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ABSTRACT

Testing is the process- of inferring the correctness of a program based on information col
lected during program execution. This process is called error-based when the informs-
tion collected is used to infer that certain errors are not in a program. It is assumed
here that a program can only be incorrect in a limited fashion specified by essociating
altern ate expressions with program expressions. Substitution of an alternate expression---
for a program expression yields an alternate program that is potentially correct. The
goal of error-based testing is to differentiate the program from each of its alternates.

Two types of error-based testing are given, In static error-based testing the code is
analyzed to produce two conditions. A creation condition describes when a class of &l
ternate expressions will affect the program state. A propagation condition describes when
an alternate program state will affect the output. If the output of the program is
correct and both conditions are satisfied, all alternatives are fault, detected by the test
set.

In dynamic error-based testing information is first collected from test executions. It is
then proved that certain alternate programs are eliminated. A particular form of
dynamic error-based testing based on symbolic execution is presented. In symbolic test-
ing program expressions are replaced by symbolic alternatives that represent classes of
alternate expresions The output from the system is an expression in terms of the in-
put and the synboicalernative. Equating this with the output from the original pro-
gram yields a propagation equation whose solutions are those alternatives which are not
differentiated by this test. '

Since an alternative set can be infinite, it is possible that no finite test differentiates the
program from all its alternates. Circumstances are described as to when this is decid-
able.

Program faults can interact in such a way that error-based testing declares each correct
in the presence of the others. Such interaction is shown to occur rarely for a limited
clam of programs.
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1. Introduction

Testing is the process of inferring the correctness of a program from

information deduced from program executions. The role of testing theory is to

study this process and to determine the conditions under which correctness can

be shown. Testing may be viewed in two stages. First, a testing strategy is

developed which describes how testing is to be performed; i.e. how the input data

is to be selected, what information is to be collected, and how to collect and

analyze this information. Second, there is the application of the strategy to a

given program, resulting in a teat of that program.

A testing theory must provide a means of judging the quality of either stage

of testing. Intuitively, a test is good if it provides convincing evidence that a

program is corr ect. A testing strategy could therefore be considered good if it

produces good tests when applied to a particular program. This approach has

been taken by Howden [How76I who defines a reliable test to be one whose

success implies program correctness. The disappointing result, however, is that a

reliable test is not attainable in general. It is thus necessary to try a different

approach to defining the quality of a test or a testing strategy.

The intent of a quality measure is to determine when one test (or testing

strategy) is better than another. It is therefore desirable to have gradations of

goodness, with a reliable test being the ultimate. Structural coverage measures

such as statement coverage, branch coverage, or path coverage [Mil74J do not

satisfy such a gradation. Even when these criteria are satisfied they do not imply

correctness. For example, executing all statements does not guarantee that a



program is correct.

The means taken here of assessing the quality of tests is to compare them on

the basis of how many errors they demonstrate are not in the program, i.e., on

how many errors each test eliminates. This choice satisfies the gradation

mentioned above since the highest quality test by this approach is one which

eliminates all errors, implying the program is correct. For testing strategies a

conservative approximation is taken to be that of the weakest test that satisfies

the strategy. The quality of a strategy is therefore determined solely by what

errors it is guaranteed to eliminate.

Testing is error-ba~ed when it is performed with the aim of eliminating

errors. This notion was introduced by Weyuker and Ostrand [Wey8O]. In their

approach, a program's input is partitioned into a set of disjoint classes called

subdomaina. These subdomains are then shown to be revealing for certain errors;

i.e., if any member of a subdomain reveal a designated error, then all members of

the subdomain reveal the error. In this manner an error is eliminated if the

program is correct for an input from a subdomain that is revealing for that error.

Only specified errors are eliminated.

The difficulty with Weyuker's and Ostrand's approach is that it does not

specify the means of designating errors and hence it is impossible to

systematically apply their ideas or to prove any properties of what they envision

as error-based testing. The means of eliminating errors is therefore explained by

example rather than by providing a method to follow independent of the error

categories. They do indicate, however, that for every supposed error in the
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program, test data must be developed that eliminates the error. In order to do

this a proof must be given that certain inputs eliminate particular errors. What

is unclear is whether there is any general technique for doing such proofs or what

exactly constitutes a proof. There is also no comment on whether such proofs are

always possible, and if not, when they are possible. It is therefore impossible to

determine for what categories of errors the proofs can be automated.

This dissertation attempts to develop an error-based testing meta-theory

that

(1) defines error-based testing,P

(2) provides strategies by which error-based testing can be applied, and

(3) proves properties about the strategies concerning what errors can and cannot

be eliminated.

The theory defines the mechanism whereby the errors can be defined, and once

defined, how they are eliminated. It is a meta-theory in the sense that it applies

once the error categories have been chosen, and is therefore independent of any

particular class of errors.

The model chosen here for what is an error is adopted from mutation testing

[DeM781. Expressions are supposed incorrect in a limited manner as defined by a

set of alternatives. This set contains legal replacements for the expression. In

mutation testing inputs are found for which the original program is correct and

for which all alternate programs (those induced by substituting an alternative for

a program expression) are incorrect. This is done by generating each alternate

-3-



program and then interpreting each one for the test data. The resulting output

is then compared to the output of the original program for the same data. Uf

they differ and the original program is correct, then the alternate program is

eliminated; otherwise, either the alternate program is equivalent to the original

program or the test data must be augmented to elimin*'te the alternate program.

The mutation model of errors is e"tended here in two ways. First,

alternative sets are allowed to be infinite. This entails developing an error-based

testing theory that does not rely on the ability to generate and execute ail

alternatives. The second extension involves the analysis of compound errors.

Mutation testing assumes that simple errors are coupled to complex errors in suchI

a way that the elimination of simple errors implies the elimination of complex

errors IPeM78I. The terms simple and complex are undefined, however, so this

assumption cannot be verified. A precise albeit restricted version of this

assumption is given here. A complex error is considered to be a combination of

simple errors. Error-based testing then is the process of proving that every

alternative from every alternative set is eliminated by a test set and that all

combinations are likewise eliminated.

Error-based testing therefore intertwines elements from both program

verification and traditional testing. This approach varies considerably from how

testing and verification have been related in the past. The tendency has been to

place testing and verification as separate activities, as antagonists in the game of

demonstrating program correctness. For example, rGer76J suggests that testing is

useful after a formal proof to check the veracity of the proof. [Goo751

-4-



proposes that testing is useful in establishing the basis step in an inductive proof.

[Ge178] suggests that testing can be used to prove assertions which would

otherwise be tedious to prove by hand. There has been no concerted attempt to

combine testing and verification into a unified theory.

The error-based testing theory developed here integrates testing with

program verification by exploiting the advantages of both. Properties are proved

about the program or its alternative sets which in conjunction with program

execution imply that certain errors are not present in the program. This process

* is illustrated below.

The simplest way to eliminate an alternate program is to find an input on

which the original and the alternate differ. If the original is correct for that

input, then the alternate must be incorrect, and is therefore eliminated. What is

not obvious from this argument is that the alternate program need not be

executed (as in mutation testing); it need only be shown that if it were executed,

a different output would result. For example, it may be clear from the program

text that an alternate program would follow a path which guarantees a different

output. Consider the program

if a**2 + b**2 = c**2
then print "right triangle"

* else print "not right triangle"

in which three alternate programs can be formed by replacing the equality

operator with any inequality operator (< ,~.One provable property of this

program is that if a different branch is taken then a different output results. But



in each alternate program a branch different than the original will be taken for

all values of a, b, and c for which the condition is true. There is no need to

execute any alternate to eliminate it; a property of the code combined with the

appropriate execution of the original is sufficient to guarantee that each is

eliminated. The process above can be seen in incipient form in [How82l where

properties of a program statement are used to deduce when a change to the

statement would locally affect the program's computation. This is called weak

mutation testing because it is possible that a local effect will not be manifested in

a program failure, thus the alternate program would not be eliminated. Weak

mutation testing is extended here by proving when a local effect will be

manifested in the program output.

As another example, consider computing the average of three numbers:

ave :=(i + + k) /3

Suppose the alternate programs are those in which the divisor 3 is replaced with

some other constant. For the inputs i = 6, j = 2, and k = 7 the program

computes 5 if and only if the divisor is 3. If the constant 3 is replaced by any

other constant in this statement, a different answer results for this input. Thus,

infinitely many alternate programs are eliminated without executing any of them.

* Corresponding to these examples are two ways to eliminate alternate

programs without additional executions. The first is code-based and is called

static error-based testing. Properties of the code are proved which guarantee

that the introduction of specified alternatives would produce different outputs for



particular inputs. Tests are then developed which produce those inputs. If the

outputs are correct, then the alternate programs are eliminated. The second

method of elimination is execution-based and is called dynamic error-based

testing. Information is collected about the program computation for a test set.

Based on this information, it is proved that certain faults could not have been in

the program. This then eliminates the corresponding alternative programs.

It may be objected that static and dynamic error-based testing wastes time

since the alternate programs could be automatically generated and executed,

eliminating each alternate separately. This mutation process has three defects,

though. The first is the need for an executable oracle. Though this may be

assumed for theoretical purposes (as is done here) it is frequently not available in

practice. Thus, when the outputs from the original and the alternate programs 4

differ, how is it decided which is correct? For a few cases, a person could check

for correctness, but not for the multitude of cases presented by mutation testing.

Furthermore, an automated system cannot decide equivalence and therefore

requires human monitoring. A second defect is that such an automated system

assumes that there are finitely many alternate programs. As mentioned above,

no such assumption is made here. The third difficulty is one of efficiency rather

than theory. Generating and executing millions of alternate programs may

consume more resources than desired. Furthermore, the expended effort is of no

use in testing other programs.

Section 2 gives a basic theory of testing and demonstrates the need for

error-based testing. Section 3 then defines error-based testing and discusses the
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issue of coupled errors.

Sections 4 and 5 discuss static and dynamic error-based testing, respectively.

Particular emphasis is given to the decidability of when an infinite alternative set

can be eliminated by a finite test. For a simple programming language this is

analyzed in depth for alternatives which are substitutions of one constant for

another. It is shown for such constant substitutions that the dividing line

between decidability and undecidability is whether or not the substitution affects

the program flow. If it does not then a finite test exists which eliminates all

alternate programs. If the substitutions do affect the program flow then it is

possible that no finite test set eliminates all of them; even worse, it is undecidable

when this occurs.

Section 6 relates the present work to the literature. The last section

summarizes the dissertation and suggests future directions of research.



2. A general theory of testing

A general theory of testing should be both descriptive and prescriptive. It

should define the components of testing and should provide convenient

terminology and notation for discussing them. It should also define the

relationships among the components, showing what is solvable by means of

testing and what is not. For those areas in which testing is weak, a general

theory should indicate the direction of more specialized work. This section

attempts such a theory.

2.1. Basic components and relationships

The fundamental components in testing are programs, specifications, and

test sets.

Pefinition A relation is a set of ordered pairs. If R is a relation then its domain

is {x I (x,y) i R) and is written as dom(R).

Every program defines a relation called its program relation defined as

{(x,y)l program P on input x halts with output y}.

Since programs and their corresponding relations are discussed frequently, it is

useful to adopt a notation that distinguishes the two. [Lin79] suggests the

following: If P is a program, then its program relation is denoted by [P). If (x,y)

r [P] and (x,z) i [P] = y = z then the relation is a function and the program is

called deterministic. The theory developed below is for deterministic programs,

but can be readily extended for non-deterministic programs. Since [P] is a
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function, [P](x) is the output P computes on input x. If no such output exists,

then [P] is undefined at x and this is written as [P1(x)T; otherwise [P is defined

on x which is written as [P]I(x).

A specification states what a program should compute. Since a program is a

set of ordered pairs, it is reasonable for a specification to be a set of ordered

pairs. There are, however two additional properties a specification should have.

Definition A set is recursive if there is an algorithm for deciing whether or not

any element is a member of the set. (The intuitive notion of algorithm is made

precise by several formal computation models; see, for example [Bra74].)

These properties are: (1) The domain of a specification must be recursive. This

avoids the awkward circumstances of not knowing whether a program is

supposed to halt on a given input. (2) The specification must be recursive. This

enables the specification to act as an oracle, a decision procedure which can

decide whether or not any proposed input-output pair is in the specified relation.

Neither property implies the other as shown by the following theorems.

Therema There is no program, P, which computes the following function:

0 if [1(z)IMT I0if 4 f

where x is a program.

Proof If P exists then it is then possible to construct

-10-



I iif [zI(Z)=O
(P") = o Othei e

by replacing every print statement in P by a conditional computationally

equivalent to the following:

if output 1 then

if [xl(x) = 0
then output := 1
else output := 0

else output := 0
print output

Since P is defined everywhere, so is P'. In particular P' should be defined on

itself. This, however, yields an immediate contradiction, because [P ](P') must

be either 0 or I by definition, but can be neither because [P'](P') = 0 if and

only if [P'](P ) = 1. This Russell-like paradox disproves the assumption that

the program P exists.

C r .arj There exist non-recursive relations with recursive domains.

Proof The set K = (x I x is a program, [xj(x)i} is not recursive as a direct result

of the proof above. The relation ((x,y) I x = 1 & y e K) is a non-recursive

relation with a recursive domain.

Tkeorem There exist recursive relations with non-recursive domains.

Proof Let S = ((x,y) I [x](x) halts in fewer than y steps}. Clearly, S is recursive

because an interpreter can be written which will execute program x on itself as

input for up to y steps, inspecting to see if the program has halted. But dom(S)

- K, which is not recursive.

-11-



The central concept relating programs to specifications is that of correctness.

Deiliou [MilSO] A program P is correct with respect to a specification S if and

only if dom (nP s) = dom(S).

Thus, a program is correct with respect to a specification if and only if it

computes results for the entire domain of interest, and all the results it computes

are as specified.

Since programs and specifications are frequently associated in testing, it is

useful to encapsulate the components testing relates.

Defition An arena is a 3-tuple <P,S,D> where P is a program, S is a

specification, and D = dom(S).

The third component is redundant, but is included for notational convenience so

the domain of the specification need not be continually named. The definitions

above and below can be easily altered to allow the third component to be a

subset of the domain of the specification.

Much attention has been given to demonstrating the correctness of a

program with respect to a specification. There are two general approaches to this

problem, program verification and testing. In program verification, a formal

proof is given to show that the program computes what is specified. Different

specification methods induce different verification techniques, but all are based

on information derived from the program code rather than from execution

-12-



information [Lin79] [Hoa68Q. In testing, correctness is deduced from information

derived from program executions. Many formally "proved" programs have been

shown later to be incorrect, often by executing a few test cases [Ger76. As

shown below, testing can never prove correctness, but it can check restricted

hypotheses about a program. The direction of this dissertation is to exploit the

strengths of both approaches to verifying correctness.

The final component of the testing theory presented here is a test set.

Definition A test set, T, for an arena G = <P,S,D> is a subset of D. T is

halting if and only if T C dom([PI). T is finite unless otherwise stated.

2.2. An alternate approach to correctness

An alternate but equivalent way of demonstrating correctness is by showing

that the program is not incorrect. Thus, it might be hoped that as the test set

grows, more information is gained about when the program fails.

Deflirtios For an arena G = <P,S,D>, x e D is successful if and only if [P](x)l

and (x,[P](x)) i S, otherwise x is a failure. A test set T for G is successful if and

only if each x e T is successful for G. The set of all successful points for G is

called the successful set of G. The set of all failure points for G is called the

failure set of G.

Definiion The defined failure set of an arena G is all members of D for which

[P] is defined. The undefined failure set of an arena G is all members of the

-13-



failure set of G for which [P] is undefined.

Definition A halting test set T for an arena G = <P,S,D> is reliable if and

only if: T successful for G implies P correct with respect to S.

Exploring the relationship between testing and program correctness may be

viewed as investigating the characteristics of the failure set. Can the failure set

be a random collection of points, or must it conform to some pattern? The most

general pattern would be those sets which are the domain of a program. Such sets

are called recursively enumerable. If the failure sets are not recursively

enumerable there is little hope in discovering anything decidable.

Theorem The failure set of an arena is not necessarily recursively enumerable.

Pvoof Assume that the failure set of every arena is recursively enumerable. Let I

denote the set of integers. Let Gp = <P,S,D> be a collection of arenas in

which S = I x I, one for each program P. (Thus, S is all possible ordered pairs,

so in these arenas any computed output by the program is correct.) For each

arena in this collection the complement of the failure set is the halting set, which

is by definition recursively enumerable. The assumption is that each failure set is

recursively enumerable. But if a set and its complement are both recursively

enumerable, then they are both recursive (Bra74]. So, for any program P, it is

decidable whether or not [PI(P) is defined, that is, K ( {x I [x](x)} is recursive,

which it is not. Therefore, the failure set of an arbitrary arena is not recursively

enumerable.

-14-



When faced with trying to deduce information about non-recursively

enumerable sets, not much can be done. For example,

Theorem A reliable test set exists but can neither be generated nor recognized

for an arbitrary arena.

Proof If a program is correct then any subset of the domain of the specification

is a reliable test set. If the program is incorrect, then there must be some input x

in the failure set. The set {x) is therefore vacuously reliable. Hence a reliable

test set always exists. Suppose a reliable test set can be generated for an

arbitrary arena. Then a program, R, can be constructed for the function which

determines program equivalence

1 if 111[IS1
[1?JPS) = to Otherwise

by generating a reliable test set for P with respect to [S], executing P, and

checking agreement with [S]. If they agree, then they are equivalent; produce 1.

Otherwise, produce 0. However, if program equivalence is solvable, then it would

be decidable whether or not an arbitrary function is the zero function. In

particular, it would be possible to determine if

J1) if [PI(P)4 in less than k setcps

Ak 0t otherwis~e

for each P is everywhere zero, which means that the set K would be recursive,

which it is not. Thus, a reliable test set cannot be generated. It cannot be

recognized either, because a generator could then be constructed by producing

successively larger test sets until the recognizer declares one to be reliable.



2.3. Research direction

To progress beyond this state of affairs it is necessary to make some

assumptions about the failure sets of the arenas under consideration. For

example, some positive results can be obtained if it is possible to decide when the

program halts.

Theorem For any arena G = <P,S,D>, if dom(IP]) is recursive then the failure

set, defined failure set, and the undefined failure set of G are recursive.

Proof Since dom([PI) is recursive it is decidable whether or not P is undefined

for any input x. Thus, the undefined failure set is recursive. If P is defined for

an input x, then x is either in the successful set or in the defined failure set. To

decide which, compute [P1(x). Since the specification S is recursive, it is

decidable whether or not (x,[PI(x)) e S for any x c dom([P). If (x,[P](x)) ' S the x

is a member of the successful set, otherwise it is a member of the defined failure

set. Since both the defined and undefined failure sets are recursive, so is their

union (the failure set)

Making assumptions about the failure set has the effect of limiting the class

of programs being considered to meet a given specification. Without any

assumptions, testing must distinguish the original program from all programs.

This is impossible, as shown by the above result on reliable test sets. However, by

suitably restricting the class of programs (and implicitly restricting the resulting

failure set), testing can demonstrate correctness under the assumptions.
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One place to begin is with the programming language definition. The

programming language may be restricted to only a subset of all computable

functions. Since many undecidable problems result for unbounded loops, these

could be disallowed in the language. Halting problems would no longer plague

the tester. Even under such assumptions the class of programs are more complex

than can be proved correct by testing [Jon77I. For an even more restrictive

language JWs7OJ, but one which is of limited practical value, reliable tests can be

generated.

The class of programs can be restricted by specifying an upper bound on

size. The program under test could be compared to all programs which are

smaller than it by some measure. The goal of testing is then to distinguish the

original program from all non-equivalent smaller programs.

The class of alternate programs can also be specified by defining

transformations to apply to the program. By chosing the transformations to

represent typical programmer mistakes, the goal of testing is then to show that

that the programmer did not make any of these mistakes. Such testing is called

error-based testing and is the method formalized and discussed in the following

sections.



3. Error-based Testing

The appeal of error-based testing is that it is closely related to the alternate

way of showing program correctness given in section 2: show that the program is

I not incorrect. If a program has limited potential for being incorrect, then a test

set demonstrates correctness when it shows the potential is not realized.

It is first necessary to distinguish among the various forms of :'weorrectness.

The IEEE conventions (1EE831 are adopted here, with slight variation.

Definition An error is a mental mistake by a programmer or designer. It may

result in textual problem with the code called a fault. A failure occurs when a

program computes an incorrect output for an input in the domain of the

j specification.

For example, a programmer may make an error in analyzing an algorithm. This

may result in writing a code fault, say a reference to an incorrect variable. When

the program is executed it may fail for some inputs.

The means of specifying incorrectness taken here is to define potential faults

for program constructs. Thus the subject is fault-based testing, but the existing

literature calls this error-based testing, and hence that term is used.

p 3.1. Basic definitions

Definition A location in a program isolates some expression of the program.

0 "Expression" is necessarily vague since it is language dependent. An alternate

expression (alternative) is an expression f which can be legally substituted for the
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expression designated by 1. The resulting program is called an alternate program

and is denoted by 1P "' denotes the multiple alternate program formed by

substituting expressions f and g in locations 1i and Ij, respectively. A set of

alternatives for an expression is called an alternative set. An alternative set

always contains the original expression unless otherwise stated.

An alternative set is used to represent potential faults in a program. It may

be defined by enumeration, or by giving an algorithm by which the members may

be generated. The method of description will usually be an English phrase. For

instance, rather than giving an algorithm for generating all prime numbers, the

phrase "all prime numbers" would be used. However, if any doubt may arise,

the algorithm is given.

Definition An error-based arena is a 5-tuple, E = <P,S,D,L,A>, where

<P,S,D> is an arena, L = (i,/'z, 1.,) is an n-tuple of locations in P, and A

- (A, A2,...,A.) where each Ai is an alternative set associated with location 1j,

I<i<n. If each alternative set is finite then E is called bounded, else it is

unbounded. The set of all alternate programs for E is those programs generated

by substituting any alternative in its respective location in the program P. It is

denoted by PE. The program P is called the original program. When discussing

an expression at a particular location, the expression is called the designated

expression.

Definition An error-based arena E = <P,S,D,L,A> is alternate-sufficient if and

only if ] R i PE such that R is correct with respect to S.
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Alternate-sufficient captures the idea that at least one alternate program is

correct. With it testing can sometimes demonstrate correctness. Clearly, there

are error-based arenas which are not alternate sufficient. It is more interesting to

ask whether this is a decidable property.

Theorem It is undecidable whether an arbitrary error-based arena is alternate

sufficient.

Proof Consider the error-based arena E = <P,S,D,0,0>. Deciding whether or

not this arena is alterate-sufficient is equivalent to deciding whether P is correct

with respect to S. This is, however, undecidable.

The theorem shows that error-based testing must restrict the alternative

expressions so that testing can do something "useful". Testing is useful when a

finite test set provides enough information to conclude that the specified

alternatives could not have been substituted without causing a program failure

on the test set. Of course, it is possible to produce an equivalent program by

such a substitution. If this occurs, no test data will reveal a difference. This

concept of usefulness is embodied in the formal notion of differentiation:

Definition For a program P and x e dom((P]), x differentiates P from a program

R if and only if

[P](x) : [RJ(x), or
JR] is not defined for x, or

[P) = [R]

For a program P and a set T C dom([P]), T differentiates P from a program R if
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and only if x E T such that x differentiates P from R. For an arbitrary set of

programs R, program P, and set T, T differentiates P from R if and only if for

each R in R T differentiates P from R.

Differentiation is non-effective because program halting and program

equivalence is undecidable. The goal of error-based testing is to determine for

each alternate program whether it is equivalent to the original or different. This

is achieved by a series of intermediate stages in which the alternate programs are

separated into two classes, programs which have been eliminated and those which

have not. For eliminated programs the test set demonstrates that they cannot be

correct by including inputs on which the original and the alternate differ, or the

test set has points for which it is proven that the alternate does not halt or is

equivalent. Though the proof is not effective, this does not reduce its value. In

either case, the eliminated programs are no longer of any interest since they are

either incorrect or equivalent to the original. The concept of differentiation

provides a convenient means of describing those alternate programs which

deserve further attention. These are the programs which agree on the test set yet

are not equivalent. Error-based testing is accomplished when all alternate

programs are eliminated.

3.2. Differentiating alternate programs

Error-based testing for an error-based arena E = <P,S,D,LA> involves

two steps. First, E must be alternate-sufficient. For example, it may be known

that a certain library program exists and is correct (shown, perhaps, by formal
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proof), but its name is forgotten. A test set can be developed which selects the

desired program from the library. Another example is when it it known that the

specification can be implemented by a program from a given class, as in the case

of algebraic program testing [How78]. In general, however, E is merely assumed

to be alternate-sufficient. Second, a test set must be constructed that either fails

or differentiates P from PE. This aspect of error-based testing is discussed below.

Definition An error-based arena E - <P,S,D,LA> is finite if and only if E] a

finite test set T for E such that T differentiates P from PE. If no such test set

exists, then E is infinite.

T7eorem Every bounded error-based arena is finite.

Proo f The test set need only include one point to differentiate each non-

equivalent alternate program. In a bounded error-based arena, there are a finitely

many locations and alternatives, hence there are a finite number of alternate

programs. Therefore, the arena is finite.

Error-based testing for a bounded error-based arena is called mutation

testing [DeM78j. The assumption that the arena is alternate-sufficient is called

the competent programmer hypothesis. This states that a competent programmer

* will write a program that is syntacticly close to the correct program, i.e. that the

program will fall in a restricted class of programs, one of which is correct. Since

the mutation testing arena is bounded, by the above theorem it is finite. Thus,

all alternate programs can be generated. The set of alternate programs is
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unfortunately huge, and the undecidable program-equivalence problem remains.

One limitation of mutation testing is its restriction to bounded error-based

arenas. It is certainly desirable to be able to do error-based testing for

unbounded error-based arenas. This, however, cannot be done in general since an

unbounded error-based arena can require an infinite test set to differentiate all

the alternate programs. Fortunately, this is not always the case.

T'he oreni There are unbounded error-based arenas which are finite.

Proof As a trivial example, consider

proc constant
print 5
endproc

Suppose the alternative expressions are "any constant" and the location is that of

the constant 5. Then the infinite set of alternate programs is the set of all

constant programs. Any finite test set (even the empty set) differentiates the

original program from all alternate programs.

A second problem with mutation testing relates to the phenomenal number

of mutants that can be generated for even a simple program. [DeM78] assumes

that simple faults are linked to complex faults in such a way that a test set

* which differentiates a program with simple faults, differentiates programs

containing complex faults. This assumption (dubbed the "coupling effect")

reduces the number of alternate programs that must be generated. It is not

verifiable since "simple" and "complex" are not precisely defined.

-23-



3.3. Coupling

The following definition is a restricted but precise definition of coupling.

Deflition For the error-based arena E = <P,S,D,L,A>, two expressions at the

distinct locations I and 1j, couple on a test set T for E if and only if

(]f e A-)(] g E A) such that

(1) P is incorrect with respect to S.

(2) T is successful for P with respect to S.

(3) T differentiates P from ;, and A

(4) ,g is correct with respect to S.

Conditions (1)-(3) state that the program under test is incorrect, yet testing has

implied that each of the separate substitutions are incorrect by themselves.

Condition (4) says that the substitutions in combination correct the program.

This definition can be generalized (at a great loss of clarity) to allow for n

expressions.

An example of coupled expressions is given by this program to compute the

average of three numbers:

proc average

int i,j,k

read i, j, k
ave := I + j + k / 3

* print ave

endproc

The program illustrates two mistakes by a novice programmer. First is the

logical error of the misparenthesization. Second is the typographical error of 1

for i. For input i = 6, j = 2, and k = 7 the program correctly computes 5, and
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differentiates both of the alternate programs with single substitutions:

ave := ( + j + k) / 3

ave: i + + k / 3

which compute, respectively, 3 and 11. From the data collected, it would be

possible to erroneously conclude that the test has eliminated all alternate

programs. Thus, the two expressions are coupled.

The general results about coupling are not encouraging.

T eorem It is undecidable whether or not coupled expressions occur in an

arbitrary error-based arena.

Proof Take a straight-line program with coupled expressions. Guard the

statements by an arbitrary condition. The expressions are still coupled if and

only if the path will be executed. This implies the ability to decide whether an

arbitrary condition is ever true, which is undecidable.

CordWar It is undecidable whether or not coupled expressions occur in a

bounded error-based arena.

However, there is some hope.

Tkeorem There are unbounded error-based arenas for which the presence of

coupled expressions is decidable.

Proof An example is in section 3.4.
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Coupling is a pernicious problem that can compromise all error-based testing

strategies. In revealing subdomains [Wey80], the problem is cited and then

ignored. In domain testing [Whi8O and perturbation testing [Zei83] the problem

is presumed not to occur as a "simplifying assumption." As mentioned above,

mutation testing identifies the problem, and tries to argue on the basis of a few

experiments that coupled expressions rarely occur. In section 3.4 formal

arguments are given which indicate that expressions indeed couple infrequently

for certain classes of programs. When they do, however, program faults may go

undetected.

3.4. The likelihood of coupling

The previous section introduced coupled expressions as the primary pitfall of

error-based testing. This section discusses why this is so and describes

approaches to analyzing how likely coupling is.

In the simplest case coupling relates four programs determined by error-

based testing: P, P"), An PA, For notational convenience these alternates are

denoted by PA, Pp and PAB When locations 11 and 2 differ, the possibility of

coupling arises.

Definilion For alternate program P1, and alternative e at I A the associated

failure set is {x I (PJ(x) P ( 1](x)}.

Let DA, DB, and DAB be the associated failure sets of PA, PB, and PAB,

respectively. The potential intersections of these sets are shown in figure 1.
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Conditions for coupling can be expressed by assertions about regions of the

diagram. For example, it is necessary that

(1) Region 7 be non-empty.

(2) Region 2 be non-empty or regions 1 and 3 must be non-empty.

(3) The test set T be a subset of regions 1-3.

If the existence (or non-existence) of points in one group of regions implies the

existence (or non-existence) of points in another region, then perhaps something

positive can be said about the absence of coupling. Unfortunately,

Tkeoemu Any combination of regions can be empty.
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Proof Let P be a table-lookup program that chooses which table to search

depending on whether the variables x and y are assigned 0 or 1. (Thus, table 1 is

chosen if x = 0 and y = 0, table 2 is chosen if x = 0 and y = 1, etc.) Let x and

y be initialized to 0 in P, and let the alternate programs have the initializations

PA X=Oy=l

P8 X-=l,y=

P A B X -- 1 , Y = -- '

The effect stated by the theorem can be confirmed by appropriately filling in the

tables.

If nothing can be said about the emptiness or non-emptiness of any regions,

perhaps something can be said of relative sizes of the regions. In particular for

coupling to occur on a test set T it must be that T is a subset of regions 1-3. If

therefore it can be shown that these regions are "small" relative to DAB, then the

expressions couple on relative "few" test sets. Hence, if the test sets are chosen

randomly, there is little chance of selecting a bogus test set.

To investigate the relative sizes of regions, consider an example of coupling

in linear equations. Suppose the original program computes

f(z)=3z+4

and the correct program computes

g(z)=4z+3

Let the two alternate programs compute
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ft(z)=4z+4

and •

f2()-=3x+3.

For what values of x will coupling occur? It is given that the first and the fourth
S

conditions of coupling are satisfied (the original is incorrect and the double

alternate is correct). To satisfy the second condition, inputs must solve the

equation

AXr)=g)

i.e., the original must compute the correct answer on the test set. The only

solution is x = 1. For any other x the equation is not solved. Thus, coupling

can only occur on the point x = 1. Coupling does occur for this point because

the third condition is satisfied, namely,

f(l)OfI (I)

and

f()#42(1)

Thus the expressions couple, but only on input 1. Such a point is called a

coupling point. For this example then the set of coupling points is small

compared to the points for which coupling does not occur. There is therefore

little chance of randomly choosing I out of all possible integers as the point to

differentiate the single alternate programs.

In the argument above the exact values of the constants are immaterial.

What is relevant is the size of the solution set, not the particular solutions. In

fact, the entire argument above can be maintained for the general class of
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programs which compute multinomials.

Definition A mdtinomial in x1, , z, is any expression in z , ... , z. and

integer constants using only the operators +, -, or *.

Let P be a incorrect program which computes a multinomial in n variables.

Suppose the correct program is P ', an alternate program for P produced by

substituting several alternatives for expressions in P. Suppose further that P'

computes a multinomial in n variables. Then the solution set to the equation

[P](x) = [P'](x)

is at most an n-i dimensional subset of the input space.

Since the class of multinomials includes the classes of linear forms and

polynomials, the following theorem is established.

Theorem For any program that computes a linear form, a polynomial, or a

multinomial its coupling points are a zero-volume subset of the input space.

The proof of the above theorem is invalid if functions more general than

multinomials are allowed. This is because the solution set may not be an n-i

dimensional subset of the input space. For example, for the program that

computes

Z

but should compute
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3z'

every x > 2 is in the solution set.

Another possible extension to the above theorem is to allow the introduction

of conditional statements to compute selected multinomials. This fails, however,

because a condition can arbitrarily restrict a multinomial to only be computed on

its coupling points. Of course, the opposite can occur and the path conditions

make it impossible for any coupling to occur.
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4. Static error-based testing

In this section a form of error-based testing is developed in which properties

of the code are proven and later used to judge the quality of a test. Since the

technique is code-based it is called static error-based testing. A model of

computation is first developed to support the discussion of static error-based

testing. This model is then applied in a particular method of static error-based

testing. The last section presents some undecidable results about this method of

testing.

4.1. A Model of Computation

Definition A state of a program P is an ordered pair (n,v) where n is a statement

number from P and v is a mapping

v: var -> value

which associates a unique value with every variable of P. An initial state of P is

a state which exists before any of its statements have been executed. A final

state is a state which exists after P terminates.

The statements of the program are numbered starting at 0. Therefore the initial

state is given by (0,v) where v is the mapping which describes how all the

variables are initialized. The mapping holds before the associated statement is

executed. A psuedo-statement is introduced after each terrrinal statement to

allow the final state to be well-defined.
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Some variables (:i,...,z3) of the program may be designated as program input

variables. Their corresponding values (u1 ,...,u.) are called the program input. All

other variables are initialized to zero. Some variables (yl,'",ym) of an initial state

may be designated as program output variables. Their corresponding values

(vl,..., v.) upon program termination are called the program output. If no

variables are explicitly designated as input or output, then all variables are

considered both input and output.

The program function that a program P computes, denoted by [P], is

therefore,

[P] = {(u,v) I v is the output of P on input u,

where u and v are ordered sets of values}

Any arbitrary program segment implicitly defines a program function with al

variables designated input and output.

If e is an expression with n variables, and s is a state defined for those

variables, then

[e] - { (s,i) J i is the evaluation of expression e

over the variable mapping in the state s}

In an obvious manner differentiate can be extended to include program

expressions.

Dejinitiox State s differentiates expression e from expression f if and only if

[eJ(s) * [fl(s) or [e) = ffJ.

-33-



Defindtion A path through a program P is any flow of control through a

flowchart of P, assuming that each branch of every condition can be taken. A

path which cannot be executed by P is infeasible, otherwise, it is feasible.

Defin'tion A computation of program P beginning with state s = (n,v) is the

sequence of states produced by P when started at the statement n with variable

values determined by v. This is abbreviated by comp(P,s). If n * 0 then the

computation is limited, otherwise it is full.

When a program enters an infinite loop, the resulting computation is infinite.

A program which terminates abnormally (as in a division by zero) is treated as if

it entered an infinite loop. Limited computations may begin in an arbitrary

state. This is analogous to loading a program, choosing an arbitrary contents for

memory, and starting execution at any statement. Clearly, such computations

need not be the tail of a full computation. Two computations are the same if

and only if they have exactly the same state sequence.

The output of program P started in state s is written as {Pj(s). For a

program with one input variable x, [P](z0) therefore is equivalent to JP1(0,v) when

v(x) = z0 and v(y) = 0 for all other variables.

Dejfinition If C is a computation of a program, then prog(C) is the sequence of

program statements determined by C. If s is a state in the computation, succ(s)

denotes the following state and prey(s) denotes the previous state. Prey and succ

are undefined at the beginning and ending of a computation, respectively.
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Deinitiox Let E =<P,S,D,LA> be an error-based arena, and Ii L. Then

the set of alternate computations for E for location 1, and input x is

C I~ C is the computation of Afor input x, f i A,)

The alternate computations are those computations the program would take if an

alternative were substituted for an expression in the program.

4.2. The model applied

By analyzing alternate computations, it is sometimes possible to prove that a

test set would differentiate the corresponding alternate programs. A different

computation is detectable if and only if a different state is introduced into the

computation and the difference persists to the end of the computation.

Conditions under which this creation and propagation of different states occurs

are defined as follows.

Definiions A creation condition, B, for alternative set A to expression e at

location I in program P is a boolean condition which satisfies

V S C Sp, B(S) = (S differentiates e from A)

where Sp denotes all program states of P with location component 1.

A creation condition describes program states in which the substitution of

non-equivalent alternatives would alter the computation. Consider the case when

a creation condition is satisfied by a single state. All non-equivalent alternatives

differ from the original expression for this state. Therefore, if any of these
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alternatives were substituted, a different computation would result. (This of

course assumes that the expression affects the computation by altering the

program flow or the variable mapping.) The typical case, though, is for some of

the non-equivalent alternatives to differ and others to remain the same for any

given state. The definition therefore allows for a creation condition to be

satisfied by a set of states, the combination of which differentiates all

alternatives. This set of states may result from a single execution in which the

source statement is repeatedly executed, or it may result from multiple program

executions with different inputs.

By themselves, creation conditions can be used to eliminate alternate

programs. For example, a potential fault for a print statement is to reference the

wrong variable. A creation condition which guarantees that this fault will not go

undetected is "all variables have different values." Using creation conditions for

larger code segments is impractical however since the creation condition must be

strong enough to ensure that all alternatives are differentiated. Thus, creation

conditions are more effective when used to detect the beginning of an incorrect

computation. Satisfaction of a creation condition means if a non-equivalent

alternative were substituted, a different state would be introduced into the

computation. Proving that a particular condition is a creation condition

involves showing that a finite test set can differentiate the original expression

from all its alternatives in the alternative set.

Creation conditions allow the deduction that the substitution of alternatives

will affect the computation. It must then be considered whether the alternate
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computations would remain different and yield a test failure. The following

definition is given to facilitate the discussion of the original and the alternate

computations.

Definilion For an error-based arena E = <P,S,D,LA> and for I in L,

state(P,l,s) is that member (l,y) of comp(P,s) such that no state (l,x) precedes (l,y)

in comp(Ps).

State(P,l,s) therefore is the first state in the computation of P beginning in state

s whose location component is 1. Imagine the parallel execution of a program and

all its alternates induced by an alternative set associated with a program location

1. Let all the programs start on the same initial state s. Their computations are

all identical until the location I is reached. The potential now exists for some

of the computations to diverge. State(P,l,s) denotes the state just prior to the

divergence in all these computations. If a creation condition is satisfied at this

point, each non-equivalent alternative will produce a different successor state

than is produced by the original program. It is then necessary to show that for

each pair of states (s8,83) where a, is produced by the original program and 8i is

produced by the ,<' alternate program, that propagation occurs:

0 Definition Let (*1,82) be a pair of states from the computations of a program and

alternate for the same input. Let C, and C2 be the ensuing computations.

Propagation occurs for (81,82) if and only if
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(1) C and C2 are finite and jprog(C) (sj) {prog(C2 )J(st), or

(2) Only one of C and C2 is finite.

Definition Let E = <P,R,D,LA> be an error-based arena. Let 1 i L and let F

be the corresponding member in A. A propagation condition B for F is a boolean

condition which satisfies

VSC Sp xSp B(S) VfF 301,2)S

for which propagation occurs for P and I/'

where Sp is the set of all states of P.

Any pair of states that satisfy a propagation condition are guaranteed to

produce different outputs. A propagation condition thus ensures that if an

alternate state is introduced, the resulting computation guarantees that a failure

will occur. The above definition is complicated by the fact that the propagation

condition may depend on the particular alternative chosen. If the remaining

computation does not encounter that location again, then the definition can be

simplified by removing the quantification of alternatives lMor8ll.

The following theorem shows that a test set is reliable which satisfies all

creation and propagation conditions for a class of alternatives.

T7eorem Let E = <P,S,D,(I},{A}> be an alternate-sufficient error-based

arena. Let T be a successful test set for E for which a creation and a

propagation condition for A hold. Then P is correct with respect to S.

Proof Since the arena is alternate-sufficient either P or one of its alternates is
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correct. Since the creation condition for the alternative set is satisfied for T, all

the computations for P on T differ from the computations for the alternate

programs which contain non-equivalent alternatives. Satisfaction of the

propagation condition implies that propagation occurs for at least one pair of

states for each non-equivalent alternate program. Therefore, since the test set is

successful all alternate programs are eliminated and the original must be correct.

4.3. Example

To illustrate static error-based testing, several potential faults are eliminated

from a program that calculates the area under a curve defined by a polynomial

(figure 2).

The arena is formally defined as <P,S,D,LA> where

P is the program of figure 2,

S = {((a,b,incr),y) I y = area under 4.2+3z-2 between the points a and b

as estimated by the rectangular method with steps of size h}

D = Dom(S),

L = {11,/2,/} where

l1 is the location determined by the expression area in line 11

/2 is the location determined by the expression incr in line 8

is the location determined by the expression 4*a*a+3*a-2 in line 2

A = (F1, F2, F3) where

F1 = (a, b, incr, v)

F2 = (a, b, area, v)
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program calcarea (input, output);

var a, b, incr, area, v :real,

begin

1 read (a,b,incr); {incr > 0)
2 v :=4*a*a + 3*a -2;
3 area :=0;

4 while a+mcnr <= bdo

begin

5 area :=area + v * mncr;
06 a:=a+ incr;

7 v: 4*a*a +3*a -2;
end;

8 nr := b -a;

g if mcer >= 0 then begin

10 area :=area + v * incr;
11 writeln ('area by rectangular method:', area)

end else

12 writein ('illegal values for a=', a, ' and b=', b)

end.4

Figure 2

F3 = pt(9)

P+(M) is the set of polynomials of the form

where 0 < a.< M and oi is an integer.
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4I

The first two alternative sets represent the fault of substituting one variable for

another. The last represents the fault of making a single digit coefficient fault in

a polynomial. This set is infinite since there is no restriction on the degree of the

polynomial, just the magnitude of the coefficient. To eliminate all alternatives, it

is necesary to give a creation condition for each set and to prove a propagation

condition to guarantee that any local effect will affect the output. This is done

below for each alternative set.

Alternative set Fl. Let S be a set of program states that occur before line

11. A creation condition for alternative set F is

s e S V f i F1  If(s) + lareal(s)

If this condition holds then S differentiates area from F, and hence it is a

creation condition. Since the statement essentially terminates the program, true

is a valid propagation condition; if the wrong value is computed in this

statement, it is printed and thus affects the output.

Alternative set F2. Let S be a set of program states that occur before line 8.

A creation condition for this alternative set is

s e S lincr](s) + lb-a](s)

If this condition holds then for all alternatives f e F2

liner := b-al(s) + if := b - al(s)

since the value of incr will have changed. Thus, the above condition is a creation

condition. Let (ss2) be the pair of states produced by the original program and 4

some alternate program immediately after the creation condition is satisfied. A

-41-



propagation condition is

[b < a](81) and [b < al(s2)

since this ensures that incr is negative in the original program and positive in

each alternate program (incr begins as a positive number and is unchanged until

statement 8). Thus every alternate program would execute statement 12 instead

of statement 11, yielding a program failure.

Alternative set F3. Let S be a set of program states that occur before line 2.

[Row8l] shows that point x > M+I is transcendental for the class Pr(M). Thus

a creation condition is

3 s, S [a > 1o(s)

since M = 9 in this case. A propagation condition for (*s2) defined as above is

[a < b < a + incr](l) and [a < b < a + incr( 2 )

which forces the program to follow the path p = (1,2,3,4f,8,9t,lO,11) skipping the

body of the loop at 4. The condition a < b after line I ensures that incr > 0

after line 9. Since v remains unchanged along p, the computation of area in line

10 is incorrect since incr > 0. Thus, for the above propagation condition, an

alternate value in v after line 2 propagates to the output of area in line 11.

Once the creation and propagation conditions are determined, it is necessary

to find a test set which causes them to be satisfied. For the error-based arena

described above, the following will do:
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a - 10, b - 11, and incr - 5

This test point satisfies one creation/propagation pair for each of the specified

locations. If the output is correct (no specification has been given) then none of

the proposed alternate programs can be correct without the original program 4

being correct. All potential alternate programs described by the alternative sets

are therefore eliminated.

4.4. Undecidable problems of static testing

As might be expected, in the presence of multiple alternative locations

coupled expressions present many problems.

Theorem Let E = <P,S,D,LA> be an alterate-sufficient error-based arena

with multiple locations. Let T be a successful test set for E for which creation

and propagation conditions hold for each alternative set in A. If no set of

expressions specified by L couple on T then P is correct with respect to S.

Proof Recall that for a set of expressions to couple four conditions must be

satisfied:

(1) P must be incorrect with respect to S.

(2) T must be successful.

(3) T must differentiate P from all single alternate programs.

(4) The multiple alternate program created by the simultaneous substitution of

all the single alternative must be correct with respect to S.
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For each set -of expressions which do Dot couple for T, one or more of these four

conditions must not hold. That the second condition holds is assumed. The

third condition holds since the creation and propagation conditions are satisfied

on the test set T. If the first condition does not hold, then P is correct and the

proof is completed. If the fourth condition does not hold, then the combination

of alternatives is an incorrect program. But the arena is alternate-sufficient, so P

or one of its alternates is correct. The third condition implies that none of the

non-equivalent single alternate programs are correct. Thus, the original program,

P, must be correct.

Since creation conditions are dependent on the choice of alternative sets and

propagation conditions apply to arbitrary program the following two theorems

come as no surprise.

Theorem There exists no algorithm for generating creation conditions satisfied

by finite sets.

Proof For the program

input x
print x

consider the alternative set defined by replacing "print x" with "print f(x)",

where f can be any function computable in the language. Since no finite set can

be reliable for this arena, no creation condition can be generated that will be

satisfied by a finite set.

-44-



Theorem There exists no algorithm for deciding if a non-trivial propagation

condition exists.

Proof Consider the case when the propagation condition does not depend on the

alternative set, e.g., when the program can be partitioned as

R
location I
P

where there are no branches out of P. Thus, the computation after location 1 is

determined only by P. Since P can be an arbitrary program, if a propagation

condition exists for the specified location and corresponding alternative set, then

there is a pair of states (81,82) for which JPI(sl) + JPI( 2) But this means P must

be defined for some input. This is an undecidable question, however, so the

existence of a non-trivial propagation condition is undecidable.

4.5. Conclusions

The following static error-based testing strategy is suggested by the above

discussion:

(1) Identify locations within the program where expected faults could occur.

(2) Specify the alternative sets for each of these locations.

(3) For each location:

a. Derive a condition which asserts that the computation will vary if

an alternative is substituted at the given location (a creation condi-
tion).
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b. Derive a condition which asserts the alternate limited
computation(s) will differ from the original computation at their ter-

mination (a propagation condition).

c. Satisfy the conditions of (a) and (b) with a test set, then inspect
the output. If the output is correct, substitution of non-equivalent al-
ternatives at that location would produce a program failure for the
test set.

Some of the advantages of this strategy are:

(1) The strategy extends mutation testing in three ways. First, it allows

unbounded error-based arenas; mutation testing does not. This is because a

creation condition can differentiate an expression from an infinite set of

alternatives. Second, alternate programs are neither generated nor executed

since the propagation condition detects when the substitution of an

alternative would affect the program output. Thus, the execution overhead

of mutation testing is removed. Finally, an executable oracle is not required

since the number of test cases are minimized.

(2) The strategy employs formal verification in a useful, limited capacity. To

gain the advantages given in (1) it is necessary to develop both creation and

propagation conditions. The former are reusable since they are program

independent. Development of the latter requires less effort than a

verification proof since the full semantics of the program need not be

considered. It is only necessary to prove that propagation will occur along

chosen paths. If these paths are judiciously selected, the difficulties are

minimized.
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(3) The strategy provides a means of assessing test data quality. Every test

point eliminates potential faults; this strategy allows some of those faults to

be determined. This suggests a thorough test is one for which all faults from

all alternative sets are eliminated. This parallels Howden's notion of a

complete test [How82].

(4) The strategy is partially automatable. Once the creation and propagation

conditions are developed, they can be checked by a run-time monitor.

(5) The strategy directs the tester to potential trouble locations. After the test

set has been executed, the monitor can give information about alternatives

that have not yet been eliminated, which in turn can direct the selection of

additional test data to better exercise the designated expression.

The primary disadvantage of the strategy is that creation and propagation

conditions cannot be automatically generated.
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5. Symbolic Testing

This section presents a dynamic error-based testing strategy called Symbolic

testing. In the first sectlun symbolic testing is formalized and illustrated.

Ramifications of the method are then developed for a simple language in the

second section. Since error-based testing allows unbounded arenas, undecidable

issues are investigated in the next section for the infinite alternative set of

constant substitutions. An extension of results for constant substitution to other

unbounded arenas is discussed. The last section deals with how to handle

problems when multiple paths are involved.

5.1. Motivation and basic definitions

Symbolic execution [Cla77] underlies the idea of symbolic testing. The forte

of symbolic execution is its abililty to represent infinitely many executions by a

single symbolic execution. Historically this capability has been used to represent

a the parallel execution of one program on an infinite set of inputs. This is

accomplished by using a symbolic input to represent all inputs which follow a

given path. In such a system, execution proceeds as usual until an input

statement is reached. A symbolic input is then obtained and stored as the value

of the appropriate variable. Whenever the variable is referenced, its symbolic

* value is introduced into the computation. This can result in a symbolic

expression being stored in another variable. For example, in

read x
y y:= x+ I
print y
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if the symbolic input x is read, then the value of y on output is x + 1. A

symbolic input represents all inputs that follow a particular path. A symbolic

execution system therefore determines the function of any given path by

expressing the output in terms of the symbolic input.

Definition A symbolic arena S - <P,S,D,LA> is an error-based arena

<P',S,D,LA> augmented in the following ways:

(1) dom([P]) = dom([P']) U an infinite set of symbolic inputs.

(2) P = P', except for the replacement of one expression in P' with an

undeclared variable. Referencing such a variable introduces a unique

symbolic alternative into the computation.

Definition A symbolic state of a program is an ordered pair (n,v) where n is a

statement number of P and v is a mapping from variables to values

v: var-> value

where value may be an arbitrary expression involving numeric and symbolic

values.

Symbolic testing allows representation of another infinite class of executions:

that of an infinite set of alternate programs. This is achieved by creating a

program called a transformation which represents all alternate programs induced

by an alternative set. This transformation is created by replacing a designated

expression with a symbolic alternative. The symbolic alternative "stands in" for

members of the alternative set. The transformation is then symbolically executed
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along the chosen path. For example, in

read x

y : x + F

print y

the symbolic alternative F may represent all possible constant substitutions. For

input 5 the output is 5 + F. Thus, for a given (non-symbolic) input a program

containing a symbolic alternative determines the output computed by all

represented alternate programs.

Definition Let S = <P,S,D,L,A> be a symbolic arena. For location 1 in L and

0 variable F not in P, pF is called a transformation of P.

A transformation is not an alternate program; rather it represents a class of

alternate programs. The transformation FI represents all alternate programs/Pe

for all e in the alternative set.

If the symbolic form of all alternate computations can be determined for an

input x, then this form can be equated to the computation of the actual program,

yielding a propagation equation. The solutions of this equation are those

alternatives which when substituted for the designated expression produce

alternate programs not differentiated by x, provided the same path is followed.

* Definition For x t dom([P]), a propagation equation for transformation PF is

IPJ(x) = [fj'(x)

If x is a symbolic input then the equation is general otherwise it is specific.
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For example, consider the following program to swap two integers:

proc name
int x,y

read x read y
x x + y
y :- x - y

x x - y

print x
print y

endproc

which produces on input 2,3:

* x: 3

y: 2

The program reads two integers (2,3) and swaps them without using a temporary.

Suppose that the first assignment statement is wrong; perhaps the reference

to y in the assignment statement is incorrect. Replacing this expression with

symbolic alternative F yields the program

proc name
int x,y

read x,y
x :=x + F
y :- x - y
x :-x - y
print x

A print y

endproc

Re-executing the program for the same input (2,3) produces:
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x: 2 + F -(2 + F - 3)

y: 2 + F -3

The output encodes the functions computed by all the alternate programs

represented by the (unspecified) alternative set. One propagation equation is

produced by equating the two values computed for y:

2 + F -3=2

This simplifies to F = 3. Thus, no expression which evaluates- to a constant

other than 3 could be substituted in the original program and not be

differentiated by this test.

Another propagation equation can be generated by equating the two

computed values for x:

2 + F - (2 + F - 3) = 3

This however simplifies to 3 = 3 and thus no alternate programs can be

eliminated based on this test.

Consider some potential alternative sets for the designated expression. If F

represents the class of constant substitutions, then no constant other than 3

could be substituted and the output be correct for this input. Thus, all constants

other than 3 are eliminated by this test. An additional input is therefore

* necessary to eliminate this alternate program.

If F represents the class of variable substitutions, then an inspection of the

state at the designated expression reveals that no variable other than y has the

value 3. Thus the test eliminates this alternative set.
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If F represents the class of "variable + constant" faults, then the only

possible substitutions are x + 1 and y + 0 since the alternative must evaluate to

3 in the current state, which has x = 2 and y = 3. The second alternative is

equivalent to the original expression. An additional input is required to eliminate

the first alternate program.

Executing the program for input (8,5) yields the following set of equations:

8 + F - (8 + F - 5) = 5

Again the second equation sixnplies to 5 = 5. The first equation simplifies to F

=5. This eliminates the class of constant substitutions because no constant can

evaluate to 3 on one execution and 5 on another. It also e".minates the class of

variable + constant substitutions because the only possible substitution this time

is x + (-3) which is not equivalent to the previously determined substitution.

Therefore the test set {(2,3), (8,5)) is sufficient to eliminate all the

aforementioned alternatives.

The following is an example of a symbolic execution using symbolic inputs.

The symbolic inputs correspond in name to the variable to which they are

assigned.
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proc name
int b
int c
int t
read b,e,t
t :- b + c*b
b b*t -c
c :- c + b*t

print t
print b

print c
endproc

The resulting output is:

t: b + (c a b)
b: b * (b + (c * b))- c
c: c + ((b * (b + (c * b)) - c) (b + (c a b)))

Introducing a symbolic alternative into the first assignment statement

t := b + c*F

and re-executing yields:

t: b + (c * F)
b: b * (b + (c * F)) - c

c: C + ((b * (b + (c * F)) - c) * (b + (c * F)))

Note that the output is expressed in terms of the symbolic inputs and the

symbolic alternative.

Generating the propagation equation for t yields:

b +(c F)-= b + (c * b)

thus

F = b.

Symbolic alternative F and variable b must therefore have the same value.
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Thus, only expressions equivalent to b may be substituted. Any alternative which

simplifies to b will not be differentiated. Any alternative which does not simplify

to b will be differentiated.

The propagation equation for b yields the same conclusion:

b*(b+(c*F))-c= b*(b+(c*b))-c

thus

F = b.

If c were the only output, then evaluation would be harder. After forming

Se the propagation equation and simplifying there are two solutions:

F =b

and

2*b*b*c - c*c + b*c*c*F + b*b*c*c = 0

For this propagation condition there are two separate solutions. In the latter

case F must evaluate so that

2*b*b*c - c*c + b*c*c*F + b*b*c*c - 0.

The solution to this is the identity

F = (-l*b*b*c +c - 2* b*b)/(b*c).

The division operator in this solution is algebraic and not integer division. Since

F must be an integer, the solution holds only for those inputs which produce an

even division. Examples of this are when b = 1, and c c (-3,1,3). Thus, for

these inputs the second solution above would not be differentiated.
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5.2. Restricted propagation equations

The difficulty in solving a propagation equation depends on the complexity

of operators in the programming language. If an operator is powerful enough to

* introduce an arbitrary computation then there is no algorithm for solving these

equations. An example is the application of an arbitrary function. Suppose the

language has a binary APPLY operator which interprets the first parameter as a

function and applies it to the second. Since the first parameter is unrestricted,

such an operator introduces an arbitrary computation. Therefore a propagation

equation involving such operators cannot be solved algorithmically because that

could entail deciding when two programs produce the same result. This, of

course, is unsolvable. LISP and SNOBOL are languages with such an operator.

For a suitably restricted set of operators, there may be a solution procedure

for propagation equations. A language with simple arithmetic operators will now

be investigated.

Definition A rational form in the variables zi, ... is an expression in zr,..., x.

and integer constants using only the operators +,- ,or / (integer division).

Def~iiions A polynomial in x is any expression in x and integer constants using

*only the operators +, -, or *.I

Let S = <P,S,D,L,A> be a symbolic arena, and consider the

* transformation ~1 ~Each propagation equation is a rational form r(x,F), where x
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is an input and F is a symbolic alternative. If the operation involving x and F

are from {+,-,*}, then r(x,F) is a polynomial in F whose coefficients are

polynomials in x, and for any fixed z0, r(z,F) is a polynomial in F.

Since propagation equations have simple forms in a language with simple

operators, it is useful to know something about the properties of these forms.

The most useful is:

Tkeorem [Iba821. For any two rational forms r and s over x,

(1) There is an algorithm to determine the cardinality of

R = {x I r(x) = s(x)}.

(2) It is decidable whether or not (V x) r(x) = s(x).

Two consequences of this theorem are noteworthy.

Tkeorem For every loop-free program P with a single input vsaiable, there exists

a program P' such that P' contains no conditional statements and for any input

x, the sequence of variable mappings produced by P' is the same as that

produced by P, for all variables they share in common.

Proof Here are the translation rules for computing a conditional statement.

-67-



Conditional expression Arithmtic Expression

x = 0 1/(x*x + 1)

x ) 0 2*x*x)/( 2*x*x- 1)
or

- (x =0)

x = k 1/( ( x- k) *( x- k) + 1)

x > 0 if x = 0 then 0
else if x = -1 then 0
else ((x-l)/x) = 1

x > y (x-y) > 0

A conditional statement can be simulated by conditionally assigning the desired

expression to a variable, as in

if x = 5 then c := I/((x-5)*(x-5)+ 1)
a : z a :- (1-e)*a + c*z

else

b := z +x b :- c*b +(l-c)*(z+x)

If the operators of the language are restricted to {+,-,,,/} then a program

without conditional statements computes a rational form. Since any program

with only IF statements can be translated into a program without IF's, then all

loop-free programs compute rational forms. This establishes the following.

Cor.aw If P and R are two loop-free programs with a single input variable,

which use only the operators {+,-,*,/}, then the equivalence of P and R is

decidable.

The restriction to a single input variable is to ensure that the rational form is in

one variable (and not, for instance, a multinomial). The difficulty with multiple
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input variables is that the program can then contain arbitrary conditional

expressions from these input variables. Since the input space is the set of

integers, these conditional expressions therefore represent all possible Diophantine

equations. There can be no algorithm for solving arbitrary Diophantine equations

(it is an unsolvable problem, see below), thus there can be no algorithm for

deciding the equivalence of two rational forms over several variables.

Definition For a symbolic arena S = <P,S,D,LA> and x c dom ([PI), the path

domain determined by x is

{y I prog(comp(P,O,x)) = prog(comp(P,O,y))}

The path determined by x for program P is

pathp (x) = prog(comp(P,O,x)).

The definition is loose in that it considers two inputs in the same path domain if

they execute the same sequence of statements. Thus, two inputs could take

different branchs provided identical statements are executed.

How are specific propagation equations related to general propagation

equations? Each is developed from one program path. The general propagation

equation represents the computation of all inputs in the path domain. Thus, the

general equation encompasses the specific equation in that the specific equation

results from substituting a member of the path domain for the symbolic input in

the general equation.

Teorem The solution set for a general propagation equation is a subset of the
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intersection of the solution sets for all the specific propagation equations for the

U same path.

Proof A solution to a general propagation equation is a solution for any given

input. Since a specific propagation equation can be derived from general

propagation equation by substituting a literal input for a symbolic input, each

solution of the general equation must be a solution of the specific.

Corolary A specific propagation equation for input x may have more solutions

than a general propagation equation for the path determined by x.

Corofiry There may be more non-differentiated alternatives than indicated by

the solution set of a general propagation equation.

5.3. An unbounded arena: constant transformations

An infinite alternative set implies infinitely many alternate programs. It is

possible that an arena with such in alternative set is not finite, i.e. that no finite

test set exists which differentiates the original program from all its alternates. It

would be advantageous to know when this occurs. This problem is discussed

below for arenas with restricted programs and alternate sets.

The program class has the following features:

(1) Computation: arithmetic expressions using +,,/(integer division)

(2) Control: if and while statements
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(3) Input/output: The program begins with a read statement for a single

variable that is executed once at program invocation. The program

terminates with a sequence of print statements that are executed only once

when the program halts.

(4) Data: All inputs, outputs, and internal values are integers. Division by zero

is treated as a fatal error: no output is produced and the program function is

undefined for that point.

The class is general enough to compute all computable functions. Results for this

language readily extend to other languages.

The alternative set chosen is that of "all constants." Thus, a program

expression may be replaced by an arbitrary constant.

Some of the results below depend on properties of equations of the form

M(X,,...,I,,) = 0

where m(z 1 ,...,z 3 ) is a multinomial in , When solutions must be integers,

these are called Diophantine equations. Fermat's Last Theorem is a famous

example of such an equation: There is no integral solution to

as+ b'- cO

for n > 3. To date, no one has proved the theorem. However, it has been shown

that there is no algorithm for deciding if an arbitrary Diophantine equation has a

solution [Dav731. The instance of the theorem used here is

T1orem There is no algorithm for deciding if an arbitrary Diophantine equation
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in two variables has a solution.

In section 3 it was shown that a bounded arena is finite, i.e. an arena with

finite alternative sets requires only a finite test set to differentiate the original

I program from its alternates. When an arena is unbounded, however, it is

possible that no finite test set suffices. An earlier example showed that this is not

the case for a very particular (location, alternative set) pair. The discussion

below applies to more general circumstances in which unbounded arenas are

finite.

p Two factors seem to influence whether an arena is decidably finite for

constant substitutions. One is the unrestricted use of the division operator. The

other is alternatives which affect the program flow. It is shown that the presence

of either implies that infinite arenas can result, and that it is undecidable when

they do. It is also shown that the absence of both produces finite arenas.

Consider pror-am transformations which can affect the flow of the program.

Definition A transformation, Pfl, of P is domain independent for an input x if

I and only if the conditions along the path taken by x in P evaluate the same as

the conditions along the path followed by x in P1F, for all alternatives represented

by F. F is domain independent for a set T if and only if it is domain

independent for each member of T. If no inputs are specified, then the input set

dom([PI) is implied. If a transformation is not domain independent, then it is

p domain dependent.
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Domain independence captures the intuitive notion of a program change

affecting the flow of control. As might be expected, there is no algorithm for

deciding it a transformation is domain independent for any x. There are,

nevertheless, algorithms in data flow theory [Hec77] which calculate all variables

(and hence all expressions) that have the potential of affecting a given expression.

If the given expression is a boolean condition then these algorithms pinpoint

those expressions which may affect program flow. Hence they also determine

those which cannot affect program flow. The undecidable issue lies in the middle

ground-those expressions which have the potential of affecting the program flow,

but do not.

For example, consider a symbolic arena with program

if x = 1 then y 1=
else y := x*x

and alternative set "all integers" substituted for the constant I in the expression

6x= I". The program transformation for this alternative set is

if x = F then y := I
else y :=x*x

Clearly the transformation is domain dependent. The curious thing is that for

every alternate program there is a single input which differentiates it from the

* original. Furthermore, no input differentiates more than one alternate program.

Thus no finite test set exists which differentiates all its alternate programs. The

arena is therefore infinite. The following has therefore been proved:

Theorem An arena can be infinite for domain dependent transformations
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representing constant substitutions.

Domain dependent transformations can introduce unwanted difficulty for

error-based testing. But how great is this difficulty? For instance, even though

they can produce infinite arenas, perhaps it is decidable when this occurs. If so,

other techniques (such as static error-based testing) can be tried. Unfortunately,

this cannot be decided:

Theorem There is no program Q that computes a function satisfying

{T if the arena i, finite

[Q(PPF) - otherwise 4

where T is a non-empty set which differentiates P from P', for all integers e, P

satisfies the program restrictions above, and PF represents a class of constant

substitutions which are domain dependent.

Proof The existence of Q implies that arbitrary Diophantine equations of two

variables are solvable. Since the latter is unsolvable, the former cannot exist.

Let f(x,F) = 0 be an arbitrary Diophantine equation in two variables.

Consider the program P

0

if f(x,F 0) = 0 then print 1 else print 2

where F is a constant. f(x,F) is therefore a polynomial in x. Let FAF be

if f(x,F) = 0 then print 1 else print 2

Applying Q, suppose IQI(P,P'F) = 0. Then the equation f(x,F) = 0 is solved by

0 infinitely many points. If [Q](P,AF) = T; execute P on T. If only 2 is printed

then the equation has no solution; otherwise there are solutions and the test
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determines all of them.

For domain independent transformations it appears there may be hope of

dealing with infinite arenas. Since these transformations do not affect the

program control flow, the same path must be followed in the original and all

alternate programs. The functions computed by each of these paths is a rational

form and the equivalence of such forms was shown to be decidable by a finite test

set in section 3. However, the question at hand is whether a finite test set always

exists to differentiate a rational form from infinitely many such forms. In section

3 it was shown that a conditional statement can be replaced by assignments

using rational forms. Thus, the example above can use rational forms and hence

the previous two theorems apply.

Tkeorem An arena can be infinite for domain independent transformations

representing constant substitutions.

T7eorem There is no program Q that computes a function satisfying

[T iT the arena is /inite[QI(P'I"F ) -".. Otherwise.

where T is a non-empty set which differentiates P from Pe, for all integers e, P

satisfies the program restrictions above, and PF represents a class of constant

substitutions which are domain independent.

It appears then that if there is any hope of producing decidable results for

unbounded arenas, division must be restricted. The following theorem states

that this is exactly the case.
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Theorem There is a program Q that computes the function

T if the arena ii finite[ QItP,P r)= 10Otherwise.

where T is a non-empty set which differentiates P from Pt, for all integers e, P

satisfies the program restrictions above, PF represents a class of constant

substitutions which are domain independent, and the general propagation

equation involves no division operators.

Proof Let f(x,F)=O be the general propagation equation. For a given input Z,

f(zg,F) is a polynomial with constant coefficients [Row81]. Let FO be the point

beyond which all values of F do not satisfy f(2,F)=O. (F0 is 2*M + 1, where M is

the maximum magnitude of a coefficient [Row81].) Thus, only values between -F0

and +F can satisfy the equation. Therefore the input 20 eliminates all but a

finite number of alternatives. The corresponding specific propagation equations

can be generated by substituting into the general propagation equation above.

Each of these equations is a polynomial in x. Thus, the solution set for each is

finite. The union of these finite solutions is a set S. Any x not a member of S

therefore eliminates the remaining alternatives. It is therefore necessary to

determine if such an x is a member of the path domain. This can be done since

all predicates along the path are rational forms over the input variable and (by a

theorem in section 3) solutions sets to rational forms have recursive cardinality.

If the cardinality is infinite then such an x is guaranteed to be a member of the

path domain since S is finite. If the cardinality is finite, then each member of the

path domain can be found by exhaustively trying each input. When the
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cardinality of the path domain is reached, it is then decided whether or not any

element in the path domain is not in S. If x is in the path domain and not in S

then Q should produce T = (x); otherwise, Q should produce 0.

While the results about constant substitutions are clear, it would be nice to

extend them to other infinite sets. The key difference between the set of

constants and another infinite alternative set (say expressions of the form ax+b, a

and b constants) is that of difficulty of evaluation. The latter require knowledge

of the program state for evaluation while the former do not. However there is a

0 link between the two that is important. If a constant is eliminated by a test set,

then all expressions which evaluate to that constant are also eliminated. Thus, if

a technique (as used in the last theorem above) first eliminates all but a finite set

of constants and then eliminates the remaining constants one by one, then the

technique can be used to eliminate infinite alternative sets satisfying:

No infinite subset of the alternative set evaluates to the same constant.

(This is because after eliminating all but a finite set of constants, there are at

most finitely many alternatives remaining.)

5.4. Problems with domain dependent transformations

* . The problem with integer division (and its inherent power) is its ability to

replace conditionals. One way to restrict this ability without losing division is to

replace integer division with another operator that does not decide if the

numerator is smaller than the denominator. Let // be defined as
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a/b if lal > Il
S undefined other oise

This transforms the problem into one of domain dependence since to perform

division it is necessary to use a conditional statement:

a/b=i ilal >= lblthen a//b else 0

Symbolic testing can be used to explore the effect of domain dependent

transformations in the case of single input variables. The necessary and sufficient

conditions that require an infinite test set to differentiate all alternate programs

are therefore:

(1) A is infinite.

(2) There is an infinite subset of A, {ej,e 2,...) with associated failure sets 11,12,...,

such that the intersection of all the failure sets is empty.

Note that these conditions do not require an infinite number of alternate paths as

evidenced by the earlier example to compute the square of the input (in which

the first "1" may be replaced by any constant):

read x
if x=1 then y := 1 else y := x*x
print y

Symbolic testing can be applied to examples such as these by comparing the

functions computed by each path. For this example the two functions are [x*x]

and [1]. If an input changes domains then an alternate program fails if the input

does not satisfy the equation:

X*x - 1
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Thus, the only alternative to "x=1" is 6"x=-1"; any other alternate program will

fail on only one input. Thus, even though the arena is not finite (and hence

mutation testing could not be applied), symbolic testing has shown the original

program correct.

Sometimes the second condition is trivially fauie, as in the case

if x=1 then y :=2 else y :=x*x

Symbolic analysis yields

x*x = 2

which has no solutions. Thus, if for input 1 the predicate is false in an alternate

program, then a program failure is guaranteed. For anl alternate programs the

predicate is false for the input 1. Hence the set (1} eliminates all alternates.

6.5. Summary

This section has discussed symbolic testing, a form of dynamic error-based

testing. The following testing strategy is suggested by the foregoing discussion:

(1) Identify locations within the program where expected faults could occur.

(2) Specify the alternative sets for each of these locations.

(3) Execute the program on a test set and record the paths taken and the

output produced for each input. Then, for each of path containing a

potential fault location,



a. Replace the expression with a symbolic alternative and perform

a symbolic execution down this path.

b. Equate the resulting output with the value computed by the
original program for that path. This is the propagation equation.

c. Solve this equation for those values which, if they had been

* introduced at the fault location would not have produced a different
output.

d. From these values deduce what alternatives are yet to be
eliminated.

The technique serves both a practical and a theoretical purpose. Its

practical purpose is to determine which alternate programs are eliminated by a

test set. Solutions to specific propagation equations are alternatives which have

not yet been eliminated. Some of the advantages of this strategy are:

(1) The strategy enables full use of the computation of a program to deduce the

absence of faults. In the past testing strategies have made limited use of the

computation, thus ignoring valuable information from which to deduce the

absence of faults.

(2) The strategy exploits the strengths of traditional testing and program

* verification. Program executions are used to provide the knowledge base

from which it can be proven that certain faults are not present.

(3) The strategy is partially automatable. The monitoring of the program and

the creation of the propagation equation to be solved is fully automatable.

Depending on the equation form, solutions can sometimes be automatically

p found.
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Using general propagation equations, some theoretical aspects of error-based

testing have been explicated. In particular, it was shown that in the presence of

division operators and and domain dependent transformations it is undecidable

* whether or not infinite test sets are necessary to differentiate the original program

from the alternates. It was also shown that in their absence, finite test sets do

exist. This result was extended to other infinite alternative sets. An alternate

division operator was suggested to ease the problems of division. Symbolic

testing was shown to be useful in analyzing domain dependent transformations.

-71-



S. Related work

The theory of error-based testing presented here is strongly influenced by

prior work in practical and theoretical testing. This section overviews how these

contributions relate to the current framework. The purpose is not to conform allI

previous work to the present, that would be unjust to their original intent.

However, it is informative to see how previous thinking has affected that which

described here. It is also hoped that the theory presented here provides insight

into previous thought.

The general theory of testing in section 1 is derived from [How7oI. the

concept of a reliable test set is given there as well as a discussion of its

unsolvability. The means of defining specification and correctness is taken from

[M1801. The approach of using failure sets to discuss essential unsolvabilities in

general testing is unique to this thesis.

a Many have argued for error-based testing, but none so eloquently as

[Wey8OJ. Error-based testing applies the whole realm of programming knowledge

to the task of selecting test data and evaluating results. Thus, information about

programming style, error-prone language constructs, programmer idiosyncrasies,

and even the hour of the day a program is keypunched is all viable information

to guide testing. Evaluation of a test should be based on what errors it shows

not to be present in a program.

While the study of error-based testing is motivated by the goal of

eliminating errors, the desire here to formally capture and explore this process
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has reduced the concept of "error" to "fault." This approach greatly benefited

L from two testing systems which have used the idea of alternative sets. The first

such system, [Ham77I, illustrates how a compiler can be used to check the

* adequacy of a te~st. The tester supplies both the program and a finite sample of

expected input-output behavior. The compiler then ensures that the given

behavior is not matched by any "smaller" program. Designated program

expressions are substituted with -a finite number of alternate expressions which

are defined by built-in rules of the compiler. When a program expression is

encountered for which alternatives are defined, its alternatives are evaluated and

compared with the value of the original expression. Those which evaluate

differently are marked. After all test data has been executed, the unmarked

alternate expressions are printed by the compiler as warning mes3ages, indicating

that either the test input-output pairs are inadequate, or equivalent simpler

programs have been found.

This compiler-based system may be viewed as an approximation of static

error-based testing. The creation condition is that the finite alternatives must

* compute a different result. Propagation, however, is assumed and not proven.

Therefore an alternate program may be eliminated when it is actually correct

because it computes a different internal state than the original.

Mutation testing is the second system based on the concept of eliminating

alternatives. In all fairness, adherents of mutation testing do not consider it to

* be error-based testing. Elimination of faults is not their goal; they view their

technique as a program exercising tool which has the agreeable side effect of
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ensuring that "complex errors" are not present in a program. Regardless of this

orientation, it is clear that mutation testing serves well as a formal model for

error-based testing, at least in the limited interpretation of "error" as "fault"

taken here.

Mutation testing may be viewed as a static error-based testing strategy in

which the program is treated as black box. Thus, in mutation testing creation

conditions are applied only at program termination. This has the advantage over

compiler-based testing in that there is less chance of rejecting a correct alternate.

Its disadvantages are that it requires the full execution of each alternate program

(and is therefore quite slow), it does not allow for infinite alternative sets, and it

requires executable oracles.

The concept of creation conditions is introduced in [Fos781 and formalized in

[How821. The obvious disadvantage (as evidenced in compiler-based testing) is

that alternatives can be rejected which are in fact correct. Propagation

conditions are introduced here as a means of rectifying this situation. That

propagation is necessary is granted by all. Few, however, show any inclination to

prove propagation. The assumptions of domain testing [VWO typify this

attitude. A predicate is considered adequately tested when inputs are round

which results in states which lie "close" to the boundary described by the

predicate. This is the creation condition. It is then assumed that coincidental

corr ectness does not occur; i.e., if an input follows a wrong path it will produce a

S program failure. Therefore, if the creation condition is satisfied, a propagation

condition is satisfied automatically since a failure is guaranteed. Only recently
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has any emphasis been given to proving propagation, and then only propagation

between internal points on a path. In [Zei83J the effect of computational

statements on predicates is formally proved. The extension to proving that the

effect persists to program output is not taken however.

Though the technique has been available for a decade, the use of symbolic

execution as a means of proving propagation is unique here. Limited use of

rM symbolic execution (though apparently unrecognized by the authors) appears in

[Zei83J and rBudsol. The former models the computation of programs whose

* predicates are linear transformations of the input variables. These linear

transformations are nothing more than a restricted form of symbolic execution.

The latter proves propagation properties of a restricted class of recursive LISP

programs by computing the functions taken by various paths.

As mentioned earlier, coupling is a problem inherent in all error-based

strategies. Theoretical work in this area has been limited. In [13ud80J it was

shown that restricted decision-table programs and a class of recursive LISP

functions are finite arenas and that all alternate programs are eliminated when a

specified subclass are eliminated. In (DeM781 an experiment is described in which

22,000 multiple-alternates of a program were generated, in an attempt to find

* single alternative substitutions which could be differentiated, but not the

combination. None were found. An experimental analysis of coupling is fraught

with the difficulties of assuring that there is a representative sample space of

5 programs and program faults.
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7. Conclusions

The approach taken to the discussion of error-based testing has been

theoretically oriented. This orientation has affected the presentation in the

following ways.

(1) Error-based testing has been theoretically motivated. The fact that failure

sets may not be recursively enumerable leads to the conclusion that testing

can only he sufficient when the failure set is restricted.

(2) The concept of "error" has been restricted to that of "fault." In practice,

error-based testing may be guided by any characteristic of the program

development. It is difficult to formally describe errors in the programming

process. Therefore error-based testing has been formalized as fault-based

testing.

(3) Many of the theorems are pessimistic. In order to describe the theoretical

limitations of error-based testing, the worst-case is often used to show some

undecidable result. This does not mean that there can never be any

solution-it just means that there is no general solution. The pessimism is

clearly seen in the results about coupling and infinite arenas.

Two approaches to error-based testing have been presented, static and

dynamic. In fact, both use formal techniques of program verification as well as

program executions. They may be viewed as points on a "program-verification"

continuum. On one end is formal verification which demonstrates program

correctness without executing the program. In static error-based testing the
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verification effort is divided into proving creation and propagation conditions and

finding inputs which cause them to be satisfied. In some sense, execution of the

program has been made part of the proof process. Dynamic error-based testing

carries this further by making information derived from the execution the center

of interest. Once test information has been collected, it can then be analyzed

(e.g., by means of propagation equations). Beyond dynamic testing on this

continuum are the various structural program coverage measures [Mil741. These

allow deduction that certain simple faults are not in the program, such as

unreachable code. At the far end of the spectrum is conventional testing where

input-output pairs are simply compared to a specification. The only information

gained here is whether or not certain inputs are in the failure set; no extension

can be made to other points in the domain.

Static and dynamic error-based testing are complementary techniques.

Though static testing requires an overhead in proving creation and propagation

conditions, once proved the assessment of test data is automatable. In dynamic

testing the overhead follows the program execution. Therefore, when one

* technique fails the other has the potential for success. For example, suppose

dynamic testing fails to eliminate a certain alternate program. More tests could

be executed, but the overhead may be prohibitive. Static testing can then be

tried because the cost of additional executions is small relative to the initial

overhead of developing the creation and propagation conditions. Likewise static

*testing may fail, perhaps due to an overly strong creation or propagation

condition. Dynamic analysis of some of the test cases may reveal this to be so.
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This work can be extended in several ways. Many of the decidability results

proved here are dependent upon the operators of a language. Other operators

should be investigated, especially in applicative languages. Domain dependent

transformations cause difficulties because they can require the analysis of a large

number of alternate paths to prove propagation. Techniques such as estimating

the likelihood of propagation along a path need to be developed to prune these

paths. Finally, before any effective use can be made of the theory presented here,

more research must be done on what are likely candidates for alternative sets.
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