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A Theory of Fault-Tolerant Routing
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Abstract— Fault-tolerant systems aim at providing continuous operation in the presence of faults. Multicomputers rely on an

interconnection network between processors to support the message-passing mechanism. Therefore, the reliability of the

interconnection network is very important for the reliability of the whole system.

This paper analyzes the effective redundancy available in a wormhole network by combining connectivity and deadlock freedom.

Redundancy is defined at the channel level. We propose a sufficient condition for channel redundancy, also computing the set of

redundant channels. The redundancy level of the network is also defined, proposing a theorem that supplies its value. This theory is

developed on top of our necessary and sufficient condition for deadlock-free adaptive routing. The new theory also considers the

failure of physical channels when virtual channels are used. Finally, we propose a methodology for the design of fault-tolerant

routing algorithms, showing its application to n-dimensional meshes.

Index Terms—Adaptive routing, channel redundancy, fault-tolerant routing, interconnection networks, network redundancy,

wormhole switching.

——————————   ✦    ——————————

1 INTRODUCTION

ULTICOMPUTERS have experienced a rapid develop-
ment during the last decade [4]. As the number of

elements in a multicomputer increases, the likelihood of
one or more elements failing increases too. Consequently,
system reliability becomes a key issue in the design and
implementation of large scale multicomputers. Several is-
sues have been addressed in the field of fault-tolerant de-
sign and reliability analysis of multicomputers and distrib-
uted systems [39].

Fault-tolerant systems aim at providing continuous op-
eration in the presence of faults. Multicomputers rely on an
interconnection network between processors to support the
message-passing mechanism. Therefore, the reliability of the
interconnection network is very important for the reliability
of the whole system. In fact, the loss of communication be-
tween any two nodes might prevent a distributed recovery,
because the state of the computation in the isolated nodes is
unreachable. Network fault tolerance has been defined as the
maximum number of elements that can fail without inducing
a possible disconnection in the network [42].

Designs of fault-tolerant interconnection networks can
be divided into two classes: dynamic and static. A dynamic
design has some spare channels and switches, allowing the
reconfiguration of the network and preserving the original
topology. A static design provides a fault-tolerant routing
algorithm that will bypass any faulty node or channel. In
both cases, there is an upper bound for the number of suc-
cessive faults tolerated by the network before repairing.

Most multicomputers and distributed shared-memory

multiprocessors are based on direct networks. These net-
works are easy to map on two dimensions and allow the
exploitation of the communication locality [1]. Therefore,
we will restrict our attention to direct networks. For these
networks, a static design only requires the definition of a
fault-tolerant routing algorithm.

2 BACKGROUND AND MOTIVATION

Several fault-tolerant routing algorithms have been pro-
posed for direct networks [10], [11], [30], [45], taking ad-
vantage of the alternative paths offered by the network to-
pology. They focus on guaranteeing that any node can be
reached in the presence of a given number of faults. These
algorithms assume that the network uses store-and-forward
switching. In most cases, the hypercube has been the pre-
ferred topology, due to the high degree and the high num-
ber of alternative paths. Additionally, several fault-tolerant
algorithms have been proposed for broadcasting and gos-
siping [44], [2], [31]. Again, these algorithms have been de-
signed for store-and-forward networks with hypercube
topology.

Current multicomputers and multiprocessors use
wormhole switching [16]. Each message is serialized into a
sequence of data units or flits [15]. The flit at the head of a
message governs the route and the remaining flits follow it
in a pipeline fashion. If all the channels requested by the
header are busy, it is blocked until one of those channels is
freed; the flow control within the network blocks the trail-
ing flits.

During the last few years, many fault-tolerant routing
algorithms have been proposed for wormhole networks.
These algorithms are based on different strategies. Some
algorithms exploit the high number of alternative paths
available in the hypercube topology [40], [43], [18], [13]. Lee
and Hayes [40] propose marking certain fault-free nodes as
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unsafe. A node is in the unsafe state if it has at least two
faulty or unsafe nearest neighbors. By not forwarding mes-
sages to unsafe nodes, routing and broadcasting can be
simplified and their delay reduced. This mechanism re-
quires an algorithm to mark unsafe nodes. Dally and Aoki
proposed two adaptive routing algorithms based on the
concept of dimension reversal (DR), or number of times that a
message has been routed from a channel in one dimension
to a channel in a lower dimension [18]. In the dynamic algo-
rithm, a message can follow any nonminimal path. When-
ever a message acquires a channel, it labels the channel
with its current DR number. However, a message that
reaches a node where all output channels are occupied by
messages with equal or lower DRs must be routed in di-
mension order until delivery. This algorithm has very good
fault-tolerant properties except when messages must be
routed in dimension order.

When wormhole switching is used, low-dimensional
meshes and k-ary n-cubes achieve a higher performance
than hypercubes [1]. So, most recent proposals have been
developed for those topologies. Linder and Harden [41]
have proposed an adaptive and fault-tolerant routing algo-
rithm for wormhole networks with a k-ary n-cube topology.
It is based on the concept of virtual network. Virtual networks
are mapped onto the physical network by splitting physical
channels into virtual channels. The main drawback of this
algorithm is that it requires up to 2

n
 virtual channels per

physical channel, and additional virtual channels are re-
quired to support faulty channels. Glass and Ni have pro-
posed a fault-tolerant routing algorithm for n-dimensional
meshes that supports n - 1 dynamic faults. It is based on the
turn model and does not require virtual channels [36]. How-
ever, it requires a synchronization between nonneighboring
nodes and it is only partially adaptive. Additionally, it has
poor performance in the absence of faults [6]. Origin-based
routing is another partially adaptive fault-tolerant routing
algorithm for meshes that does not require virtual channels
[37]. Messages are routed in two phases. In the first phase,
messages are routed adaptively towards the origin. In the
second phase, messages are routed adaptively towards their
destination. Depending upon its location, the placement of
the origin can become a communication hot-spot.

An interesting set of proposals for meshes and k-ary n-
cubes is based on the concept of fault regions [12], [7], [9],
[8]. These regions have predefined shapes, usually rectan-
gular or convex. When fault patterns have different shapes,
an algorithm is required to mark fault-free nodes as faulty.
Chien and Kim [12] propose a nonminimal partially adap-
tive routing algorithm for meshes, which can route around
fault regions that do not include boundary nodes. How-
ever, this algorithm cannot efficiently handle faults on the
boundaries of a mesh. Boppana and Chalasani [8] propose
the use of fault rings and fault chains, which are sets of fault-
free components around fault regions. By using additional
virtual channels, messages can be routed along fault rings
and fault chains. Several researchers are currently working
on extending fault rings and fault chains to support non-
rectangular fault regions.

An alternative way to guarantee that messages reach
their destination in the presence of faults consists of abort-

ing messages blocked by faults, sending them again across
different paths [38].

Some of the limitations of wormhole switching to sup-
port faults have been highlighted by Gaughan and Yala-
manchili, proposing a different approach to fault-tolerant
routing [32], [34]. Instead of using wormhole, they propose
the use of pipelined circuit switching (PCS) and header
backtracking. The misroute backtracking protocol proposed
by them supports a high number of static faults. However,
PCS achieves lower performance than wormhole switching
due to the overhead of path setup, especially for short mes-
sages. In order to overcome this limitation, a new hybrid
switching technique, known as scouting, has been devel-
oped [27], [20]. In scouting, data flits follow the message
header at a certain distance, therefore allowing limited
backtracking. That distance can be dynamically adjusted,
behaving like wormhole switching in the absence of faults
and supporting misrouting and backtracking in the pres-
ence of faults.

PCS and scouting are very resilient to faults. However,
they require more hardware support than wormhole
switching. These techniques are mainly intended for sys-
tems where reliability is the primary design goal. On the
other extreme of the design space, software-based fault tol-
erant routing allows routers to support faults without de-
grading the performance in the absence of faults [46]. These
techniques are very simple, do not require complex hard-
ware support, and can be implemented on top of oblivious
routers as well as adaptive routers. The main drawback is
that performance may degrade considerably when faults
occur. These techniques are intended to provide some level
of fault-tolerance at a minimum cost, and are suitable to
commercial machines.

Most fault-tolerant routing algorithms focused on sup-
porting static faults, i.e., faults that exist when the computer
is powered on. However, in practice, faults may occur at
any time (dynamic faults). In particular, a channel or a node
may fail while a message is crossing it. In this case, the
fragment of the message that has not crossed the faulty
component yet remains blocked forever. In [33], [38], some
hardware mechanisms are proposed to remove the frag-
ments of an interrupted message pipeline, and to notify the
source node so that the message is transmitted again. The
Reliable Router [19] supports dynamic faults by using link-
level retransmission in combination with a unique-token
protocol. This mechanism does not require returning ac-
knowledgments and keeping copies for possible retrans-
missions at the message source. Finally, it should be noted
that fault-tolerant routing algorithms that rely on an algo-
rithm to form fault regions may fail in the presence of dy-
namic faults. Effectively, after a node failure, a message
may reach a node that will be included in a fault region
before it has been included.

Finally, several fault-tolerant routers have been designed
for a variety of switching techniques, including wormhole
switching [19], pipelined circuit switching [3], and virtual
cut-through switching [5]. In summary, there is a wide
spectrum of proposals to tolerate faults in the interconnec-
tion network, ranging from simple software techniques for
commercial machines to sophisticated hardware support
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for systems where reliability is the primary design goal.
Most proposals lie in the middle of the spectrum, aiming at
increasing fault-tolerance in networks using wormhole
switching by adding some hardware support.

All of the previously mentioned routing algorithms for
wormhole switching avoid deadlocks by preventing cyclic
dependencies between channels, according to [16]. The only
exceptions are the dynamic algorithm proposed in [18] and
the abort-and-retry technique proposed in [38]. A higher
routing flexibility can be obtained by allowing cyclic depend-
encies between channels [24], [28]. This additional flexibility
can be used to route messages around faults, therefore
avoiding the need for marking fault-free nodes as faulty, us-
ing algorithms to form fault regions or synchronizing non-
neighboring nodes. Moreover, previous proposals focus on
proposing fault-tolerant routing algorithms, without analyz-
ing the redundancy available in the network.

This paper analyzes the effective redundancy available
in a wormhole network by combining connectivity and
deadlock freedom. This theory mainly considers channel
faults. However, the results are extended by considering
node faults. First, we state the problem in Section 3. Section 4
gives an informal description of the results proposed in this
paper. Then, Section 5 summarizes some theoretical back-
ground that is required for the remaining sections. Section 6
analyzes the redundancy at the channel level. Section 7
deals with redundancy at the network level, defining it and
computing its value. These results are extended by consid-
ering virtual channels in Section 8 and node faults in Sec-
tion 9. Section 10 proposes a design methodology for fault-
tolerant routing algorithms. Finally, Section 11 shows the
application of the theoretical results, proposing an adaptive
fault-tolerant routing algorithm. This theory is developed
on top of our necessary and sufficient condition for dead-
lock-free adaptive routing [24], [28]. The new theory im-
proves the results previously proposed by us in [22], [25].
Those results only supplied a lower bound for the redun-
dancy level of the network. Additionally, we explicitly con-
sider virtual channels in this paper, analyzing the effect of
physical channel faults.

3 STATEMENT OF THE PROBLEM

In this paper, we answer a fundamental question regarding
fault-tolerant routing: What is the maximum number of
simultaneous faults tolerated by the routing function? If a
routing function tolerates k faulty channels, it must remain
connected and deadlock-free for any number of faulty
channels less than or equal to k. Otherwise, the network can
reach a deadlocked configuration when some channels fail.

In order to analyze network fault tolerance, connectivity
cannot be defined without considering the routing algo-
rithm. When some channels fail, a node may become iso-
lated, even when there are some channels connecting it to
other nodes, provided that those channels cannot be used
by the routing algorithm. For example, consider a 2D mesh
using XY routing. If an X channel fails, all the messages that
request it will be blocked. However, there are some alter-
native healthy paths around the faulty channel. Those paths
cannot be used because the routing algorithm does not al-

low misrouting. If the routing algorithm allowed misrout-
ing, those paths could be used and messages would not
block. Thus, connectivity must be defined as a property of
the routing function [21], [23].

It may be thought that fault-tolerant routing algorithms
must be designed in such a way that messages can use all
the available channels in the network. The main limitation
is that messages may deadlock. As stated above, if the
routing function is supposed to tolerate k faulty channels, it
must remain connected and deadlock-free for any number
of faulty channels less than or equal to k.

4 INFORMAL DESCRIPTION

There are some theoretical results that guarantee the absence
of deadlock in the whole network by analyzing the behavior
of the routing function R restricted to a subset of channels C1

[21], [23]. Additionally, that behavior is not modified when
some channels not belonging to C1 are removed. Therefore,
that theory can be used to guarantee the absence of deadlock
when some channels fail. A more powerful theory has been
proposed in [24], [28]. This theory supplies a necessary and
sufficient condition for deadlock-free adaptive routing. It also
guarantees the absence of deadlock by analyzing the behav-
ior of a restricted routing function R1. If R1 is connected and
free of cyclic dependencies between channels, then the rout-
ing function R is deadlock-free.

The above mentioned theory can be used to analyze
channel and network redundancy. The basic idea is the
following: Consider that there exists a restricted routing
function R1 that is connected and has no cyclic dependen-
cies between channels. If all the channels that are not used
by R1 fail, R is still connected and deadlock-free. Therefore,
all the channels that are not used by R1 are redundant. How-
ever, if a channel supplied by R1 for some destinations fails,
we cannot guarantee that this fault will be tolerated.

In general, for a given routing function R, there exist
several restricted routing functions R1, R2, º, Rk satisfying
the above mentioned conditions. Each restricted routing
function Ri only uses a subset of channels Ci. Let us con-
sider the intersection of all the channel subsets Ci, i = 1, 2,
º, k. If the intersection set is not empty, removing a chan-
nel from it may produce deadlock. However, if the inter-
section set is empty, then we can remove any channel with-
out disconnecting R and guaranteeing that there is no
deadlock. Now consider the worst case: How many simul-
taneous faults are allowed? Provided that there are circuits
to detect faults, an equivalent question is: How many chan-
nels can be simultaneously removed? The answer is easy:
As long as at least one of the channel subsets Ci keeps all of
its elements, we will be able to guarantee that the routing
function R is connected and deadlock-free. The maximum
number of simultaneous faults that are allowed in the worst
case will be defined as the redundancy level of the network.
The next sections formalize these ideas.

5 DEADLOCK-FREE ADAPTIVE ROUTING

The theory proposed in this paper is developed on top of
the theory of deadlock-free adaptive routing proposed in
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[24], [28]. That theory is described here in an informal way
to make the paper self-contained. Please refer to [28] for a
formal version as well as for examples of application and
examples for the different kinds of channel dependency.

DEFINITION 1. An interconnection network I is a strongly
connected directed multigraph, I = G(N, C). The vertices of
the multigraph N represent the set of processing nodes. The
arcs of the multigraph C represent the set of communica-
tion channels. More than a single channel is allowed to
connect a given pair of nodes. Each channel ci has an asso-
ciated queue. The source and destination nodes of channel ci

are denoted si and di, respectively.

DEFINITION 2. An adaptive routing function R : N ¥ N Æ

3(C), where 3(C) is the power set of C, supplies a set of al-
ternative output channels to send a message from the cur-
rent node nc to the destination node nd, R(nc, nd) = {c1, c2,
º, cp}. A selection function selects a free output channel
(if any) from the set supplied by the routing function.

DEFINITION 3. A routing function R for a given interconnection
network I is connected iff, for any pair of nodes x, y Œ N,
it is possible to establish a path P(x, y) Œ 3(C) between
them using channels belonging to the sets supplied by R.

DEFINITION 4. A routing function R for a given interconnection
network I is coherent iff for every path P that can be es-
tablished by R, every prefix of P is also a path of R. In other
words, if a routing function R can establish a path P(x, y)
between x and y, it can also establish a path between x and
any intermediate node crossed by P(x, y) using a subset of
the channels used by P(x, y).

DEFINITION 5. A routing subfunction R1 for a given routing
function R is a restriction of R. For each destination, R1

supplies a subset of the channels supplied by R. The set of
all the channels supplied by R1 is C1 = �"x,yŒNR1(x, y). As
a particular case, the routing subfunction can be defined by
giving the subset of channels C1 used by it. In this case,
R1(x, y) = R(x, y) > C1 "x, y Œ N.

DEFINITION 6. Given an interconnection network I, a routing
function R and a pair of adjacent channels ci, cj Œ C, there
is a direct dependency from ci to cj iff cj can be requested
immediately after using ci by messages destined for some
node x. Adjacency means that di = sj.

DEFINITION 7. Given an interconnection network I, a routing
function R, a routing subfunction R1 and a pair of nonad-
jacent channels ci, cj Œ C1, there is an indirect depend-
ency from ci to cj iff it is possible to establish a path from si

to dj for messages destined for some node x, and ci and cj

are the first and last channels in that path and the only
ones in that path supplied by R1 for the destination of the
message. Therefore, cj can be requested after using ci by
some messages. As ci and cj are not adjacent, some other
channels not supplied by R1 for the destination of the mes-
sage are reserved while establishing the path between them.
Those channels are supplied by R.

DEFINITION 8. Given an interconnection network I, a routing
function R, a routing subfunction R1, and a pair of adja-
cent channels ci, cj Œ C1, there is a direct cross depend-
ency from ci to cj iff cj can be requested immediately after

using ci by messages destined for some node x, cj is supplied
by R1 for the destination of the message, and ci cannot be
supplied by R1 for that destination. However, ci is supplied
by R1 for some other destination(s).

DEFINITION 9. Given an interconnection network I, a routing
function R, a routing subfunction R1, and a pair of nonad-
jacent channels ci, cj Œ C1, there is an indirect cross de-
pendency from ci to cj iff it is possible to establish a path
from si to dj for messages destined for some node x, ci and cj

are the first and last channels in that path, cj is the only
channel in that path supplied by R1 for the destination of
the message, and ci cannot be supplied by R1 for that desti-
nation. However, ci is supplied by R1 for some other desti-
nation(s). Therefore, cj can be requested after using ci by
some messages. As ci and cj are not adjacent, some other
channels not supplied by R1 for the destination of the mes-
sage are reserved while establishing the path between them.

DEFINITION 10. A channel dependency graph D for a given
interconnection network I and routing function R, is a di-
rected graph, D = G(C, E). The vertices of D are the chan-
nels of I. The arcs of D are the pairs of channels (ci, cj) such
that there is a direct dependency from ci to cj.

DEFINITION 11. An extended channel dependency graph DE

for a given interconnection network I and routing subfunc-
tion R1 of a routing function R, is a directed graph, DE =
G(C1, EE). The vertices of DE are the channels that can be
supplied by the routing subfunction R1 for some destina-
tions. The arcs of DE are the pairs of channels (ci, cj) such
that there is either a direct, indirect, direct cross, or indirect
cross dependency from ci to cj. It should be noted that the
extended channel dependency graph has been redefined
with respect to [21], [23].

The following theorem proposes a necessary and suffi-
cient condition for an adaptive routing function to be
deadlock-free. It is an extension of the second theorem pro-
posed in [21], [23].

THEOREM 1. A coherent, connected, and adaptive routing func-
tion R for an interconnection network I is deadlock-free iff
there exists a routing subfunction R1 that is connected and
has no cycles in its extended channel dependency graph DE.

6 CHANNEL REDUNDANCY

In this section, we analyze the redundancy at the channel
level. We define redundant channels, also computing the
set of redundant channels.

6.1 Assumptions

The assumptions given in [23] for adaptive routing are also
valid here. These assumptions consider several aspects re-
lated to the use of wormhole switching. Some additional
assumptions are required for fault-tolerant routing. These
assumptions prevent messages from being routed across
faulty channels. Also, they eliminate deadlocks induced by
dynamic faults. The interested reader can refer to [33], [38]
for hardware implementations of protocols supporting dy-
namic faults. This section only considers channel faults. The
assumptions are the following:
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1) Nodes are reliable. Only channel faults are consid-
ered. These faults can always be detected.

2) When a channel fails, it is marked as faulty at its
source node. If there is a message in transit, the flits
that have not crossed the channel yet are discarded to
eliminate deadlocks induced by dynamic faults (faults
that may appear at any time).

3) The routing function is not modified when one or
more channels fail.

4) The selection function will not select any faulty chan-
nel. When all the channels supplied by the routing
function are faulty, the message is discarded and re-
moved from the network.

It should be noted that, when some flits or a whole mes-
sage are discarded, the network relies on a hardware proto-
col to ensure that discarded messages will be transmitted
again, and incomplete messages reaching their destination
nodes will be eliminated [33], [38].

6.2 Definitions and Theorems

Now, we can give the following definition:

DEFINITION 12. Given an interconnection network I and a rout-
ing function R, a channel ci Œ C is redundant iff, after
removing that channel, the resulting routing subfunction
R* is connected and deadlock-free.

Before proposing the theorem, we need two simple
lemmas:

LEMMA 1. A routing function R for a given interconnection net-
work I is connected if there exists a connected routing
subfunction R1.

The proof is trivial.

LEMMA 2. Given an interconnection network I, a routing function
R, and a routing subfunction R1, removing channels that are
not supplied by R1 for any destination does not add any de-
pendency to the extended channel dependency graph of R1.

Taking into account the definitions of indirect depend-
ency, direct cross dependency, and indirect cross depend-
ency, the proof is also trivial. Moreover, removing channels
that are not supplied by R1 for any destination may remove
indirect dependencies and indirect cross dependencies. Let
C1 be the set of all the channels supplied by R1 for some
destinations. When all the channels belonging to C - C1 are
removed, there is not any indirect dependency nor indirect
cross dependency between the channels supplied by R1.

Now we can propose the following theorem:

THEOREM 2. Given an interconnection network I, a routing func-
tion R, and a channel subset C1 Ã C, all the channels be-
longing to C - C1 are redundant if there exists a routing
subfunction R1 that only supplies channels belonging to C1

and R1 is connected and it has no cycles in its extended
channel dependency graph DE.

PROOF. ‹ Suppose that there exists a routing subfunction
R1 that only supplies channels belonging to C1 and
that R1 is connected and it has no cycles in its ex-
tended channel dependency graph DE. Let ci be a
channel belonging to C - C1. Let us prove that it is re-
dundant. Suppose that ci is removed. Let

C* = C - {ci}

and

R*(x, y) = R(x, y) > C* "x, y Œ N

As ci Œ C - C1, then C1 Õ C*. Taking into account
Lemma 2, removing ci does not add any dependency
between the channels supplied by R1. As the extended
channel dependency graph DE is acyclic, the new ex-
tended channel dependency graph DE*, defined with
respect to R*, is also acyclic. Thus, the routing sub-
function R1 is connected and it has no cycles in its ex-
tended channel dependency graph DE*. Applying
Theorem 1, R* is deadlock-free. Also, as R1 is con-
nected, by Lemma 1, R* is connected. So, ci is redun-
dant by Definition 12. �

It should be noted that Theorem 2 does not give a neces-
sary condition. It should also be noted that, even if all the
channels belonging to a given subset are redundant, it does
not mean that all of them can be removed simultaneously
without affecting connectivity or deadlock-freedom. It
means that those channels can be removed one at a time.
The question about how many simultaneous faulty chan-
nels are allowed will be addressed in Section 7.

The conditions imposed by Theorem 2 to guarantee that
the channels belonging to C - C1 are redundant, are the
same as the ones imposed by Theorem 1 to guarantee that
the routing function R is deadlock-free.

A single routing subfunction R1 suffices for the applica-
tion of Theorem 1. However, for a given routing function R,
several routing subfunctions may exist, all of them being
connected and having no cycles in their extended channel
dependency graphs. Let C1, C2, º, Ck be the subsets con-
taining the channels supplied by those routing subfunctions
and let

Cs = (C - C1) < (C - C2) < º < (C - Ck)

= C - (C1 > C2 > º > Ck)

Thus, Cs is the set of redundant channels. In the case

C1 > C2 > º > Ck = ∆

all the channels are redundant. The second design method-
ology proposed in [23] supplies a routing function in which
all the channels are redundant, because it defines two dis-
joint channel subsets C1 and C2.

7 NETWORK REDUNDANCY

After dealing with channel redundancy, the next question is:
How many simultaneous faulty channels are allowed in a
given network? We already know that, after a channel fault,
the routing function will perform correctly if the faulty chan-
nel was redundant. So, we can give the following definitions:

DEFINITION 13. A given routing function R for an interconnec-
tion network I has a redundancy level equal to r iff

"c1, c2, º, cr Œ C, C* = C - {c1, c2, º, cr}

defines a routing subfunction R* that is connected and
deadlock-free and



DUATO:  A THEORY OF FAULT-TOLERANT ROUTING IN WORMHOLE NETWORKS 795

$c1, c2, º, cr+1 Œ C such that C** = C - {c1, c2, º, cr+1}

defines a routing subfunction R** that is not connected or it is
not deadlock-free. In other words, the routing function toler-
ates up to r simultaneous faulty channels in the worst case.

DEFINITION 14. A given routing function R for an interconnec-
tion network I is minimally connected iff it is connected
and, after removing any channel supplied by R for some
destinations, R is no longer connected.

As Theorem 1 gives a necessary and sufficient condition
to prove that a given routing function is deadlock-free,
Definition 13 will be useful to build a theory on that theo-
rem. Now we can propose the following theorem:

THEOREM 3. A coherent routing function R for an interconnection
network I has a redundancy level equal to r iff there exist k > r
minimally connected routing subfunctions R1, R2, º, Rk,
and these are the only such routing subfunctions that have
no cycles in their corresponding extended channel depend-
ency graphs, and there exists a subset of r + 1 channels Cm

Ã C such that it is the smallest subset of C satisfying that

"i Œ {1, 2, º, k}, Cm > Ci π ∆

where Ci = �"x,yŒNRi(x, y) is the set of channels supplied by
the routing subfunction Ri.

PROOF SKETCH. ‹ Suppose that there exist only k minimally
connected routing subfunctions R1, R2, º, Rk that
have no cycles in their corresponding extended chan-
nel dependency graphs. Let C1, C2, º, Ck be the sets of
channels supplied by those routing subfunctions, as
shown in Fig. 1. Also, suppose that there exists a sub-
set of r + 1 channels Cm = {c1, c2, º, cr+1} such that it is
the smallest subset containing at least one channel in
Ci, "i Œ {1, 2, º, k}.

In the example shown in Fig. 1, removing c1 will
prevent us from using R1, R2, and R3 to prove that R is
deadlock-free because those routing subfunctions are
minimally connected. Similarly, removing c2 will pre-
vent us from using R4, R5, and R6 to prove that R is
deadlock-free. If all the channels in Cm are removed,
then it is not possible to use any routing subfunction
to prove that R is deadlock-free. Hence, in the worst
case, R does not tolerate r + 1 faults. However, if only
r channels are removed, at least one set Ci, i Œ {1, 2, º, k}
will keep all of its elements, allowing us to prove that
R is deadlock-free. It should be noted that Cm is the
smallest set containing at least one channel in Ci, "i Œ
{1, 2, º, k}. Therefore, R tolerates up to r faults, and
its redundancy level is equal to r.

fi Let R be a coherent routing function with a re-
dundancy level equal to r. So, R is connected and
deadlock-free. By Theorem 1, there exists at least one
routing subfunction that is connected and has no cy-
cles in its extended channel dependency graph. Let
R1, R2, º, Rk be all the minimally connected routing
subfunctions satisfying those conditions. Let C1, C2,
º, Ck be the sets of channels supplied by those rout-
ing subfunctions, as shown in Fig. 1. Let Cm be the
smallest set containing at least one channel in Ci, "i Œ
{1, 2, º, k}.

Note that |Cm| £ k. Obviously, k > r. Now, we
have to prove that |Cm| = r + 1. As indicated above,
after removing all the channels in Cm, it is no longer
possible to prove that R is deadlock-free. If |Cm| £ r,
removing r channels may produce deadlock, contrary
to the assumption that R has a redundancy level equal
to r. If |Cm| > r + 1, after removing any set of r + 1
channels, it will still be possible to find at least one set
Ci, i Œ {1, 2, º, k} that keeps all of its elements, al-
lowing us to prove that R is deadlock-free. Therefore,
the redundancy level is greater than r, contrary to the
assumption that R has a redundancy level equal to r.�

Fig. 1. Channel sets supplied by all the minimally connected routing
subfunctions of R and the corresponding elements in Cm.

PROOF. ‹ Suppose that there exist k minimally connected
routing subfunctions R1, R2, º, Rk, and that these are
the only such routing subfunctions that have no cy-
cles in their corresponding extended channel depend-
ency graphs. Let C1, C2, º, Ck be the sets of channels
supplied by those routing subfunctions. Also, suppose
that there exists a subset of r + 1 channels, Cm Ã C, such
that it is the smallest subset of C satisfying that "i Œ
{1, 2, º, k}, Cm > Ci π ∆.

Let c1, c2, º, cr Œ C be any set of r channels. Let us
prove that C* = C - {c1, c2, º, cr} defines a routing sub-
function R* that is connected and deadlock-free.

As we have only removed r channels from C, C - C*

cannot satisfy the condition given for Cm. Therefore:

$i Œ {1, 2, º, k} such that Ci > (C - C*) = ∆ fi Ci Õ C*

Taking into account Lemma 2, removing c1, c2, º, cr

from C does not add any dependency between the
channels belonging to Ci. As the extended channel
dependency graph for Ri is acyclic, the new extended
channel dependency graph for Ri, defined with re-
spect to R*, is also acyclic. Thus, there exists a routing
subfunction Ri that is connected and has no cycles in
its extended channel dependency graph. Applying
Theorem 1, R* is deadlock-free. Also, as Ri is con-
nected, by Lemma 1, R* is connected. Thus, R has a
redundancy level greater than or equal to r.

Now, let us prove that the redundancy level is not
greater than r. Suppose that we remove all the chan-

nels belonging to Cm. Let C** = C - Cm and let R**(x, y)

= R(x, y) > C** "x, y Œ N. We are going to prove that

R** is not deadlock-free by contradiction. Suppose that

there exists a routing subfunction ¢R**  of R** that is

connected and has no cycles in its extended channel
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dependency graph. If ¢R**  is not minimally connected,

then it will be possible to restrict it, generating an-

other routing subfunction ¢¢R**  of R** that is minimally

connected. Note that ¢¢R**  is also a routing subfunction

of ¢R** . Hence, by Lemma 2, ¢¢R**  has no cycles in its

extended channel dependency graph. Taking into ac-
count that

"i Œ {1, 2, º, k}, Cm > Ci π ∆

¢¢R**  differs from Rj, "j Œ {1, 2, º, k}. Therefore, there

exist more than k minimally connected routing sub-
functions that have no cycles in their extended chan-
nel dependency graph, contrary to the statement of
the theorem. So, there is not any routing subfunction

of R** that is connected and has no cycles in its ex-

tended channel dependency graph. Thus, taking into

account Theorem 1, R** is not deadlock-free. As Cm has

r + 1 elements, the redundancy level of R is not
greater than r.

fi Let R be a coherent routing function with a re-
dundancy level equal to r. So, R is connected and
deadlock-free. By Theorem 1, there exists at least one
routing subfunction that is connected and has no cy-
cles in its extended channel dependency graph. Let
R1, R2, º, Rk be all the minimally connected routing
subfunctions satisfying those conditions. Let C1, C2,
º, Ck be the sets of channels supplied by those rout-
ing subfunctions. Let Cm Ã C be the smallest subset of
C satisfying that

"i Œ {1, 2, º, k}, Cm > Ci π ∆

Note that |Cm| £ k. Now, we have to prove that k > r
and |Cm| = r + 1. Suppose that either k £ r or |Cm| £ r.
In both cases, |Cm| £ r. If we remove all the channels
belonging to Cm, then there is not any connected
routing subfunction without cycles in its extended
channel dependency graph. As a consequence, R is no
longer deadlock-free and it does not tolerate r simul-
taneous faulty channels, contrary to the assumption
that R has a redundancy level equal to r. So, k > r and
|Cm| > r.

Suppose that |Cm| > r + 1. In this case, there exist
k > r minimally connected routing subfunctions R1,
R2, º, Rk that have no cycles in their corresponding
extended channel dependency graphs, and there ex-
ists a subset with more than r + 1 channels, Cm Ã C,
such that it is the smallest subset of C satisfying that

"i Œ {1, 2, º, k}, Cm > Ci π ∆

According to the proof for the sufficient condition
of this theorem, R has a redundancy level greater than
r, contrary to the initial assumption. Hence, |Cm| =
r + 1 and the theorem holds. �

It should be noted that coherency is not required to
prove the sufficient condition for deadlock-freedom [28].
Thus, for routing functions that are not coherent, Theorem 3
only supplies a lower bound for the redundancy level. Also,
the theory proposed in [24], [28] can be easily extended for

routing functions defined as R : C ¥ N Æ 3(C), thus consid-
ering the input channel to the current node instead of just
the current node. However, from a theoretical point of
view, the resulting theorems would only supply sufficient
conditions. The reason being that a deadlocked configura-
tion is not necessarily routable [14]. So, it may happen that
some deadlocked configurations exist for a deadlock-free
routing function, provided that those configurations cannot
be reached starting from an empty network. As a conse-
quence, the results proposed in this paper are also applica-
ble to routing functions defined as R : C ¥ N Æ 3(C), but
Theorem 3 will only supply a lower bound for the redun-
dancy level.

Finally, it should be noted that the necessary and suffi-
cient condition for deadlock-free routing in store-and-
forward and virtual cut-through switching [29] is almost
identical to the one for wormhole switching. The only dif-
ferences are that coherency is not required, and the ex-
tended channel dependency graph only contains direct and
direct cross dependencies. Therefore, the theoretical results
presented in this paper are also valid for those switching
techniques.

8 NETWORKS WITH VIRTUAL CHANNELS

Several deterministic routing algorithms require virtual
channels to prevent deadlock [16]. Virtual channels also
allow several messages to share the bandwidth of physical
channels, usually increasing performance [17]. Moreover,
very efficient fully adaptive routing algorithms can be de-
signed by using virtual channels [23]. Virtual channels are
used in parallel computers like Cray T3D and T3E.

However, the theory proposed in previous sections is
only applicable to physical channels if they are not split into
virtual channels. If virtual channels are used, the theorems
proposed in previous sections are only valid for virtual
channels. Although a failure may affect a single virtual
channel, the failure of physical channels is more frequent.
In this case, all the virtual channels belonging to that physi-
cal channel will become faulty at the same time. In this sec-
tion, we consider the failure of physical channels that are
split into virtual channels. The definitions and theorems
proposed in previous sections must be modified to consider
physical channels instead of virtual channels. We assume
that the number of virtual channels per physical channel is
the same for all the physical channels.

Let Cp be the set of physical channels of the interconnec-
tion network I. Let v be the number of virtual channels per
physical channel. Let C be the set of virtual channels of I.
Each physical channel, pi Œ Cp, is split into v virtual chan-
nels ci,1, ci,2, º, ci,v Œ C. If Cp1 Ã Cp is a subset of physical
channels, the set containing the corresponding virtual
channels will be denoted as C1. In other words, if Cp1 = {p1,
p2, º, pk} then C1 = {c1,1, º, c1,v, c2,1, º, c2,v, º, ck,1, º, ck,v}.

First, we can update some definitions:

DEFINITION 15. Given an interconnection network I and a rout-
ing function R, a physical channel pi Œ Cp is redundant
iff, after removing the channels ci,1, ci,2, º, ci,v, the result-
ing routing subfunction R* is connected and deadlock-free.
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It should be noted that a physical channel is not neces-
sarily redundant if all of its constituent virtual channels are
redundant. The reason is that a virtual channel may rely on
another virtual channel from the same physical channel in
order to be redundant.

DEFINITION 16. A given routing function R for an interconnec-
tion network I has a redundancy level equal to r iff

"p1, p2, º, pr Œ Cp,

C* = C - {c1,1, º, c1,v, c2,1, º, c2,v, º, cr,1, º, cr,v}

defines a routing subfunction R* that is connected and
deadlock-free and

$p1, p2, º, pr+1 Œ Cp such  that

C** = C - {c1,1, º, c1,v, c2,1, º, c2,v, º, cr+1,1, º, cr+1,v}

defines a routing subfunction R** that is not connected or it
is not deadlock-free.

Now, we can propose the following theorems:

THEOREM 4. Given an interconnection network I, a routing func-
tion R, and a channel subset Cp1 Ã Cp, all the channels be-
longing to Cp - Cp1 are redundant if there exists a routing
subfunction R1 that only supplies channels belonging to C1

and R1 is connected and it has no cycles in its extended
channel dependency graph DE.

THEOREM 5. A coherent routing function R for an interconnec-
tion network I has a redundancy level equal to r iff there
exist k > r minimally connected routing subfunctions,
R1, R2, º, Rk, and these are the only such routing subfunc-
tions that have no cycles in their corresponding extended
channel dependency graphs, and there exists a subset of r + 1
physical channels, Cpm Ã Cp, such that it is the smallest
subset of Cp satisfying that

"i Œ {1, 2, º, k}, Cm > Ci π ∆

where Ci = �"x,yŒNRi(x, y) is the set of channels supplied by
the routing subfunction Ri.

The proof for these theorems is similar to the proof for
Theorems 2 and 3. For routing functions that are not coher-
ent, as well as for routing functions defined as R : C ¥ N Æ
3(C), Theorem 5 only supplies a lower bound for the re-
dundancy level.

9 NODE FAULTS

In previous sections, we only considered channel faults. In
this section, we are going to extend those results, so that
they can be applied when one or more nodes fail. The as-
sumptions given in Section 6.1 are also valid here, except
that nodes may also fail. Some additional assumptions are
required:

1) Nodes and/or channels may fail. Faults can always be
detected.

2) When a node fails, all its input channels are marked
as faulty at their source nodes. Thus, taking into ac-
count assumption 4 for channel faults, messages des-
tined for faulty nodes are always discarded if the
routing function is livelock-free.

When a node ni Œ N fails, the new set of processing
nodes is N* = N - {ni}. Messages destined for ni will be dis-
carded and cannot produce deadlock. Thus, the definitions
given in Section 5 can be rewritten by using N* instead of N.
In particular, a routing function is now connected when it is
able to establish a path between any pair of nodes, exclud-
ing the faulty one. Taking into account the new definitions,
all the results obtained in Sections 6 and 7 are applicable
when one or more nodes fail.

10 DESIGN METHODOLOGY

The application of the theory proposed in previous sections
is not straightforward. Analyzing the redundancy level of a
fault-tolerant routing algorithm requires finding all the
routing subfunctions that satisfy some properties. This
problem is conjectured to be NP-complete. Additionally,
the theory proposed in previous sections is not easy to ap-
ply to the design of fault-tolerant routing algorithms. So,
some heuristics are required for the analysis and design of
fault-tolerant algorithms. These heuristics should exploit
the regularity of the network topology.

In [23], we proposed a methodology for the design of
fully adaptive routing algorithms. That methodology starts
from a deterministic or partially adaptive routing algo-
rithm, adding channels in a regular way, and extending the
routing function so that it uses the new channels. Similar to
that theory, here we propose a methodology for the design
of fault-tolerant routing algorithms. The steps are the fol-
lowing:

1) Given an interconnection network, I, define a con-
nected nonminimal fully-adaptive routing function R
for it. This routing function should be deadlock-free.

2) Find a connected routing subfunction R1 of R such that
its extended channel dependency graph is acyclic.

3) Set the desired value for the redundancy level of the
network. This value must be lower than the minimum
node degree. Let r be the desired redundancy level.

4) Consider a node x in the network. For each output
channel ci of this node in the extended channel de-
pendency graph of R1, remove ci and any combination
of r - 1 output channels from x. If the routing sub-
function R1 is no longer connected after removing ci,
find an output channel cj of node x such that, when
added to R1, it connects it again, and the correspond-
ing extended channel dependency graph is acyclic.
Channel cj cannot be one of the channels that were
removed. This step should be repeated for all the
combinations of r - 1 output channels from x. The
symmetry of the routing function can be taken into
account to reduce the number of combinations under
study.

5) If the routing function does not behave in a regular
way, repeat the previous step for a selection of nodes
that represent all the alternative behaviors of the
routing function. If the previous step was not success-
ful, try to extend R by adding a layer of virtual chan-
nels that route messages through alternative physical
paths, and go to step 1.
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This methodology is not as simple and accurate as the
one proposed in [23]. It is only intended to serve as a
guideline in the development of fault-tolerant routing algo-
rithms. The first two steps can be performed in reverse or-
der, similar to the methodology proposed in [23]. In other
words, we can start by defining a connected routing func-
tion that has no cycles in its channel dependency graph,
then adding more channels to make it fully-adaptive and
nonminimal. Step 4 tries to guarantee the redundancy level
at a single node in the network by making sure that any
combination of r faulty output channels at that node does
not prevent us from finding a suitable routing subfunction
that is connected and has no cycles in its extended channel
dependency graph. Note that the worst case usually hap-
pens when all the faulty channels are adjacent to the same
node. Finally, step 5 takes advantage of the regularity of the
network and the routing function, therefore reducing the
analysis of the whole network to those cases for which the
routing function behaves in a different way.

11 DESIGN EXAMPLE

In this section, we present a fault-tolerant routing algorithm
for n-dimensional meshes. We will build it step by step to
illustrate the application of the design methodology pro-
posed in Section 10.

Step 1. A well-known set of nonminimal routing algo-
rithms for 2D meshes can be derived from the turn model
[35]. In particular, the west-last routing algorithm allows
fully adaptive routing when the destination node is at the
east of the current node. Similarly, the east-last routing algo-
rithm allows fully adaptive routing when the destination
node is at the west of the current node. Both algorithms can
be combined to achieve nonminimal fully adaptive routing
by using two virtual networks. Each physical channel is
split into two virtual channels, each one belonging to a dif-
ferent virtual network. One virtual network is used to send
messages towards the east (X-positive). It will be referred to
as eastward virtual network. The second virtual network is
used to send messages towards the west (X-negative) and it
will be referred to as westward virtual network. When the X
coordinates of the source and destination nodes are equal,
messages can be introduced in the eastward (westward)
virtual network, except when the destination is located on
the east (west) border of the network. As mentioned above,
the routing algorithms for those virtual networks are west-
last and east-last, respectively. Note that if the resulting
routing algorithm is restricted to use only minimal paths, it
is equivalent to the algorithms proposed in [41] and [12].

Although the combination of west-last and east-last al-
lows fully adaptive routing in 2D meshes, it does not allow
180-degree turns. These turns are required to tolerate chan-
nel faults in the border of the network, as shown in Figs. 2b,
2c, and 2f. Also, the extension of west-last and east-last for
n-dimensional meshes does not allow fully adaptive rout-
ing because that extension would produce cyclic dependen-
cies between channels. Fortunately, Theorem 1 allows the
existence of such cyclic dependencies.

Fig. 2. Routing examples with faulty channels on a 2D mesh.

Suppose that west-last is extended for n-dimensional
meshes in such a way that nonminimal fully adaptive
routing and 180-degree turns are allowed in all the dimen-
sions with two exceptions: dimension-ordered routing is
used in the east border of the mesh, and messages traveling
west cannot turn again. Also, suppose that east-last is ex-
tended in a similar way. The resulting routing algorithm is
very flexible. Fig. 2 shows the paths followed when some
channels fail. Also, Fig. 3 shows the paths followed when
some nodes fail. Note that, in order to maximize perform-
ance, nonminimal paths are only used when there are
faulty channels or nodes. Also, when nonminimal paths
must be followed, channels crossing dimensions other than
X have a higher priority. This is required to avoid routing
to the east or west borders of the mesh for as long as possi-
ble because only dimension-ordered routing is allowed in
those borders.

Fig. 3. Routing examples with faulty nodes on a 2D mesh. Case c)
shows two alternative paths.

Step 2. Despite its flexibility, the described routing algo-
rithm is deadlock-free. The application of Theorem 1 to
prove that the routing algorithm is deadlock-free requires
the definition of a suitable routing subfunction. We will
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define it by defining the subset of channels C1 that can be
supplied by the routing subfunction (see Definition 5). In
the eastward (westward) virtual network, we have chosen
the east and west channels from each node plus the chan-
nels located on the east (west) border. The routing sub-
function R1, defined by C1, is obviously connected. Also,
messages introduced in the eastward (westward) virtual
network cannot use channels from the other virtual net-
work. So, there is no channel dependency between channels
of C1 that belong to different virtual networks. Therefore,
we only need to prove that the extended channel depend-
ency graph for R1 in one virtual network has no cycles.

Fig. 4 shows part of the extended channel dependency
graph for R1 on a 16-node 2D mesh. Black circles represent
the unidirectional channels belonging to C1 and are labeled
as ci, j, where i and j are the source and destination nodes,
respectively. As a reference, channels are also represented
by thin lines. Thick lines represent channel dependencies,
dashed arrows corresponding to indirect dependencies. For
the sake of clarity, we have only drawn two indirect de-

pendencies. All the indirect dependencies are shown in Fig. 5.
It can be seen that the graph is acyclic. When the mesh has
more than two dimensions, the graph is identical, except on
the east border. As channels on the east border can only be
used crossing dimensions in ascending order, there is not any
cyclic dependency between them. So, R is deadlock-free.

Step 3. In an n-dimensional mesh, some nodes have de-
gree equal to n. So, network redundancy level cannot be
greater than n - 1.

Step 4. According to Theorem 4, all the channels that do
not belong to the X dimension (except the ones on the east
and west borders) are redundant. Also, all the east (west)
virtual channels in the eastward (westward) virtual net-
work are redundant. Effectively, suppose that we remove
from C1 an east channel ci belonging to the eastward virtual
network. As a consequence, R1 is no longer connected.
Now, we add to the subset C1, a channel with the same
source node as ci that crosses any other dimension, obtain-
ing the subset C2. Note that this can be done even if all the
output channels but one fail. The new routing subfunction
R2 is connected. The channel dependencies introduced by
the new channel do not produce any cycle, because they
replace indirect dependencies. Fig. 6 shows part of the ex-
tended channel dependency graph for R2 on a 16-node 2D
mesh. In this example, channel c1,2 has been replaced with
channel c1,5. We have only included indirect dependencies
starting from channel c1,5.

Step 5. The only channels in the eastward (westward)
virtual network that are not redundant are the west (east)
channels, as well as the channels located on the east (west)
border. This limitation can be easily removed by using two
extra virtual networks. The extra eastward (westward) vir-
tual network routes messages in the same way as the east-
ward (westward) virtual network. When a message travel-
ing on the eastward (westward) virtual network reaches the
east (west) border and its only path to the destination is a
nonredundant faulty channel, then the message is transferred
to the extra westward (eastward) virtual network until it
reaches its destination. The resulting routing algorithm will

Fig. 4. Extended channel dependency graph for R1 (only two indirect
dependencies are shown).

Fig. 5. Indirect dependencies of the extended channel dependency
graph for R1.

Fig. 6. Extended channel dependency graph for R2 (only a few indirect
dependencies are shown).
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be referred to as Double East-Last West-Last (DELWL). It
should be noted that the extra virtual networks have the
same properties as the basic virtual networks. Additionally,
messages can be transferred from a virtual network to the
corresponding extra virtual network, but cannot return.
Therefore, the use of the extra virtual networks cannot pro-
duce deadlock.

In summary, east (west) virtual channels belonging to
the same physical channel rely on other physical channels
to be redundant. Thus, all the east (west) physical channels
are redundant. This is also the case for channels located on
the east (west) border. So, each physical channel can be re-
placed by another physical channel with the same source
node. In most cases, the routing algorithm offers 2(n - 1)
alternative paths in case of fault, where n is the number of
dimensions of the mesh. When the faulty channel is adja-
cent to a node in a corner of the n-dimensional mesh (the
worst case), only n - 1 alternative paths exist. All these
paths can be used by the routing algorithm. Effectively, if a
faulty channel is found while the message is traveling
across the east or west border, it is transferred to the corre-
sponding extra virtual network. After that, all the n - 1
minimal and nonminimal paths available on that border
will be tried before leaving it. If one of them is fault-free,
the message will be delivered. Otherwise, the message tries
the last path leaving the border. As shown above, for each
of those paths, it is possible to replace one X channel in C1

by another channel, thus defining another routing subfunc-
tion without cyclic dependencies between channels. The
following theorem computes the redundancy level more
formally.

THEOREM 6. The DELWL routing algorithm for n-dimensional
meshes has a redundancy level equal to n - 1.

PROOF SKETCH. Let us consider the eastward virtual net-
work. The application of Theorem 3 requires finding
all the minimally connected routing subfunctions, as
well as the smallest channel subset satisfying some
properties. It should be noted that the smallest chan-
nel subset is associated with the worst case. The worst
case occurs when all the faulty channels are adjacent
to the same node. Let us consider a node x. Depend-
ing on the location of x, there are several cases. We are
going to study four extreme cases. The remaining
cases lie in between.

1) Node x has 2n output channels. This case corre-
sponds to a node inside the mesh. Starting from
the routing subfunction R1 defined above, we can
obtain the routing subfunctions R2, º, R2n-1 by re-
placing the output channel from node x in the X-
positive direction by one of the 2(n - 1) output
channels in the remaining dimensions. These
routing subfunctions are minimally connected and
have no cycles in their extended channel depend-
ency graphs (see Fig. 6). The smallest subset Cm is
formed by all the output channels from node x ex-
cept the one in the X-negative direction. So, |Cm| =
2n - 1.

2) Node x has n + 1 output channels, two of them in
dimension X and one in every other dimension.

This case corresponds to a node in an edge of the
mesh. Starting from the routing subfunction R1 de-
fined above, we can obtain the routing subfunc-
tions R2, º, Rn by replacing the output channel
from node x in the X-positive direction by one of
the n - 1 output channels in the remaining dimen-
sions. These routing subfunctions are minimally
connected and have no cycles in their extended
channel dependency graphs (see Fig. 6). The small-
est subset Cm is formed by all the output channels
from node x except the one in the X-negative di-
rection. So, |Cm| = n.

3) Node x has 2n - 1 output channels, one of them in
the X-negative direction and two in every other
dimension. This case corresponds to a node in the
east border of the mesh. Note that messages can
only be routed in dimension-order. As messages
meeting a faulty channel in the east border of the
mesh are transferred to the extra westward virtual
network, this case is equivalent to case 1 once the
transfer has been made.

4) Node x has n output channels, one of them in the
X-negative direction. This case corresponds to a
node in a corner of the east border of the mesh.
Note that messages can only be routed in dimen-
sion-order. As messages meeting a faulty channel
in the east border of the mesh are transferred to the
extra westward virtual network, this case is
equivalent to case 2 once the transfer has been
made.

Other intermediate cases are possible. When node
x has two output channels in some dimensions and a
single channel in some other dimensions, |Cm|
ranges from n + 1 to 2n - 2. Similar considerations can
be made for the westward virtual network.

For the extra virtual networks, it should be noted
that messages are only transferred to those networks
when the destination lies in one of the borders of the
mesh and a faulty channel is met. Once a message has
been transferred to an extra virtual network, it will
only cross a channel in the X dimension if all the
channels in the remaining dimensions are faulty.
Therefore, messages will only be routed along a chan-
nel in the X dimension to form a nonminimal path to-
ward their destination. This path only requires a pair of
channels in the X dimension, one in each direction. As a
consequence, a message transferred to the extra east-
ward (westward) virtual network is destined for a node
in the west (east) border of the mesh, and cannot reach
the east (west) border. So, only cases 1 and 2 can occur
in the extra virtual networks.

Therefore, in the worst case, |Cm| = n. Taking
into account Theorem 3, the redundancy level is
equal to n - 1. �

So, four virtual networks are required to implement fully
adaptive routing and to obtain a redundancy level equal to
n - 1. These networks can be implemented by using four
virtual channels per physical channel. For a 2D mesh, the
redundancy level is equal to one. This does not mean that a
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single fault is supported. Indeed, most configurations with
many simultaneous faults are supported. In particular, any
combination of rectangular fault regions is supported. The
algorithm routes messages around those regions in the
same way that it routes messages around single faults (see
Figs. 2 and 3).

The DELWL routing algorithm has some interesting
characteristics. Comparing it with previously proposed
fault-tolerant routing algorithms for wormhole switching:

1) It supports channel faults without having to mark one
of the adjacent nodes as faulty.

2) It does not require any synchronization between non-
neighboring nodes.

3) It can be combined with the hardware mechanisms
proposed in [33] to support dynamic faults.

4) Although it does not require any algorithm to mark
fault-free nodes as faulty, the algorithm proposed in
[8] can be used to increase the number of fault pat-
terns supported by the DELWL routing algorithm.

5) It does not require changing the routing function in
the presence of faults.

6) It does not require any special care, like draining
channels in the presence of faults.

These interesting characteristics are due to the routing
flexibility provided by the DELWL routing algorithm. Any-
way, this is only an example of application of the theory pro-
posed in previous sections. Our main emphasis has been in
providing a theoretical background that can be used for the
design of very powerful fault-tolerant routing algorithms.

12 CONCLUSIONS

This paper has analyzed the effective redundancy available
in an interconnection network using wormhole switching.
Besides considering the connectivity, the effective redun-
dancy also considers that a routing function must remain
deadlock-free, even in the presence of faults. This theory has
been developed on top of our necessary and sufficient condi-
tion for deadlock-free adaptive routing, in order to achieve
the maximum routing flexibility in the presence of faults.

First of all, we have analyzed the redundancy at the
channel level, defining channel redundancy and giving a
sufficient condition for a channel to be redundant. Also, the
set of redundant channels has been computed. Then, we
have analyzed the redundancy at the network level. After
defining the redundancy level of a routing function, a theo-
rem is proposed. This theorem establishes the necessary
and sufficient conditions for a routing function to achieve a
given redundancy level. We have considered virtual chan-
nels explicitly, analyzing the effect of failures in physical
channels when they are split into virtual channels. Node
faults have also been considered.

The necessary and sufficient condition for deadlock-free
routing in store-and-forward and virtual cut-through
switching is almost identical to the one for wormhole
switching. As a consequence, the theoretical results presented
in this paper are also valid for those switching techniques.

Finally, we have proposed a methodology to guide the
design of fault-tolerant routing algorithms. As an example

of application, we have developed a fault-tolerant routing
algorithm for n-dimensional meshes that has a redundancy
level equal to n - 1, therefore allowing up to n - 1 simulta-
neous faults in the worst case.
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