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Abstract
A theory of general solutions of three-dimensional (3D) problems is developed for the coupled
equilibrium equations in 1D hexagonal quasicrystals (QCs), and two new general solutions,
which are called generalized Lekhnitskii–Hu–Nowacki (LHN) and Elliott–Lodge (E–L)
solutions, respectively, are presented based on three theorems. As a special case, the
generalized LHN solution is obtained from our previous general solution by introducing three
high-order displacement functions. For further simplification, considering three cases in which
three characteristic roots are distinct or possibly equal to each other, the generalized E–L
solution shall take different forms, and be expressed in terms of four quasi-harmonic functions
which are very simple and useful. It is proved that the general solution presented by Peng and
Fan is consistent with one case of the generalized E–L solution, while does not include the
other two cases. It is important to note that generalized LHN and E–L solutions are complete
in z-convex domains, while incomplete in the usual non-z-convex domains.

PACS numbers: 61.44.Br, 62.20.Dc, 02.30.Jr

1. Introduction

Since the icosahedral quasicrystal (QC) structure was
observed in Al–Mn alloys by Shechtmanet al [1], the
electronic structure and the optic, magnetic, thermal and
mechanical properties of the material have been extensively
investigated in experimental and theoretical analyses [2–5],
which show their complex structure and unusual properties.
In particular, the field of linear elasticity theory of QCs
has been investigated for many years [6–8]. Recently, a
generalized Hooke’s law of one-dimensional (1D) QCs has
been derived [9], which provides us with a fundamental theory
based on the notion of a continuum model to describe the
elastic behavior of 1D QCs.

Due to the introduction of the phason field, the elastic
equations in elasticity of QCs are much more complicated
than those in classical elasticity. General solutions of elasticity
of QCs are a very effective and convenient tool which helps

us to obtain analytic solutions. In recent years, many efforts
have been made to seek general solutions of elasticity of
QCs. Most of the authors obtained only general solutions of
elastic plane problems for QCs [10–12]. For 3D problems
of 1D hexagonal QCs, a general solution was given
first in terms of four quasi-harmonic functions [13, 14].
Wang [15] presented a general solution for 3D dynamic and
static problems through introduction of two displacement
functions, which satisfy a quasi-harmonic equation and
a sixth-order partial differential equation, respectively.
Recently, based on a differential operator matrix method,
we constructively obtained a general solution by four
functions [16], which satisfy a set of second-order partial
differential equations as characterized by a 4× 4 differential
operator matrix. However, the general solutions [15, 16]
are difficult to obtain rigorous analytic solutions and not
applicable in most cases, since they satisfy some higher-order
equations.
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It is the purpose of this paper to continue our previous
work [16], and develop a theory of general solutions of
3D elastic problems in 1D hexagonal QCs, which are
similar in form to Lekhnitskii–Hu–Nowacki (LHN) [17–19]
and Elliott–Lodge (E–L) [20, 21] solutions of transversely
isotropic elasticity, and which will be called generalized LHN
and E–L solutions of 1D hexagonal QCs, respectively. As
a special case, the generalized LHN solution is obtained
from our general solution [16] in terms of two theorems. For
further simplification, considering three cases in which three
characteristic roots are distinct or possibly equal to each other,
the generalized E–L solution possesses different forms, and
can be expressed in terms of four quasi-harmonic functions.

2. Basic equations and the general solution of 1D
hexagonal QCs

3D elasticity of QCs is very complicated, even for 1D QCs,
analytic solutions of the problem are difficult to obtain. To
solve the boundary value problems of 3D elasticity of QCs,
we need to make certain simplifications, so general solutions
are studied to simplify complicated equations into a few
partial differential equations of lower order. Since general
solutions satisfy basic equations of elasticity, such as the
deformation geometry equations, the constitutive equations
and the equilibrium equations, the boundary value problems
of 3D elasticity of QCs are transformed into finding a solution
which satisfies the boundary conditions in general solutions.

Assume 1D hexagonal QCs are periodic in thex–y-
plane and quasi-periodic in thez-direction in a Cartesian
coordinate system (x, y, z). In absence of body force, the static
equilibrium equations for 1D hexagonal QCs can be expressed
by the following form of matrix equation,

AU = 0, (1)

in which the vectorU = [ux,uy,uz, wz]T (the superscript ‘T’
denotes the transpose) is phonon and phason displacement
vector, andA is a 4× 4 differential operator matrix, such that

A=3+α1∂
2
x +α2∂

2
z α1∂x∂y α3∂x∂z β1∂x∂z

α1∂x∂y 3+α1∂
2
y +α2∂

2
z α3∂y∂z β1∂y∂z

α3∂x∂z α3∂y∂z α23+α4∂
2
z β23+β3∂

2
z

β1∂x∂z β1∂y∂z β23+β3∂
2
z γ13+γ2∂

2
z

 ,
(2)

where the subscriptsi = 1,2,3, j = 1,2, k = 1,2,3,4 and
l = 0,1,2,3 will be used throughout this paper;c11, c12, c13,

c33, c44, c66 are elastic constants in the phonon field andc66 =

(c11 − c12)/2; K j are elastic constants in the phason field;
Ri are phonon–phason coupling elastic constants. The para-
metersαk, βi andγ j are defined by these elastic constants, i.e.

α1 =
c66 + c12

c66
, α2 =

c44

c66
, α3 =

c13 + c44

c66
,

α4 =
c33

c66
, β1 =

R1 + R3

c66
, β2 =

R3

c66
, (3)

β3 =
R2

c66
, γ1 =

K2

c66
, γ2 =

K1

c66
,

and3= ∂2
x + ∂2

y is the planar Laplacian.

It is clear that the governing field equations of 1D
hexagonal QCs are analogous to those of transversely
isotropic piezoelectric materials, with slight difference in
their coefficients. Therefore, the methods developed for
piezoelectric materials [22–24] were directly applied to
establish general solutions of 1D hexagonal QCs [14]. As a
classical elastic problem, the fundamental solutions of point
phonon and phason forces applied in an infinite QC body are
derived based on the general solution.

In the study of general solutions of piezoelectric media,
Wang and Zheng [22] first derived the 3D general solutions
of piezoelectric materials, but the solutions are restricted
to the case ofs2

1 6= s2
2 6= s2

3. For the same problem, Ding
et al [23] obtained three groups of general solutions, in
which the solutions of [22] were included as a special case.
For the cases ofs2

1 6= s2
2 = s2

3 ands2
1 = s2

2 = s2
3, utilizing one

group of general solution [23], Ding et al also discussed the
expressions of the general solutions [24].

By adopting Wang and Wang’s technique [25] into
elasticity of QCs, we have derived a new kind of general
solution of 1D hexagonal QCs by using the theory of
differential operator matrix [16]. In the present work, two
general solutions of 1D hexagonal QCs will be established
in virtue of the analysis technique of QCs [16]. The general
solution is obtained by four displacement functions as
follows [16]:

ux = a∇
2
1∇

2
2∇

2
3ϕ1 − ã∇̃

2
1∇̃

2
2∂x

(
∂xϕ1 + ∂yϕ2

)
+∇

2
0∂x∂z

[
(β1β2 −α3γ1)∇

2
aϕ3 + (α3β2 −α2β1)∇

2
bϕ4

]
,

uy = a∇
2
1∇

2
2∇

2
3ϕ2 − ã∇̃

2
1∇̃

2
2∂y

(
∂xϕ1 + ∂yϕ2

)
+∇

2
0∂y∂z

[
(β1β2 −α3γ1)∇

2
aϕ3 + (α3β2 −α2β1)∇

2
bϕ4

]
,

uz = (β1β2 −α3γ1)∇
2
0∇

2
a∂z

(
∂xϕ1 + ∂yϕ2

)
+ (1 +α1)∇

2
0∇

2
c

×
(
γ1∇

2
dϕ3 −β2∇

2
eϕ4

)
−β1∇

2
03∂

2
z (β1ϕ3 −α3ϕ4) ,

wz = (α3β2 −α2β1)∇
2
0∇

2
b∂z

(
∂xϕ1 + ∂yϕ2

)
+ (1 +α1)∇

2
0∇

2
c

(
α2∇

2
f ϕ4 −β2∇

2
eϕ3

)
+α3∇

2
03∂

2
z (β1ϕ3 −α3ϕ4) , (4)

then displacement functionsϕk satisfy the following
differential equations of higher order

∇
2
0∇

2
1∇

2
2∇

2
3ϕk = 0, (5)

where the quasi-harmonic operators are expressed as

∇
2
0 =3+

1

s2
0

∂2
z , ∇

2
i =3+

1

s2
i

∂2
z , ∇̃

2
j =3+

1

s̃2
j

∂2
z ,

∇
2
a =3+

β1β3 −α3γ2

β1β2 −α3γ1
∂2

z , ∇
2
b =3+

α3β3 −α4β1

α3β2 −α2β1
∂2

z ,

(6)

∇
2
c =3+

α2

1 +α1
∂2

z , ∇
2
d =3+

γ2

γ1
∂2

z ,

∇
2
e =3+

β3

β2
∂2

z , ∇
2
f =3+

α4

α2
∂2

z .

2
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The constant s2
0 satisfies s2

0 = 1/α2 and s2
i are three

characteristic roots (or eigenvalues) of the following cubic
algebra equation ofs2

as6
− bs4 + cs2 + d = 0, (7)

s̃2
j are two characteristic roots of the following quadratic

algebra equation of̃s2

ãs̃4
− b̃s̃2 + c̃ = 0. (8)

The constants in the preceding equations are

a = α2
(
α4γ2 −β2

3

)
,

b = α2α4γ1 +
(
α2

2 −α2
3 +α1α4 −α4

)
γ2 − (1 +α1) β

2
3

− 2α2β2β3 + 2α3β1β3 −α4β
2
1,

c =
(
α2

2 −α2
3 +α1α4 +α4

)
+ (1 +α1) (α2γ2 − 2β2β3)

−α2
(
β2

1 +β2
2

)
+ 2α3β1β2, (9)

d = (1 +α1)
(
α2γ1 −β2

2

)
,

ã =
(
α1α4 −α2

3

)
γ2 −α1β

2
3 + 2α3β1β3 −α4β

2
1,

b̃ =
(
α1α4 −α2

3

)
γ1−α1(α2γ2−2β2β3)+α2β

2
1−2α3β1β2,

c̃ = α1
(
α2β4 −β2

2

)
.

With the introduction and proof of several lemmas and
theorems, it can be proved that the above-mentioned general
solution is complete in any limited domains in 3D Euclidean
spaceE3 with no loss of generality [16].

3. Generalized LHN solution of 1D hexagonal QCs

Next, in terms of our general solutions (4) and (5), we will
derive a new general solution of 1D hexagonal QCs, which is
similar in form to the LHN solution of transversely isotropic
elasticity. Based on a differential operator matrix method, we
have proved the following theorem [16].

Theorem 1. If the solutionU of equation (1) is represented in
the same form as equations (4) and (5), ϕ= [ϕ1, ϕ2, ϕ3, ϕ4]T

may be changed into

ϕ̂=ϕ+Ah, (10)

whereh= [h1, h2, h3, h4]T satisfies

∇
2
0∇

2
1∇

2
2∇

2
3h= 0, (11)

then equation (4) still comes into existence.

From theorem 1, it is easy to verify thatϕk in
equations (4) and (5) can be substituted byϕ̂k as
in equation (10). Specially, taking h= [0,0, h3,0]T in
equation (10), one obtains

ϕ̂1 = ϕ1 +α3∂x∂zh3,

ϕ̂2 = ϕ2 +α3∂y∂zh3, (12)

ϕ̂3 = ϕ3 +
(
α23+α4∂

2
z

)
h3,

ϕ̂4 = ϕ4 +
(
β23+β3∂

2
z

)
h3,

where
∇

2
0∇

2
1∇

2
2∇

2
3h3 = 0. (13)

By utilizing Almansi’s theorem [26], the following
theorem has been proved strictly [25, 27].

Theorem 2. Let � be any limited domain in 3D Euclidean
space E3. If the domain� is z-convex (a z-convex domain is a
domain which intersects each line, parallel to the z-axis at an
open interval or does not intersect the line), then there always
exists h3 such that

Case a:̂ϕ j = ϕ̂
(0)
j + ϕ̂(1)j + ϕ̂(2)j + ϕ̂(3)j ,

whens2
0 6= s2

1 6= s2
2 6= s2

3; (14a)

Case b:ϕ̂ j = ϕ̂
(0)
j + zϕ̂(1)j + ϕ̂(2)j + ϕ̂(3)j ,

whens2
0 = s2

1 6= s2
2 6= s2

3; (14b)

Case c:ϕ̂ j = ϕ̂
(0)
j + zϕ̂(1)j + z2ϕ̂

(2)
j + ϕ̂(3)j ,

whens2
0 = s2

1 = s2
2 6= s2

3; (14c)

Case d:ϕ̂ j = ϕ̂
(0)
j + zϕ̂(1)j + z2ϕ̂

(2)
j + z3ϕ̂

(3)
j ,

whens2
0 = s2

1 = s2
2 = s2

3. (14d)

whereϕ(l )j satisfy the following equations

∂xϕ̂
(l )
1 + ∂yϕ̂

(l )
2 = 0, ∇

2
l ϕ

(l )
j = 0. (15)

(Note: repeated indices do not imply summation in this paper.)
Let

A(l ) =
∫ r

r0

ϕ̂
(l )
2 dx − ϕ̂

(l )
1 dy + B(l )dz,

B(l ) =
∫ r

r0

∂zϕ̂
(l )
2 dx − ∂zϕ̂

(l )
1 dy + s2

l

(
−∂xϕ̂

(l )
2 + ∂yϕ̂

(l )
1

)
dz,

(16)

wherer0 is some point of the region� andr is any point of
the region�. Because of conditions (15), linear integrals of
equation (16) are independent of routes.

With the use of theorem 2, we have

∂x∇
2
l A(l ) = ∇

2
l ϕ̂

(l )
2 = 0, ∂y∇

2
l A(l ) = −∇

2
l ϕ̂

(l )
1 = 0,

(17)
∂z∇

2
l A(l ) = ∇

2
l B(l ) = 0.

This shows
∇

2
l A(l ) = 0. (18)

In view of equation (16), one yields

ϕ̂
(l )
1 = −∂y A(l ), ϕ̂

(l )
2 = ∂x A(l ). (19)

Set

A = A(0) + A(1) + A(2) + A(3) in case a; (20a)

A = A(0) + z A(1) + A(2) + A(3) in case b; (20b)

A = A(0) + z A(1) + z2A(2) + A(3) in case c; (20c)

A = A(0) + z A(1) + z2A(2) + z3A(3) in case d. (20d)

3
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Equations (18) and (20) lead to

∇
2
0∇

2
1∇

2
2∇

2
3 A = 0. (21)

From equations (14), (19) and (20), it follows that

ϕ̂1 = −∂y A, ϕ̂2 = ∂x A. (22)

Since it is shown previously that in equations (4) and (5),
ϕk can be replaced bŷϕk in equation (12), substitution of
equation (22) into equation (4) represented bŷϕk leads to

ux = −a∇
2
1∇

2
2∇

2
3∂y A+∇

2
0∂x∂z

×
[
(β1β2 −α3γ1)∇

2
aϕ̂3 + (α3β2 −α2β1)∇

2
bϕ̂4

]
,

uy = a∇
2
1∇

2
2∇

2
3∂x A+∇

2
0∂y∂z

×
[
(β1β2 −α3γ1)∇

2
aϕ̂3 + (α3β2 −α2β1)∇

2
bϕ̂4

]
,

(23)

uz = (1 +α1)∇
2
0∇

2
c

(
γ1∇

2
dϕ̂3 −β2∇

2
eϕ̂4

)
−β1∇

2
03∂

2
z

(
β1ϕ̂3 −α3ϕ̂4

)
,

wz = (1 +α1)∇
2
0∇

2
c

(
α2∇

2
f ϕ̂4 −β2∇

2
eϕ̂3

)
+α3∇

2
03∂

2
z

(
β1ϕ̂3 −α3ϕ̂4

)
.

Equation (23) can be further simplified on setting

a∇
2
1∇

2
2∇

2
3 A = ψ0, ∇

2
0ϕ̂3 = F1, ∇

2
0ϕ̂4 = F2. (24)

Utilizing equation (24), the following general solution is
derived

ux = − ∂yψ0 + ∂x∂z[(β1β2 −α3γ1)∇
2
a F1

+ (α3β2 −α2β1)∇
2
b F2],

uy = ∂xψ0 + ∂y∂z[(β1β2 −α3γ1)∇
2
a F1

+ (α3β2 −α2β1)∇
2
b F2],

(25)

uz = (1 +α1)∇
2
c

(
γ1∇

2
d F1 −β2∇

2
e F2

)
−β1∇

2
03∂

2
z (β1F1 −α3F2) ,

wz = (1 +α1)∇
2
c

(
−β2∇

2
e F1 +α2∇

2
f F2

)
+α3∇

2
03∂

2
z (β1F1 −α3F2) .

From equations (5), (21) and (24), ψ0 andF j follow that

∇
2
0ψ0 = 0, ∇

2
1∇

2
2∇

2
3 F j = 0. (26)

4. Generalized E–L solution of 1D hexagonal QCs

Since F j satisfy a sixth-order partial differential equation,
it is difficult to obtain rigorous analytic solutions and not
applicable in most cases. To circumvent the difficulties
mentioned above, we may take a decomposition and
superposition procedure to simplify the high-order partial
differential equation in equation (26). Below we introduce a
theorem to replace the high-order equation with several quasi-
harmonic equations.

Theorem 3. Assume that the domain� is z-convex andF j

satisfy
∇

2
1∇

2
2∇

2
3 F j = 0 in�, (27)

there existF (i )
j such that

Case 1:F j = F (1)
j + F (2)

j + F (3)
j , whens2

1 6= s2
2 6= s2

3; (28a)

Case 2:F j = F (1)
j +zF(2)j +F (3)

j , whens2
1 = s2

2 6= s2
3; (28b)

Case 3:F j = F (1)
j +zF(2)j +z2F (3)

j , whens2
1 =s2

2 =s2
3. (28c)

whereF (i )
j satisfy the following equations

∇
2
i F (i )

j = 0. (29)

The preceding theorem has been proven by Wang and
Wang [25] and Wang and Shi [27], so it is omitted. Next, we
will deduce three different forms of generalized E–L solution,
respectively, whens2

1 6= s2
2 6= s2

3, s2
1 = s2

2 6= s2
3 and s2

1 =

s2
2 = s2

3.

4.1. Case 1: s21 6= s2
2 6= s2

3

By utilizing this theorem, every solution of the sixth-order
partial differential equation (26) can be represented by the
solution of equation (29) which is only second-order. Let

G(i )
1 =

(
α3γ1 −β1β2

s2
i

+β1β3 −α1γ2

)
∂3

z F (i )
1 ,

(30)

G(i )
2 =

(
α2β1 −α3β2

s2
i

+α3β3 −α4β1

)
∂3

z F (i )
2 .

By virtue of equations (7), (29) and (30), the generalized LHN
solution (25) can be rewritten as

ux = − ∂yψ0 + ∂x

3∑
i =1

(
G(i )

1 + G(i )
2

)
,

uy = ∂xψ0 + ∂y

3∑
i =1

(
G(i )

1 + G(i )
2

)
,

(31)

uz = ∂z

3∑
i =1

k1i

(
G(i )

1 + G(i )
2

)
,

wz = ∂z

3∑
i =1

k2i

(
G(i )

1 + G(i )
2

)
,

where

k1i =
(1 +α1) γ1 −

[
(1 +α1) γ2 +α2γ1 −β2

1

]
s2
i +α2γ2s4

i

(α3γ1 −β1β2) s2
i + (β1β3 −α3γ2) s4

i

,

(32)

k2i = −
(1 +α1) β2 − [(1 +α1) β3 +α2β2 −α3β1] s2

i +α2β3s4
i

(α3γ1 −β1β2) s2
i + (β1β3 −α3γ2) s4

i

,

andG(i )
j satisfy

∇
2
i G(i )

j = 0. (33)

For further simplification, by assuming

G(i )
1 + G(i )

2 = ψi . (34)

4
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Equation (31) becomes

ux = −∂yψ0 + ∂x

3∑
i =1

ψi , uy = ∂xψ0 + ∂y

3∑
i =1

ψi ,

uz = ∂z

3∑
i =1

k1iψi , wz = ∂z

3∑
i =1

k2iψi .

(35)

In view of equations (26), (33) and (34), it can be seen thatψ0

andψi satisfy the following quasi-harmonic equations

∇
2
0ψ0 = 0, ∇

2
i ψi = 0. (36)

4.2. Case 2: s21 = s2
2 6= s2

3

After the same manipulation as case 1, we obtain

ux = − ∂yψ0 + ∂xψ1 + z∂xψ2 + ∂xψ3,

uy = ∂xψ0 + ∂yψ1 + z∂yψ2 + ∂yψ3,

uz = k11 (∂zψ1 + z∂zψ2)+ k13∂zψ3 + k14ψ2,

wz = k21 (∂zψ1 + z∂zψ2)+ k23∂zψ3 + k24ψ2, (37)

where

k14 =

[
−

[
α3γ1 −β1β2 + 3(β1β3 −α3γ2) s2

1

]
k11

−2
[
(1 +α1) γ2 +α2γ1 −β2

1 − 2α2γ2s2
1

] ]
(α3γ1 −β1β2) s2

1 + (β1β3 −α3γ2) s4
1

,

(38)

k24 =

[
−

[
α3γ1 −β1β2 + 3(β1β3 −α3γ2) s2

1

]
k21

+2
[
(1 +α1) β3 +α2β2 −α3β1 − 2α2β3s2

1

]]
(α3γ1 −β1β2) s2

1 + (β1β3 −α3γ2) s4
1

.

It is also seen thatψ0 andψi satisfy equation (36).

4.3. Case 3: s21 = s2
2 = s2

3

After performing similar derivations as in the above-
mentioned two cases, one obtains

ux = −∂yψ0 + ∂xψ1 + z∂xψ2 + z2∂x∂zψ3,

uy = ∂xψ0 + ∂yψ1 + z∂yψ2 + z2∂y∂zψ3, (39)

uz = k11
(
∂zψ1 + z∂zψ2 + z2∂2

zψ3
)
+ k14(ψ2 + 2z∂zψ3)+ k15ψ3,

wz = k21
(
∂zψ1 + z∂zψ2 + z2∂2

zψ3
)
+ k24(ψ2 + 2z∂zψ3)+ k25ψ3,

where

k15 =

[
6(α3γ2 −β1β3) (k11 + k14) s2

1 − 2(α3γ1 −β1β2) k14

−2
[
(1 +α1) γ2 +α2γ1 −β2

1 − 6α2γ2s2
1

] ]
(α3γ1 −β1β2) s2

1 + (β1β3 −α3γ2) s4
1

,

k25 =

[
6(α3γ2 −β1β3) (k21 + k24) s2

1 − 2(α3γ1 −β1β2) k24

+2
[
(1 +α1) β3 +α2β2 −α3β1 − 6α2β3s2

1

] ]
(α3γ1 −β1β2) s2

1 + (β1β3 −α3γ2) s4
1

.

(40)

It is again seen thatψ0 andψi satisfy equation (36).
Noticeably, the generalized E–L solution in three cases

is very similar to the E–L solution of transversely isotropic

elasticity. When three characteristic roots are distinct, Peng
and Fan [13] obtained a general solution of 1D hexagonal
QCs, which is consistent with the generalized E–L solution
in case 1. However, they did not consider the other two cases
in which three characteristic roots are possibly equal to each
other.

Up to here, two general solutions in 1D hexagonal QCs,
which are called the generalized LHN and E–L solutions,
respectively, are presented from our previous general solu-
tion [16]. More importantly, the generalized LHN solution
is obtained for the first time, also for transversely isotropic
piezoelectric materials. With the aid of a theorem concerning
a decomposition and superposition procedure, the generalized
LHN solution is further simplified, and is transformed into
the generalized E–L solution after the reformulation. It is
obvious that the generalized E–L solution is similar to the
general solution obtained by Dinget al [23, 24] except that
some notations are replaced, but the analysis techniques are
distinct. The generalized E–L solution generalizes the oper-
ator method brought forward by [25, 27], while the general
solution [23, 24] uses the method developed by [18].

Completeness is very important character of general
solutions of elasticity of QCs. For LHN and E–L solutions
of transversely isotropic elasticity, completeness forz-convex
domains was proved, incompleteness of the usual non-z-
convex domains was pointed out and completeness of a class
of very specialz-convex domains was also proved [25, 27].
When the phonon–phason field coupling effect is absent,
namely, Ri = 0, LHN and E–L solutions can be obtained
directly from the corresponding generalized LHN and E–L
solutions, respectively. Being similar to the derivation on
completeness of LHN and E–L solutions [25, 27], we can
draw our conclusion that since theorems 2 and 3 presented
previously come into existence when the domain� is z-
convex, the generalized LHN and E–L solutions obtained
here are complete inz-convex domains, while incomplete in
the usual non-z-convex domains. Therefore, the applications
of generalized LHN and E–L solutions are restricted. It is
interesting to note that the general solution [16] is complete
in any limited domains inE3 without loss in generality. Thus
the general solution [16] is considered reliable as a basis for
more general applications.

5. Conclusions

Based on theorems 1 and 2, the generalized LHN solution of
1D hexagonal QCs is obtained from our general solution [16]
by introducing three displacement functionsψ0 andF j , where
ψ0 satisfies a quasi-harmonic equation andF j a sixth-order
partial differential equation, respectively.

Owing to complexity of the higher-order equation,
it is difficult to obtain rigorous analytic solutions and
not applicable in most cases. Based on theorem 3, a
decomposition and superposition procedure is taken, and
the generalized LHN solution is simplified in terms of four
quasi-harmonic functionsψ0 andψi . In consideration of the
possibilities that the characteristic rootss2

i might be distinct
or equal to each other, the generalized E–L solution of 1D
hexagonal QCs possesses different forms, but all are in simple
forms that are convenient to use. It is proved that the general
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solution [13, 14] is consistent with one case of the generalized
E–L solution, while does not include the other two cases in
which three characteristic roots are possibly equal to each
other.

Therefore, generalized LHN and E–L solutions obtained
here are simplified forms of the general solution [16] when
the domain� is z-convex. Furthermore, it is important to note
that generalized LHN and E–L solutions are complete inz-
convex domains, while incomplete in the usual non-z-convex
domains. Fortunately, the general solution [16] is complete
in any limited domains inE3 without loss in generality.
Therefore, the applications of generalized LHN and E–L
solutions are restricted, while the general solution [16] is
considered reliable as a basis for more general applications.
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