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A Theory o f Electrons and Protons.
By P. A. M. D irac, St. John’s College, Cambridge.

^Communicated by R. H. Fowler, F.R.S.—Received December 6, 1929.)

§ 1. Nature of the Negative Energy Difficulty.

The relativity quantum theory of an electron moving in a given electro­
magnetic field, although successful in predicting the spin properties of the 
electron, yet involves one serious difficulty which shows that some fundamental 
alteration is necessary before we can regard it as an accurate description of 
nature. This difficulty is connected with the fact that the wave equation, 
which is of the form

---- h - A0 -j- pj( cr, p -f- - A ) -f- p3mc ^ =  0,
L e e  \ c ( 1 )

has, in addition to the wanted solutions for which the kinetic energy of the 
electron is positive, an equal number of unwanted solutions with negative 
kinetic energy for the electron, which appear to have no physical meaning. 
Thus if we take the case of a steady electromagnetic field, equation (1) will 
admit of periodic solutions of the form

=  ue ~ m /h , (2)

where u is independent of t, representing stationary states, E being the total 
energy of the state, including the relativity term me2. There will then exist 
solutions (2) with negative values for E as well as those with positive values ; 
in fact, if we take a matrix representation of the operators pjcq, p1<r2, p1f>3, 
p3 with the matrix elements all real, then the conjugate complex of any solution 
of (1) will be a solution of the wave equation obtained from (1) by reversal of 
the sign of the potentials A, and either the original wave function or its con­
jugate complex must refer to a negative E.

The difficulty is not a special one connected with the quantum theory of the 
electron, but is a general one appearing in all relativity theories, also in the 
classical theory. I t arises on account of the fundamental fact that in the 
relativity Hamiltonian equation of the classical theory, namely,

-  +  - A0)2 — (p +  - A f  — m2c2 =  0, c c ! \ c l . (3)
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there is an ambiguity in the sign of W, or rather W -f- eA0. Although the 
operator on the wave function in (1) is linear in W, yet it is, roughly speaking, 
equivalent to the left-hand side of (3) and the ambiguity in sign persists. The 
difficulty is not important in the classical theory, since here dynamical variables 
must always vary continuously, so that there will be a sharp distinction between 
those solutions of the equations of motion for which W +  eA0 me2 and those 
for which W -f- eA0 — me2, and we may simply ignore the latter.

We cannot, however, get over the difficulty so easily in the quantum theory. 
I t  is true that in the case of a steady electromagnetic field we can draw a 
distinction between those solutions of (1) of the form (2) with E positive and 
those with E negative and may assert that only the former have a physical 
meaning (as was actually done when the theory was applied to the determination 
of the energy levels of the hydrogen atom), but if a perturbation is applied to 
the-system it may cause transitions from one kind of state to the other. In the 
general case of an arbitrarily varying electromagnetic field we can make no 
hard-and-fast separation of the solutions of the wave equation into those 
referring to positive and those to negative kinetic energy. Further, in the 
accurate quantum theory in which the electromagnetic field also is subjected 
to quantum laws, transitions can take place in which the energy of the electron 
changes from a positive to a negative value even in the absence of any external 
field, the surplus energy, at least 2 me2in amount, being spontaneoulsy emitted 
in the form of radiation. (The laws of conservation of energy and momentum 
require at least two light-quanta to be formed simultaneously in such a process.) 
Thus we cannot ignore the negative-energy states without giving rise to 
ambiguity in the interpretation of the theory.

Let us examine the wave functions representing states of negative energy a 
little more closely. If we superpose a number of these wave functions in such 
a way as to get a wave packet, the motion of this packet will be along a classical 
trajectory given by the Hamiltonian (3) with W -f- eA0 negative. Such a tra ­
jectory, it is easily seen, is a possible trajectory for an ordinary electron (with 
positive energy) moving in the electromagnetic field with reversed sign, or 
for an electron of charge e (and positive energy) moving in the original 
electromagnetic field. Thus an electron with negative energy moves an external 
field as though it carries a positive charge.

This result has led people to suspect a connection between the negative- 
energy electron and the proton or hydrogen nucleus.* One cannot, however,

* See for example, Weyl, ’ Z. f. Phys.,’ vol. 56, p. 332 (1929).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

ug
us

t 2
02

2 



362 P. A. M. Dirac.

simply assert that a negative-energy electron is a proton, as that would lead 
to the following paradoxes :—

(i) A transition of an electron from a state of positive to one of negative
energy would be interpreted as a transition of an electron into a proton, 
which would violate the law of conservation of electric charge.

(ii) Although a negative-energy electron moves in an external field as though 
it has a positive charge, yet, as one can easily see from a consideration of 
conservation of momentum, the field it produces must correspond to its 
having a negative charge, e.g., the negative-energy electron will repel 
an ordinary positive-energy electron although it is itself attracted by 
the positive-energy electron.

(iii) A negative-energy electron will have less energy the faster it moves and 
will have to absorb energy in order to be brought to rest. No particles 
of this nature have ever been observed.

A closer consideration of the conditions that we should expect to hold in the 
actual world suggests that the connection between protons and negative- 
energy electrons should be on a somewhat different basis and this will be 
found to remove all the above-mentioned difficulties.

§ 2. Solution of the Negative Energy Difficulty.
The most stable states for an electron ( the states of lowest energy) are 

those with negative energy and very high velocity. All the electrons in the 
world will tend to fall into these states with emission of radiation. The Pauli 
exclusion principle, however, will come into play and prevent more than one 
electron going into any one state. Let us assume there are so many electrons 
in the world that all the most stable states are occupied, or, more accurately, 
that all the states of negative energy are occupied except perhaps a few of small 
velocity. Any electrons with positive energy will now have very little chance 
of jumping into negative-energy states and will therefore behave like electrons 
are observed to behave in the laboratory. We shall have an infinite number of 
electrons in negative-energy states, and indeed an infinite number per unit 
volume all over the world, but if their distribution is exactly uniform we 
should expect them to be completely unobservable. Only the small departures 
from exact uniformity, brought about by some of the negative-energy states being 
unoccupied, can we hope to observe.

Let us examine the properties of the vacant states or “ holes.” The
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problem is analogous to that of the X-ray levels in an atom with many electrons. 
According to the usual theory of the X-ray levels, the hole that is formed when 
one of the inner electrons of the atom is removed is describable as an orbit 
and is pictured as the orbit of the missing electron before it was removed. 
This description can be justified by quantum mechanics, provided the orbit 
is regarded, not in Bohr’s sense, but as something representable, apart from 
spin, by a three-dimensional wave function. Thus the hole or vacancy in a 
region that is otherwise saturated with electrons is much the same thing as a 
single electron in a region that is otherwise devoid of them.

In the X-ray case the holes should be counted as things of negative energy, 
since to make one of them disappear ( i.e., to fill it up), one must add to it an 
ordinary electron of positive energy. Just the contrary holds, however, for 
the holes in our distribution of negative-energy electrons. These holes will 
be things of positive energy and will therefore be in this respect like ordinary 
particles. Further, the motion of one of these holes in an external electro­
magnetic field will be the same as that of the negative-energy electron that 
would fill it, and will thus correspond to its possessing a charge -f- e. We are 
therefore led to the assumption that the holes in the distribution of negative- 
energy electrons are the protons. When an electron of positive energy drops into 
a hole and fills it up, we have an electron and proton disappearing together with 
emission of radiation.

A difficulty arises when we consider the field produced by the distribution of 
negative energy electrons. There is an infinite density of electricity which, 
according to Maxwell’s equation

div E =  — 47rp, « (4)

should produce an electric field of infinite divergence. I t  seems natural, 
however, to interpret the p in Maxwell’s equation (4) as the departure from the 
normal state of electrification of the world, which normal state of electrification, 
according to the present theory, is the one where every electronic state of 
negative energy and none of positive energy is occupied. This p will then 
consist of a charge — e arising from each state of positive energy that is 
occupied, together with a charge +  e arising from each state iof negative energy 
that is unoccupied. Thus the field produced by a proton will correspond to 
its having a charge -j- e.

In this way we can get over the three difficulties mentioned at the end of the 
preceding section. We require to postulate only one fundamental kind of 
particle, instead of the two, electron and proton, that were previously necessary.
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364 P. A. M. Dirac.

The mere tendency of all the particles to go into their states of lowest energy 
results in all the distinctive things in nature having positive energy.

Can the present theory account for the great dissymmetry between electrons 
and protons, which manifests itself through their different masses and the 
power of protons to combine to form heavier atomic nuclei ? I t is evident 
that the theory gives, to a large extent, symmetry between electrons and 
protons. We may interchange their roles and assert that the protons are the 
real particles and the electrons are merely holes in the distribution of protons 
of negative energy. The symmetry is not, however, mathematically perfect 
when one takes interaction between the electrons into account. If one neglects 
the interaction, the Hamiltonian describing the whole system will be of the 
form £  IIa, where H„ is the Hamiltonian or energy of an electron in state a 
and the summation is taken over all occupied states. This differs only by a 
constant ( i.e., by something independent of which states are occupied) from 
the sum £  (— Ha) taken over all unoccupied states. Thus we get formally 
the same dynamical system if we consider the unoccupied states or protons 
each to contribute a term — Hj to the Hamiltonian. On the other hand, if 
we take interaction between the electrons into account we get an extra term 
of the form £Va6 in the Hamiltonian, the summation being taken over all 
pairs of occupied states ( a, b), and this is not equivalent to any sum taken over 
pairs of unoccupied states. The interaction would therefore give an essentially 
different Hamiltonian if we regard the protons as the real particles that 
occupy states.

The consequences of this dissymmetry are not very easy to calculate on 
relativistic lines, but we may hope it will lead eventually to an explanation of 
the different masses of proton and electron. Possibly some more perfect 
theory of the interaction, based perhaps on Eddington’s calculation* of the 
fine structure constant e2/Ac, is necessary before this result can be obtained.

§ 3. Application to Scattering.
As an elementary application of the foregoing ideas we may consider the 

problem of the scattering of radiation by an electron, free or bound. A 
scattering process ought, according to theory, to be considered as a double 
transition process, consisting of first an absorption of a photon with the electron 
simultaneously jumping to any state, and then an emission with the electron 
jumping into its final state, or else of first the emission and then the absorption.

* Eddington, ’ Roy. Soc. Proc.,’ A, vol. 122, p. 358 (1929).
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We therefore have to consider altogether three states of the whole system, the 
initial state with an incident photon and the electron in its initial state, an 
intermediate state with either two or no photons in existence and the electron in 
any state, and the final state with the scattered photon and the electron in its 
final state. The initial and final states of the whole system must have the 
same total energy, but the intermediate state, which lasts only a very short 
time, may have a considerably different energy.

The question now arises as to how one is to interpret those scattering pro­
cesses for which the intermediate state is one of negative energy for the electron. 
According to previous ideas these intermediate states had no real physical 
meaning, so it was doubtful whether scattering processes that arise through 
their agency should be included in the formula for the scattering coefficient. 
This gave rise to a serious difficulty, since in some important practical cases 
nearly all the scattering comes from intermediate states with negative energy 
for the electron.* In fact for a free electron and radiation of low frequency, 
where the classical formula holds, the whole of the scattering comes from such 
intermediate states.

According to the theory of the present paper it is absolutely forbidden, by 
the exclusion principle, for the electron to jump into a state of negative energy, 
so that the double transition processes with intermediate states of negative 
energy for the electron must be excluded. We now have, however, another 
kind of double transition process taking place, namely, that in which first 
one of the distribution of negative-energy electrons jumps up into the required 
final state for the electron with absorption (or emission) of a photon, and then 
the original positive-energy electron drops into the hole formed by the first 
transition with emission (or absorption) of a photon. Such processes result 
in a final state of the whole system indistinguishable from the final state with 
the more direct processes, in which the same electron makes two successive 
jumps. These new processes just make up for those of the- more direct pro­
cesses that are excluded on account of the intermediate state having negative 
energy for the electron, since the matrix elements that determine the transition 
probabilities are just the same in the two cases, though they come into play in 
the reverse order. In this way the old scattering formulas, in which no 
intermediate states are excluded, can be justified.

* I am indebted to I. Waller for calling my attention to this difficulty.

2 cVOL. CXXVI.— A.
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