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A first principle approach to ,the problem of equilibrium vacancy concentration is pre­

sented. Use is made of M11yer's cluster expansion and a localization approximation suggested 

by the Lindemann melting law. The result is a theory which is not only richer physically but 

also .simpler mathematically than all the previous theories. Thermal expansion, anharmonicity 

and many-body force are incorJ>orated in a n:~tural fashion. The Arrhenius formula, Salter's 

equation for yapor pressure aud a new equation of state for a crystal emerge as natural 

consequences of present th_eory. 

§ 1. Introduction 

In this paper Mayer's cluster expans~on1> as extended by Morita and Hiroike 

is applied to a classical solid. Making use of a result from a previous paper2> the 

free energy functional f[p (r)] is derived 

-/3f= .-In 8---o (~ -1)ln(l-8) +In Z 

+ ;e J/r J'dr'p(r)p(r')/3V2 (r,r'), (1) 

where {3 is defined as 1/ kBT. f is the free energy per particle. 8 is equal to 

Nj N 0• N is the total number of particles of the crystal. N 0 is the total number 

of lattice sites. Hence, 1-e is the number of vacancy per site. Z is defined by 

(2) 

v 0. originates from kinetic energy and is equal to (h2/2nmkBT ) 312 !2 denotes the 

Wigner-Seitz cell 'centered at the origin o. The primes on the second integral 

signs of both equations, mean that r and r' cannot occupy the same Wigner-Seitz 

cell so that the interaction potential v2 behaves smoothly. p(r) denotes the density 

*> ' Pre~ent address. 
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1000 S.-T. Wu 

function. The assumptions which lead to the above equations are four. Firstly, 
p(r) is periodic and peaked at the R/s, the lattice vectors. Secondly the number 
of interstitial particles are much fewer than that of vacancies. Thirdly the fluctua­
tion of internal field is small and fourthly the .interaction potential V2 is a two­
body potential. The last one can be relaxed easily to include a three-body potential 
V3• This is relevant in view of the experimental results on, argon and krypton.3'' 4' 

Minimizing the free energy functional of Eq. (1) with respect to p(r),5' we shall 
derive Arrhenius formula, Salter's equation of vapor pressure6' and a new equation 
of state for the crystal. In contrast to all the previous theories7J-gJ on vacancy 
concentration the present one can be systematically improved by examining Mayer's 
cluster series. The next appoximation beyond Eq. (1) is akin to Bethe method for 
an Ising magnet. It is plal;med to be presented in a future publication. 

Our approach is motivated by the observation that a three-body force10' is 
invoked to interpret the deviation of the vacancy formation energy from cohesive 
energy in a krypton crystal near its triple point. -Such a drastic step using a 
highly heuristic argument a:ppears to us 'to be too bold to be convincing. In 
particular the mysterious scheme of fictitiously creating a 'vacancy by taking an 
atom from the deep interior of a crystal to a kinkw on the surface has never 
been justified. In our approach no such step is needed. All the results are obtain­
ed by minimizing the free energy functional. 

In § 2 the free energy functional is derived. It is minimized in § 3. In § 4 
a self-consistent quadrupole approximation is introduced to make the results of 
previous sections more transparent. Conclusions and summaries are given in the 
last section. 

§ 2. The free energy functional 

As in Ref. 2) we assume that p(r) ofa crystal differs from zero appreciably 
only if r belongs to the SJ/s which are a series of disconnected regions in r space. 
The sizes of the SJ/s are assumed to be so small that two particles occupying_ the 
same Qi would repulse each other harshly. The distances between the SJ/s are 
assumed to be so large that two particles sitting on the different SJ/s do :rwt 
repulse each other strongly. These are legitimate assumptions for a crystal in 
view of the Lindemann melting law. Assuming these and using Mayer's cluster 
expansion one obtains the mean field equatiem2' 

(3) 

where the subscript i means that r belongs to Qi, vl (r) is the external field 
and Vint (r), the internal field, is given by 

Vint(r)=- ~ ln(1-0i)'+ fdr'p(r')V2 (r',r). ,(4) 
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A Theory of Equilibrium Vacancy Concentration in a Crystal 1001 

ei, the total number of particles in Qi, is defined by 

(5) 

11 is the chemical potential. Integrating _both sides of Eq. (3) and using Eqs. ( 4) 

and (5) one obtains 

(6) 

with zi defined by 

Zi=_!__ f drexp{-/1[V1(r) + S'dr'p(r')V2(r',r)]}. (7) 
Vo Jn, 

Multiplying Eq. (6) by ei, summing over i and using 

one obtains 

:E ei = N =total number of particles, 
i 

The grand potential G is related to free energy F through 

G=F-Np. 

It has the following cluster expartsion:12' 

(8) 

(9) 

(10) 

-f1G=N+ ( o--o + ~ +· .. )- Jdrp(r)[-/1Vint(r)]. (11) 

The definition of graphs are given in Ref. 2). The last term is easily obtained 

from Eq. ( 4) as 

-~e,ln(1-e,)+ Jar J'dr'p(r)p(r')/1V2(r,r'). (12) 

Denoting the sum of the graphs of Eq. (11) by B and comparing this series of 

graphs with those of Vint(r), 2' one obtains the functional relation 

Hence 

oB 
op (r) 

-! J dr J'dr'p(r)p(r')f1V2(r,r') 

(13) 

(14) 

as can be seen by applying o / op (r) to Eq. (14). Combining Eq. (9) to (14) 

one obtains 
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1002 S.-T. Wu 

1 S S' . ~2 dr dr'p(r)p(r'){3V2(r,r'), (15) 

for a crystal Qi are all equivalent. Hence Eq. (15) reduces to Eq. (1) and 
Eq. (7) to Eq. (2) because V 1 =0. These results can be extended easily to in-­
clude many-body forces. The results of including a three-body potential is given 
as follows: The .internal field has a three-body contribution: 

1 J' Vint(r) =--In (1- 8;) + dr'p (r') V2 (r', r) . .. {3 . 

+ f dr' r dr" p (r') p (r") V3 (r', ;", r) . 

The free energy functional becomes 

-{3f=- [In8+ ( ~ -1)In(1-8) ]+InZ 

+___!__:_ r dr S'dr'p(r)p(r'){3V2(r,r') 28. Jo 

(16) 

+ : 8 fndr J' dr' J' dr" p (r) p (r') p (r"){3V3 (r', r", r). (17) 

Using periodicity of the crystal and defining 

(18) 

and 

(19) 

one obtains 

Vint(r) = --In(1.:_8) + · dr'p(r')W2(r',r) 1 i• .. 

{3 g 

. + So dr' .L dr" p (r') p (r") Wa (r', r", r), (20) 

-{3f= -In 8- ( ~ -1)In(1-8) +InZ 

1 i i - . +- dr dr'p (r) p (r'){3W2(r, r') 28 g g 

+2 f dr f dr' f dr" p(r') p (r") p (r){3W3 (r',-r", r) (21) 38 Jo Jo Jo 

and 

Z= _!_ f dr exp[-{3 ldr'p (r') W 2 (r', r) v 0 Jo Jo 
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A Theory of Equilibrium Vacancy Concentration in a Crystal 1003 

f is equal to FjN. Notice also that 8=N/N0 where N 0 is the total number 

' of lattice sites. 

§ 3. Thermodynamics 

In this section the differential &(/3/) with respect to (Jp(r), d/3 and dv is 

derived. v is the volume per particle. It is related to the volume of a Wigner­

Seitz cell A.a3 by 

V V/No v = - = ----''------'-
N N/No 

(23) 

where a is the lattice constant. A is a geometric factor. The first step is to 

rewrite Eq. (3) as 

p (r) = _e_ exp[-!3 f dr'p (r') w2 (r', r) 
,voZ J.a _ 

- {3 S/r' t dr" p (r') p (r") W 3 (r', r", r)]. (24) 

Taking differential of both sides o~ Eq. (22) and using Eq. (24) one readily obtains 

' ' ( 1 '' 2 ) e& ln ( VoZ) = - (J -{3A2 + -!3Aa 
2 ' 3 

- _!: f dr f dr' p (r) p (r') (J [{3W2(r, r')] 
2 J.a J.a 

_1_ f dr f dr' f dr"p(r)p(r')p(r")(J[{3W8 (r,r',r")], (25) 
3 J.a J.a J.a 

where A 2 and As are defined 'by 

A2 = Sndr Slr' p (r) p (r') W2 1(r' r')' (26) 

Aa = L dr J/r' Sn dr" p (r) p (r') p (r") W3 (r, r', r"). - (27) 

Since both W2 and Ws are functions of lattice constant, da has to be expressed 

in terms of de and dv as 

3 da =dB+ dv . 
a e v 

(28) 

Taking differential of Eq: (21) and using Eqs. (25) and_ (28), one obtains 

-d({3f) =- -ln(1-8)--{3A2--!3Aa-!3C de [ 1 2 J 
82 2 - 3 
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1004 S.-T. Wu 

-d{3 -kBT+-A2+-Aa --{3C [ 3 1 1 J dv 
2 2{) 3{) v{) ' 

(29) 

where C stands for 

C=!!__ l dr ldr'p(r)p(r')~W2 (r,r') 6 JtJ JtJ da 

+ !!__ l dr l dr' l dr" p (r) p (r') p (r") ~ Wa (r, r', r") . (30) 9 JtJ JtJ JtJ da 

f has to be stationary with respect to 8 for constant {3'and v. Hence one obtains 

From the second term of Eq. (29) one obtains the internal energy per particle as 

a 3 1 1 f=-(/3.'-~') =-kBT+ -A2 +--Aa 8{3 J 2 ' 28 38 ' 
(32) 

while from the third term an equation of state for the_ crystal follows: 

{3pv = - v_k_{3f = - lie . av 8 
(33) 

The physical contents are quite transparent when one exammes the -meaning of 
A 2, A 3 and C as defined previously. It is recognized from Eq. (31) that the 
free energy per vacancy is 

(34) 

The last term C can be estimated from Eq. (33) using the vapor pressure at 
triple point. 15l It is smaller than 0.5°K and is negligible compared to the first 
two terms which are greater than 500°K. Notice also that 1-8<10-3• Hence, 
following Eqs. (34) and (32), g and f are related through ' 

(35) 

It is to be recognized that the first term is the cohesive energy per particle with 
respect to the dilute gas phase at the same temperature. Thus it is demonstrated 
that the deviation of vacancy free energy from cohesive energy per atom is due 
to the -presence of multi-body interaction potentials.4l The cohesive energy is re­
lated to the vapor pressure which can obtained by equating the chemical potentials 
of solid and gas phase. 

Using 

~-t=f+Pv (36) 
and 
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A Theory of Equilibrium Vacancy Concentration in a Crystal 1005 

f3tL (gas phase) =In f3Pv0 + {3pB' , (37) 

where B' 1s the second virial coefficient, one readily obtains 

In{3pvo={3(E-3k8 T) -InZ'+f3P( ).:8 -B') 

+In(}+ ( ~ · -1) In (1- (}) 

with Z' difined by 

In terms of Z' the entropy per particle is obtained, 

(38) 

(39) 

(40) 

In the next sectiol]. Eq. (38) is shown to be closely related to Salter's formula. 
We conclude present section by the remark that Eqs. (24) and (31) determine 
p (r), lattice constant and, from these, all the thermodynamical variables as func­
tions of temperature and specific volume. 

§ 4. Quadrupole approximation 

p(r) is highly localized as the Lindemann melting law implies. Hence it is 

useful to expand W 2 and W 8 in power series of r' and r" to convert Eq. (24) 
into a multipole expansion of the following:2> 

p (r) =_j__ exp {-s[ow2Co, r) +dta, W2(o, r) 
VoZ 

where ai, 8a and Op are partial differential operators. The multipole moments 
are defined by 

0= Sndrp(r), (42) 

dt= Sndr r,p (r), (43) 

qaf3= Sndr rar13p (r). (44) 

The higher order , terms are trivial to write down. The convergence of this series 
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1006 S.-T. Wu 

depends on the cases considered. In the following it is truncated at the second 
order for the purpose of illustrating its physical contents. The dipole moment 
always vanishes because p(r) =p( -r). Thus from Eqs; (41) and (44) 

qa/3 = ___!!_ f dr r ar f3 exp {- !3[ow2 (o, r) + e·w~ (o, o, r) voZ Jg 

• 

(45) 

This is a self-consistent equation for quadrupole moment. To integrate Eq. ( 45) 
explicitly let us expand W 2 and W3 in power series- of r, and keep only up to 
second order, Le., harmonic approximation. The-linear term vanishes because p (r) 
is peaked at r = 0. The integration is easily car:ried ouesr to obtain 

(46) 

where K is a 3 X 3 matrix defined by 

Ka13 = Oaa813 W2 (o, o) + 028a813 Ws (o, o, o) 

1 + -q".[8a8138"8.W2 (o, o) + 208ai:Y138"8. Wa.(o, o, o)]. (47) 2 

The above two equations together constitute a self-consistent equation for the quad­
rupole moments. Notice that even if the second derivatives are minus in Eq. ( 47), 
qafl still can have a positive s~lution provided the fourth derivatives are positive. 
Physically this means that although the elastic constants are minus, the crystal can 
still be stabilized by a positive fourth order derivative.w This is best illu~trated by 
considering a one-dimensional analogue of Eqs. ( 47) and ( 46). In the present 
approximation p(r) becomes Gaussian. A2> A 8. and C can a:ll be evaluated by 
expanding W 2 and W 3 in power series. The results are 

(48) 

(49) 

If the term o ( q2) are dropped one obtains 

(50) 

The internal energy has a static part which depends on temperature through the 
lattice constant. The remaining is the energy of a harmonic oscillator. The va­
cancy free energy is given by 
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A Theory of Equilibrium Vacancy Concentration zn a Crystal 1007 

(51) 

where the term C has been dropped. The first two terms can be identified as 
formation energy 'and the last. as entropy term. Notice that the formation entropy 
is equal to 1.5k~ plus a three-body contribution. A comparison with experiments4> 
is not possible for lack of a :reliable three-body potential. The present result is 
simpler than all .. the previous calculations7l~9> because the equilibrium vacancy con­
centration is considered rather than one non-equilibrium monovacancy.7l~9> The 
vacancy concentration evaluated here contains all the contribution from monovacan­
cies, divacancies and higher clusters~ Applying multipole expansion to Eq. (22), 
then expanding W2 and W3 in power series of r and keep only up to second order, 
after that using Eqs. (39), (48) and (49) it is straightforward to obtain 

1 ( 2n )2J3 a 
lnZ'=ln- -- + ~ ln wi, 

v0 m{3 i=l 
(52) 

where the wrs are eigenvalues of K/m. Thus the vapor pressure IS 

ln P= - 1 -[l:_ow2 (o, o) + l:_02 Wa(o, o, o)J 
·· kBT 2 3 

_l:_ ln T+,l:_ ln[( m ) 3_!_] +~ ln w, 
2 2 2n kB i 

. +lnO+ (l:_-l)ln(l-0). (53) . o 
This is very similiar to that obtained by Salter.6> The entropy also has a very 
intuitive expression 

_!_ = - [ln 0 +(l:_ - 1) ln (1- 0)] + 3-t ln {3hw, 0 

kB o •=1 
(54) 

The last two terms are recognized as the entropy of a classical harmonic oscillator. 
Only the w/s· are temperature dependent. 

§ 5. Conclusion 

Using Mayer's cluster expan,sion, and minimizing the free energy functionaP> we 
have constructed a first principle theory of lattice vibrations. The thermal ex­
pansion, anharmonicity and lattice vacancies, all of which are difficult to be incorpo­
rated in the traditional harmonic model of crystals, are painlessly taken into account 

. simultaneously. . In particular when compared with previous theories on, lattice 
vacancy the present theory is not only simpler but also more rigorous. Moreover, 
the three-body effects cause little additional_ complication. The pr'esent theory 
treats crystals as chi.ssical hence its accuracy is assured16> provided temperature is 
higher than two. thirds p£ the triple point. However it is exactly in this tempera-
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1008 S.-T. Wu 

ture range that traditional theory of lattice vibration fails because of anharmonicity 
and vacancies. Hence the present theory is complementary to the theory of Born 
and von Karman. 
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