so far avoiding arbiter and sequencer. The one-all is easy to implement with a

sequencer (but that seems overkill). Maybe it should be added to the set of building

b~ks. •

The three building blocks introduced in this section····namely the undetermined selector,

arbiter, and sequencer-all satisfy Rule Y' (but not Rule Z""1
, of course). The next

example again proves that Y' is not preserved under composition but now by using only

building blocks, and no ad hoc processes as in Examples 4.7.6 and 5.3.1.

5.4.2 Example Figure 5.20 shows on the left the diagram of a sequencer whose outputs

are merged into a single output. The state graph of the composite of this system is shown

on the right. The reader is urged to verify this.

The composite does not satisfy Rule Y' since states 1, 2, and 3 are distinct. More

particularly, consider the state reached by trace an. In this state both input b is acceptable

and output c is enabled. According to Rule Z, they can then occur in either order.

However, the order cb leads, via state 0, to state 2, and the order be leads to state 3. In

66 CHAPTER 5. APPLICATIONS

3

a

b

n c

3
0

Figure 5.20: Diagram and state graph for sequencer with merged outputs

state 2, input a is acceptable, which is not the case in state 3. Thus, Rule Y' is violated.

On account of symmetry, a similar situation occurs at the state reached by trace bn. •

5.5 Limitations

The DI Model gives a precise meaning to such notions as process specification, composition,

and satisfaction. However, in many ways the model is not suited for solving realistic design

problems. For one thing, it may be inconvenient to specify systems by means of trace sets

(though state graphs and regular expressions alleviate the inconvenience to some extent).

For another thing, it is often cumbersome to do composition and to verify satisfaction

(though one's ability does improve with practice). But there are worse shortcomings,

having to do with expressiveness.

a,..,. --G=i=fu--c--1------;• ... b

~-·
a ____________,.b

Figure 5.21: Systems D (at the top), L (in the middle), and M (at the bottom)

5.5.1 Example Consider systems D, L, and M shown in Figure 5.21. Each has an

external input a and an external output b. According to the DI Model the composites of

5.5. LIMITATIONS 67

these systems equal wire W(a; b). However, systems D and L are "unreliable" wires, in the

sense that they may "break down" at any moment, that is, fail to make progress, though

the specification does not say when. Both may also behave correctly. System D can stop

altogether (deadlock) and system L may get into an infinite loop (livelock).

System M is a special case, for which one can argue both ways. The looped-back I-wire

behaves independently of the a-b-wire and, thus, one would say there is no livelock. On the

other hand, the looped-back 1-wire consumes energy at an unknown rate and it may drain

the batteries in no time. The DI Model does not take these considerations into account. •

5.5.2 Example Consider process P =({a}, {b}, {c:, a}). It has input a, output b, and

consumes a single input without producing output. In the DI Model, P implements a wire,

that is, we have

{P} sat { W(a;b) } ,

because W(a;b) E VI and Correct.{P,'-"'W(a;b)} (see Theorem 4.7.9). Process Pis even

worse as a wire implementation than systems D and L of the preceding example, since it

cannot even behave correctly. However, as far as interference is concerned it is no worse

than the wire. In fact, it is better in that respect, just because it produces no output. •

In general, each process P has a (best) implementation, namely (iP, oP, (iP)*), which

is also known as the do-nothing-wrong process. This is obviously not acceptable.

Sometimes it is not so clear that an implementation is unacceptable.

5.5.3 Example Tangram (see [vB93]) has a sequential and a parallel operator. The

handshake processes used for the translation of these operators are named SEQ and

PAR respectively. Both have inputs { a0 , b1 , et} and outputs { a11 b0 , e0 }. The trace

set of SEQ is generated by the regular expression (a0b0b1e0 c1al)*, and that of PAR by

(a0 (b0b1 , c0 e1)a1)*. The a-ports signal initiation and completion of the operator and the

b- and e-ports signal initiation and completion of its left and right operands.

SEQ and PAR are easily implemented with building blocks:

{ W(ao;bo), W(b1 ;co), W(c1;a1) } sat {SEQ},

{ F(ao;bo,co), C(bt,e1;a1) } sat {PAR}.

However, in the DI Model we also have {SEQ} sat {PAR}. This is not acceptable, unless

the specification for PAR is indeed intended to allow the implementer the freedom to

choose an order for the b- and c-cycles. The reason that SEQ is not acceptable as an

implementation of PAR is that the operands of the parallel operator might communicate

on a channel and thus they would deadlock if the operator's implementation would insist

that the left operand terminates successfully before the right operand is started. •

Finally, we give a an example that shows an anomaly of the Factorization Theorem, which

is again attributable to the lack of progress as a correctness concern.

68 CHAPTER 5. APPLICATIONS

5.5.4 Example Consider process R with inputs {a,b} and outputs {x,y,z}, and a

trace set generated by the regular expression (axbz +by)*. We wish to design R in terms

of the building blocks. Let us attempt a design involving fork F = F(a; x, c), where c is

some internal symbol.

According to the Factorization Theorem (Theorem 4.9.1), the remainder, say P, is now

specified by v.(F 11 '-"R). Process P has inputs {b, c} and outputs {y, z}. Its trace set

turns out to be generated by the regular expression ((b, c)z)*. Note that it contains no y.

In particular, once P has received input b but not c, it must not produce any output. If

input c does occur, then R should output just z and, otherwise, just y. Since P cannot

"know' whether c will ever arrive, it cannot safely produce any output at all after receiving

just input b.

Process P can, for instance, be implemented by the following system of building blocks:

{ C(b,c;z), F(d;e,y), W(e;d) } .

The C-element takes care of output z and the fork with feedback wire keep output y quiet.

Together with fork F this results in a four-building-block design for R. As far as interference

is concerned there is nothing wrong with this design. If, however, we look at progress, then

this design is obviously not acceptable, since it fails to produce output y when called for.

Example 6.3.5 shows that when progress is taken into account the attempted design with

fork F is bound to fail, since it yields P = T.

Can it be done "right"? Yes. How R reacts to input b depends on whether or not

input a has occurred. Therefore, R is easily designed as a state machine with two states,

involving a 2 x 2-decision-wait. This is left as an exercise. •

These examples show that the DI Model presented in Chapter 4 does not deal with

progress concerns. The process space is not rich enough to distinguish all relevant differ

ences between systems. Consequently, the satisfaction relation is too weak to trust in blind

faith. The DI Model will be extended in Chapter 6 to overcome most of these shortcomings.

A limitation of a different nature is that so-called isochronic forks cannot be modeled

in the DI Model. Under isochronic operation a single signal can be transferred without

delay from one process to another. However, when signals need to be duplicated, an

explicit fork process is required. Such a fork has two outgoing branches whose delays are

independent. Some circuit designs rely for their correctness on the assumption that the

two branches of the fork have (almost) equal delays (see [vB92]). The DI Model has no

counterparts for such isochronic forks. It is not hard to extend the model to incorporate

isochronic forks and their kin, but we will not do so. Such an extension could be based on

sets of symbols as atomic events instead of isolated symbols.

Chapter 6

Extended DI Model

The DI Model of Chapter 4 has some limitations as pointed out in Section 5.5. In this

chapter we introduce the Extended DI Model, which incorporates a progress concern

besides the concern for interference.

We first extend the notion of a process and adapt the notions of system operation and

correctness accordingly. From that point on, satisfaction and equivalence just follow in the

familiar way. Canonical representatives are again defined in terms of a partial order on

processes, giving rise to the notion of DI processes. Then we treat the characterization,

composition, and factorization of these DI processes. The JTU-Rules have to be modified

slightly. In Chapter 7, we introduce enhanced characteristic functions as an alternative

way of describing process behavior. These functions shed new light on the partial order and

JTU-Rules. Finally, Chapter 8 looks into the classification of DI processes, in particular

with respect to output nondeterminism.

We will use the same notation as in Chapter 4 for related entities. Whenever it is

necessary to distinguish "old" and "new" entities, we subscript entities from Chapter 4

with o and entities defined in this chapter with (3.

6.1 Processes

Let I: again be an infinite set of symbols, serving as a source for alphabets and traces.

The trace set of a process in the DI Model of Chapter 4 partitions the universe of traces

into two parts: the "allowed" traces (inside the trace set) and the "disallowed" traces (those

outside). To capture a progress concern we subdivide the class of allowed traces into three

subclasses: "transient" traces (those corresponding to states that the process is obliged to

leave by producing some output), "input-demanding" traces (those which the process is

not obliged to leave, but where it demands input; that is, for which the obligation to leave

the corresponding state lies with the environment, namely by supplying some input) and

"indifferent" traces (those for which neither process nor environment have an obligation to

proceed).

Thus, the processes in the Extended DI Model will put each trace into one of four

69

70 CHAPTER 6. EXTENDED DI MODEL

categories. In keeping with the DI Model we leave the disallowed traces implicit. For

mally, a process P now is a quintuple (iP, oP, "\7 P, DP, t:.P) such that the following six

requirements are met:

1. iP and oP are disjoint alphabets,

2. "\7 P, DP, and t:.P are pairwise disjoint trace sets,

3. tP s:;; (aP)* (see below for the definitions of aP and tP),

4. tP is non-empty and prefix-closed,

5. (V t : t E "\7 P : (3 a : a E oP: ta E tP)),

6. (Vt:tEflP:(3a:aEiP:taEtP)),

where aP = iPUoP is the alphabet of Pas before, and tP "\7 PUDPut:.P is the trace

set of P. Traces in "\7 P are called transient traces, those in flP (input-)demanding

traces, and those in DP indifferent traces. Requirement 5 expresses that in a transient

trace some output is enabled. Similarly, requirement 6 expresses that in a demanding trace

some input is acceptable.

The distinction between transient, indifferent, and demanding traces will be formalized

when system operation is defined. The symbolism behind "\7, and fl can be memorized

as follows. The transient triangle "\7 will eventually topple. The demanding delta fl does

not. The indifferent box D has a flat base like fl but is upside-down symmetric.

The set of all processes is denoted again by P"ROC. Reflection is the binary operator '""

on P"ROC defined by

v-.P = (oP,iP,flP,DP,"\7P). (6.1)

It interchanges inputs and outputs, and also transient and demanding traces, whereas the

indifferent traces are invariant under reflection. P"ROC is closed under reflection.

The after-operator is defined as follows. For process P and trace t E tP, process P / t
is given by

P/t = (iP, oP, "\7Pjt, DP/t, 6.Pjt). (6.2)

Recall that for trace set V and trace t, trace set V /t equals {u: tu E V: u}. Observe

that P /t is indeed a process because of t E tP; in: particular, it satisfies requirements 5

and 6. Reflection and 'aftering' enjoy the properties one would expect.

In state graphs, the transient states will be labeled with "\7, the demanding states

with 6., and the indifferent states with D. Of course, a state may be labeled "\7 only if it

has an outgoing output edge; similarly, 6. requires an outgoing input edge. We hold on

to the convention to render initial states solidly filled. The definition of the minimal state

graph of a process is directly taken from the DI Model.

6.1. PROCESSES

a ______....
·~v

Reliable wire P

a ______....
·~[]

Unreliable wire Q

a ______....
·~~

Desiring I-wire R

Figure 6.1: Labeled state graphs of three wires

71

6.1.1 Example Wire processes P and Q have input a and output b. The traces of P

are generated by the left-hand labeled state graph of Figure 6.1. P does not care about

receiving input (indicated by 0 in the initial state), but once input has arrived it is obliged

to respond with output (indicated by \7 in the other state). It is a reliable wire.

The traces of process Q are generated by the middle labeled state graph of Figure 6.1.

Q does not care about input either, and after each input, it may respond with output

but it might also not respond (indicated by 0 in the state after receiving input). It is an

unreliable wire. The composite of system D in Example 5.5.1 is better described by Q.
The state graph on the right-hand side of Figure 6.1 belongs to input-demanding unre

liable 1-wire R with output a and input b. It may, but need not, produce output (indicated

by 0 in the initial state), and if it does produce output then it insists on input (indicated

by ~ in the other state). R is the reflection of the reliable wire P on the left, and it will

turn out to be the severest test that P passes. •

6.1.2 Note The main reason for distinguishing input-demanding traces from indifferent

traces, is that testing environments will be taken from the same process space. By being

input-demanding, a test can distinguish between a process that is guaranteed to send

output and a process that just may send output or not. This will be clarified in the next

section where system operation is defined. A related argument is that the Factorization

Theorem requires a process space that is closed under reflection. Because the expression

"'(Q 11 v.R) appears in the Factorization Theorem, we also see that there will be a need for

combining transient and input-demanding traces in a single process.

Input-demanding states are also useful for another purpose. Recall the two-input-two

output arbiter A(a, b; c, d), which takes alternating request-release signals on its inputs

{a, b} and produces alternating grant-acknowledge signals on its outputs { c, d}. If such

an arbiter is used to provide mutually exclusive access to a resource, then it might be a

good idea to specify the arbiter with a "desire" for release signals, in order to express that

the resource should be released eventually.

Furthermore, one might wonder whether it makes sense to have states labeled both \7

and ~- Such a state, of course, should have both outgoing input and output edges. It

would express that the process is guaranteed to produce output and that the environment

is obliged to supply input. However, this is equivalent to labeling the state with \7 only.

The input "desire" never gives rise to a deadlock, since the state will be left by the process

anyway. Again, this will become clearer once system operation has been defined. •

There is a "natural" mapping, say 1/J, from P'ROC p (the process space of this chapter)

to P'ROCa (the process space of Chapter 4) that abstracts from progress aspects. It is

72

defined by

'if;.P

CHAPTER 6. EXTENDED DI MODEL

(6.3)

A mapping from PROCa to PROC13 is called an embedding. Embedding t.p is said to be

trace-set preserving when

(V P: PE PROCa: '1/J.(~.p.P) P). (6.4)

There exist many trace-set-preserving embeddings. We discuss two of them here. The first

such embedding I.{Jo is defined for P E PROCa by

(6.5)

where the right-hand side is trivially in PROC13 • Process Q E PROC 13 with 'VQ 0 is

called minimally transient. Process Q with no demanding traces, that is with Ll Q 0,

is said to be minimally demanding. A process Q is both minimally transient and mini

mally demanding if and only if 0 Q t Q. Such a process is called maximally indifferent

or simply indifferent. Embedding t.po is uniquely determined by the requirements that it

be trace-set preserving and that its images be maximally indifferent processes. It is briefly

referred to as the indifferent embedding.

The indifferent embedding is mainly interesting for theoretical purposes, since it pre

serves most aspects. For instance, it preserves reflection, in the sense that

t.po.('-"P) (6.6)

Since t.p0 is trace-set preserving, 'if; is a left inverse of t.p0 , that is ('1/Jot.po).P = P, Therefore,

the pair (t.po, 'if;) is a retraction (see [HS86]).

The second embedding t.pv is defined by

t.pv.P (iaP,oaP, V, W,0), (6.7)

where V= { t, a: a E oaP A ta E taP: t} and W =taP'- V. V consists of all traces for

which some output is enabled and, hence, V cannot be extended without violating process

requirement 5. It is easily verified that indeed t.pv.P E PROC 13 • Process Q E PROCfJ
with

'VQ = {t,a:aEoQAtaEtQ:t} (6.8)

is called maximally transient. A process that is both minimally demanding and maxi

mally transient is said to be progressive. This second embedding is the unique trace-set

preserving embedding that maps onto progressive processes. It is briefly referred to as the

progressive embedding. The pair ('f!v, 'if;) is also a retraction.

We now carry over all building blocks introduced so far, by the progressive embedding.

Note that this embedding does not preserve reflection. For instance, the (progressive

embeddings of) W(a; b) and I(a; b) are no longer each other's reflection.

Here is another example to illustrate the increase in expressive power of the Extended DI

Model. This example also explains how processes that are neither minimally nor maximally

transient may arise

6.1. PROCESSES 73

6.1.3 Example Figure 6.2 depicts the labeled state graphs of processes P0 through P3 ,

each with input a, output b, and a trace set generated by the regular expression a, b. The

four processes are minimally demanding, but they differ with respect to their transient and

indifferent traces.

Figure 6.2: Labeled state graphs of P0 through P3 with input a and output b

Each of the four processes can accept input a and produce output b independently

(the occurrence of a and b is not "coupled" as far as interference is concerned). P0 is

minimally transient (output b might occur but then again it might not occur) and P3 is

maximally transient (output b is guaranteed to occur, no matter what). P1 and P2 are

neither minimally nor maximally transient. In P11 occurrence of input a will guarantee

the-otherwise unreliable-output b. In P2 , however, occurrence of input a may jeopardize

the-otherwise reliable-output b.

It is not difficult to envisage how P0 and P3 arise as composites of systems built from

(progressive) building blocks, but this is much less straightforward for P1 and P2 . Why

would such in-between processes as P1 and P2 be needed?

b~
Figure 6.3: Systems S1 (left) and S2 (right)

Figure 6.3 shows systems S1 and S2 , whose composites are claimed to be P1 and P2

respectively. These systems consist of progressive building blocks (the two kinds of boxes

labeled 1 are processes that either accept up their input once, or are guaranteed to produce

their output once). That the composites of these systems are indeed P1 and P2 cannot yet

be verified, but with the help of some intuition one should at least get the idea.

For S11 it is clear that input a will guarantee output b, whereas b is not guaranteed

without a because a signal may get "stuck" at the C-element. In S2 , when no a-input is

offered, the arbiter will grant the internal request, thus guaranteeing output b. However,

when the environment supplies input a, there is a "race" between two requests at the

arbiter; which request gets granted is now undetermined. •

In the light of the preceding example, it appears that the set of all progressive processes

is not closed under composition. In contrast to this, the set of all maximally indifferent

processes is closed. We will come back to this in Chapter 8 (in particular, in Theorem 8.1.8).

74 CHAPTER 6. EXTENDED DI MODEL

6.2 Operation and Correctness of Systems

The structure of systems is the same as before, though now systems are constructed from

new processes. The operation of systems is refined as follows.

First we deal with isochronic operation. Let S be a closed system. The reachable traces

reach.S and interfering traces intf.S of S are defined as before, and also the statement'S

is free of interference' retains its earlier definition.

Each non-interfering trace of S is put into one of three, pairwise disjoint, sets VS, OS,

or D.S, according to the following definition. For trace t E reach.S-..... intf.S we postulate

t E VS (3 P : P E S : t faP E V P) ,

t E OS := (V P : P E S : t faP E OP) ,

t E D.S := (V P : P E S : t faP ft V P) 1\ (3 P : P E S : t faP E D.P) .

To paraphrase, if there exists at least one process P E S such that t faP E V P, then

trace t is transient in S. Otherwise, if there is no such P and there exists at least one

process Q E S such that tfaQ E D.Q, then t is demanding in S. Otherwise, if there are

no such P or Q, that is, if tfaR E OR for each process R E S, then t is indifferent in S.

System S is called free of deadlock when

D.S = 0, (6.9)

that is, when S has no demanding traces. Since S is closed, the presence of a demanding

trace constitutes a potential deadlock, because no process will see to it that this state does

not persist and there is at least one process that insists on progress. Keep in mind that

there is no (implicit) environment that might keep the system going.

6.2.1 Example Consider closed systemS= {P, Q,R} where

P (0,{a,b},{c},{a,b},0)

Q ({a},0,0,{a},{c}),

R ({b},0,0,{b},{c}).

Process P will produce either output a or output b, after which it is indifferent. Pro

cess Q insists on receiving input a, after which it also is indifferent. Similarly, R insists

on receiving b, after which it becomes indifferent. Compare this to system S7 par { P7 } of

Example 3.2.7.

As one may readily verify, we have for S:

reach.S weave.S = {c, a, b},

vs {c}'

os 0,

D.S = {a, b}.

Consequently, system 's is free of interference but not free of deadlock. Both Q and R

desire input, but P satisfies only one such desire. •

6.2. OPERATION AND CORRECTNESS OF SYSTEMS 75

Anisochronic operation of S is again defined as isochronic operation of S (the wired ver

sion of S). The extra wires introduced inS are taken to be progressive, that is, maximally

transient and minimally demanding.

Freedom of deadlock is imposed as an additional correctness concern. That is, we define

Correct.S by

Correct.S 'S is closed, and free of interference and deadlock' .

Note that correctness is (again) based on Misochronic operation. Satisfaction and equiv

alence are defined as before, involving the modified notions of process and correctness.

6.2.2 Example Wires P and Q of Example 6.1.1 are not equivalent in the Extended

Dl Model, because P passes tests that Q fails. One such test is input-demanding I-wire R

defined in the same example. We have

Correct.{P, R} A -,Correct.{ Q, R}.

The latter holds because unreliable wire Q deadlocks with R: R insists on input after a

(a! E l:::..pR.R), which Q need not provide (a? E DpQ.Q) and, therefore, we have a!a? E

!:::..{ Q, R}-: In fact, this shows -.(Q sat P). We do have P sat Q. ..

6.2.3 Example For processes SEQ and PAR from Example 5.5.3 we have {SEQ} sata
{PAR} in the DI Model. For the progressive embeddings of SEQ and PAR we no longer

have {SEQ} satf3 {PAR} in the Extended DI Model. This is corroborated by testing

environment U with

Note that the reflected wire is a demanding 1-wire. We have for this test

-.Correct.({SEQ} 11 U) A Correct.({PAR} 11 U),

because SEQ deadlocks with U, whereas PAR does not.

If one wishes to express that the implementer of PAR has the freedom to order the

b- and c-cycles, then the four states of PAR reached by aob0 , aobob1 , aoc0 , and aoc0 c1

should be made indifferent instead of transient. ..

Let us have a quick look at the relationship between the concepts of this section and

their relatives in the DI Model of Chapter 4. An abstraction or embedding of one process

space in another is lifted to system spaces by elementwise application. It is easy to verify

the following statements for appropriate systems S:

weavef3.S = weave0 .('1jJ.S),

Correctf3.S :;;:} Correcta.('I/J.S) ,

!:::..(r.p.S) 0,

Correcta.S - Correct13 .(r.p.S) ,

76 CHAPTER 6. EXTENDED DI MODEL

where lP is either the progressive or the indifferent embedding. The latter two equalities

hold because for all processes P E P"ROCp involved, we have D.P = 0. Thus, it seems as

if we have not gained much by extending the model.

When considering satisfaction, the picture changes drastically. For S and T

in sys"' and the indifferent embedding l{lo, we have

S sat 01 T = l{lo.S satp ipo. T . (6.10)

Note that the tests involved in satf3 range over SYSf3 and not just over ipo.SYSa. Since

only indifferent processes are compared, tests R with D..R =f. 0 do not affect the outcome.

Consequently, we have that

(SYSa; par"" sata} is isomorphic to (ipo.SYSu; par {1> satp) . (6.11)

This shows that we can find the old model as a submodel of the extended model, namely

through the indifferent embedding. The Extended DI Model is indeed an extension of the

DI Model, although the indifferent view is not what we had in mind with, for instance, the

building blocks.

Equation 6.10, however, does not hold when we take the progressive embedding IPv

instead of t.po. We do have

(6.12)

but the implication from left to right is, in general, not valid. Here, tests R with D..R =f. 0

play a crucial role. A counterexample to the reverse implication of (6.12) is provided by

Example 5.5.3 above.

Through the progressive embedding, the Extended DI Model can be viewed as a "non

conservative" extension of the DI Model: the progressive embedding provides a more ap

propriate interpretation for the building blocks, which-by necessity-does not preserve

such aspects as the sat relation.

6.2.4 Note System D in Example 5.5.1 and process P in Example 5.5.2 also fail test

R "''PV'·W(a; b) and, hence, they are not good wire implementations. In the Extended

DI Model the anomaly has disappeared. Systems Land M in Example 5.5.1, however,

pass test R, because they never fail to do something (internally). In fact, they are still

equivalent to W(a; b). This may be considered an anomaly, which falls outside the scope of

our work.

In order to deal with livelock one might treat internal symbols more explicitly and

introduce infinite traces. Again three kinds can be distinguished: those traces that the

system is obliged to avoid, those the environment is obliged to avoid, and those that need

not be avoided. Livelock is characterized by a reachable infinite trace that should have

been avoided. For example, a "fair" undetermined selector U(a; b, c) maps infinite traces

of the form t(abt and t(ac)"', where ta E reach.U(a; b, c), toT.

Not every such mapping is an acceptable process description. For instance, the pro

gressive wire W(a; b) may not map (ab)"' to T because that constitutes a contradictory

requirement, which cannot be met. See [Ros88] for some of the subtleties that may emerge

in such an approach to liveness. •

6.3. CANONICAL REPRESENTATIVES 77

6.3 Canonical Representatives

The Extended DI Model gives rise to a new notion of canonical representatives and DI

processes. We begin again with partial order [;;:; on PROC. At this point, the definition

of [;;:; may seem to fall from the sky, but in Chapter 7 we show how it can be derived from

the definition of system operation.

For processes P and Q we define P [;;:; Q by

P [;;:; Q =: iP = iQ A oP = oQ A (6.13)

(V t, a : a E iP A ta E tP A t E tQ : ta E tQ) A

(V t, a: a E oP A t E tP A ta E tQ: ta E tP) A

(V t : t E '\1 P A t E tQ : t E '\1 Q) A

(V t : t E tP A t E ~Q : t E ~P)

The first four conjuncts are taken from [;;:;,. New are the last two conjuncts, which can be

rephrased as follows.

• For all states t E tPntQ, if Pis transient in t, then so is Q ("Pis no more transient

than Q").

• For all states t E tP n tQ, if Q is demanding in t, then so is P ("Pis at least as

demanding as Q").

Relation [;;:; is a partial order on PROC. In Chapter 7, we look at some technical aspects

of this order.

6.3.1 Example For processes P0 through P3 of Example 6.1.3, we have P0 [;;:; P1 [;;:; P3

and P0 [;;:; P2 [;;:; P3 . Processes P1 and P2 are incomparable. •

To make process P smaller with respect to [;;:;, one should not change its input and

output alphabets, but one may (i) increase its output capability, (ii) decrease its input

willingness, (iii) make it less transient (transfer a trace from '\1 P to Dp), (iv) make it

more demanding (transfer a trace from DP to ~P), or any combination of the preceding.

Methods (ii) and (iv) are conflicting, since a process must be willing to receive at least one

input in a demanding state. Hence, there exists no least process in the set of processes with

fixed input and output alphabet. This contrasts with the DI Model, where such processes

do exist. Because reflection turns the order around, a similar situation holds for greatest

processes.

6.3.2 Example Consider processes P, Q, and R defined by

P ({a},0,0,{c,a},0),

Q = ({a},0,0,{a},{c}),

R = ({a},0,0,{c},0).

These processes have only one port, namely input a. P accepts one a but does not desire

it, Q insists on one a, and R does not accept input at all. R is obtained from P by

method (ii) above, and Q by method (iv). Thus we have Q c P and R c P. Both Q

and Rare [;;;-minimal processes, and their set of common lower bounds is empty. •

78 CHAPTER 6. EXTENDED DI MODEL

The preceding example also shows that 'P'ROC(I, 0), the set of processes with inputs I

and outputs 0, is not a complete lattice (only in the trivial case I= 0 = 0). As before,

we add the two "virtual" processes J. (as process) and T (as !;-greatest process)

to force completeness. For instance, the greatest lower bound of Q and R in Example 6.3.2

above is J..

This time it is more complicated to verify that the thus expanded set of processes,

which we denote by 'P'ROC again, is indeed a complete lattice. We will come back to

this in Chapter 7. Nevertheless, everything proceeds as before. We will not repeat all

definitions and theorems. The definitions of pass, Friends, [-], 11, and VI carry over in a

straightforward way. The JTU-Rules, however, have to be adapted. We do so in the next

section. First we look at three composition examples.

6.3.3 Example We reconsider the composition appearing in Example 4.7.6. The pro

gressive embeddings of P and Q are presented on the left in Figure 6.4. On the right is

a~~
X y

Q

Figure 6.4: Labeled state graphs of P, Q, and their composite P 11 Q

depicted the composite P 11 Q. It can be obtained in a manner similar to that explained in

Section 4.8 for the DI Model. In the Extended DI Model, however, there are two additional

ways for reducing a process with respect to !;;;;. The first way is to make it less transient

(by changing a \7-label to a 0-label in its state graph). The second way is to make it more

demanding (by changing a 0-label to a ~-label; but this requires that the affected state

has an input edge).

It should be noted that the composite is not maximally transient, since the state reached

by ac is labeled 0 and not \7. When it is changed to \7, the reflection is no longer a friend,

because, for instance, trace a!c!a?c? is then demanding. •

The preceding example shows that the progressive embedding does not preserve VI, that

is, in general, we do not have P E VI"' :::;.. r.py-.P E VIr3. Theorem 8.1.10 characterizes

the conditions under which the implication is valid.

6.3.4 Example Let us study system S whose diagram appears on the left in Figure 6.5.

The composite of S is shown on the right. If the environment waits for output c (which

will come) and after receiving c sends input a, then output b is guaranteed. However, if
the environment starts with sending input a, then there is a race between two requests

and output b is still guaranteed but output c is not, though c may still appear (recall that

the arbiter does not grant a second request until the first is released, which is not done

6.3. CANONICAL REPRESENTATIVES 79

c

b

Figure 6.5: System S (left) and labeled state graph of its composite (right)

here). Thus the states reached by ea and ac are not the same (their labels differ). As

far as "future" traces are concerned, these states are equivalent, that is, in the DI Model

they would be the same state. Also note that [8] 13 does not satisfy Rule Yft, whereas the

abstraction P '1/;.[S)p does satisfy Rule Y~ because P/ac P/ca. •

6.3.5 Example As promised, we consider again the design problem put forward in

Example 5.5.4, but now in the context of the Extended DI Model. We attach the progressive

interpretation to specification R.
Let us again attempt the design with (progressive) fork F = F(a; x, c). On account

of the Factorization Theorem, whichl is again valid, the remainder is specified by P =
'-"(F 11 '""R). Figure 6.6 shows the labeled (DI) state graphs of ..,.,Rand F. We are interested

in the least friend of system { "'R, F}. It is a process with inputs {b, c} and outputs {y, z}.

Figure 6.6: State graphs of ""R and F

In Example 5.5.4 we figured out that-within the DI Model-the trace set of P is

generated by ((b, c)z)*. In the Extended DI Model, however, even the progressive version

of this process is not a friend of {'-"'R, F}, because after output b there is still a demand

for input in ""'R. A friend of { '""R, F} must be willing to receive input b, and after that it

must produce some output to meet the input desire of "'R. However, it is impossible to

know at this point which of the two outputs y or z may safely be produced. Therefore,

only process T is a friend, and the design equation P: P 11 F ;;;! R has T as only solution,

indicating that there are no "satisfactory" solutions (for a design of R using fork F). •

The last example shows that forS E SYStJ, in general, we do not have '1/J.[S]p ['1/J.S),.

However, the indifferent embedding <po preserves composites, that is, for S E SYSa we

have <pa.[S].,, = [<po.S)fJ.

80 CHAPTER 6. EXTENDED DI MODEL

6.4 Extended JTU-Rules

Characterization Theorem 4.7.3 also holds in the Extended DI Model provided that the

JTU-Rules are properly extended as well. In particular, we have P E VI if and only if P
satisfies the extended JTU-Rules. Here they are.

• P satisfies Rule W when for all traces s and symbols a we have

saa rf. tP.

• P satisfies Rule X when for all traces s and t, and symbols a and b with a ;::;:; b we

have

sabt E tP = sbat E tP ,

sabt E V' P _ sbat E V' P ,

sabt E !::J.P = sbat E !::J.P .

• P satisfies Rule Y when for all traces s and t, and symbols a, b, and c with a :;;5 c

and b ;::;:; a we have

sactb E tP 1\ scat E tP => scatb E tP ,

scat E V' P 1\ sa et E tP => sact E V' P

scat E !::J.P 1\ sact E tP => sact E !::J.P

if a E oP 1\ c E iP ,

if a E iP 1\ c E oP .

• P satisfies Rule Z when for all traces s, and symbols a and c with a :;;5 c we have

sa E tP 1\ se E tP =? sac E tP 1\ sea E tP .

The formulation of Rules W and Z has not changed. Rules X and Y have both been

extended with two conditions concerning transient and demanding traces. Since Rule X

implies

sabt E DP =: sbat E DP ,

it can again be interpreted as expressing that the order of signals in the same direction

is irrelevant for future possibilities (where 'future possibilities' not only concern trace-set

membership, but also whether it is transient, indifferent, or demanding). Under this mod

ified interpretation of 'future possibilities', also the interpretation of Rule Y is maintained.

Again, often a simpler version of Rule Y holds:

• P satisfies Rule Y' when for all traces s and t, and symbols a and c with a :;;5 c,

sa E tP, and seE tP we have

sact E tP

sact E V' P

sact E !::J.P

scat E tP ,

scat E V' P ,

scat E !::J.P .

6.4. EXTENDED JTU-RULES 81

Note that Y' implies Y. Rule Y' expresses that if two signals of opposite direction can

both occur, then their order is irrelevant for future possibilities.

The composites in Examples 6.3.3 and 6.3.4 above satisfy Rule Y but not Y'. In terms

of the after-operator, Rules X, Y, and Y' can again be rephrased in accordance with

Theorem 4.7.4. We will elaborate on this in the next section.

6.4.1 Theorem (Fundamental property of DJ processes)

For closed system S such that of each pair of connected processes at least one is in VI, we

have

'S is free of interference and deadlock'

'S is free of interference and deadlock'

Proof idea: The effects of additional wires are already incorporated in a DI process. Es

pecially see the proof of Theorem 4.7.3 in Section 7.2. •

6.4.2 Example Reconsider the processes of Example 5.3.2. The initial states of P

and Q can be labeled 'V to indicate that these processes will eventually produce output

when no input is supplied. Also the states reached by a? (in P) and b? (in Q) can be

labeled with \7. However, states 2 and 3 cannot be labeled 'V (nor ~) because they have

no outgoing edges, so they must be labeled D.

In order to make the processes as transient as possible, one might be tempted to label

states 1 and 4 with \7. This, however, would not yield a DI process, that is, the result is not

a canonical representative, since it fails Rule Y. The reason is that states 2 and 3 are not

labeled \7. States 1 and 4 must be labeled D (again ~ is impossible). As a consequence,

the initial state of composite P 11 Q will be labeled D as well and not \7, revealing that

P 11 Q may fail to do any output.

This is true even under isochronic operation, since P and Q are DI processes (see

Theorem 6.4.1). When states 1 and 4 are labeled \7, the processes are no longer DI and

deadlock can only be "detected" under anisochronic operation. •

82 CHAPTER 6. EXTENDED DI MODEL

Chapter 7

Enhanced Characteristic Functions

The partial order !;;;; and also the JTU-Rules can be understood better when processes

are described in a different way. This chapter introduces an alternative representation for

processes. We work in the context of the Extended DI Model, though everything can be

translated to the DI Model as well. In contrast to other chapters, it looks more at the

details of the underlying mathematics.

As pointed out in the introduction of Chapter 6, a process partitions the universe of

traces into four parts. A slightly more convenient partition-one that takes into account

how a process operates in a system-splits the trace set's complement (the disallowed

traces) into traces that correspond either to unreachable or to interfering states (also

see [Ver89]). A trace is unreachable if it "steps" outside the trace set via an output.

The process is disallowed (in fact, unable) to produce these traces. A trace is interfering

if it "steps" outside via an input. The obligation to avoid these traces lies with the

environment. These two classes exchange roles under reflection. A process can, thus, be

viewed as attaching one of five labels to each trace: unreachable, transient, indifferent,

demanding, or interfering. Let us develop this idea more formally.

An enhanced characteristic function (ECF) is a mapping from the set I:* of all

traces to A = {T, V, 0, .6., ..L}, where A is just a set of suggestive squiggles representing

the five trace labels. The set of all ECFs is denoted by t:C:F. Typically, variables f, g,
and h range over t:C:F. Observe that for every trace t E tP, where Pis a process different

from T and ..L, we have

t (/: tP = (3 to, a, t1 : t toat1 1\ to E tP 1\ to a (/: tP : a E aP) , (7.1)

because tP is non-empty and prefix-closed. In fact, to, a, and t1 on the right-hand side are

uniquely determined by t when the left-hand side holds. For process PE PROC-.... {T, ..L}
we now define its ECF f P by

l
T if (3 to, a, t1 : t faP toat1 I\ toE tP I\ to a (/: tP: a E oP)

V if t faP E V P

fP.t = 0 if ttaP E OP

.6. if t taP E D.P

..L if (3 to, a, t1 : traP = toat1 I\ to E tP 1\ toa (/: tP : a E iP)

83

84 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

Note the projection oft on aP. The images V, o, and A are directly associated with the

three components V P, OP, and AP respectively. The images T and .l are associated with

traces that stepped outside the trace set via an output or an input respectively. The reason

for defining ECFs with domain E* instead of (aP)* is that this simplifies the treatment of

composition.

The ECFs of processes T and .l are simply defined by fT.t = T and f.l.t = .l.

7.1 Composition and Correctness for Trace Labels

We first study the set A of trace labels a little more. Variables A, tt, and v range over A.

Composition, denoted by 11, is the binary operator on A defined in Table 7.1. This

operator forms the basis for characterizing correct system operation. The intuition is as

follows. For a trace to be unreachable under the composition of two processes, it must

11 T V 0 A .l

T T T T T T

V T V V V .l

0 T V 0 A .l

A T V A A .l

.l T .l .l .l .l

Table 7.1: Composition operator 11 on A

be unreachable by at least one; thus, T prevails. For a trace to be interfered under the

composition, it must be reachable for both and interfered for at least one; thus, .l prevails

for non-T arguments. For a trace to be transient under composition, it must be reachable

and not interfered for both, and transient for at least one. For a trace to be deadlocked, it

must be reachable, not interfered, and not transient for both, and demanding for at least

one. For a trace to be indifferent, it must be indifferent for both.

7.1.1 Theorem Composition operator 11 on A is commutative, associative, idempotent,

and has 0 as unit. Furthermore, it has T as zero and there are no zero divisors under 11,

that is,

Alltt=T:: A=TVtt=T.

Proof Consider the order :5 on A defined by

and observe that composition 11 corresponds to taking the minimum under this order. The

binary minimum operator is commutative, associative, idempotent and has D, being the

:5-greatest element, as unit, and being the :;-least element, as zero. Finally, a minimum

operator has no zero divisors. •

7.1. COMPOSITION AND CORRECTNESS FOR TRACE LABELS 85

In view of its associativity, commutativity, idempotence, and unit element, we can extend 11

to a unary operator on sets over A. The ECF fS of system S is now defined by tracewise

composition:

fS.t II{P: pEs: fP.t} 0 (7.2)

If, furthermore, we define Correct on A by

Correct.>. (7.3)

then we have

Gorrect.S (V t : t E 2:* : Correct.(fS.t)) . (7.4)

This characterization of correctness abstracts from the operational view. On A we also

define pass-sets and a corresponding satisfaction relation sat and equivalence equ:

pass.).. = {tt: Correct.(>. lit£): tt} ,

).. sat tt - pass.>. 2 pass.J.t ,

>. equ tt pass.>.= pass.J.t .

The pass-sets of A are tabulated on the left in Table 7.2. Notice that these pass-sets are

T
>. pass.>. I
T {T, \7, 0, Ll, .l} \7

\7 {T, \7, o, Ll } I
0

0 {T, \7, 0 } I
Ll {T, \7 } Ll

.l {T } I
.l

Table 7.2: The pass-sets for A and the Hasse diagram for ~on A

unique, that is, pass.>. = pass.J.t if and only if >. = J.t. Hence, relation sat induced by pass
is a partial order. We also denote it by ;;;!. The Hasse diagram of is given on the right

in Table 7.2. Obviously, (A;~) is a complete lattice. Relation equ on A boils down to

equality.

Observe that each pass-set of A has a ~-minimum. Reflection"" on A is defined by

..,.,). = min(pass.>.) (7.5)

and is tabulated in Table 7.3.

86 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

A T \7 0 D. _L

'-"'A _L D. 0 \7 T

Table 7.3: Reflection operator "" on A

Everything involving A has been built up from 11 and Correct. The partial order !;;;; and

reflection "" are derived concepts. From Tables 7.1, 7.2, and 7.3 we can readily infer a

number of properties, such as

.A E pass.M). ;;;;] '""M ' (7.6)

Correct.>.). ;;;;],o) (7.7)

"""'A = A, (7.8)

.A!;;;M ..,). ;;;] ..,..,M , (7.9)

,\ 11 M;;;] V - A;;;] '-"(MII""'V). (7.10)

In fact, these properties can be proved without relying on the specific definitions of 11 and

Correct. All that is needed are (i) the properties of 11 mentioned in Theorem 7.1.1, (ii) that

each pass-set has a minimum, and (iii) the definitions of pass, and '-" (see [Ver94]).

7.2 Neighbor-Swap Rule

Partial order and reflection, on A can be lifted to t:C:F by tracewise application. This

makes (t:CF; a complete lattice as well.

Reflection on PROC is related to reflection on t:CF:

f(,_,..,P) V'>fp . (7.11)

Less obviously, the partial order !;;;; on PROC turns out to be related to !;;;; on t:CF:

p Q iP = iQ A oP oQ A fP !;;;; fQ . (7.12)

From this equivalence it is immediately obvious that !;;;; is a partial order on PROC.

7.2.1 Theorem For connectable systems Sand T such that Spar T is closed and DI,

and nS n nT = 0 (in which case no renaming is needed forS parT), we have

Gorrect.(S par T) = fS;;;;] ...,.,fT ,

Proof Bearing in mind the properties of the preceding section, we derive

Correct.(S par T)

{ Equation 7.4 and Theorem 6.4.1, using that Spar T is closed and DI }

('it:: Correct.(f(S par T).t))

{ second property above (correctness on A }

(7.13)

7.2. NEIGHBOR-SWAP RULE

(V t :: f(S par T).t ""D)

{ the assumptions imply Spar T S U T }

(V t :: f(S U T).t ;J ""D)

{ definition of f for systems }

(V t :: fS.t 11 fT.t ;! ""D)

87

{ last property above (factorization on A), using that ""'""D = D is the unit of 11}

(V t :: fS.t ;J '-"(fT.t))

{ definition of ;J for ECFs }

fS;! ""fT

•

Using ECFs, the after-operator can also be defined sensibly for traces not in the trace

set. For ECF f and trace t, ECF f jt (pronounced 'j after t') is defined by

(! jt).u = f. tu . (7.14)

Thus, for process P and trace t (/. tP, we have (fP)jt = fT if fP.t T, and (fP)/t = f..l

if f P. t = .L Therefore, we define P / t for t (/. tP by

Pjt = fP.t. (7.15)

Observe that these definitions imply (fP)jt = f(P jt).

Theorem 4.7.4 reformulates JTU-Rules X, Y, and Z in terms of the after-operator.

With the extended after-operator, these three rules can be combined into a single rule. It

is called the neighbor-swap rule and defined as follows:

• Process P satisfies Rule N S when for all traces s and symbols a and b we have

aEoPVbEiP::::} Pjsab;JPjsba.

Note the disjunction on the left. For process P, relation 'i:::,p on aP defined by

a E oP V bE iP (7.16)

happens to be a pre-order (we omit the subscript when P is clear from the context). The

corresponding equivalence is given by ;:;::;, expressing that symbols have the same direction.

The neighbor-swap rule is equivalent to

(Vs, a, b, t: a?::, b : fP.sabt ;J fP.sbat) . (7.17)

7.2.2 Theorem The conjunction of Rules X, Y, and Z is equivalent to Rule NS.

88 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

Proof That Rule N'S implies the other three follows immediately from Theorem 4.7.4.

Assuming process P satisfies Rules X, Y, and Z, we show that it satisfies the neighbor

swap rule. On account of symmetry (under reflection) we may also assume that a E oP.
We distinguish the cases b E oP and b E iP.

Case bE oP: If sab E tP, then Theorem 4.7.4 applies and together with Rule X yields

PI sab == P lsba, so we are done. Now assume sab ~ tP. We infer

sa E tP A sab ~ tP =? PI sab T ,

s E tP A sa !f. tP =? PI sab T ,

s ~ tP =? PI sab PI sba .

In all three cases we thus find P lsab ;;;) P lsba.
Case b E iP: If sa E tP and sb E tP, then Rule Z yields sab E tP and sba E tP.

In that case, Theorem 4.7.4 applies and together with Rule Y gives P lsab ;;;) P lsba. Now

assume sa ~ tP (the case sb ~ tP follows by symmetry under reflection). We infer

sE tP A sa !f. tP =? Plsab T,

s !f. tP =? PI sab = P lsba .

In both cases we again find PI sab ;;;) P lsba, which completes the proof. ..
Finally, we outline a derivation of the equivalence of characterizations 4 and 5 of Theo

rem 4. 7.3 when translated into the Extended DI Model. That is, we prove that process P

satisfies the extended JTU-Rules if and only if Correct.{?, ""P}.

Proof We define relation ~on (aP)* as the smallest transitive relation satisfying

a ;(: b = sabt ~ sbat (7.18)

for all traces s and t and symbols a and b. It depends on iP and oP but not on tP.
Relation ~ is a pm-order. An interpretation of ~ is given below (it is related to the

composability relation of [Udd84] and the reordering relations of [CM84, JHJ89]). First

we derive

'P satisfies Rules X, Y, and Z'

{Theorem 7.2.2, Equation 7.17}

(Vs, a, b, t : a;(: b: fP.sabt ;;;) fP.sbat)

{ induction on the definition of ~ in terms of ;(: }

(Vu, v: u ~ v: fP.u;;;) fP.v)

{ property of ;;;) on A }

(Vu,v: u ~ v: fP.uu..,fP.v;;;) D)

{ property of "" for ECFs }

(Vu, v: u ~ v: fP.u 11 f(..,P).v;;;) D)

The last expression taken together with Rule W is equivalent to Correct.{?, '-"'P}, because

u ~ v characterizes the indifferent states of the wire interface between P and ..,.,p, and

fP.u uf(v-.P).v ;;;) D expresses that in 'state' (u, v) there is neither interference at P or v-.P,
nor deadlock. Rule W takes care of interference at the wire interface. ..

7.3. GLBS AND COMPOSITES 89

7.3 GLBs and Composites

Every process has an ECF, but not every ECF is obtainable from a process. We will now

characterize the ECFs of processes and explain how to compute greatest lower bounds and

composites using ECFs.

For ECF f and disjoint alphabets I and 0, the seven predicates E; are defined by

Eo: ttA =utA => f.t f.u where A= Ju 0

f.t T => j.tu T

E2: f.t ..l => f.tu ..l

E3: f. tu TAuEI* => f.t = T

E4: f.tu = ..l A u E 0* => f.t ..l

Es: f.t V' => (3 a : a E 0 : f.ta =f:. T)

E6: f.t ~ => (3 a : a E I : f.ta =f:. .L)

where each predicate should be read as universally quantified over traces t and u. Note

that E2, £4, and E6 are the "reflections" of £1> £3, and Es respectively; eo is its own

"reflection". Predicate Eo expresses that the f -images depend only on symbols in I U 0.
Predicates £1 and £2 express that T and ..l "persist". Predicates E3 and E4 together capture

(indirectly) that a trace "stepping outside the trace set" via an output is mapped to and

via an input to .L Predicates £5 and E6 derive from requirements 5 and 6 for processes.

We write £1,k for the conjunction of E1 and £k. The subsets EC:F;(I, 0) of EC:F corre

sponding to the predicates £; are defined by

EC:F;(I, 0) = {! : E; :!} · (7.19)

Similarly, we write EC:F 1 ,~c(I, 0) for the intersection of EC:F1(1, 0) and £C:Fk(I, 0).

The next theorem gives a one-one correspondence between processes in PROC(I, 0)

and ECFs in EC:F0, ... ,6(1, 0).

7.3.1 Theorem (Characterization of process ECFs)
For process P we have

fP E EC:F0 , ... ,6(iP,oP).

Conversely, if f E EC:Fo, ... ,6 (1, 0), then quintuple

(1, o, r-.v, J-.o, r-.~),

where .A= { t : f.t =A: t}, is a process with ECF f.

(7.20)

•
The tree of ECF f is a vertex- and edge-labeled directed graph, where the edge-labeled

directed graph is given by

(E*, {t, a:: (t, a, ta)}) (7.21)

and f is the vertex-labeling. Such a graph is a tree with root c.

90 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

7.3.2 Example Let I= {a,b} and 0 = {c,d}. Figure 7.1 presents corresponding

parts of the trees of six ECFs /1 through f6 (the bold vertex labels will be explained in a

moment). ECFs j 1 and h may be obtained from suitable processes: they are postulated to

satisfy fo through e6.

!:

~
c! a?

3: V .L

t d! b?

Cl .L

c! a?

k v-r-!Jio.l
~ d! b?

Cl .L

Figure 7.1: Subgraphs of ECFs /1 through /6

ECF fa is the greatest lower bound in t:C:F of j 1 and h, that is, taken tracewise. It

is does not satisfy t:6 ; see the state with the bold 6-label. Every ECF g obtained from

a process such that g !;:; fa, labels that bold state with ..l. Therefore, to find the greatest

lower bound of !I and h in fP'ROC, this label should be changed. to ..l. The result is shown

as f4. However, /4 fails to satisfy t:4 (at the bold state). The only way to eliminate this

violation without increasing the ECF, is to change the bold '\7-label to yielding fs. Now,

/ 5 violates t:2 , which can be repaired by changing the bold D-label (and all its successors)

to ..l as well. The final result is k This shows how the greatest lower bound in P'ROC

may be approximated by successive reductions. •

The question remains whether the approximations suggested in the previous example ac

tually converge to a process. That this is indeed the case is a little delicate and can be

understood as follows.

Let I and 0 be disjoint alphabets; these are implicit parameters to the definitions in

the remainder of this subsection. Fori E {0, 2, 4, 6}, define transformations <1?; on t:C:F by

<l?o.f. t n{u:t[A uiA: f.u} where A= I U 0

4?2.f. t { t.t if to, tl : t = totl :f. to = ..l)
= otherwise

<}? 4.f. t { f.t if (3 u: u e o·: f.t = ..l)
otherwise

4?6 .f. t { t.t if f. t = 6 1\ (\if a : a E I : f. ta =
otherwise

7.3. GLBS AND COMPOSITES 91

7.3.3 Example For the ECFs of Example 7.3.2 we have 14 <J.>6}3, /5 = <I>4.j4 , and

/6 = <J.>2.fs. ..

The next theorem states some properties of the transformations <I>;, in particular how they

relate to the predicates [j.

7.3.4 Theorem Fori E {0,2,4,6} we have

1. <I>; is !;-monotonic,

2. <I>;.f!; j,

3. <l.>;.j = f if and only if f E £CF,(I, 0),

4. g!; f with g E f:CF2,4,6(I, 0) implies g!; 4!;.!,

5. f E £CF1,3,s(I, 0) implies 4!;.f E £CF1,3,5(J, 0).

Define transformation <I> on f:CF as the composition of the four 4!;:

4! = i1>o o <J.>2 o 4!4 o <J.>6 .

..

Transformation <I> inherits all properties of the four <I>;, except that property 3 should be

restated as

3'. <J.>.f = f if and only if f E £CFo,2,4,6(J, 0).

By iterating 4! sufficiently "often" a fixpoint is reached (see [CC79]): there exists a least

ordinal "' such that <I>" .j is a fixpoint of <I>. It turns out that w iterations, where w is the

least infinite ordinal, suffices. In fact, for ECFs derived from finite-state processes, a finite

number of iterations will do. Define transformation L-J on £CF by

From the next theorem we may infer that for f E f:CF1,3,5(J, 0), lJJ is the greatest process
ECF at most f, that is, we have

LfJ = u{g:gEf:CFo, ... ,6(J,O) A 9 !;j :g}. (7.22)

7.3.5 Theorem We have

1. l-J is !;-monotonic,

2. Lf J !; f)

3. lJ J = f if and only if f E f:CFo,2,4,6(I, 0),

4. 9 !; f with g E £CF2,4,6(1, 0) implies g !; Lf J,

92 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

5. f E £C:Fl,3,s(l, 0) implies lfJ E £C:Fo, .. ,6(J, 0). ..
7.3.6 Example The premise in statement 5 of Theorem 7.3.5 is indispensable. For

instance, assume a E I, f.c D, and f.t = T for t # c:; in particular f.a = T. In

that case, f rt £C:F1,3,5(l, 0) because f violates £3. Moreover, if!i .f = f and, hence, also

l!J=f. ..

Let W <;;;: P'ROC. We are interested in computing the greatest lower bound of W with

respect to ~ on P'ROC. Without loss of generality we may assume W n {T, .l} = 0,

since n W n (W " {T}) and .l E W =? n W .l. Moreover we may assume W <;;;:

P'ROC(I, 0), because if W contains processes P and Q for which (iP,oP) # (iQ,oQ),

then n W = .l.

7.3.7 Theorem Let W <;;;: P'ROC(I, 0). Then ECF f defined by

f = n {P: PE W: fP},

where the greatest lower bound is taken in £C:F, (by tracewise application) is in £C:F1,3,5 ,

and n W is the process in P'ROC (I, 0) corresponding to ECF lf J .
Furthermore, for systemS we have that its ECF fS is in £C:F1,3,5 and its composite [S]]

is the process in P'ROC(xiS, xoS) corresponding to ECF LfS J, where L -J is taken with

I= xiS and 0 xoS.

Proof For the first statement it suffices to verify that for V <;;;: £C:F1,3,5(I, 0) we have

n V E £C:F1,3,5(J, 0), where n is taken in £C:F (tracewise). This verification is merely

tedious, and omitted here.

A similar verification yields that for system S we have fS E £C:F1,3,5 (J, 0), where

I = xiS and 0 = xoS. For the final proof obligation, we now derive

[S]

{ definition of [-1 }

vo n Friends.S

{ definition of Friends }

vo n {R: RE P'ROC 1\ Correct.(S par {R}): R}

{ reflection turns ~ around, P'ROC is closed under reflection }

u{R: RE P'ROC 1\ Correct.(S par {'-""R}): R}

= { Theorem 7.2.1 }

u {R: RE P'ROC A fS -:;;1 fR: R}

{ lfJ is the greatest process ECF at most f, using that fS E £C:F1,3,5(l, 0)}

'process corresponding to LfS J'
..

7.3. GLBS AND COMPOSITES 93

7.3.8 Note In Example 7.3.2 we have seen that the ECF of the greatest lower bound

of two processes is not necessarily obtained by taking the tracewise greatest lower bound.

The tracewise greatest lower bound f may still be too large and must be lowered to lf J .
It turns out that in the DI Model of Chapter 4, greatest lower bounds can be taken

tracewise without further lowering. In the Extended DI Model this fails because of condi

~~. .
7.3.9 Note When considering finite-state specifications, the tracewise composition op

erator 11 on t:C:F (11 appears in the definition of fS) involves a product construction, whereas

the transformation l-J involves a power construction. This says something about the com

plexity of computing [S]. •

Finally we prove the fourth statement of Theorem 4.6.4.

7.3.10 Theorem For connectable systems S and U such that Spar U is closed we

have

Correct.(S par U) = [S] ;;;) '-"[U] .

For systems S and T we have

SsatT = [S];;;J[T]J.

Proof On account of Theorem 4.4.2 and by appropriate renaming of the internal symbols

in§ and D, we can find systems S' and U' such that nS' n nU'= 0, S equ S', U equ U',

and S' par U' is Dl. We derive

Correct.(S par U)

{ construction of S' and U' }

Correct.(S' par U')

{ Theorem (7.2.1 }

fS' ;;;J '""fU'

{Theorem 7.3.5, using that '""fU' E £CF2,4,6(J, 0)}

lfS'J ;;;J '""fU'

{ reflection turns ;;;) around }

'""lfS'J ~ fU'

{Theorem 7.3.5, using that lfS'J E £CF1,3,s(J, 0) }

'-"lfS'J ~ lf U' J
{ reflection turns ;;;) around, [T] = l f T J }

[S'];;;) '""[U']

{ construction of S' and U', Note 4.6.5 }

[S]J ;;;J '""[U]

94 CHAPTER 7. ENHANCED CHARACTERISTIC FUNCTIONS

Concerning the second statement we now derive

S sat T

{ definition of sat }

(VU:: Correct.(S par U) ~ Correct.(T par U))

{ first statement }

(V U :: [S]J ;;;) "' [U] ~ [T] ;;;) "' [U])

=> { instantiate with U := { "'[T]J }, using that 7JT is closed under "' }

~ { transitivity of ~ }

[S] ;;-! [T]

This concludes the proof. •
7.3.11 Note There is some freedom in defining the predicates E; that characterize the

ECFs of processes. For instance, Ea could be changed to

f.tu = T A ufi = c: => f.t = T, (7.23)

without affecting the conjunction Eo A Ea, because Eo implies

u f(I U 0) = c: => f.t = f.tu . (7.24)

It may, however, make a difference in the analysis of the related closure transformations <I>;.

Our choice of E; 's involved some fine tuning. We do not claim that there is a recipe for

fine tuning, nor that it is always possible to determine fixpoints by taking limits based on

separate closure properties. •

7.3.12 Note The juggling with alphabets I and 0, in particular in Theorem 7.3.7,

could have been avoided by considering triples (I, 0,!). For instance, the set PROC'

defined by

PROC' = { I, O,J: f E EC:Fl,a,s(I, 0): (I, 0,!) }

could be used as a new process space, from which systems can be built in the usual way.

In fact, it is even nicer to describe process structure not by the two alphabets I and 0,

but by a mapping e from 1: to

{T, 0, !, ?, +, ..L} ,

where 0 stands for 'unused', ! for 'external output',? for 'external input', +for 'internal',

..L for 'conflicting', and T for the reflection of ..L. Processes are then described by pairs

(e,f) satisfying certain predicates. This idea is worked out in more detail in [Ver94].

PROC' is closed under composition and taking greatest lower bounds, both done trace

wise. However, it is not closed under reflection and, in general, we do not have

(7.25)

In spite of the additional processes in PROC'-these are also used as test environments

the satisfaction relation on the subspace of PROC' corresponding to PROC is the same

as sat. An advantage of the extended space PROC' is that greatest lower bounds and

composites (now corresponding to PROC) may be approximated in smaller steps that

stay within the process space. •

Chapter 8

Output Nondeterminism

A process specification captures both the obligations of the process (regarding output)

and the obligations of its environment (regarding input). The output obligations play a

role similar to that of the post-condition in programming, whereas the role of the input

obligations resembles that of the pre-condition. In programming, the post-condition often

provides better guidance for design than the pre-condition. Similarly, the output obliga

tions are generally more important for design of delay-insensitive systems than the input

obligations.

In this chapter, we take a closer look at nondeterminism and its relation to design

freedom in the context of the Extended DI Model. Taking the introductory observa

tions at heart, we will focus on nondeterminism related to output, in particular. Input

nondeterminism-think, for instance, of the merge process-is less interesting.

8.1 Output Refusal Sets

We will define output (non)determinism in terms of refusal sets, which are familiar from

the Failures Model for CSP (see [Hoa85]). For process P, we say that alphabet A, A :; oP,

is an output refusal set, or briefly a refusal, at trace t, t E tP, when

(:J u: u E (oP "-A)*: fP.tu E {D,~}). (8.1)

The idea is that alphabet A :; oP is a refusal at t E tP, if process P, after doing t, can

evolve to a state, by doing output, where it has no further output obligations, without

having done any of the outputs in A.

8.1.1 Note In the Extended DI Model, it does not make much sense to introduce input

refusal sets. Whenever a process may refuse an input, the environment had better not send

it at all, acting as if the process cannot accept the input. Consider, for example, system

S { W(a; b), W(b; c) } . When analyzing the operation of this system, one will find an

execution scenario in which the environment sends two a-inputs in a row before receiving

output without causing interference. This happens if the first wire has transferred its signal

to the second wire before the second a-input arrives. However, this same behavior of the

95

96 CHAPTER 8. OUTPUT NONDETERMINISM

environment may also result in interference. Hence, the environment should refrain from

sending the second a-input before receiving the c-output.

Of course, one may look at the output refusal sets of the reflection to say something

about the nondeterminism in the environment of the process. .a

The definition of refusals can be extended to traces not in tP as follows. For process P,

alphabet A ~ oP is a refusal at trace t, when

(3u: u E (oP' A)*: fP.tu!;;; (8.2)

Let u:; analyze fhis definition. If for some u E (oF;)* we have fP.i... l., then fP.t = l.
on account of property £4 of process ECFs. This shows that (8.2) is indeed an extension

of (8.1). If fP.t T, then for any u E (oP)* we have fP.tu Ton account of property £1.

Hence there are no refusals at such t. If fP.t [; 0, in particular if fP.t = l., then any

A ~ oP is a refusal at t. Apparently the extreme cases with t rj. tP are not very interesting.

Definition (8.2) is preferred because it simplifies proofs. For instance, the following

statement is an immediate consequence of (8.2): If alphabet A ~ oP is a refusal at trace t

for process P and P ;;;! Q, then A is also a refusal at t for Q.

8.1.2 Example Figure 8.1 shows the state graphs of the fifteen DI processes with out

puts {a, b} and no inputs. In some of the state graphs, dotted edges appear. These tran

sitions step outside the trace set and have been included to simplify comparison under [;.

The two columns in the middle are mutually symmetric under swapping of a and b.

b
•-o

r-1 0 EI a~ Po ~
o-o -o

•-o
El

•-v •-v
~ p4 ~ l~l l~l o-o

•-o ·-1;1 r;~:T
,. ,..T

~ Ps : : Pg : · Pn ·
V y V 'f V 'f

D······>T T······>T o-----·>T T······>T

r~ r-l F~T . pl3 •

V 'f V 'f
D······>T T----··>T ······>T

Figure 8.1: State graphs of all DI processes with two outputs

8.1. OUTPUT REFUSAL SETS 97

It may be surprising that all these processes can actually be made from building blocks.

For instance, in process P1, neither output is guaranteed initially, but output b is guaran

teed after a. However, output a is not guaranteed after b. Figure 8.2 shows a system with

composite P1.

Figure 8.2: System with composite P1

Table 8.1 lists the refusals at c of processes P0 through P14 .

process

Po .. 3, Ps .. n

P4, P12

Ps, P13

PG, P14
p7

refusals at trace c

0, {a}, {b}, {a, b}
0,{a},{b}
0,{a}
0,{b}
0

Table 8.1: Refusals of P0 through P14

•

Refusals are "downward closed", in the sense that if for process P, alphabet A ~ oP is
a refusal at trace t, and alphabet B ~ A, then also B is a refusal at t. Hence, only

~-maximal refusals are interesting.

Refusals "partly propagate backward over outputs", in the sense that if for process P,

alphabet A ~ oP is a refusal at trace ta with a E oP, then A " {a} is a refusal at t.
For process P, refusal A ~ oP at t E tP is called trivial when

(Vu : u E (oP)* 1\ tu E tP : u I A =c) , (8.3)

that is, when P, after doing t, cannot produce any of the outputs in A.

8.1.3 Example Table 8.2lists the trivial refusals at c of the processes in Example 8.1.2.

Note that there is no process with precisely 0, {a}, and {b} as trivial refusals. Also note

process

Po .. s, P12

Pg, P13

P10, P14

Pn

trivial refusals at c

0

0,{a}
0, {b}
0, {a}, {b}, {a, b}

Table 8.2: Trivial refusals of P0 through P14

that the four ~-maximal processes P7, P 11 , P 13, and P 14 are the only ones for which all

refusals at c are trivial. •

98 CHAPTER 8. OUTPUT NONDETERMINISM

Here are some general properties of trivial refusals. If A <:;.: oP is a trivial refusal at t and

B <:;.: A, then B is also a trivial refusal at t. If 0 is a refusal at t, then it is a trivial refusal.

If A and B are trivial refusals at t, then so is A U B. However, if A <:;.: oP satisfies (8.3),

then it is not necessarily a refusal at t as the next example shows.

8.1.4 Example Consider process P = (0, {a, b }, {a}* u {b }*, 0, 0). P has outputs a

and b, and all its traces are transient. It will either constantly output a or constantly b.

Alphabet A = {b} satisfies (8.3) for trace t = a, but A is not a refusal at t (since all traces

are transient).

In fact, P has no refusals anywhere. At the initial state c, cne might expect the

refusal<; 0, {a}, and {b} (but not {a, b}). Observe that Pis not a DI process, since it

violates Rule W. ..

The definition of refusal set can be modified to deal more properly with anomalous processes

like in the preceding example, but this requires an additional quantification. Anyway, it

would not make a difference for DI processes as shown by the following theorem. The

theorem characterizes a trivial refusal of a DJ process as a set of outputs that are all

non-successors. This is also in line with the Failures Model for CSP.

8.1.5 Theorem Let P be a DI process. Alphabet A <:;.: oP is a trivial refusal at t E tP

if and only if

(V a : a E A : ta (/; tP) . (8.4)

Proof That (8.4) holds for a trivial refusal at t E tP follows immediately from (8.3), the

definition of 'trivial'.

Assuming A <:;.: oP, t E tP, and (8.4), we show that A is a trivial refusal at t. The

set V of all traces u E (oP)* such that tu E tP is finite because P is a DI process, in

particular because oP is finite and Rule W is satisfied. Let u E V be of maximal length,

then tu tt \7 P. Furthermore, u E (oP" A)*, because if symbol a E A occurs in u, then

on account of Rule X, we infer ta E tP from tu E tP, contradicting assumption (8.4).

Therefore, A is a refusal at t. In fact, for every u E V we have ufA = € on account of

Rule X and (8.4). Consequently, A is a trivial refusal at t. o1

From now on we will restrict our attention to DI processes. We call DI process P (out

put) deterministic when all its output refusal sets are trivial, that is, when it can only

"refuse" to produce output that is disallowed anyway. Put differently, whenever an output

deterministic process is capable of producing an output, it will eventually produce that

output. The definition of output-deterministic processes in terms of output refusal sets is

the same as that of deterministic processes based on refusal sets in CSP. In the Extended

DI Model, however, refusals are a derived concept, whereas in the Failures Model for CSP

they are fundamental (this is also reported in [Jos92]). Furthermore, in CSP the deter

ministic processes are maximal under the refinement order and this is not the ca..se in the

Extended DI Model, because an output-deterministic process need not be maximal with

respect to input processing.

8.1. OUTPUT REFUSAL SETS 99

Below we will give an alternative characterization of output-deterministic DI processes.

For that purpose, the definitions of Rules zout (no output choice), Z'" (no input choice),

and Z' (choice-free) are carried over to the Extended DI Model as they are. For the sake

of convenience, we repeat the definitions of maximally transient and Rule zov.t:

• Process P is maximally transient when for all traces s and outputs a we have

sa E tP ::::? s E '\7 P ,

• Process P satisfies Rule zov.t when for all traces s and distinct outputs a and b we

have

sa E tP A sb E tP sab E tP A sba E tP .

8.1.6 Theorem (Characterization of Output-Deterministic Processes)

DI process P is output deterministic if and only if it is maximally transient and satisfies

Rule Z 0
"

1
•

Proof We start by proving that if P is maximally transient and satisfies zout then all its

refusals are trivial. Assume A oP is a refusal at t E tP. According to Theorem 8.1.5,

it suffices to prove (8.4). Assuming a E A, we show ta (j. tP. Since A is a refusal at t, let

u E (oP)* such that fP.tu E {0, .0.}. We derive

tu E tP A tu (j. '\7 P

::::? { P is maximally transient, using tu E tP and a E oP }

tu E tP A tua (j. tP

::::? { P satisfies Rule zaut, u does not contain a E oP }

ta (j. tP

This completes the first part. Now we do the second part: If all of P's refusals are trivial,
then pis maximally transient and satisfies zout.

First we prove that P is maximally transient. Assuming a E oP and ta E tP we prove

t E '\7 P. From the assumptions we infer that {a} is not a refusal at t, since it would

not be trivial on account of ta E tP. If fP.t!;;;; D, then {a} would be a refusal set at t.
Consequently, we have t E '\7 P.

Finally we prove that P satisfies Rule zov.t. Let a and b be distinct outputs, such

that ta E tP and tb E tP. As above, {a} is not a refusal at t. Hence, {a} is not a

refusal at tb either. (for, otherwise, {a} would be a refusal at t on account of b (j. {a} and

backward propagation over bE oP). Therefore, tba E tP, because, otherwise, {a} would

be a (trivial) refusal at tb. Similarly, we have tab E tP, which concludes the proof. •

An immediate consequence of this theorem is that the (progressive embeddings of the)

undetermined selector, arbiter, and sequencer are not output deterministic, since they fail

Rule zout, whereas all other building blocks are output deterministic. Also the one-all of

Example 5.4.1 is output deterministic.

100 CHAPTER 8. OUTPUT NONDETERMINISM

I

I T

progressive and '·~
0

•••• both progressive

not indiff~:.::' ... ··········.: ::.::·· ·<~:;·~ ~-- ·-~~:.':d:~ecent

5

neither progressive

nor indifferent

0

indifferent and
not progressive

Figure 8.3: Hasse diagram for order on 2-output DI processes

8.1.7 Example Figure 8.3 depicts the Hasse diagram of relation!;:; on the fifteen pro

cesses P0 through P14 in Example 8.1.2. The dotted edges indicate the relationship to T

(including T, the Hasse diagram is a hypercube). The !;:;-maximal processes are P7 , Pn,

P13 and P14 . These four are the only output-deterministic processes. P12 is also maximally

transient but it has output choice (that is, it violates Rule Z 0
"

1
). Note that Pn is both

maximally and minimally transient. P0 is the least process. .1

The following theorem generalizes Theorem 5.3.3, which expresses that the set of DI pro

cesses satisfying Rules Y~" 1 and Z~" 1 is closed under composition. Instead of Y~" 1 we now

require the processes to be maximally transient, that is, output deterministic.

8.1.8 Theorem The set of output-deterministic DI processes is closed under composi

tion. Proof idea: Use Theorem 8.1.6 and enhanced characteristic functions. .1

To see the relationship with Theorem 5.3.3 we extend Rules yout and yin to the Extended

DI Model as follows:

• P satisfies Rule yout when for all traces s and t, outputs a and b, and input c we

have

scatb E tP 1\ sact E tP :::} sactb E tP ,

sact E \7 P 1\ scat E tP :::} scat E \7 P .

• P satisfies Rule yin when for all traces s and t, inputs a and b, and output c we

have

scatb E tP 1\ sact E tP :::} sactb E tP ,

sact E D.P 1\ scat E tP :::} scat E D.P .

8.2. STATIC VERSUS DYNAMIC OUTPUT NONDETERMINISM 101

Note that again we have

Y' =: y 1\ yout 1\ yin . (8.5)

The relationship between output determinism and Rule yout follows from the next theorem.

8.1.9 Theorem Every output-deterministic DI process satisfies Rule yout.

Proof According to Theorem 8.1.6, P has only trivial refusals. Consider traces s and t,

input a, and outputs b and c. First we derive

sactb E tP 1\ scat E tP

= { P has only trivial refusals }

'{ b} is not a refusal at sact E tP' 1\ scat E tP

* { P satisfies the neighbor-swap rule (7.17), using c E oP and (8.2)}

' { b} is not a refusal at scat E tP'

{ P has only trivial refusals }

scatb E tP

Next we derive

scat E V' P 1\ sact E tP

* { P is a process (requirement 5) }

(:3 d : d E oP : scatd E tP 1\ sact E tP)

* { P satisfies Rule Y, using a ;1:, c and c ;:;::; d }

(:3 d : d E oP : sactd E tP)

* { P is maximally transient }

sact E V'P

This concludes the proof that P satisfies Rule yout. •
In the DI Model, failure to satisfy Rule yout is the shadow cast by lack of progress, which

is not otherwise noticeable in that setting. The Extended DI Model treats progress more

explicitly. The invalid implication mentioned below Example 6.3.3 can now be qualified.

8.1.10 Theorem Process PE VIa. satisfies Rule y~ut if and only if <pv.P E VI13 • •

8.2 Static versus Dynamic Output Nondeterminism

We proceed with a classification of output nondeterminism, something which could not

be done properly for output choice in the DI Model. Let P be a DI process that is

not output deterministic. We say that P has static output nondeterminism when

there exists an output-deterministic DI process Q with Q ;;;) P, that is, when P has an

102 CHAPTER 8. OUTPUT NONDETERMINISM

output-deterministic implementation. Otherwise, we say that P has dynamic output

nondeterminism, that is, when P has no output-deterministic implementation.

The undetermined selector has static output nondeterminism, since it is refined by a

toggle. The arbiter and the sequencer have dynamic output nondeterminism, which will

be explained in the next example.

8.2.1 Example Figure 8.4 shows the labeled DI state graphs of processes P and Q.
When P has received a single input, it must respond with the corresponding output. This

is also the case for Q. Upon receiving both inputs, however, there is no obligation to

)Jroduce output (Din state 2) and P may produce either of the two outputs but not both,

while Q may also produce both. Observe that we have P;;;;! Q.

a:[]:b
c d

Q,!T\.
dJ~co

c...._,_ c-c

"c 7

Figure 8.4: State graphs of P (middle) and Q (right)

The state graphs of the arbiter and the sequencer (after input n) contain subgraphs

similar to that of P, except that they are labeled V in state 2. Of course, if process P

(with D in state 2) has no output-deterministic implementations, then neither has the

process with V in state 2 (any implementation of the latter would also be an implementation

of the former).

We claim that P and Q have dynamic output nondeterminism. Obviously, P is not

output deterministic, because it is neither maximally transient nor does it satisfy Rule zout

(check state 2). Q is not output deterministic either, since it is not maximally transient

(states 3, 4, and 6), though it does satisfy zout. Note that P satisfies yout but Q does not.

There are essentially two methods of making processes more output deterministic.

1. In a state where output is possible but not required (that is, where progress is not

maximal), one may either (a) suppress some outputs, or (b) guarantee output by

making the state transient.

2. In a transient state requiring a choice between outputs, one may eliminate all but

one of the mutually exclusive outputs.

However, one should also see to it that the result is still a DI process.

The only "output-nondeterministic" states of Q are states 3, 4, and 6, where progress

is not maximal. We first focus on states 4 and 6. Only the first method applies here.

These states cannot be made transient (method lb) because that would violate Rule Y

8.2. STATIC VERSUS DYNAMIC OUTPUT NONDETERMINISM 103

(since states 5 and 7 are indifferent). There remains method la: suppressing the outputs

in states 4 and 6. Doing so yields process P.

The only "output-nondeterministic" state of P is state 2. Again only the first method

applies. Output elimination (la) does not work, because of Rule Z and the fact that states 0

and 1 are transient. Output guaranteeing (lb) does apply. Doing so yields a process that

is still not output deterministic (it is maximally transient but does not satisfy zout). Now

only the second method might be of help. However, neither of the outputs in state 2 can be

eliminated as was already pointed out. Therefore, P and Q have no output-deterministic

implementation and, hence, their output nondeterminism is dynamic. •

The existence-in the Extended DI Model-of processes with dynamic output nondeter

minism contrasts with CSP, where every process has deterministic implementations.

Static output nondeterminism can be eliminated by the designer. The nondeterminism

is then resolved at design-time. Dynamic output nondeterminism can only be resolved at

run-time. It is intertwined with the bebavior of the environment, hence the name. Whether

or not such nondeterminism is actually encountered during operation depends on the in

teraction between the process and its environment. For instance, an arbiter's operation

is deterministic as long as no more than one request is made at a time. Nondeterminism

only plays a role when two requests are made "simultaneously". It cannot be resolved at

design-time precisely because simultaneity is not a well-definable concept in the DI Models.

The refinement closure of process set V is defined as the process set

{P, Q: PE V A P;;;! Q: Q}, (8.6)

obtained from V by adding all processes refined by processes of V. The refinement closure

of the set of output deterministic DI processes will be denoted by nCO'D. It consists

of the DI processes that are output deterministic and the ones that have static output

nondeterminism. That we need building blocks outside 'RCO'D for implementing dynamic

output nondeterminism, follows from the fact that ncov is closed under refinement and

composition. The latter is a consequence of Theorem 8.1.8 and the next theorem.

8.2.2 Theorem The refinement closure of a composition closed set of DI processes is

itself composition closed.

Proof Let V be a composition closed set of DI processes and let W be its refinement
closure. For processes P and Q we derive

PEWAQEW

{ W is refinement closure of V }

(3 P', Q' : P' E V A Q' E V : P' ;;;) P A Q' ;;;! Q)

{ V is composition closed and composition is ;;;J-monotonic (Theorem 4.9.2) }

(3P', Q': P'll Q' E V: P'll Q';;;! P 11 Q)

{ W is refinement closure of V }

PIIQE w

104 CHAPTER 8. OUTPUT NONDETERMINISM

This shows that W is also composition closed. •
The following two theorems give sufficient conditions for a process to be in 'RCO'D. The

proof of the first theorem relies solely on method lb mentioned above for making a process

more output deterministic, whereas that of the second theorem uses methods la and 2

only.

8.2.3 Theorem If DI process P satisfies Rules yout and zout, then it is in 'RCO'D.

Proof Consider process Q = <pv.('l/J.P). Q is obtained from P by changing each trace

where output is enabled into a transient trace and by changing all remaining traces into

indifferent traces. On account of Theorem 8.1.10, ·using that Q satisfies yout, we have

Q E VI. By construction, Q implements P (Q ;;;) P), Q is maximally progressive, and Q
satisfies Rule zout. Thus, Q is an output-deterministic implementation of P, which shows

P e ncov. •

That the converse does not hold is shown by the undetermined selector, which is in 'RCO'D

but does not satisfy zout.

For process P, we say that refusal A ~ oP at trace ta E tP propagates backward

over input a E iP when A is also a refusal at t. In general, this need not be the case,

as is exemplified by process P2 of Example 6.1.3, for which {b} is a refusal at a but not

at r::. Note that P2 has static output non determinism on account of the preceding theorem

(indeed, P3 of Example 6.1.3 is an output-deterministic implementation). It is easy to

verify that the refusals of an output-deterministic process propagate backward over all

inputs.

8.2.4 Theorem If the refusals of DI process P propagate backward over all inputs,

then p is in ncov.

Proof We will construct an output-deterministic implementation of P. The construction

is by induction on the number n of outputs a E oP such that {a} is a non-trivial refusal

at some trace t E tP. Bear in mind that the output alphabet of P is finite. If n = 0 then

P is output deterministic on account of Theorem 8.1.5. Assuming n > 0 we show how P
can be refined while reducing n.

Let {a} ~ oP be a non-trivial refusal at t E tP and, hence, ta E tP. Consider

process Q obtained from P by removing all traces uav E tP for which {a} is a refusal

at u, that is, we have

(8.7)

where V = { u, v: uav E tP 1\ '{a} is a refusal at u': uav }. We claim that Q is a DI

process and that "its n" has decreased. That Q is indeed a process we infer from the fact

that if u E 'V P and {a} is a non-trivial refusal at u, then there is another output b with

ub E tP (for otherwise {a} would not be refusal at u). Q satisfies Rule W because no

traces have been added. Concerning Rules X and Y, observe that for traces s and u, and

symbols b and c such that b E oP V c E iP, we have

8.2. STATIC VERSUS DYNAMIC OUTPUT NONDETERMINISM 105

'A is refusal at sbct'

=> { P satisfies neighbor-swap rule 7.17, using bE oP V c E iP and (8.2) }

'A is refusal at scbt'

Rule Z is satisfied precisely because refusals propagate backward over inputs: if for input b,

traces sbav E tP have been removed (because {a} is a refusal at sb), then also traces sav
will have been removed (because {a} is also a refusal at s). Consequently,· Q is DI. By

construction, if {a} is a refusal at u E t Q, then it is trivial. Trivial refusals in P are also

trivial in Q. Therefore, the number of outputs a such that {a} is a non-trivial refusal in Q

is less than n. (N.B. The number may have gone down by more than one. Undetermined

selector U(a; b, c) has both {a} and {b} as non-trivial refusals at c. Eliminating output a,

removes refusal {b} altogether and makes refusal {a} trivial.) •

Again the converse does not hold, as shown by P2 above. However, we conjecture that the

set 1lPBI, consisting of all DI processes such that their refusals propagate backward over

all inputs, is closed under composition. Thus, in order to construct a process equivalent

to above, at least one process outside 1lPBI is needed. An arbiter would suffice, but

also lies outside RCOV and, hence, seems more than is asked for. Is there a useful building

block in 1lCOV' 1lPBI?
It would be interesting to have a characterization---comparable to Theorem 8.1.6 for

output determinism-of the dividing line between static and dynamic output nondeter

minism.

106 CHAPTER 8. OUTPUT NONDETERMINISM

8.3 Closure Results

What could be more appropriate than to close the theoretical developments with a table of

closure results? Given a set of DI processes, one might wonder whether it is closed under

refinement, composition, and reflection. Table 8.3 summarizes these closure properties for

many of the DI process sets that we have considered.

'-"-closed

yes

#iP #oP yes yes yes

#iP ~ #oP yes yes DO

#iP ~ #oP yes yes no

passive yes yes no

finite state DO yes yes

Y' no no yes

Z' no no yes
zout no no no
yout 1\ zout no a: yes ((3?) no

indifferent no yes yes

progressive no no no

deterministic DO yes no

ncov yes yes DO

nPBI no no

Table 8.3: Closure results for some Dl process sets

Chapter 9

Conclusion

We now look back at our work, evaluate it, and relate it to the work of others. We also

discuss some practical aspects of delay-insensitive systems that have been ignored in the

preceding chapters. Along the way we suggest interesting topics for further investigation.

9.1 Retrospect

In Chapter 2 we pointed out that the timing problem is a fundamental issue in the design of

digital circuitry. Delay-insensitivity is a solution to the timing problem. In the ideal case,

the correctness of a delay-insensitive circuit is completely independent of delay assump

tions. However, this is not practically feasible. More realistic is the two-stage solution,

where circuits are designed as networks of building blocks. The timing problem is confined

to the building blocks: their correct internal operation may depend on timing, but the

correctness of their cooperation is independent of delays. The of building blocks

is considered a separate topic (also see Section 9.4 below). Therefore, we have restricted

ourselves to specifications that are free of a time metric, that is, in which time plays a role

for sequencing only.

Our starting point for a model of delay-insensitive systems is a set P'ROC of processes.

These processes act as specifications for building blocks and systems. In the DI Model of

Chapter 4, a process is characterized by a triple (I, 0, V), where I and 0 are finite sets

of symbols (representing the communication ports: I for inputs, 0 for outputs) and V is

a non-empty prefix-closed set of finite-length symbol sequences (representing the allowed

orders for communication events). Finite symbol sets are called alphabets, and finite

length symbol sequences are called traces. A network of processes is modeled as a set

of processes satisfying certain structural conditions, capturing that there are only point

to-point connections from output ports to input ports. Such sets of processes are called

systems. The set SYS of systems can be viewed as generalizing PROC. By convention,

output a of process P in system S is connected to input a of process Q in S; that is,

connections are modeled by common symbols. These common symbols are considered

dummies and may be renamed consistently.

107

108 CHAPTER 9. CONCLUSION

The connection of two systems into a larger system is modeled by composition operator

par on SYS. Operator par is simply set union, after appropriate renaming of internal

connections to avoid name clashes. The operation of a closed system (without external

ports) gives rise to reachable traces and interfering traces. A system is called free of

interference when no reachable trace is interfering. Interference arises when a process is

sent input that is not acceptable. Predicate Correct captures autonomous correctness of

systems, and requires that the system be well-defined, closed, and free of interference. For

systems S and T, predicate Correct.(S par T) can be interpreted as expressing that S

passes !ccst T. In order to compare systems, the satisfaction relation .cat is introduced. We

say that S is a satisfactory substitute, denoted by S sat T, when every test that T passes

is also passed by S, or in a formula:

S sat T ('r/ U: U E SYS: Correct.(S par U) * Correct.(T par U)). (9.1)

A system containing T can always be written as T par U for some suitable U and, hence,

S sat T holds when in every correct system containing T, T can be replaced by S without

destroying the correctness. Relation sat is a testing pre-order.

Thus we obtained model (SYS; par, sat), in which we can talk about systems and their

composition and comparison. A typical design problem might be formulated as follows.

Given systems T and U find system S such that

Spar T sat U. (9.2)

Often, U will be a singleton system, consisting of just one process, and T will be taken

from a prescribed subset BB of P1UJC. Thus, U is the overall specification, T describes

part of a design in terms of building blocks, and S is what is needed to complete the design.

We refer to (9.2) as the design equation.

Systems S and T are equivalent, denoted by S equ T, when they are satisfactory

substitutes for each other. Since equivalence is not the same as equality, (SYS; par, sat} is

a pre-abstract model. Because equ is compatible with both par and sat, we can consider

the quotient (SYS; par, sat)/ equ, which is a fully abstract model. The quotient turns out

to be isomorphic to (VI; 11, ;;;!), where VI is an appropriate subset of PROC, 11 derives

from a binary operator on PROC, and ;;;] derives from a partial order on PROC. The

subset VI can be characterized by the so-called JTU-Rules, and ;;;] is easily expressible in

terms of alphabets and trace sets. However, composition 11 is more complicated. Within

the fully abstract model based on VI, the design equation can be solved, since we have

PIIQ;;;JR (9.3)

That is, the least solution of the equation in P on the left is obtained as '-"(Q 11 '""R),

where '"" is a unary operator on PROC called reflection. Reflection interchanges the roles

of input and output, but does not affect the trace set. Note that composition 11 has no

inverse and, hence, the equation P 11 Q R in P is not always solvable given Q and R.

That the design equation is solvable is, in fact, a fortunate consequence of our choice for

PROC. Apparently, PROC is sufficiently large (or small) to allow a reflection operator.

9.1. RETROSPECT 109

This is, for instance, not the case for the Failures Model of CSP. It would be interesting

to study the extension of process spaces to incorporate the minimal solutions of the design

equation (also see [Pra91]).

In search of a suitable set of building blocks, the possibilities of a number of elementary

processes are investigated in Chapter 5. In particular, we have identified several subsets

of processes that are closed under composition. In order to implement processes outside

such a closed set, a building block outside that set is required. It was pointed out that

a satisfactory set of building blocks to realize all finite-state processes is still not avail

able. Also the three classes around the C-element, latch, and decision-wait have not been

characterized satisfactorily. It should be noted that there are actually two kinds of search

problems. The first asks for a (minimal) set of building blocks that suffices to implement

all processes within a certain set. The second asks for a (minimal) set of building blocks

that suffices to construct an equivalent of each process within a certain set. The first is

more practical, the latter has mainly theoretical importance.

The DI Model has several shortcomings, one of them being that progress is not a

correctness concern. The Extended DI Model of Chapter 6 incorporates a progress concern.

It is constructed along the same lines as the DJ Model of Chapter 4. The trace set of a

process P is now divided into three trace sets, comprising the transient ('V P), the indifferent

(DP), and the input-demanding (D.P) traces. The distinction between the first two is that

in a transient trace the process is obliged to produce some output, whereas in an indifferent

trace it may fail to do so. Input-demanding traces are similar to indifferent traces as far

as output production is concerned, but the environment is obliged to provide some input.

These can be viewed as arising from the reflection of transient traces (similar to negative

money being money owed). A process space that is closed under reflection is desirable for

the existence of the minimal solution of the design equation.

The fully abstract version of the Extended DI Model is very similar to that of the DJ

Model. The JTU-Rules and the partial order !; are easily extended. The whole structure

can be better understood when processes are represented by enhanced characteristic func

tions (ECFs) mapping traces to the trace labels T, 'V, D., and 1.. A simple algebra

on the trace labels captures composition and correctness, and generates definitions for or

der !; and reflection ""· The order and reflection are then lifted to ECFs. ECFs allow a

concise formulation of the JTU-Rules, in the form of the neighbor-swap rule. Normalizing

transformations on ECFs can be used to compute compositions and greatest lower bounds.

Chapter 8 continues the investigation started in Chapter 5. In particular, it focuses

on output (non)determinism. Inspired by the Failures Model for CSP, we define output

refusal sets. Alphabet A is an output refusal set at trace t in process P when, after

doing t, P can do some outputs not in A and arrive in a state where it has no further

output obligations. Output refusal set A at trace t is called trivial, when the process is

unable to do any of the outputs in A. A process is said to be output deterministic when

it has only trivial output refusal sets. The output-deterministic -DI processes are exactly

the maximally transient DI processes satisfying Rule zout (no output choice). The set

of output-deterministic DI processes is closed under composition. However, not every DI

process has an output-deterministic DI implementation (in CSP every process has a deter-

110 CHAPTER 9. CONCLUSION

ministic implementation). Examples are the arbiter and sequencer. They are said to exhibit

dynamic output nondeterminism. This contrasts with the static output nondeterminism of

the undetermined selector, which can be eliminated in an implementation. Dynamic out

put nondeterminism cannot be eliminated at design time, because it is intertwined with

the behavior of the environment. We have not encountered the distinction between static

and dynamic nondeterminism elsewhere. There is a vague resemblance with the notion

of confusion in the theory of Petri nets (see [Rei85]). The complete characterization of

dynamic output nondeterminism is still an open problem.

9.2 Evaluation

Our development of a theory for delay-insensitive systems involved several fundamental

decisions. In some cases the consequences of our decisions are pleasing; in other cases we

still have reservations. First we discuss some items on the positive side of the scales.

We like the line of development that starts with a pre-abstract model and from there

continues to a fully abstract model, possibly culminating in an axiomatic model. This

approach enables one to set up a formal model without knowing in advance what is needed

for a fully abstract model. Furthermore, it may simplify the link to other models, such as

continuous physical models.

We are also satisfied with the use of the testing paradigm to set up pre-abstract mod

els. The testing paradigm may be viewed as a primitive but powerful method to define

observations on processes. A requirement is that the set of tests is sufficiently rich. Our

desire to include the tests in the set of processes led us to distinguish indifferent and

input-demanding traces in the Extended DI Model. We could, in fact, have started with

maximally transient processes and a separate set of maximally input-demanding tests.

There are, however, some technical complications with such a separation. For instance,

the proof that equ is a congruence relation with respect to par would no longer work as

shown in Appendix B. Nevertheless, the resulting fully abstract model would then have

processes with a mixture of transient and indifferent traces, but it would not be closed

under reflection. Later we found out that this means that the minimal solution of the

design equation need not exist in the model. Thus it was fortunate to insist on one set for

both processes and tests.

We consider the development of the Extended DI Model-in particular, the definitions

of deadlock, the partial order ~' and the extended JTU-Rules-as rather elegant. The

introduction of enhanced characteristic functions (ECFs), which split the complement of

the trace set symmetrically, is very useful. ECFs shed more light on the mathematical

underpinnings of the DI Models. Furthermore, it is intriguing that so many properties can

be lifted from a small algebra on trace labels to ECFs. Also the fact that three JTU-Rules

can be combined into the neighbor-swap rule is a nice result. Finally, the treatment of

output (non)determinism brought up several interesting points.

Let us now mention some items that we feel are on the negative side of the scales. The

treatment of system structure has been quite ad hoc. Composition operator par is a partial

9.3. RELATED WORK 111

operator and involvE>,s renaming of dummies (internal connections). It is in general not as

sociative. Moreover, it is not immediately clear how to generalize it when other connection

rules apply (such as an output being able to drive at most three inputs). Many definitions

and theorems involve conditions that deal with system structure (such as systems being

connectable), though we have not always made them completely explicit. One example

is the definition of sat (see Equation 9.1 above), which involves a quantification over all

systems U, including those U for which S par U, or T par U, is not a system. We have

postulated that Correct does not hold in those cases, but this is hardly a satisfactory so

lution. An alternative approach (see (Ver94]) is to define systems as bags of processes and

to make the names of internal connections visible on the outside (though not the internal

communication events). This way, system structure can be dealt with by testing as well.

We can introduce mappings, similar to ECFs, from the symbol universe to symbol labels

(also see Note 7.3.12).

We would have preferred to analyze isochronic operation first, as suggested in Note 4.4.3.

We have not done so because this would further increase the notational complexity and

slow down the pace. It is also felt as a drawback that isochronic connectors and forks

cannot be handled. A way to overcome this is to take sets of symbols as atomic events.

Symbols within such an event are required to "happen at the same step". An isochronic

fork with input a and two outputs b and c might then be described as an alternation of

events {a} and {b,c}.

ECFs are a neat way of describing processes and their cooperation in systems. However,

the tediousness and sheer number of all details concerning ECFs was disappointing. That

is why we have not presented the theory in terms of ECFs from the very beginning.

The Extended DI Model improves the DI Model, but it also has its shortcomings.

Further extensions of the models might include infinite systems (as limits of unbounded

sets of finite systems) and infinite traces (to deal with livelock). In both cases nasty

technical problems lurk ahead. For instance, if we have P; ;:::] Q; for all natural i, do we

then also have

{ i : 0 ~ i : P;} sat { i : 0 ~ i : Qi} , (9.4)

that is, how do we deal with infinite substitutions?

We would have liked to give axiomatic characterizations of our models, but the amount

of work involved was prohibitive. The groundwork has been laid in the form of properties

relating composition, refinement, greatest lower bounds, reflection, and 'aftering' (for in

stance, the Factorization Theorem). See the discussion of the DI Algebra below for other

work in this direction.

9.3 Related Work

The framework of the DI Models is entirely my own. It is based on the testing paradigm,

which, in fact, I discovered myself, but I later also traced it to [dNH83] and even to

Leibniz (see opening quotation). The following, necessarily concise, overview indicates

112 CHAPTER 9. CONCLUSION

the relationship to those theoretical works that influenced me most. For a comprehensive

bibliography see [Pee].

The idea to characterize a process by its alphabet (communication ports) and trace

set (allowed sequences of communication events) derives from Trace Theory introduced

in [vdS85] and further developed in [Kal86]. The idea to model delay-insensitive circuits

in this context is already mentioned in [vdS85]. The application of Trace Theory to the

description and design of delay-insensitive circuits goes back to [Udd84, Ebe89]. For that

purpose, they split the alphabet into inputs and outputs. .

In [Udd84], the starting point is the set VI of delay-insensitive (DI) processes, defined

in terms of the JTU-Rules, as we have called them. Two of the main accomplishments

of that work are the formulation of the JTU-Rules and the proof that for P E VI, the

(wired) system { P, "'p} ~ is free of interference. However, systems and their operation

are not formalized in general, and the composition operator, appearing in the form of

the blending operator, has a very restricted range of applicability, involving the notion of

independent alphabets. There is also no satisfaction relation on processes. Three subsets

of DI processes are distinguished, namely

C1 { P : P E VI 1\ P satisfies Rules Y' and Z' : P} ,

C2 = {P: PE VI 1\ P satisfies Rules Y' and zout: P} ,

C3 { P: PE VI 1\ P satisfies Rule Y' : P} .

It is shown that classes C1 and C2 are closed under the restrictive form of composition,

whereas class C3 is not closed. Note that under our more general form of composition

neither of these classes is closed (see Example 5.3.1). Instead, we have pointed out that

the set of DI processes satisfying Rules yout and zout is closed under general composition

(see Theorem 5.3.3). Progress is not covered.

In [Ebe89], isochronic system operation, appearing in the form of the weaving operator,

is fundamental. Connecting wires need not be introduced explicitly when all processes are

taken to be DI (compare our Theorem 4.7.7). Composition of processes is not defined

as an operator, but there is a refinement relation, going by the name of decomposition

relation. It expresses when one system is a decomposition (satisfactory substitute) of

another system. The decomposition relation resembles the satisfaction relation sat of our

DI Model. However, there are some subtle differences. It is recognized in [Ebe89] that sat

allows obviously undesirable implementations (see our Examples 5.5.1 and 5.5.2), which

can be ascribed to lack of progress. For that reason, the decomposition relation requires

the implementation to be able to produce exactly the same outputs as the specification.

This excludes toggle T(a;b,c) as decomposition of fork F(a;b,c), which in the DI Model

is a proper refinement. However, there are also undesirable consequences. On the one

hand, toggle T(a; b, c) is not considered a decomposition of undetermined selector U(a; b, c).

On the other hand, system D of Example· 5.5.1 is considered a decomposition of a wire.

Thus, decomposition does not treat progress satisfactorily. These issues are discussed

in greater depth in [Pee90]. Specifications in [Ebe89] are expressed mostly in terms of

regular expressions extended with a few extra operators. The extensions allow some nice

9.3. RELATED WORK 113

design techniques (also see [Ebe88]). It is proved, by construction, that a large class of

specifications can be decomposed efficiently using a few simple building blocks (though the

one-all of Example 5.4.1 requires an arbiter).

The following three works have contributed to the development of our DI Model. In

[UV88], the partial order!;;;; on processes is introduced and studied in the context of closed

two-process systems. In [CUV89b], general systems are analyzed. It also discusses the

design equation and its minimal solution. Most of the proofs are carried out by induction on

the reachability of traces. In [Ver89], enhanced characteristic functions are introduced and

used to prove the equivalence of 'P satisfies the JTU-Rules' and 'wired system {P, '-"P}
is free of interference'.

In [Dil89], processes are characterized by their input and output alphabets together

with two trace sets. The canonical process description (I, 0, S, F) of [Dil89], corresponds

to our process (I, 0, S) in the DI Model. Trace set F consists of the traces mapped to ..L

(interfering) by the enhanced characteristic function of the process. System operation is

not explicitly formalized, but a composition operator on processes is given. The main

reason for introducing the more general processes with two trace sets is to simplify the

definition of composition. This can be compared to our larger process space £CF1,3,5

of Chapter 7, which is closed under tracewise composition and taking of greatest lower

bounds. A refinement relation, called conformation, is defined. It corresponds directly

to our satisfaction relation sat in the DI Model. A major contribution of [Dil89] is the

development and implementation of a tool to verify delay-insensitive designs. Specifications

and designs are described in terms of state graphs, for which a LISP front-end is provided

as well. An attempt is also made to deal with progress, but we do not consider it very

successfuL

In [Jos92], a process model is introduced that distinguishes input and output, and that

also captures a progress concern. A process has an input and an output alphabet, and a

trace set. The trace set is not necessarily prefix-closed and consists of so-called failures

(traces in which the process may fail to produce output). These traces correspond to the

iqdifferent traces in our Extended DI Model. Two requirements on processes are crucial

to the modeling of interference: output alphabet 0 is non-empty and the prefix-closure of

trace set F is receptive, that is, closed under input extension. Input a after trace t now

leads to interference when the set

{ u: u E 0* 1\ tau E F: t}

is infinite. Thus, the prefix-closure of trace set F consists of what we have called the

allowed and the interfered traces (those not mapped on T by the enhanced characteristic

function of the process). We find the requirement of non-empty output alphabets some

what contrived. In [Jos92], it is observed that, due to the input-output distinction, the

refusal sets of the Failures Model for CSP have been "simplified out of existence". Compo

sition involves isochronic operation, though the latter is not defined separately. Additional

closure conditions may be imposed on processes to deal with anisochronic operation. These

conditions involve the reordering of symbols in traces in the same vein as ~ at the end of

114 CHAPTER 9. CONCLUSION

Section 7.2, but this is not related to the JTU-Rules. The model has a refinement rela

tion based on inclusion of trace sets (failures). It corresponds to the satisfaction relation

sat of our Extended DI Model, but there are two major differences between the process

model of [Jos92] and the Extended DI Model. First of all, there is no reflection operator

on the receptive processes. Consequently, the design equation cannot always be solved

within that model, the main reason being that input demand is not expressible. Secondly,

livelock (unbounded internal communication and non-terminating recursion) is modeled to

coincide with interference. We find this view of livelock too pessimistic, though we agree

that ignoring livelock, as we do in the DI Models, is too optimistic.

In [JU90, JU93], an algebra for the specification and design of delay-insensitive circuits

is described, called the DJ Algebra. It is closely related to [Jos92]. The DI Algebra can

be viewed as a language in which processes are specified by expressions constructed from

constants and operators, such as guarded choice and recursion. Process equivalence and

refinement are defined axiomatically by a number of laws. These laws capture interference

and also a progress concern. It should be noted that the syntax and the set of laws have

not yet fully stabilized. A major advantage of the DI Algebra is that design verification

and, in particular, process composition can be done by calculation. In [Luc94], several

useful meta-theorems are presented. However, the DI Algebra has its shortcomings as

welL There are few (syntactic) heuristics for design. Some processes are easy to specify

but others are relatively hard to specify, such as larger decision-waits and data converters.

Compare also processes P5 and Q5 of Example 3.2.5, whose "progressive" counterparts in

the DI Algebra of [JU90] are given by

P 5 a?; b?; (d!; [a? -+ ..L 0 b? -+ ..L 0 skip -+ e!; P5] n
e!; [a?-+ ..L 0 b?-+ ..L 0 skip -+ d!; P5]) ,

Qs = a?; b?; d!; e!; Qs .

The introduction of output guards and 'else' clauses reduces the complexity of P5 a little.

It can also be excessively difficult to prove inequality of processes. See the discu&<>ion

of [Jos92] above, for model distinctions concerning livelock and reflection. It would be

interesting to extend the DI Algebra with a reflection operator; [Luc94] reports on work

in this direction. The problems with the introduction of a reflection operator may be

explained as follows in terms of enhanced characteristic functions (ECFs) (see Chapter 7,

especially Note 7.3.12). In a sense, DI Algebra expressions correspond to ECFs satisfying

predicates £1, £3 , and £5 . The intended normal form of expression E is Lf J, where f
is the ECF corresponding to E. The (normalizing) laws correspond, in a way, to our

transformations <1>;. For instance, the law c!; ..L = ..L resembles <1>4 . Unfortunately, the

space spanned by £1, £3 , and £5 is not closed under reflection. Furthermore, reflection and

l-J do not commute (see Equation 7.25). Therefore, reflection is only easy to define for

near-normal forms, which also satisfy the even £; and which are invariant under l-J. A

different approach is required to generalize reflection.

9.4. TOWARDS CIRCUITS 115

9.4 Towards Circuits

To complement Chapter 2, we now discuss some practical aspects of delay-insensitivity

when applied to the design of digital integrated circuits.

Our main concern has been the design of delay-insensitive systems using some set of

building blocks. The realization of the building blocks has been considered a separate

problem, falling outside the scope of our theory. The advantage of this two-stage approach

is that, on the level of systems of building blocks, the correctness of these systems does

not depend on assumptions about delays. However, building blocks need to be built to get

a working system.

For instance, an integrated circuit can be produced from such a design only if all the

building blocks have been realized in terms of transistor networks. When designing these

building blocks, we encounter the timing problem again. More detailed models of circuit

operation are required to design them and prove their implementation correct, though this

needs to be done only once for each building block. For approaches to the design of building

blocks we refer to [MFR85, RMCF88, vB92]. The relationship between the (discrete) DI

Models and (continuous) physical circuit models has been largely ignored and needs to be

pursued more seriously.

Another issue that has been ignored is the initialization of the building blocks at power

up. Somehow each state-holding device, such as the C-element and toggle, needs to be put

into its proper initial state. For some building blocks it is possible to come up with an

implementation whose initialization is accomplished by applying appropriate voltage levels

to the inputs. For example, a C-element, which is a sequential circuit, can be implemented

in such a way that when its inputs are forced low, the output will go low as well and the

C-element ends up in a uniquely determined state. This is not possible for the toggle. The

I-wire poses a related problem. It is supposed to produce a transition after power up. Often

this just means that the component it is connected to requires a slightly different initial

state. But if, for example, an 1-wire is driving a C-element, the property of "automatic"

initialization when low inputs are applied no longer holds for the combination, and it may

end up in the wrong initial state.

Realistic circuit design methodologies also require an answer to the "testing problem".

Even when a circuit is fabricated according to a correct design, there may still be variations

in the final product due to the inherently stochastic nature of the manufacturing processes.

Too large variations may yield unreliable or malfunctioning circuits, which should be elimi

nated as soon as possible. The standard approach to the detection of fatal fabrication faults

is testing, that is, operating the product according to some predefined input sequences for

which the expected outputs are known. The "testing problem" is that of finding a small

set of input sequences such that from the corresponding outputs a reasonable estimate

about the circuit's reliability can be made. For clocked circuits it is easier to control and

observe the internal state of the circuit; this may result in simpler tests. On the other

hand, in delay-insensitive circuits, which are based on transition signaling, it suffices to

test whether each wire can make transitions in both direction (assuming the stuck-at fault

model). Testing of delay-insensitive circuits is still an area of active research. Especially

116 CHAPTER 9. CONCLUSION

the "VLSI-programming" approach to delay-insensitive circuit design looks promising in

this respect [RS93].

It might be interesting to search for a link between fault testing and the satisfaction

relation based on the testing paradigm. A high-level fault model that comes to mind is

that where the effect of a fault is to change a V-label into a 0-label. Usually, such a fault

will change an implementation into a non-implementation; this is then detectable by a

specific testing environment.

The topic of manipulating data (as opposed to control signals) in delay-insensitive

circuits -think, for instance, of computations involving integers-- has been not been

addressed here. Encoding of data for delay-insensitive transmission is treated in [Ver88].

Performance

The average speed of delay-insensitive circuits is determined by the average case, whereas

the clock of synchronous circuits must be tuned to the worst case. Therefore, one would

expect delay-insensitive circuits to "rim faster" than their clocked counterparts. In practice,

however, delay-insensitive circuits do not perform that well. One reason for this is that the

design assumptions are very pessimistic, requiring extra communication actions to ensure

proper synchronization of interacting subcomputations, usually via some back-and-forth

handshake protocol.

This pessimistic approach is also responsible for the additional area that current delay

insensitive circuits require. For instance, encoding n-bit values with a double-rail code

requires 2n wires. It is expected that further research will enable us to make faster and

smaller delay-insensitive circuits in the future.

On the positive side, the circuits designed with such pessimistic assumptions are quite

robust. For example, they can tolerate considerable variations in power supply voltage and

ambient temperature.

Another beneficial property of delay-insensitive circuits is that they dissipate little

power when implemented in CMOS technology. A CMOS transistor dissipates power only

when it switches. In a delay-insensitive circuit transitions occur only when and where

they contribute to the computation (as opposed to the always-ticking dock). This makes

delay-insensitive CMOS circuits particularly suitable for low-power applications.

Because there is no clock, the spectrum of electromagnetic radiation generated by

delay-insensitive circuits is more evenly spread out than for synchronous circuits.

Our approach to the design of delay-insensitive circuits separates functional correct

ness concerns from efficiency concerns. Thus, it is easy to replace subsystems by faster

implementations if that would be beneficial to the speed of the overall computation. Op

timization for speed can be accomplished by "local fiddling", without jeopardizing the

correctness of the entire circuit.

9.4. TOWARDS CIRCUITS 117

Acceptance

For a wider acceptance of delay-insensitive circuits it is necessary that-besides attention

for education and theory construction-a whole range of support tools be developed. The

features of the Extended DI Model can be incorporated into appropriate tools without

much difficulty.

The VLSI-programming approach taken by Philips (see [vBNRS88, vBKR+9t]) ad

dresses the issue of tools in a new way. A system designer writes a TAN GRAM program

in terms of communicating processes. The TANGRAM compiler translates this program

into a network of so-called handshake components. The delay-insensitivity of the resulting

networks is guaranteed by the use of four-phase handshake protocols and double-rail data

encoding (see [vB93]). Separate tools allow the system designer to evaluate and tune a

design, for instance, on the basis of speed, area, and power estimates.

Much more could be said about the acceptance of delay-insensitive circuits, such as the

importance of interfacing to existing technologies, in particular, clocked circuits. We will

leave it at this.

The issues discussed in this section show that our initial motivations for looking into delay

insensitive design techniques were not always to the point. On the one hand, some expected

benefits are in fact negligible or even negative. On the other hand, some positive results

came in areas that were not foreseen.

It should be born in mind that our theory is applicable not only to the design of

digital electronic circuits. The theory is very general and a source of interesting and

beautiful mathematics (and art, for that matter). It may find renewed applications when

future technologies, possibly involving optical or quantum phenomena, are developed for

information processors.

118 CHAPTER 9. CONCLUSION

Appendix A

Ordered Sets and Lattices

In this appendix we briefly summarize some basic definitions and theorems from the theory

of ordered sets and lattices. For more details the reader is referred to [Bir84, DP90].

A.l Relations

Let R be a binary relation on set V, that is, R V x V. It is customary to write u R v

for (u, v) E R. Here is a table of common terminology for relations:

R is called

reflexive

anti-reflexive

symmetric

antisymmetric

transitive

whenever

(\;/u :: u R u)

(\;/u :: •(uR u))

(\;/ u, v :: u R v v R u)

(\;/ u, V : u R V 1\ V R u : u = V)

(\;/u,v,w: uR v 1\ vR w: uR w)

where all quantified variables range over V. For relation R on V we have

'R is symmetric' _ (\;/ u, v : u 'f v 1\ u R v : v R u) ,

'R is antisymmetric' (\;/ u, v : u # v 1\ u R v : -.(v R u)) .

This clarifies that the relationship between 'symmetric' and 'antisymmetric' is the same as

that between 'reflexive' and 'anti-reflexive', namely that of strong negation.

A.2 Ordered Sets

A relation is called a pre-order when it is refiexive and transitive. A relation is called an

equivalence relation when it is a symmetric pre-order. For pre-order ~ on set V, the

relation "" defined by

u~vl\v~u (A.l)

119

120 APPENDIX A. ORDERED SETS AND LATTICES

for all u and v in V, is an equivalence relation on V.

A relation is called a partial order, or briefly an order, when it is an antisymmetric

pre-order. For partial order ~on V we call {V;~) a (partially) ordered set or poset.

The converse of denoted by ;;;! , is defined by

u;;;Jv v~u (A.2)

for all u and v in V. {V; ~) is a poset if and only if (V;;;;!) is a poset.

Partial order ~ is called total when

u~v V v~u (A.3)

for all u and v in V.

We define relation c on V by

ucv (A.4)

for all u and v in V. Note that relation C is anti-reflexive and transitive (and, hence, also

antisymmetric). An anti-reflexive and transitive relation is called a strict order. Thus,

every partial order corresponds to a strict order. The reverse also holds. If some relation C

on V is a strict order, then relation defined by

u~v UCVVU V (A.5)

for all u and v in V, is a partial order on V.

Let (V; be a poset and U a subset of V. (U; ~'}, where is the restriction of ~ to U,

is also a poset. Note: It is customary to denote the restricted order again by ~.

Let v and w be members of V. We call v a lower bound of U when

(Vu : u E U : v ~ u) . (A.6)

We abbreviate this to v ~ U when confusion is unlikely (keep in mind that U could also

be a member of V, besides being a subset). We have v ~ 0 for all v. Dually, v is called

an upper bound of U when

(Vu: u E U: u ~ v) , (A.7)

abbreviated to U ~ v. We call v least in U or minimum of U when v E U and v ~ U.

Dually, v is called greatest in U or maximum of U when v E U and U ~ v. If a

minimum (maximum resp.) of U exists then it is unique. The minimum (maximum resp.)

of U -if it exists-is denoted by min U (max U resp.). We have min { v} = max { v} = v.

We call v minimal in U when v E U and

(Vu: u E U A u ~ v: u = v). (A.8)

Dually, we call v maximal in U when v E U and

(Vu ; u E U A u ;;;! v : u = v) . (A.9)

A.3. LATTICES 121

If v is least in U then v is minimal in U. The converse does not hold generally.

We call v greatest lower bound, or infimum, of U when v is greatest in the set of all

lower bounds of U. If a greatest lower bound of U exists then it is unique and we denote

it by n U. We also write v n w for n { v, w}. Dually, v is called least upper bound, or

supremum, of U when v is least in the set of all upper bounds of U. It is denoted by U U

when it exists, and we also write vU w for U { v, w }. If min U (max U resp.) exists, then

nU (U U resp.) also exists and they are equal. If nU (u resp.) exists and is in U, then

min U (max U resp.) also exists and they are equal. For poset (V; we have

n0 max V,

U0 min V,

nv min V,

uv max V,

that is, the left-hand side exists if only if the right-hand side exists, and if both exist, they

are equal. Element v is the greatest lower bound of U if and only if

(V w : w E V : w V = w ~ U) . (A.lO)

Dually, v is the least upper bound of U if and only if

(Vw:wE V:v~w U w). (A.ll)

A.3 Lattices

We call poset (V;~} a lattice when v n wand vU w exist for all v, w E V. Let (V; be

a lattice. We can view nand U as (total) binary operators on V. Operators nand U are

commutative, associative, and idempotent (as binary operators). Furthermore, we have

u~vnw u~vl\u~w, (A.l2)

uUv ~ w u~wl\v~w. (A.l3)

for all u, v, w E V. Consequently, we also have

u~v - unv=u, (A.l4)

u~v uUv=v, (A.l5)

for all u, v E V.

We call (V; ~) a complete lattice when n U and U U exist for every subset U of V.

Poset (V; ~) is a complete lattice if and only if nU exists for every subset U of V. For

finite V, poset (V; ~) is a complete lattice if and only if n 0 (i.e. max V) exists and v n w
exists for all v and w in V. A finite lattice is a complete lattice.

This concludes our overview of the theory of ordered sets.

122 APPENDIX A. ORDERED SETS AND LATTICES

Appendix B

Some Proofs

In this appendix we have collected some proofs concerning the DI Model.

The following theorem characterizes interference in terms of weave.S rather than the

system's reachable traces.

B.O.l Theorem (See Theorem 4.3. 7) Closed system S is free of interference if and

only if

(Vt, a, P: t E weave.S APES A a E oP A tafaP E tP: ta E weave.S). (B.l)

Proof We prove the two implications separately.

Assuming the left-hand side'S is closed and free of interference', we prove the right

hand side (B.l). Fort, a, and P we derive

t E weave.S A PES A a E oP 1\ tafaP E tP

{ weave.S reach.S on account of the assumption and (4.14) }

t E reach.S A PES 1\ a E oP A tafaP E tP

=? { definition of reach.S }

ta E reach.S

{ weave.S reach.S on account of the assumption and (4.14)}

ta E weave.S

Hence, the right-hand side holds.

Now assume the right-hand side (B.l). We show that S is free of interference by proving

(Vs : s E reach.S : s E weave.S)

by structural induction on s.

Base: s = e:. Assume e: E reach.S. We have e: E weave.S because e: E tP for any P (since

trace sets of processes are non-empty and prefix-closed).

Step: s = ta for some trace t and symbol a. The induction hypothesis is t E reach.S =>
t E weave.S. Fors we derive

123

124 APPENDIX B. SOME PROOFS

s E reach.S

{s=ta}

ta E reach.S

{ definition of reach.S }

(3 P : P E S : t E reach.S A a E oP A ta faP E tP)

==? { induction hypothesis }

(3 P : P E S : t E weave.S A a E oP A ta faP E tP)

==? { right-hand side assumed }

ta E weave.S

{ ta s }

sE weave.S

This concludes the induction, thereby completing the proof.

The next theorem expresses that equ is a congruence with respect to par.

..

B.0.2 Theorem (See Section 4-4) For systems S, S', T, and T' with S equ S' and

T equ T' we have

S par T equ S' par T' . (B.2)

Proof First of all, observe that on account of the properties of par mentioned below

Example 4.2.2, we have

Correct.((S parT) par U) = Correct.(S par (T par U)) (B.3)

for systems S, T, and U. Now letS, S', T, and T' be systems with S equ S' and T equ T'.

We derive for system U:

=

Correct.((S par T) par U)

{ observation (B.3) }

Correct.(S par (T par U))

{ S equ S' assumed, property (4.18) of equ }

Correct.(S' par (T par U))

{ observation (B.3) and cornmutativity of par }

Correct.(T par (S' par U))

{ T equ T' assumed, property (4.18) of equ }

Correct.(T' par (S' par U))

{ observation (B.3) and commutativity of par }

Correct.((S' parT') par U))

Therefore, we have Spar T equ S' par T' on account of (4.18). •

125

The following lemma is used when proving that (PROC; ~) is a partially ordered set.

B.0.3 Lemma For processes P, Q, and R (not _1. or T) we have

P ~ Q ~ R ::::;. tP n tR ~ tQ .

Proof Assuming P ~ Q ~ R, we prove

(\ifs : s E tP A s E tR: s E tQ)

by structural induction on s. Note that the assumption implies

iP = iQ = iR A oP oQ =oR.

Base: s r::. On account of Q E PROC we haves= r:: E tQ.

Step: s ta for some trace t and symbol a. The induction hypothesis is

t E tP A t E tR ::::;. t E t Q .

We now derive

sE tP As E tR

{ s ta }

ta E tP A ta E tR

{ P, R E PROC, hence tP and tR are prefix-closed }

t E tP A t E tR A ta E tP A ta E tR

::::;. { induction hypothesis (B. 7) }

t E t Q A ta E tP A ta E tR

(B.4)

(B.5)

(B.6)

(B.7)

::::;. { case analysis on a E iQ V a E oQ, using respectively P Q or Q R }

ta E tQ

{ta=s}

sE tQ

This concludes the proof.

B.0.4 Theorem (See Section 4.5) (PROC; ~} is a poset.

Proof We show that relation ~ on PROC is a partial order.

1. P ~ P follows immediately from the definition of~. Hence, ~ is reflexive.

•

2. Assuming P ~ Q A Q ~ P, we show P = Q. The assumption implies iP iQ and

oP = oQ. Thus, it remains to prove tP = tQ. We derive

P~QAQ~P

126 APPENDIX B. SOME PROOFS

{calculus}

Pr;;;Q PI\Qr;;;Pr;;;Q

{ Lemma B.0.3 (twice) }

tP n tP ~ t Q 1\ t Q n t Q ~ tP

{ set theory }

tP =tQ

This proves the antisymmetry of r;;;.

3. Assuming P r;;; Q 1\ Q r;;; R, we show P r;;; R. The assumption implies

iP iQ iR 1\ oP = oQ = oR . (B.8)

So it remains to prove the third and fourth conjunct in definition (4.20) with Q := R.
We do only the third conjunct, since the fourth follows from symmetry.

From Lemma B.0.3 and the assumption we infer tP n tR ~ tQ. Now we derive for

trace t and symbol a

a E oP 1\ t E tP 1\ ta E tR

{ R E PROC, hence tR is prefix-closed }

a E oP 1\ t E tP 1\ t E tR 1\ ta E tR

=? {tPntR~tQ}

a E oP 1\ t E tQ 1\ ta E tR

=? { oP = oQ and Q r;;; R }

a E oP 1\ ta E tQ

'* {Pr;;;Q}

ta E tP

This completes the proof of !;;;'s transitivity.

•
The following lemma is fundamental to the understanding of the Factorization Theorem.

B.0.5 Lemma For DI processes P and Q we have

P;;;) Q = Gorrect.{P, '-"'Q}.

Proof Follows from Theorems 4.5.2 and 4.7.7. •
B.0.6 Theorem (See Theorem ,f..9.1) For DI processes P, Q, and R we have

P 11 Q ;;;) R = P ;;;) "'(Q 11 '-"'R) .

Proof We derive

P 11 Q ;J R

{ Lemma B.0.5 }

Correct.{P 11 Q,v-.R}

{ P 11 Q equ { P, Q} }

Correct.{P, Q, ..,-,R}

{ {Q,...,..,R} equ Q 11 ""R}

Correct.{P, Q 11 ""R}

{ ...,.., is its own inverse }

Correct.{P, ""'-"(Q 11 ""R)}

{ Lemma B.0.5 }

PII :1 '-'"'(Q 11 v.R)

127

•

128 APPENDIX B. SOME PROOFS

References

[Bir84] Garrett Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. Amer

ican Mathematical Society, Providence, Rl, third edition, 1984.

[CC79] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski's fixed

point theorems. Pacific Journal of Mathematics, 82(1):43-57, 1979.

[Cla67] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference

Proceedings: 1967 Spring Joint Computer Conference, volume 30, pages 335-

336, Atlantic City, NJ, 1967. Academic Press.

[CM73] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and

arbiter circuits. IEEE Transactions on Computers, C-22(4):421-422, April

1973.

[CM84] K. Mani Chandy and Jayadev Misra. Reasoning about networks of commu

nicating processes. Unpublished paper presented at INRJA Advanced Nato

Study Institute on Logics and Models for Verification and Specification of

Concurrent Systems, La Colle-sur-Loupe, France, 1984.

[CUV89a] Wei Chen, Jan Tijmen Udding, and Tom Verhoeff. Networks of communicating

processes and their (de)-composition. Computing Science Notes 89/05, Dept.

of Math. and C.S., Eindhoven Univ. of Technology, May 1989.

[CUV89b] Wei Chen, Jan Tijmen Udding, and Tom Verhoeff. Networks of communicating

processes and their (de)-composition. In Jan L. A. van de Snepscheut, editor,

The Mathematics of Program Construction, volume 375 of Lecture Notes in

Computer Science, pages 174-196. Springer-Verlag, 1989.

[DEC93] DEC. Digital's Alpha chip project. Communications of the AGM, 36:30-83,

February 1993.

[Dil89] David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed

Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[dNH83] R. de Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83-133, 1983.

129

130

[DP90]

[Ebe88]

[Ebe89]

[Ebe90]

[End77]

[Fan86)

[GD85]

[Hen88]

[HJ86]

[HJ87]

[Hoa85]

[HS86]

[Hur75]

[JHJ89]

REFERENCES

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam

bridge University Press, 1990.

Jo C. Ebergen. A formal approach to designing delay-insensitive circuits.

Computing Science Notes 88/10, Dept. of Math. and C.S., Eindhoven Univ.

of Technology, May 1988.

Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, vol

ume 56 of CWI Tract. Centre for Mathematics and Computer Science, 1989.

Jo C. Ebergen. Arbiters: An exercise in specifying and decomposing asyn

chronously communicating components. Research Report CS-90-29, Computer

Science Dept., Univ. of Waterloo, Canada, July 1990.

Herbert E. Enderton. Elements of Set Theory. Academic Press, New York,

1977.

Ting-Pien Fang. On decomposition of delay-insensitive modules by factor

ing. Technical Memorandum 314, Computer Systems Laboratory, Washington

Univ., St. Louis, MO, July 1986.

L. A. Glasser and D. W. Dobberpuhl. The Design and Analysis of VLSI

Circuits. McGraw-Hill, 1985.

Matthew Hennessy. Algebraic Theory of Processes. Series in Foundations of

Computing. The MIT Press, Cambridge, Mass., 1988.

C. A. R. Hoare and He Jifeng. The weil.kest prespecification: Part I. Funda

menta lnformaticae, 9:51-84, 1986.

C. A. R. Hoare and He Jifeng. The weakest prespecification. Information

Processing Letters, 24(2):127-132,·January 1987.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and

>.-Calculus. Cambridge Univ. Press, 1986.

Marco Hurtado. Structure and Performance of Asymptotically Bistable Dy

namical Systems. PhD thesis, Sever Institute of Technology, Washington

Univ., St. Louis, MO, 1975.

Mark B. Josephs, C. A. R. Hoare, and He Jifeng. A theory of asynchronous

processes. Technical Report PRG-TR-6-89, Oxford Univ., Computing Labo

ratory, 1989.

REFERENCES 131

[JNH93]

[Jos92]

[JU90]

[JU93]

[Kal86]

[KC87a]

[KC87b]

[Kel74]

[LS84J

[Luc94J

[Mar81]

[MB59]

[MC80]

C. R. Jesshope, I. M. Nedelchev, and C. G. Huang. Compilation of pro

cess algebra expressions into delay-insensitive circuits. lEE Proceedings-E,

140(5):261-268, 1993.

Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17-31,

1992.

Mark B. Josephs and Jan-Tijmen Udding. The design of a delay-insensitive

stack. Technical Report CS 9004, Dept. of C.S., Univ. of Groningen, The

Netherlands, 1990.

Mark B. Josephs and Jan Tijmen Udding. An overview of DI algebra. In

Proc. Hawaii International Conf. System Sciences, volume I. IEEE Computer

Society Press, January 1993.

Anne Kaldewaij. A Formalism for Concurrent Processes. PhD thesis, Dept.

of Math. and C.S., Eindhoven Univ. of Technology, 1986.

Lindsay Kleeman and Antonio Cantoni. Metastable behavior in digital sys

tems. IEEE Design & Test of Computers, 4:4-19, December 1987.

Lindsay Kleeman and Antonio Cantoni. On the unavoidability of metastable

behavior in digital systems. IEEE Transactions on Computers, C-36(1):109-

112, January 1987.

Robert M. Keller. Towards a theory of universal speed-independent modules.

IEEE Transactions on Computers, C-23(1):21-33, January 1974.

Jacques Loeckx and Kurt Sieber. The Foundations of Program Verification.

WHey-Teubner Series in Computer Science. Wiley, 1984.

Paul G. Lucassen. A Denotational Model and Composition Theorems for a

Calculus of Delay-Insensitive Specifications. PhD thesis, Dept. of C.S., Univ.

of Groningen, The Netherlands, May 1994.

Leonard R. Marino. General theory of metastable operation. IEEE Transac

tions on Computers, C-30(2):107-115, February 1981.

David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In

Proceedings of an International Symposium on the Theory of Switching, pages

204-243. Harvard University Press, April 1959.

Carver A. Mead and Lynn A. Conway. Introduction to VLSI Systems. Addison

Wesley, 1980.

132 REFERENCES

[MFR85] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis

of delay-insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Confer

ence on Very Large Scale Integration, pages 67-86. Computer Science Press,

1985.

[ML86] Saunders Mac Lane. Mathematics: Form and Function. Springer, 1986.

[OH86] E.-R. Olderog and C. A. R. Hoare. Specification-oriented semantics for com

municating processes. Acta Informatica, 23:9-66, 1986.

[Pee] Ad Peeters. The 'asynchronous' bibliography. Universal Resource Locator

ftp: I /ftp. win. tue. nl/pub/tex/ async. bib. Z. Corresponding e-mail ad

dress: async-bi b<!lwin. tue . nl.

[Pee90] Ad Peeters. Decomposition of delay-insensitive circuits. Computing Science

Notes 90/04, Dept. of Math. and C.S., Eindhoven Univ. of Technology, April

1990.

[Pop83] Karl R. Popper. Realism and the Aim of Science. Hutchinson, London, 1983.

[Pra9l] I. S. W. B. Prasetya. Solving the design equation in the failures model. Mas

ter's thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, July

1991.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Mono

graphs on Theoretical Computer Science. Springer-Verlag, 1985.

[RMCF88] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien

Fang. Q-modules: Internally clocked delay-insensitive modules. IEEE Trans

actions on Computers, C-37(9):1005-1018, September 1988.

[Ros88]

[RS93]

[Sch92]

[Seg91]

A. W. Roscoe. Two papers on CSP. Technical Monograph PRG-67, Ox

ford Univ. Computing Laboratory, Programming Research Group, 8-11 Keble

Road, Oxford OXI 3QD, U.K., July 1988.

Marly Roncken and Ronald Saeijs. Linear test times for delay-insensitive

circuits: a compilation strategy. In S. Furber and M. Edwards, editors, Pro

ceedings of IFIP Working Conference on Asynchronous Design Methodologies,

pages 13-27, Manchester, UK, 31 March- 2 April1993, 1993. Elsevier Science

Publishers.

Huub Schols. Delay-insensitive Communication. PhD thesis, Dept. of Math.

and C.S., Eindhoven Univ. of Technology, December 1992.

C-J. Seger. On the existence of speed-independent circuits. Theoretical Com

puter Science, 86(2):343-364, 1991.

REFERENCES 133

[Sei79]

[Sei8tl]

[Udd84]

[UV88]

[vB92]

[vB93]

Charles L. Seitz. Self-timed VLSI systems. In Charles L. Seitz, editor, Pro

ceedings of the 1st Caltech Conference on Very Large Scale Integration, pages

345-355, Pasadena, CA, January 1979. Caltech C.S. Dept.

Charles L. Seitz. System timing. In Mead and Conway [MC80], chapter 7.

Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Cir

cuits. PhD thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology,

1984.

Jan Tijmen Udding and Tom Verhoeff. The mathematics of directed specifi

cations. Technical Report WUCS-88-20, Dept. of C.S., Washington Univ., St.

Louis, MO, June 1988.

Kees van Berkel. Beware the isochronic fork. INTEGRATION, the VLSI

journal, 13(2):103-128, June 1992.

Kees van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI

Programming. International Series on Parallel Computing. Cambridge Univer-

sity Press, 1993.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits

Schalij. The VLSI-programming language Tangram and its translation into

handshake circuits. In Proceedings European Conference on Design A utoma

tion (EDAC), pages 384-389, 1991.

[vBNRS88] C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronald W. J. J.

Saeijs. VLSI programming and silicon compilation. In Proceedings ICCD'88

(IEEE International Conference on Computer Design: VLSI in Computers 8
Processors, pages 150-166, Rye Brook, New York, 1988.

[vdS85] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of

Lecture Notes in Computer Science. Springer-Verlag, 1985.

[vdSU86] Jan L. A. van de Snepscheut and Jan Tijmen Udding. An alternative im

plementation of communication primitives. Information Processing Letters,

23(5):231-238, 1986.

[Ver85] Tom Verhoeff. Notes on delay-insensitivity. Master's thesis, Dept. of Math.

and C.S., Eindhoven Univ. of Technology, 1985.

[Ver88] Tom Verhoeff. Delay-insensitive codes-an overview. Distributed Computing,

3(1):1-8, 1988.

[Ver89] Tom Verhoeff. Characterizations of delay-insensitive communication protocols.

Computing Science Notes 89/06, Dept. of Math. and C.S., Eindhoven Univ.

of Technology, May 1989.

134

[Ver94]

[Waa89]

[WE93]

REFERENCES

Tom Verhoeff. The testing paradigm applied to network structure. Computing

Science Notes 94/10, Dept. of Math. and C.S., Eindhoven Univ. of Technology,

March 1994.

Martin Waardenburg. Composition and classification of components. Master's

thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1989.

N. Weste and K. Eshragian. Principles of CMOS VLSI Design: A Systems

Perspective. Addison-Wesley, second edition, 1993.

Index

o (function composition), 5

E (symbol universe), 23

"" (reflection)

-on PROC, 24, 70

-on A, 85

f (after-operator), 24, 70

r (projection), 28

pp (renaming for P), 29

S (wired version of S), 29

!;;; (partial order)

- on PROC, 34, 77

-on A, 85

n (greatest lower bound), 34, 121

u (least upper bound), 34, 121

j_ (bottom, interfering), 35, 78, 83

T (top, unreachable), 35, 78, 83

1-] (composite of), 37

11 (composition on PROC), 37

;ep (same direction for P), 42

a (subscript: in DI Model), 69

(3 (subscript: in Extended DI Model), 69

\7 (transient (traces of)), 70, 74, 83

D (indifferent (traces of)), 70, 74, 83

~ (demanding (traces of)), 70, 74, 83

'lj; (abstraction), 71

rpo (indifferent embedding), 72

rpv (progressive embedding), 72

A (set of trace labels), 83

11 (composition on A), 84

.P; (transformation on t:C:F), 90

l-J (transformation on t:C:F), 91

A(ao, a1; bo, b1) (arbiter), 63

a (alphabet of), 23, 25, 70

acceptable input, 28

after-operator, 24, 70

alphabet, 23

- of process, 23, 70

135

- of system, 25

anisochronic operation, 28, 29

anti-reflexive relation, 119

antisymmetric relation, 119

arbiter, 63

blending operator, 26, 45, 112

C(a, b; c) (C-element), 17

C-element, 17

canonical representative, 37

closed system, 25

composite, 37

composition

-on PROC, 37

on sys, 26

on A, 84

congruence, 32

connectable systems, 26

converse relation, 120

converter, 2-phase-to-4-phase -, 55

Correct (autonomous correctness)

on sys, 32

on A, 85

D(ao, ab bo, b1; coo, COl! c10, en)

(decision-wait), 56

deadlock, 61, 74

decision-wait, 56

demanding trace, 70

design

by factorization, 56

by output analysis, 55

by state machine, 58

equation, 48

VI (set of all DI processes), 41

DI Model, 23

Extended-, 69

136

dynamic output nondeterminism, 102

t:C:F (set of all ECFs), 83

ECF (enhanced characteristic function), 83

t:C:F;(I, 0) (subset of t:C:F), 89

t:C:Fj,k(I, 0) (subset of t:C:F), 89

t:; (predicate on t:C:F), 89

t:i,k (predicate on t:C:F}, 89

embedding, 72

indifferent 72

progressive-, 72

trace-set preserving ·--, 72

enabled output, 28

enhanced characteristic function, 83

equ (equivalence)

on SYS, 32

on A, 85

equivalence relation, 119

- for systems, 32

external alphabet, 25

F(a; b,c) (fork), 17

f (ECF of), 83, 85

Factorization Theorem, 49, 56, 67, 126

first-rest discriminator, 56

fork, 17

isochronic 68

Friends (friends of), 36

Galois connection, 49

greatest

element, 120

lower bound, 121

I(a; b) (I-wire), 16

i (input alphabet of), 23, 25, 70

I-wire, 16

indifferent trace, 70

input alphabet, 23

interference, 28

computation 13

transmission-, 14, 30

interfering trace, 28

internal alphabet, 25

intf (interfering traces of), 28

isochronic operation, 28

isomorphic systems, 26

JTU-Rules, 42

L(ao, a1 , b; c0 , et) (latch), 56

latch, 56

ternary -, 58

lattice, 121

complete -, 121

least

element, 120

upper bound, 121

lower bound, 120

M(a, b; c) (merge), 17

max (maximum), 120

maximal element, 120

maximum, 120

merge, 17

three-input 52

metastability, 10

min (minimum), 120

minimal element, 120

minimum, 120

n (internal alphabet of), 25

neighbor-swap rule, 87

non-disabling symbols, 60

o (output alphabet of), 23, 25, 70

one-all, 65

order

partial -, 120

strict-, 120

total 120

output alphabet, 23

output refusal set, 95

par (composition on SYS), 26

partial order, 120

pass (pass set of)

-on SYS, 36

-on A, 85

passivator, 53

poset, 120

pre-order, 119

P'ROC (set of all processes), 23

P'ROC(l, 0) (subset of P'ROC), 34

INDEX

INDEX

process, 23, 70

(abstract) state of-, 25

(maximally) indifferent-, 72

(output-)deterministic-, 98

DI -, 41

do-nothing-wrong-, 67

empty-, 24

finite-state -, 64

maxirnally transient -, 72

minimally demanding -, 72

minimally transient-, 72

passive-, 64

progressive-, 72

projection, 28

quotient algebra, 32

rainy day, 65

'RCOV (subset of VI), 103

reach (reachable traces of), 28

reachable trace, 28

refinement

closed, 64

closure, 103

relation, 32

reflection

- on PROC, 24, 70

on A, 85

reflexive relation, 119

refusal set, 95

trivial -, 97

regular. expression, 52

rendez-vous, 53

RPBI (subset of VI), 105

Rule

-./IfS, 87

- w, 42,80

X, 42, 80

-Y, 43,80

-Y', 43,80
yin, 60, 100

- yout, 60, 100

- z, 43,80

-Z',60
-zi",6o
- zout, 60

S(ao, ab b; eo, c1) (sequencer), 63

sat (satisfaction)

on SYS, 32

on A, 85

satisfaction relation, 32

sequencer (process), 63

sink, 52

source, 52

state graph, 16

edge labels omitted from -, 44

labeled 70

minimal 25

vertex numbers in-; 19

static output nondeterminism, 101

symbol, 23

symmetric relation, 119

sys (set of all systems), 25

system, 25

DI-, 46

T(a; b, c) (toggle), 55

t (trace set of), 23, 70

terminator, 51

testing, 36, 116

timing problem, 9

toggle, 54

total, 120

trace set, 23, 70

transient trace, 70

transitive relation, 119

tree of ECF, 89

U(a; b, c) (undetermined selector), 62

undetermined selector, 62

upper bound, 120

W(a; b) (wire), 16

weakest prespecification, 49

weaving operator, 31, 112

wire, 16

wired system, 29

x (external alphabet of), 25

xi (external inputs of), 25

xo (external outputs of), 25

137

Statements

accompanying the dissertation

A Theory of

Delay-Insensitive Systems

by

Tom Verhoeff

Eindhoven University of Technology

20May 1994

1. The testing paradigm is not only suitable for comparing behavioral

aspects of systems, but also for comparing structural aspects.

See this dissertation and [1].

[1} Tom Verhoeff, The Testing Paradigm Applied to System Structure,
Computing Science Notes 94/10, EUT, March 1994.

2. In contrast to what is claimed in [2], nondeterminacy cannot always

be reduced.

See Chapter 8 of this dissertation.

f2] Edsger W. Dijkstra, A Detailed Derivation of a Very Simple Program,
EWD1162, October 1993.

3. Let p(a, b, c, d) be the probability that in a bridge game the players

North, East, South, and West have a, b, c, and d spades, respec

tively. Let q(a, b, c, d) be the probability that a hand at bridge, say of

North, will consist of a spades, b hearts, c diamonds, and d clubs.

Since p(a, b, c, d) = q(a, b, c, d), the answers to exercises 32 and 34 in

Section II.10 of [3] are inexcusably misleading.

[3] William Feller, An Introduction to Probability Theory and Its Appli
cations, Third Edition, Volume 1, John Wiley & Sons, 1968.

4. Rubik's Magic, the puzzle with the eight ingeniously hinging tiles,

has 1351 spatial configuration classes, of which only two are planar.

[4] Tom Verhoeff, Magic and Is Nho Magic, Cubism for Fun, Nr. 15,

1987. [The title, including h, is inspired by Simon Stevin's motto

Wonder en is gheen wonder.'

5. Even for linked lists, Quicksort is a faster sorting algorithm than

Merge sort.

[5] Tom Verhoeff, Quicksort for Linked Lists, Computing Science

Notes 93/03, EUT, January 1993.

6. The Prisoner's Dilemma-a discrete non-zero-sum two-player game,
formulated for instance in [6]-has an interesting continuous version,
which implies that, for a strategy to do well, the severity of retaliation
should be strictly less than the severity of provocation. It remains to
be explained why people often behave in the opposite way.

[6] Robert Axelrod, The Evolution of Cooperation, Basic Books, 1984.

[7] Tom Verhoeff, A Continuous Version of the Prisoner's Dilemma,
Computing Science Notes 93/02, EUT, January 1993.

7. In TEX (see [8]), vertical alignment of boxes is harder to adjust than
horizontal alignment: the former requires glue juggling, the latter
not. This can be attributed to an unnecessary break of symmetry
in the design of T]jX. The reference point of a box is restricted to lie
either on the left-most side of the box or, for negative width, on the
right-most side. Its vertical position, being determined by height and
depth, is not so restricted.

[8] Donald E. I<nuth, The Tp){book, Addison-Wesley, 1984.

8. (a) Computing science students ought to pay ample attention to
mathematics.

(b) Mathematics students ought to pay ample attention to comput
ing science.

9. The three options accept, accept after rewriting, and reject, usually
available to referees of journal articles for expressing their judgment,
should be extended with the option reject after rewriting.

10. Inclusion of a frivolous index entry in a dissertation helps eliminate
errors.

11. Manual Therapy, in spite of its name, is practised mostly by brain.

