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I. INTRODUCTION

All species occur in a characteristic, limited range of habitats; and within
their range, they tend to be most abundant around their particular environ-
mental optimum. The composition of biotic communities thus changes along
environmental gradients. Successive species replacements occur as a function
of variation in the environment, or (analogously) with successional time
(Pickett, 1980; Peet and Loucks, 1977). The concept of niche space partition-
ing also implies the separation of species along ‘‘resource gradients’’ (Tilman,
1982). Gradients do not necessarily have physical reality as continua in either
space or time, but are a useful abstraction for explaining the distributions of
organisms in space and time (Austin, 1985). Austin’s review explores the
interrelationships between niche theory and the concepts of ecological conti-
nua and gradients.

Our review concerns data analysis techniques that assist the interpre-
tation of community composition in terms of species’ responses to
environmental gradients in the broadest sense. Gradient analysis sensu lato
includes direct gradient analysis, in which each species’ abundance (or
probability of occurrence) is described as a function of measured
environmental variables; the converse of direct gradient analysis, whereby
environmental values are inferred from the species composition of the
community; and indirect gradient analysis, sensu Whittaker (1967), in which
community samples are displayed along axes of variation in composition
that can subsequently be interpreted in terms of environmental gradients.
There are close relationships among these three types of analysis. Direct
gradient analysis is a regression problem—fitting curves or surfaces to the
relation between each species’ abundance or probability of occurrence (the
response variable) and one or more environmental variables (the predictor
variable(s)) (Austin, 1971). Inferring environmental values from species
composition when these relationships are known is a calibration problem.
Indirect gradient analysis is an ordination problem, in which axes of
variation are derived from the total community data. Ordination axes can
be considered as latent variables, or hypothetical environmental variables,
constructed in such a way as to optimize the fit of the species data to a
particular (linear or unimodal) statistical model of how species abundance
varies along gradients (Ter Braak, 1985, 1987a). These latent variables
are constructed without reference to environmental measurements, but
they can subsequently be compared with actual environmental data if
available. To these three well-known types of gradient analysis we add a
fourth, constrained ordination, which has its roots in the psychometric
literature on multidimensional scaling (Bloxom, 1978; De Leeuw and Heiser,
1980; Heiser, 1981). Constrained ordination also constructs axes of variation
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in overall community composition, but does so in such a way as to explicitly
optimize the fit to supplied environmental data (Ter Braak, 1986; Jongman
et al., 1987). Constrained ordination is thus a multivariate generalization of
direct gradient analysis, combining aspects of regression, calibration and
ordination. Table 1 gives an arbitrary selection of literature references,
chosen simply to illustrate the wide range of ecological problems to which
each of the four types of gradient analysis has been applied; the reader is
also referred to Gauch (1982), who includes an extensive bibliography, and
to Gittins (1985).

Standard statistical methods that assume linear relationships among
variables exist for all four types of problems (regression, calibra-
tion, ordination and constrained ordination), but have found only limited
application in ecology because of the generally non-linear, non-
monotone response of species to environmental variables. Ecologists have
independently developed a variety of alternative techniques. Many of
these techniques are essentially heuristic, and have a less secure theore-
tical basis. These heuristic techniques can nevertheless give useful results,
and can be understood as approximate solutions to statistical problems
similar to those solved by standard methods, but formulated in terms
of a unimodal (Gaussian or similar) response model instead of a
linear one. We present here a theory of gradient analysis, in which
the heuristic techniques are integrated with regression, calibration,
ordination and constrained ordination as distinct, well-defined statistical
problems.

The various techniques used for each type of problem are classified
into families according to their implicit response model and the method used
to estimate parameters of the model. We consider three such families
(Table 2). First we treat the family of standard statistical techniques
based on the linear response model, because these are conceptually the
simplest and provide a basis for what follows, even though their ecologi-
cal application is restricted. Second, we outline a family of somewhat
more complex statistical techniques which are formal extensions of the
standard linear techniques and incorporate unimodal (Gaussian-like)
response models explicitly. Finally, we consider the family of heuristic
techniques based on weighted averaging. These are not more complex
than the standard linear techniques, but implicitly fit a simple unimodal
response model rather than a linear one. Our treatment thus unites
such apparently disparate data analysis techniques as linear regression,
principal components analysis, redundancy analysis, Gaussian ordination,
weighted averaging, reciprocal averaging, detrended correspondence
analysis and canonical correspondence analysis in a single theoretical
framework.
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Table 1 Selected applications of gradient analysis

Type of problem Taxa Environmental variables Purpose of study

Regression

Alderdice (1972) Marine fish Salinity, temperature Defining ranges

Peet (1978) Trees Elevation, moisture, latitude Biogeography

Wiens and Rotenberry (1981) Birds Vegetation structure Niche characterization

Austin et al. (1984) Eucalyptus spp. Climatic indices Habitat characterization

Bartlein et al. (1986) Plant pollen types Temperature, precipitation Quaternary palaeoecology

Calibration

Chandler (1970) Benthic macro-

invertebrates

Water pollution Water quality management

Imbrie and Kipp (1971) Foraminifera Sea surface temperature Palaeoclimatic reconstruction

Sládecek (1973) Freshwater algae Organic pollution Ecological monitoring

Balloch et al. (1976) Benthic macro-

invertebrates

Water pollution Ecological monitoring

Ellenberg (1979) Terrestrial plants Soil moisture, N, pH Bioassay from vegetation

van Dam et al. (1981) Diatoms pH Acid rain effects

Böcker et al. (1983) Terrestrial plants Soil moisture, N, pH Bioassay from vegetation

Bartlein et al. (1984) Plant pollen types Temperature, precipitation Palaeoclimatic reconstruction

Battarbee (1984) Diatoms pH Acid rain effects

Charles (1985) Diatoms pH Acid rain effects

Atkinson et al. (1986) Beetles Summer temperature,

annual range

Palaeoclimatic reconstruction
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Ordinationa

van der Aart and

Smeenk-Enserink (1975)

Spiders Microenvironmental features Habitat characterization

Kooijman and Hengeveld (1979) Beetles Lutum content, elevation Habitat characterization

Wiens and Rotenberry (1981) Birds Vegetation structure Niche characterization

Prodon and Lebreton (1981) Birds Vegetation structure Niche characterization

Kalkhoven and Opdam (1984) Birds Habitat and ladscape features Habitat characterization

Macdonald and Ritchie (1986) Plant pollen types Vegetation regions Quaternary palaeoecology

Constrained ordination

Webb and Bryson (1972) Plant pollen types Climate variables, airmass

frequencies

Palaeoclimatic reconstruction

Gasse and Tekaia (1983) Diatoms pH classes Palaeolimnology

Ås (1985) Beetles Vegetation types Niche theory

Cramer and Hytteborn (1987) Terrestrial plants Time, elevation Land uplift effects

Purata (1986) Tropical trees Successional boundary conditions Study of secondary succession

Fängström and Willén (1987) Phytoplankton Physical/chemical variables Environmental monitoring

a Excluding vegetation studies, where ordination is used routinely: see Gauch (1982) for a review.
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Table 2 Classification of gradient analysis techniques by type of problem, response model and method of estimation

Type of problem Linear response model Unimodal response model

Least-squares, estimation Maximum likelihood estimation Weighted averaging estimation

Regression Multiple regression Gaussian regression Weighted averaging of site

scores (WA)

Calibration Linear calibration; ‘‘inverse

regression’’

Gaussian calibration Weighted averaging of species’

scores (WA)

Ordination Principal components

analysis (PCA)

Gaussian ordination Correspondence analysis (CA);

detrended correspondence

analysis (DCA)

Constrained ordinationa Redundancy analysis (RDA)d Gaussian canonical ordination Canonical correspondence analysis

(CCA); detrended CCA

Partial ordinationb Partial components analysis Partial Gaussian ordination Partial correspondence analysis;

partial DCA

Partial constrained

ordinationc
Partial redundancy analysis Partial Gaussian canonical

ordination

Partial canonical correspondence

analysis; partial detrended CCA

a Constrained multivariate regression.
b Ordination after regression on covariables.
c Constrained ordination after regression on covariables¼ constrained partial multivariate regression.
d ‘‘Reduced-rank regression’’¼ ‘‘PCA of y with respect to x’’.
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II. LINEAR METHODS

Species abundances may seem to change linearly through short sections of
environmental gradients, so a linear response model may be a reasonable
basis for analysing quantitative abundance data spanning a narrow range
of environmental variation.

A. Regression

If a plot of the abundance ( y) of a species against an environmental variable
(x) looks linear, or can easily be transformed to linearity, then it is app-
ropriate to fit a straight line by linear regression. The formula y¼ aþ bx
describes the linear relation, with a the intercept of the line on the y-axis and
b the slope of the line, or regression coefficient. Separate regressions can be,
carried out for each of m species.

We are usually most interested in how the abundance of each species
changes with a change in the environmental variable, i.e. in the slopes bk
(the index k refers to species k). If we first centre the data—by subtracting
the mean of each species’ abundances from the species data and the mean
of the environmental values from the environmental data—the intercept
disappears. Then if yki denotes the centred abundance of species k in the ith
out of n sites, and xi, the centred environmental value for that site, the
response model for fitting the straight lines becomes

yki ¼ bkxi þ eki ð1Þ

where eki is an error component with zero mean and variance vki. The
standard estimator for the slope in Eq. (1) is

~bbk ¼
Xn
i¼1

ykixi=s
2
x ð2Þ

where s2x ¼ �n
i¼1x

2
i . This is the least-squares estimator, which is the best

linear unbiased estimator when errors are uncorrelated and homogeneous
across sites (vki¼ vk). It is also the maximum likelihood (ML) estimator
when the errors are normally distributed. The fitted lines can be used to
predict the abundances of species in a site with a known value of the
environmental variable simply by reading off the graph.

Species experience the effect of more than one environmental variable
simultaneously, so more than one variable may be required to account
for variation in species abundances. The joint effect of two or more
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environmental variables on a species can be analysed by multiple regression
(see e.g. Montgomery and Peck, 1982). Standard computer packages
are available to obtain least-squares (ML) estimates for the regression
coefficients. Only when the environmental variables are uncorrelated will
the partial regression coefficients be identical to the coefficients estimated
by separate regressions using Eq. (1).

B. Calibration

We now turn to the inverse problem, calibration. When the relationship
between the abundances of species and the environmental variable we are
interested in is known, we can infer values of that environmental variable for
new sites from the observed species abundances. If we took into account the
abundance of only a single species, we could simply read off the graph,
starting from a value on the vertical axis. However, another species may well
give a different estimate. We therefore need a good and unambiguous
estimator that combines the information from all m species. In terms of
Eq. (1), the bk are now assumed to be known and xi is unknown. The role
of the bk and xi have been interchanged. By interchanging their roles in
Eq. (2) as well, we obtain

~xxi ¼
Xm
k¼1

ykibk=s
2
b ð3Þ

where s2b ¼ �m
k¼1b

2
k. This is the least-squares estimator (and the ML-

estimator) when the errors follow a normal distribution and are indepen-
dent and homogeneous across species (vki¼ vi).

A problem with Eq. (3) is that these conditions are likely to be unrealistic,
because effects of other environmental variables can cause correlation
between the abundances of different species even after the effects of the
environmental variable of interest have been removed. Further, the residual
variance vki may be different for different species. If this occurs, we also need
to take the residual correlations and variances into account. In practice, the
residual correlations and variances are estimated from the residuals of
the regressions used for estimating the bk’s. Searching for the maximum of
the likelihood with respect to xi then leads to a general weighted least-
squares problem (Brown, 1979; Brown, 1982) that can be solved by using
standard algorithms.

Inferring values of more than one environmental variable simultaneously
has been given surprisingly little attention in the literature. However,
Williams (1959) and Brown (1982) derived the necessary formulae from the
ML-principle (Cox and Hinkley, 1974).
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C. Ordination

After having fitted a particular environmental variable to the species data
by regression, we might ask whether another environmental variable would
provide a better fit. For some species one variable may fit better, and for
other species another variable. To get an overall impression we might judge
the goodness-of-fit (explanatory power) of an environmental variable by the
total regression sum of squares (Jongman et al., 1987). The question then
arises: what is the best possible fit that is theoretically obtainable with the
straight line model of Eq. (1)?

This question defines an ordination problem, i.e. to construct the single
‘‘hypothetical environmental variable’’ that gives the best fit to the species
data according to Eq. (1). This hypothetical environmental variable is
termed the latent variable, or simply the (first) ordination axis. Principal
components analysis (PCA) provides the solution to this ordination
problem. In Eq. (1), xi is then the score of site i on the latent variable, bk is
the slope for species k with respect to the latent variable (also called the
species loading or species score) and the eigenvalue of the first PCA axis is
equal to the goodness-of-fit, i.e. the total sum of squares of the regressions
of the species abundances on the latent variable. PCA provides the least-
squares estimates of the site and species scores: these estimates are also ML
estimates if the errors are independently and normally distributed with
constant variance (vki¼ v).

PCA is usually performed using a standard computer package, but several
different algorithms can be used to do the same job. The following
algorithm, known as the power .method (Gourlay and Watson, 1973),
makes the relationship between PCA and regression and calibration clear
in a way that the usual textbook treatment, in terms of singular value
decomposition of inner product matrices, does not; it also facilitates
comparison with correspondence analysis, which we discuss later. The
power method shows that PCA can be obtained by an alternating sequence
of linear regressions and calibrations:

Step 1 Start with some (arbitrary) initial site scores {xi} with zero mean.
Step 2 Calculate new species scores {bk} by linear regression (Eq. (2)).
Step 3 Calculate new site scores {xi} by linear calibration (Eq. (3)).
Step 4 Remove the arbitrariness in scale by standardizing the site scores

as follows: new xi¼ old xi/n/sx, with sx as defined beneath Eq. (2).
Step 5 Stop on convergence, i.e. when the newly obtained site scores are

close to the site scores of the previous cycle of iteration, else go to
Step 2.

The final scores do not depend on the initial scores.
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The ordination problem for a two-dimensional linear model turns out to
be relatively simple, compared with the regression and calibration problems.
The solution does not need an alternating sequence of multiple regressions
and calibrations, because the latent variables can always be chosen in such a
way that they are uncorrelated; and if the latent variables are uncorrelated,
then the multiple regressions and calibrations reduce to a series of separate
linear regressions and calibrations. PCA provides the solution to the linear
ordination problem in any number of dimensions; one latent variable is
derived first, as in the one-dimensional case of Eq. (1), and the second latent
variable can be obtained next by applying the same algorithm again but with
one extra step—after Step 3, the trial scores are made uncorrelated with the
first latent variable. On denoting the scores of the first axis by xi1, this
orthogonalization is computed by

Step 3b Calculate f¼
P

ixixi1/n,
Calculate new xi¼ old xi� fxi1.

Further latent variables (ordination axes) may be derived analogously. As
in the one-dimensional case, PCA provides the ML-solution to the multi-
dimensional linear ordination problem if the errors are independently and
normally distributed with constant variance across species and sites. Jolliffe
(1986) reviews the theory and applications of PCA.

D. The Environmental Interpretation of Ordination Axes

(Indirect Gradient Analysis)

In indirect gradient analysis the species data are first subjected to
ordination, e.g. using PCA, to find a few major axes of variation (latent
variables) with a good fit to the species data. These axes are then interpreted
in terms of known variation in the environment, often by using graphical
methods (Gauch, 1982). A more formal method for the latter step would be
to calculate correlation coefficients between environmental variables and
each of the ordination axes. This analysis is similar to performing a multiple
regression of each separate environmental variable on the axes (Dargie,
1984), because the axes are uncorrelated. A joint analysis of all environ-
mental variables can be carried out by multiple regression of each ordina-
tion axis on the environmental variables:

xi ¼ c0 þ
Xq
j¼1

cjzji ð4Þ
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in which xi is the score of site i on that one ordination axis, zij denotes
the value at site i of the jth out of q actual environmental variables, and cj
is the corresponding regression coefficient. For later reference, the error
term in Eq. (4) is not shown. The multiple correlation coefficient R measures
how well the environmental variables explain the ordination axis.

E. Constrained Ordination (Multivariate Direct Gradient Analysis)

Indirect gradient analysis, as outlined above, is a two-step approach to
relate species data to environmental variables. A few ordination axes that
summarize the overall community variation are extracted in the first step;
then in the second step one may calculate weighted sums of the envi-
ronmental variables that most closely fit each of these ordination axes.
However, the environmental variables that have been studied may turn out
to be poorly related to the first few ordination axes, yet may be strongly
related to other, ‘‘residual’’ directions of variation in species composition.
Unless the first few ordination axes explain a very high proportion of the
variation, this residual variation can be substantial, and strong relationships
between species and environment can potentially be missed.

In constrained ordination this approach is made more powerful by
combining the two steps into one. The idea of constrained ordination is to
search for a few weighted sums of environmental variables that fit the data
of all species best, i.e. that give the maximum total regression sum of
squares. The resulting technique, redundancy analysis (Rao, 1964; van den
Wollenberg, 1977), is an ordination of the species data in which the axes are
constrained to be linear combinations of the environmental variables. These
axes can be found by extending the algorithm of PCA described above with
one extra step, to be performed directly after Step 3 (Jongman et al., 1987):

Step 3a Calculate a multiple regression of the site scores {xi} on the
environmental variables (Eq. (4)), and take as new site scores the
fitted values of this regression.

The regression is thus carried out within the iteration algorithm, instead of
afterwards. On convergence, the coefficients {cj} are termed canonical
coefficients and the multiple correlation coefficient in Step 3a can be called
the species-environment correlation.

Redundancy analysis is also known as reduced-rank regression (Davies
and Tso, 1982), PCA of y with respect to x (Robert and Escoufier, 1976) and
two-block mode C partial least-squares (Wold, 1982). It is intermediate
between PCA and separate multiple regressions for each of the species: it is
a constrained ordination, but it is also a constrained form of (multivariate)
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multiple regression (Davies and Tso, 1982; Israëls, 1984). By inserting
Eq. (4) into Eq. (1), it can be shown that the ‘‘regression’’ coefficient of
species k with respect to environmental variable j takes the simple form
bkcj. With two ordination axes this form would be, in obvious notation,
bk1cj1þ bk2cj2. With two ordination axes, redundancy analysis thus uses
2(qþm)þm parameters to describe the species data, whereas the multiple
regressions use m(qþ 1) parameters. One of the attractive features of
redundancy analysis is that it leads to an ordination diagram that
simultaneously displays (i) the main pattern of community variation as
far as this variation can be explained by the environmental variables, and
(ii) the main pattern in the correlation coefficients between the species and
each of the environmental variables. We give an example of such a diagram
later on.

Redundancy analysis is much less well known than canonical correla-
tion analysis (Gittins, 1985; Tso, 1981), which is the standard linear
multivariate technique for relating two sets of variables (in our case, the set
of species and the set of environmental variables). Canonical correlation
analysis is very similar to redundancy analysis, but differs from it in the
assumptions about the error component: uncorrelated errors with equal
variance in redundancy analysis and correlated normal errors in canonical
correlation analysis (Tso, 1981; Jongman et al., 1987). The most important
practical difference is that redundancy analysis can analyse any number of
species whereas in canonical correlation analysis the number of species (m)
must be less than n� q (Griffins, 1985: 24); this restriction is often a
nuisance.

Canonical variates analysis, or multiple discriminant analysis, is simply
the special case of canonical correlation analysis in which the ‘‘environ-
mental’’ variables are a series of dummy variables reflecting a single-factor
classification of the samples. A similar restriction on the number of species
thus also applies to canonical variates analysis. Redundancy analysis with
dummy variables provides an alternative to canonical variates analysis,
evading this restriction.

III. NON-LINEAR (GAUSSIAN) METHODS

A. Unimodal Response Models

Linear methods are appropriate to community analysis only when the
species data are quantitative abundances (with few zeroes) and the range of
environmental variation in the sample set is narrow. Alternative analytical
methods can be derived from unimodal models.
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A unimodal response model for one environmental variable can be
obtained by adding a quadratic term ðx2i Þ to the linear model, changing the
response curve from a straight line into a parabola. But this quadratic model
can. predict large negative values, whereas species abundances are always
zero or positive. A simple remedy for the problem of negative values is
provided by the Gaussian response curve (Gauch and Whittaker, 1972) in
which the logarithm of species abundance is a quadratic in the environ-
mental variable:

log y ¼ b0 þ b1xþ b2x
2

¼ a�
1

2
ðx� uÞ2=t2 ð5aÞ

where b2<0 (otherwise the curve would have a minimum instead of a
mode). The coefficients b0, b1, and b2 are most easily interpreted by
transformation to u, t and a (Figure 1), u being the species’ optimum (the
value of x at the peak), t being its tolerance (a measure of response breadth
or ecological amplitude), and a being a coefficient related to the height of
the peak (Ter Braak and Looman, 1986).

A closely related model can describe species data in presence–absence
form. In analysing presence–absence data, we want to relate probability of
occurrence ( p) to environment. Probabilities are never greater than 1, so
rather than using Eq. (5a) we use the Gaussian logit model,

log
p

1� p

� �
¼ b0 þ b1xþ b2x

2 ð5bÞ

Figure 1 A Gaussian curve displays a unimodal relation between the abundance

value ( y) of a species and an environmental variable (x). (u¼ optimum or mode;

t¼ tolerance; c¼maximum¼ exp (a)).

A THEORY OF GRADIENT ANALYSIS 247



which is very similar to the Gaussian model unless the peak probability is
high (>0.5); then Eq. (5b) gives a curve that is somewhat flatter on top. The
coefficients b0, b1, and b2 can be transformed as before into coefficients
representing the species’ optimum, tolerance and maximum probability
value.

Although real ecological response curves are still more complex than
implied by the Gaussian and Gaussian logit models, these models are
nevertheless useful in developing statistical descriptive techniques for data
showing mostly unimodal responses, just as linear models are useful in
statistical analysis of data that are only approximately linear.

With two environmental variables, Eqs. (5a) and (5b) become full qua-
dratic forms with both square and product terms (Alderdice, 1972). For
example, the Gaussian model becomes

log y ¼ b0 þ b1x1 þ b2x
2
1 þ b3x2 þ b4x

2
2 þ b5x1x2 ð6Þ

If b2þ b4<0, and 4b2b4 � b25 > 0 then Eq. (6) describes a unimodal surface
with ellipsoidal contours (Figure 2). If one of these conditions is not satisfied
then Eq. (6) describes a surface with a minimum, or with a saddle point
(e.g. Davison, 1983). Provided the surface is unimodal, its optimum (u1, u2)
can be calculated from the coefficients in Eq. (6) by

u1 ¼ ðb5b3 � 2b1b4Þ=d
u2 ¼ ðb5b1 � 2b3b2Þ=d

�
ð7Þ

Figure 2 A Gaussian surface displays a unimodal relation between the abundance

value ( y) of a species and two environmental variables (x1 and x2).
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where d ¼ 4b2b4 � b25. When b5 6¼ 0, the optimum with respect to x1,
depends on the value of x2; the environmental variables are then said to
show interaction in their effect on the species. In contrast, when b5¼ 0 the
optimum with respect to x1, does not depend on the value of x2 (no
interaction) and Eq. (7) simplifies considerably (Ter Braak and Looman,
1986).

The unknown parameters of non-linear response models in the context
of regression, calibration or ordination can (at least in theory) be estima-
ted by the maximum likelihood principle, however difficult this may be in
a particular situation. Usually iterative methods are required, and initial
parameter values must be specified. The likelihood function may have local
maxima, so that different sets of initial parameter values may result in
different final estimates. It cannot be guaranteed that the global maximum
has been found. Furthermore, all kinds of numerical problems may occur.
However, the special cases of Gaussian and Gaussian logit response
models do allow reasonably practical solutions, which we consider now.

B. Regression

The regression problems of fitting Gaussian or Gaussian logit curves or
surfaces are relatively straightforward, since these models can be fitted
by Generalized Linear Modelling (GLM: McCullagh and Nelder, 1983;
Dobson, 1983). An elementary introduction to GLM directed at ecologists
is provided by Jongman et al. (1987). GLM is more flexible than ordinary
multiple regression because one can specify ‘‘link functions’’ and error
distributions other than the normal distribution. For example, the Gaussian
models of Eqs. (5a) and (6) can be fitted with GLM to abundance data
(which may include zeroes) by specifying the link function to be logarithmic
and the error distribution to be Poissonian. The corresponding Gaussian
logit models can be fitted with GLM to presence–absence data by specifying
the link function to be logistic and the error distribution to be binomial-
with-total-1. Alternatively, any statistical package that will do logit
(¼ logistic) regression can be used to fit the Gaussian logic model. No
initial estimates are needed and local maxima do not arise, so these
techniques are quite practical for direct gradient analysis. For examples
of the use of GLM in ecology see Austin and Cunningham (1981) and
Austin et al. (1984).

The most common complications arise when the optimum for a species
is estimated well outside the sampled range of environments, or if the fitted
curve shows a minimum rather than a peak. These conditions suggest that
the regression is ill-determined and that it might be better to fit a monotone
curve by setting b2¼ 0 in Eq. (5); a statistical test can be used to determine
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whether this simplification is acceptable (Jongman et al., 1987). Such cases
are bound to arise in practice because any given set of samples will include
some species that are near the edge of their range.

C. Calibration

The calibration problem of inferring environmental values at sites from
species data and known Gaussian (logit) curves by ML is feasible by
numerical optimization, but no computer programs are available at present
that are easy to use (Jongman et al., 1987). Local maxima may occur in the
likelihood, when the tolerances of the species are unequal, and one needs to
specify an initial estimate. The assumption of independence of species
responses is required, but might not be tenable in practice; it remains to be
studied how important this assumption is. Dependency among species could
most obviously be caused by the effects of additional, unconsidered
environmental variables, in which case the best remedy would be to identify
these variables and include them in the analysis. Inferring the values of more
than one environmental variable simultaneously on the basis of several
Gaussian (logit) response surfaces is also possible in principle, but has not
been done as far as we know.

D. Ordination

Ordination based on Gaussian (logit) curves aims to construct a latent
variable such that these curves optimally fit the species data. This problem
involves the ML estimation of site scores {xk} and the species’ optima {uk},
tolerances {tk} and maxima {ak}, usually by an alternating sequence of
Gaussian (logit) regressions and calibrations. This kind of ordination has
been investigated by Gauch et al. (1974), Kooijman (1977), Kooijman and
Hengeveld (1979), Goodall and Johnson (1982) and Ihm and Van
Groenewoud (1975, 1984). The numerical methods required are computa-
tionally demanding, and in the general case, when the tolerances of the
species are allowed to differ, the likelihood function typically contains many
local maxima.

Kooijman (1977) and Goodall and Johnson (1982) reported numerical
problems in their attempts to perform ML ordination using two-
dimensional Gaussian-like models. A simple model with circular contours
(b2¼ b4 and b5¼ 0) may be amenable in practice, especially if b2 is not
allowed to vary among species (Kooijman, 1977). This model is equivalent
to the ‘‘unfolding model’’ used by psychologists to analyse preference data
(Coombs, 1964; Heiser, 1981; Davison, 1983; DeSarbo and Rao, 1984).
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But with more than two latent variables the Gaussian (logit) model with
a second-degree polynomial as linear predictor contains so many parameters
that it is likely to be difficult to get reliable estimates of them, even if all the
interaction terms are dropped.

E. Constrained Ordination

The constrained ordination problem for Gaussian-like response models is to
construct ordination axes that are also linear combinations of the envi-
ronmental variables, such that Gaussian (logit) surfaces with respect to these
axes optimally fit the data. As in redundancy analysis (Section II.E), the
joint effects of the environmental variables on the species are ‘‘channelled’’
through a few ordination axes which can be considered as composite
environmental gradients influencing species composition. Ter Braak (1986)
refers to this approach as Gaussian canonical ordination, the word
canonical being chosen by analogy with canonical correlation analysis. The
estimation problem is actually simpler than in unconstrained Gaussian
ordination, and is more easily soluble in practice because the number of
parameters to be estimated is smaller: instead of n site scores one has to
estimate q canonical coefficients. Meulman and Heiser (1984) have applied
similar ideas in the context of non-metric multidimensional scaling.
Gaussian canonical ordination can also be viewed as multivariate Gaussian
regression with constraints on the coefficients of the polynomial (Ter Braak,
1988). In multivariate Gaussian regression each species has its own optimum
in the q-dimensional space formed by the environmental variables; the
constraints imposed in Gaussian canonical ordination amount to a
requirement that these optima lie in a low-dimensional subspace. If the
optima lie close to a plane then the most important species–environment
relationships can be depicted graphically in an ordination diagram.

IV. WEIGHTED AVERAGING METHODS

Ecologists have developed alternative, heuristic methods that are simpler
but have essentially the same aims as the methods of the previous section
based on Gaussian-type models. Each method in the Gaussian family has a
counterpart in the family of heuristic methods based on weighted averaging
(WA). These methods have been used extensively, and even re-invented in
different branches of ecology.
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A. Regression

WA can be used to estimate species’ optima with respect to known
environmental variables. When a species shows a unimodal relationship
with environmental variables, the species’ presences will be concentrated
around the peak of this function. One intuitively reasonable estimate of the
optimum is the average of the values of the environmental variable over
those sites in which the species is present. With abundance data, WA applies
weights proportional to species abundance; absences still carry zero weight.
The estimate of the optimum for species k is thus

~uuk ¼
Xn
i¼1

ykixi=ykþ ð8Þ

where yki is from now onwards the abundance (not centred) or presence/
absence (1/0) of species k at site i, ykþ is the species total ( ykþ ¼

P
iyki)

and xi is the value of the environmental variable at site i. As a follow-up to
an investigation of the theoretical properties of this estimator (Ter Braak
and Barendregt, 1986), Ter Braak and Looman (1986) showed by simulation
of presence–absence data that WA estimates the optimum of a Gaussian
iogit curve as efficiently as the ML technique of Gaussian logic regression
provided:

Condition 1a The site scores {xi} are equally spaced over the whole range
of occurrence of the species along the environmental
variable.

WA also proved to be only a little less efficient whenever the distribution of
the environmental variable among the sites was reasonably homogeneous
(rather than strictly equally spaced) over the whole range of species occur-
rences, or more generally for species with narrow ecological amplitudes.
But the estimate of the optimum of a rare species may be imprecise, because
the standard error of the estimate is inversely proportional to the square
root of the number of occurrences. So for efficiency, we also need

Condition 1b The site scores {xi} are closely spaced in comparison with the
species’ tolerance.

B. Calibration

WA is also used in calibration, to estimate environmental values at sites
from species’ optima—which in this context are often called indicator values
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(‘‘Zeigerwerte’’, Ellenberg, 1979) or scores (Whittaker, 1956). When species
replace one another along the environmental variable of interest, i.e. have
unimodal response functions with optima spread out along that variable,
then species with optima close to the environmental value of a site will
naturally tend to be represented at that site. Intuitively, to estimate the
environmental value at a site, one can average the optima of the species that
are present. With abundance data, the corresponding intuitive estimate is
the weighted average,

~xxi ¼
Xm
k¼1

ykiuk=yþi ð9Þ

where yþ i is the site total ( yþ i¼
P

kyki).

Ter Braak and Barendregt (1986) showed that WA estimates the value
xi of a site as well as the corresponding ML techniques if the species
show Gaussian curves and Poisson-distributed abundance values (or, for
presence–absence data, show Gaussian logit curves), and provided:

Condition 2a The species’ optima are equally spaced along the environ-
mental variable over an interval that extends for a sufficient
distance in both directions from the true value xi;

Condition 3 The species have equal tolerances;
Condition 4 The species have equal maximum values.

These conditions amount to a ‘‘species packing model’’ wherein the species
have equal response breadth and equal spacing (Whittaker et al., 1973). The
conditions may be relaxed somewhat (Ter Braak and Barendregt, 1986)
without seriously affecting the efficiency of the WA-estimate. When the
optima are uniformly distributed instead of being equally spaced, the
efficiency is still high if the maximum probabilities of occurrence are small
(<0.5). The species’ maximum values may differ, but they must not show a
trend along the environmental variable (for instance, leading to species-rich
samples at one end of the gradient and species-poor samples at the other
end). The efficiency of WA is less good if the tolerances substantially differ
among species; a tolerance weighted version of WA, as suggested by Zelinka
and Marvan (1961) and Goff and Cottam (1967), would be more efficient
since it would give greater weight to species of narrower tolerance, which are
more informative about the environment.

Under Conditions 2a–4 above, the standard error of the estimate of ~xxi is
approximately t/

p
yþ i, where t is the (common) species tolerance. For the

weighted average to be practically useful, the number of species encountered
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in a site should therefore not be too small (not less than five). We therefore
need the extra condition (cf. Section 5 in Ter Braak and Barendregt, 1986):

Condition 2b The species’ optima must be closely spaced in comparison
with their tolerances.

An alternative heuristic method of calibration is by ‘‘inverse regression’’.
This is simply multiple linear regression of the environmental variable on the
species abundances (Brown, 1982): the environmental variable is treated as
if it were the response variable and the species abundances, possibly
transformed, as predictor variables. The regression coefficients can be
estimated from the training set of species abundances and environmental
data, the resulting equations being applied directly to infer environmental
values from further species abundance data. When applied to data on
percentage composition, e.g. pollen spectra or diatom assemblages (Bartlein
et al., 1984; Charles, 1985), the method differs from WA calibration only
in the way in which the species optima are estimated, since the linear
combination of percentage values used to estimate the environmental value
is by definition a weighted average of the regression coefficients.

C. Ordination

Hill (1973) turned weighted averaging into an ordination technique by
applying alternating WA regressions and calibrations to a species-by-site
data table. The algorithm of this technique of ‘‘reciprocal averaging’’ is
similar to that given earlier for PCA:

Step 1 Start with arbitrary, but unequal, initial site scores {xi}.
Step 2 Calculate new species scores {uk} by WA (Eq. (8)).
Step 3 Calculate new site scores {xi} by WA (Eq. (9)).
Step 4 Remove the arbitrariness in scale by standardizing the site scores

by new xi¼ {old xi� z}/s where z¼
P

i yþ i xi/
P

i yþ i and

s2 ¼
X
i

yþiðxi � zÞ2
.X

i

yþi ð10Þ

Step 5 Stop on convergence, else go to Step 2.

As in PCA, the resulting site and species scores do not depend on the initial
scores. The final scores produced by this reciprocal averaging algorithm
form the first eigenvector or ordination axis of correspondence analysis
(CA), an eigenvector technique that is widely used especially in the French-
language literature (Laurec et al., 1979; Hill, 1974). As with the power
algorithm for PCA, the reciprocal averaging algorithm makes clear the
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relationship between CA and regression and calibration—this time, with
WA regression and calibration. The method of standardization chosen
in Step 4 is arbitrary, but chosen for later reference. On convergence, s in
Step 4 is equal to the eigenvalue of the first axis, and lies between 0 and 1.

Correspondence analysis has many applications outside ecology.
Nishisato (1980), Greenacre (1984) and Gifi (1981) provide a variety of
different rationales for correspondence analysis, each adapted to a parti-
cular type of application. Heiser (1987) and Ter Braak (1985, 1987a) develop
rationales for correspondence analysis that are particularly relevant to
ecological applications.

Ter Braak (1985) showed that CA approximates ML Gaussian (logit)
ordination under Conditions 1–4 listed above, i.e. under just these condi-
tions for which WA is as good as ML-regression and ML-calibration. In
practice CA can never be exactly equivalent to ML ordination, because
Condition 1a implies that the range of site scores is broad enough to include
the ranges of all of the species, whereas Condition 2a implies that there must
be species with their optima situated beyond the edge of the range of site
scores. These conditions cannot both be satisfied if the range of site scores is
finite. As a result, CA shows an edge effect: the site scores near the ends of
the axes become compressed relative to those in the middle (Gauch, 1982).
This effect becomes less strong, however, as the range of site scores becomes
wider and the spacing of the site scores and species scores becomes closer
relative to the average species’ tolerance.

Conditions 1–4 also disallow ‘‘deviant’’ sites and rare species. CA is
sensitive to both (Hill, 1974; Feoli and Feoli Chiapella, 1980; Oksanen,
1983). This sensitivity may be useful in some applications, but is a nuisance
if the aim is to detect major gradients. Deviant sites (and, possibly, the rarest
species) should therefore ideally be removed from the data before analysis
by CA.

As in PCA, further ordination axes can be extracted in CA by adding
an extra step after Step 3, making the trial scores on the second axis
uncorrelated with the (final) scores on the first axis. (In the calculation of f
in Step 3b (see Section II.C) the sites are weighted proportional to the site
total yþ i. This weighting is implicitly applied from now on.) However, there
is a problem with the second and higher axes in CA. The problem is the well-
known but hitherto not well-understood ‘‘arch effect’’ (Hill, 1974). If the
species data come from an underlying one-dimensional Gaussian model the
scores on the second ordination axis show a parabolic (‘‘arch’’) relation with
those of the first axis; if the species data come from a two-dimensional
Gaussian model in which the true site and species scores are located
homogeneously in a rectangular region in two-dimensional space (the
extension to two dimensions of Conditions 1a and 2a), the scores of the
second ordination axis lie not in a rectangle but in an arched band (Hill and
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Gauch, 1980). The arch effect arises because the axes are extracted
sequentially in order of decreasing ‘‘variance’’. Suppose CA has succeeded
in constructing a first axis, such that species appear one after the other along
that axis as in a species packing model. Then a possible second axis is
obtained by folding the first axis in the middle and bringing the ends
together. This axis is a superposition of two species packing models, each
with half the gradient length of the first axis. It is a candidate for becoming
the second axis, because it has no linear correlation with the first CA-axis yet
has as much as half the gradient length of the first axis (Jongman et al.,
1987). The folded axis by itself thus ‘‘explains’’ a part of the variation in the
species data, even though when taken jointly with the first axis it contributes
nothing. Even if there is a strong second gradient, CA will not associate it
with the second axis if it separates the species less than a folded first axis.
As a result of the arch effect, the two-dimensional CA-solution is generally
not a good approximation to the ML-solution (two-dimensional Gaussian
ordination).

Hill and Gauch (1980) developed detrended correspondence analysis
(DCA) as a heuristic modification of CA designed to remedy both the edge
effect and the arch effect. The edge effect is removed in DCA by non-linear
rescaling of the axis. Assuming a species packing model with randomly
distributed species’ optima, Hill and Gauch (1980) noted that the variance
of the optima of the species present at a site (the ‘‘within-site variance’’) is
an estimate of the average response curve breadth of those species (they
used the standard deviation as a measure of breadth, which is about equal
to tolerance as we define it). Because of the edge effect, the species’ curves
before rescaling are narrower near the ends of the axis than in the middle,
and the within-site variance is correspondingly smaller in sites near the ends
of the axis than in sites in the middle. The rescaling therefore attempts to
equalize the within-site variance at all points along the ordination axis by
dividing the axis into small segments, expanding the segments with sites with
small within-site variance, and contracting the segments with sites with large
within-site variance. The site scores are then calculated as weighted averages
of the species scores and the scores are standardized such that the within-
site variance is equal to 1.

Hill and Gauch (1980) defined the length of the ordination axis to be the
range of the site scores. This length is expressed in ‘‘standard-deviation
units’’ (SD). The tolerance of the species’ curves along the rescaled axis are
close to 1, and each curve therefore rises and falls over about 4 SD. Sites
that differ by 4 SD can thus be expected to have no species in common. Even
if non-linear resealing is not used, one can still set the average within-site
variance of the species scores along a CA-axis equal to 1 by linear rescaling
(Hill, 1979; Ter Braak, 1987b), so as to ensure that this useful interpretation
of the length of the axis still approximately holds.
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The arch effect, a more serious problem in CA, is removed in DCA by the
heuristic method of ‘‘detrending-by-segments’’. This method ensures that at
any point along the first ordination axis, the mean value of the site scores on
subsequent axes is approximately zero. In order to achieve this, the first axis
is divided into a number of segments and the trial site scores are adjusted
within each segment by subtracting their mean after some smoothing across
segments. Detrending-by-segments is built into the reciprocal averaging
algorithm, and replaces Step 3b. Subsequent axes are derived similarly by
detrending with respect to each of the existing axes.

DCA often works remarkably well in practice (Hill and Gauch, 1980;
Gauch et al., 1981). It has been critically evaluated in several recent sim-
ulation studies. Ter Braak (1985) showed that DCA gave a much closer
approximation to ML Gaussian ordination than CA did, when applied to
simulated data based on a two-dimensional species packing model in which
species have identically shaped Gaussian surfaces and the optima and site
scores are uniformly distributed in a rectangle. This improvement was
shown to be mainly due to the detrending, not to the non-linear rescaling
of axes. Kenkel and Orlóci (1986) found that DCA performed substantially
better than CA when the two major gradients differed in length, but also
noted that DCA sometimes ‘‘collapsed and distorted’’ CA results when there
were: (a) few species per site, and (b) the gradients were long (we believe (a)
to be the real cause of the collapse). Minchin (1987) further found that DCA
can flatten out some of the variation associated with one of the underlying
gradients. He ascribed this loss of information to an instability in the
detrending-by-segments method. Pielou (1984, p. 197) warned that DCA is
‘‘overzealous’’ in correcting the ‘‘defects’’ in CA, and ‘‘may sometimes
lead to the unwitting destruction of ecologically meaningful information’’.
Minchin’s (1987) results indicate some of the conditions under which such
loss of information can occur.

DCA is popular among practical field ecologists, presumably because it
provides an effective approximate solution to the ordination problem for
a unimodal response model in two or more dimensions—given that the data
are reasonably representative of sections of the major underlying environ-
mental gradients. Two modifications might increase its robustness with
respect to the problems identified by Minchin (1987). First, non-linear.
rescaling aggravates these problems; since the edge effect is not too serious,
we advise against the routine use of non-linear rescaling. Second, the arch
effect needs to be removed (as Heiser, 1987, also noted), but this can be done
by a more stable, less ‘‘zealous’’ method of detrending which was also briefly
mentioned by Hill and Gauch (1980): namely detrending-by-polynomials.
Under the one-dimensional Gaussian model, it can be shown that the
second CA-axis is a quadratic function of the first axis, the third axis is
a cubic function of the first axis, and so on (Hill, 1974; Iwatsubo, 1984).
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Detrending-by-polynomials can be incorporated into the reciprocal
averaging algorithm by extending Step 3b such that the trial scores are
not only made uncorrelated with the previous axes, but are also made
uncorrelated with.polynomials of the previous axes. The limited experience
so far suggests that detrending up to fourth-order polynomials should
be adequate. In contrast with detrending-by-segments, the method of
detrending-by-polynomials removes only specific defects of CA that are
now theoretically understood.

D. Constrained Ordination

Just as CA/DCA is an approximation to ML Gaussian ordination, so is
canonical correspondence analysis (CCA) an approximation to ML
Gaussian canonical ordination (Ter Braak, 1986). CCA is a modification
of CA in which the ordination axes are restricted to be weighted sums of the
environmental variables, as in Eq. (4). CCA can be obtained from CA as
redundancy analysis was obtained from PCA. An algorithm can be obtained
by adding to the CA algorithm an extra multiple regression step. The only
difference from Step 3a of redundancy analysis (see Section II.E) is that the
sites must be weighted in the regression proportional to their site total yþ i

(Ter Braak, 1986). CCA can also be obtained as the solution of an eigen-
value problem (Ter Braak, 1986). It is closely related to ‘‘redundancy
analysis for qualitative variables’’ (Israëls, 1984) but has a different ration-
ale and is applied to a different type of data.

In constrained ordination the constraints always become less strict as
more environmental variables are included. If q5 n� 1, then there are no
real constraints, and CA and CCA become equivalent. As in CA, the edge
effect in CCA is a minor problem that is best left untreated. Detrending may
sometimes be required to remove the arch effect, i.e. to prevent CCA from
selecting weighted sums of environmental variables that are approximately
polynomials of previous axes. Detrending-by-segments does not work very
well here for technical reasons; detrending-by-polynomials is better founded
and more appropriate (see Appendix and Ter Braak, 1987b). However, the
arch effect in CCA can be eliminated much more elegantly, simply by
dropping superfluous environmental variables (Ter Braak, 1987a). Variables
that are highly correlated with the ‘‘arched’’ axis (often the second axis) are
the most likely to be superfluous. If the number of environmental variables
is small enough for the relationship of individual variables to the ordination
axes to be significant, the arch effect is not likely to occur at all.

CCA can be sensitive to deviant sites, but only when they are out-
liers with regard to both species composition and environment. When
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realistically few environmental variables are included, CCA is thus more
robust than CA in this respect too.

CCA leads to an ordination diagram that simultaneously displays (a) the
main patterns of community variations, as far as these reflect environmental
variation, and (b) the main pattern in the weighted averages (not correlations
as in redundancy analysis) of each of the species with respect to the
environmental variables (Ter Braak, 1986, 1987a). CCA is thus intermediate
between CA and separate WA calculations for each species. Geometrically,
the separate WA calculations give each species a point in the q-dimensional
space of the environmental variables, which indicates the centre of the
species’ distribution. CCA attempts to provide a low-dimensional repre-
sentation of these centres; CCA is thus also a constrained form of WA, in
which the weighted averages are restricted to lie in a low-dimensional
subspace.

Like redundancy analysis, CCA can be used with dummy ‘‘environ-
mental’’ variables to provide an ordination constrained to show maximum
separation among pre-defined groups of samples. This special case of CCA
is described, for example, by Feoli and Orlóci (1979) under the name of
‘‘analysis of concentration’’, by Greenacre (1984, Section 7.1) and by Gasse
and Tekaia (1983).

V. ORDINATION DIAGRAMS AND THEIR

INTERPRETATION

The linear ordination techniques (PCA and redundancy analysis) and, the
ordination techniques based on WA (CA/DCA and CCA) represent com-
munity data in substantially different ways. We focus on two-dimensional
ordination diagrams, as these are the easiest to construct and to inspect, and
illustrate the interpretation of each type of diagram with an example.

A. Principal Components: Biplots

PCA fits planes to each species’ abundances in the space defined by the
ordination axes. The species’ point (bk1, bk2) may be connected with the
origin (0,0) to give an arrow (Figure 3). Such a diagram, in which sites are
marked by points and species by arrows is called a ‘‘biplot’’ (Gabriel, 1971).
There is a useful symbolism in this use of arrows: the arrow points in the
direction of maximum variation in the species’ abundance, and its length is
proportional to this maximum rate of change. Consequently, species on the
edge of the diagram (far from the origin) are the most important for
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indicating site differences; species near the centre are of minor importance.
Ter Braak (1983) provides more detailed, quantitative rules for interpreting
PCA ordination diagrams.

van Dam et al. (1981) applied PCA to data consisting of diatom
assemblages from 16 Dutch moorland pools, sampled in the 1920s and
again in 1978, to investigate the impact of acidification on these shallow
water bodies. Ten clearwater (non-humic) pools were situated in the pro-
vince of Brabant and on the Veluwe and six brownwater (humic) pools in
the province of Drenthe. Figure 3 displays the major variation in the data.
The arrow of Eunotia exigua indicates that this species increases strongly
along the first principal component: E. exigua is abundant in the recent
Brabant and Veluwe samples, which lie on the right-hand side of the
diagram, and rare in the remaining samples, which lie more to the left. The
second axis accounts for some of the difference among the old and recent
samples from Drenthe. These groups differ in the abundances of Frustulia

Figure 3 Biplot based on principal components analysis of diatom assemblages

from Dutch moorland pools (schematic after van Dam et al., 1981). The arrows for

the six most frequent species and the regions where different categories of samples lie

jointly display the approximate community composition in each of the regions (old,

c. 1920; recent, 1978; BþV, from the province of Brabant and the Veluwe).

Abbreviations: Eun exi, Eunotia exigua; Eun ten, Eunotia tenella; Eun ven, Eunotia

veneris; Fru rho, Frustulia rhomboides var. saxonica; Tab bin, Tabellaria binalis; Tab

qua, Tabellaria quadriseptara.
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rhomboides var. saxonica, Tabellaria quadriseptata, Eunotia tenella,
Tabellaria binalis, and Eunotia veneris, as shown by the directions of the
arrows for these species in Figure 3. As E. exigua is acidobiontic and the first
principal component is strongly correlated with the sulphate concentration
of the 1978 samples, this component clearly depicts the impact of acidi-
fication of the moorland pools in Brabant and the Veluwe (and to a smaller
extent also in Drenthe). Thus van Dam et al. (1981) used PCA to summarize
the changes in diatom composition between the 1920s and 1978. PCA helped
them to detect that the nature of the change differed among provinces,
hence stressing the importance for diatoms of the distinction between
clearwater and brownwater pools.

B. Correspondence Analysis: Joint Plots

In CA and DCA both sites and species are represented by points, and each
site is located at the centre of gravity of the species that occur there. One
may therefore get an idea of the species composition at a particular site by
looking at ‘‘nearby’’ species points. Also, in so far as DCA approximates the
fitting of Gaussian (logit) surfaces (Figure 2), the species points are
approximately the optima of these surfaces; hence the abundance or
probability of occurrence of a species tends to decrease with distance from
its location in the diagram.

Figure 4 illustrates this interpretation of the species’ points as optima
in ordination space. DCA was applied to presence–absence data on 51 bird
species in 526 contiguous, 100m� 100m grid-cells in an area with past-
ures and scattered woodlots in the Rhine valley near Amerongen, the
Netherlands (Opdam et al., 1984). Figure 4 shows the DCA scores of the 20
most frequent species by small circles, and the outline (dashed) of the region
in which the scores for the grid-cells fall (the individual grid-cells are not
shown, to avoid crowding). Opdam et al. (1984) interpreted the first axis, of
length 5.6 SD, as a gradient from open to closed landscape and the second
axis, of length 5.3 SD, as a gradient from wet to drier habitats.

In order to test the interpretation of species’ scores as optima, we fitted
a response surface for each species by logit regression using Eq. (6) with the
first and the second DCA-axes as the predictor variables x1 and x2. For 13
of the 20 bird species, the fitted surface had a maximum. The optimum was
calculated for each of these species by Eq. (7) and plotted as a triangle in
Figure 4. The fitted optima lie close to the DCA scores. The regression
analysis also allowed us to estimate species’ tolerances in ordination space:
these are indicated in Figure 4 by ellipses representing the region within
which each species occurs with at least half of its maximum probability,
according to the fitted surface.
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Figure 4 Joint plot based on detrended correspondence analysis (DCA) of bird

species communities in the Rhine valley near Amerongen, the Netherlands (data

from Opdam et al., 1984), displaying the major variation in bird species composition

across the landscape. This plot shows the DCA-scores (s) of the 20 most frequent

species and the region in which the samples fall (— — —). Also shown are optima

(�) and lines of equal probability for the 13 species whose probability surfaces had

clear maxima (as fitted by Gaussian logit regression), and arrows representing

directions of increase for the seven species whose probability surfaces were

monotonic. Abbreviations: Ala, Alauda arvensis; Ana, Anas platyrhynchos; Ant,

Anthus pratensis; Ath, Athene noctua; But, Buteo buteo; Cor, Corvus corone; Cuc,

Cuculus canorus; Emb, Emberiza schoeniclus; Fal, Fatco tinnunculus; Ful, Fulica atra;

Gal, Gallinago gallinago; Hae, Haematopus ostralegus; Lim, Limosa limosa; Mot,

Motacitla flava flava; Per, Perdix perdix; Pic, Pica pica; Pru, Prunella modularis;

Tri, Tringa totanus; Tur, Turdus merula; Van, Vanellus vanellus.
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The fitted surfaces for the remaining seven species had a minimum or
saddle point, suggesting that their optima are located well outside the
sampled range. For these species we fitted a ‘‘linear’’ logit surface by setting
b2, b4 and b5 in Eq. (6) to zero. The direction of steepest increase of each of
the fitted surfaces is indicated in Figure 4 by an arrow through the centr-
oid of the site points; the beginning and end points of each arrow
correspond to fitted probabilities of 0.1 and 0.9 respectively. As expected
from our interpretation of DCA, these arrows point more or less in the
same direction as the DCA scores of the corresponding species (Figure 4).

In contrast to the PCA-diagram, the species points on the edge of the CA-
or DCA-diagram are often rare species, lying there either because they
prefer extreme (environmental) conditions, or (very often) because their few
occurrences by chance happen to fall in sites with extreme conditions; one
cannot decide between these possibilities without additional data. Such
peripheral species have little influence on the analysis and it is often
convenient not to display them at all. Furthermore, species near the centre
of the diagrammay be ubiquitous, unrelated to the ordination axes, bimodal,
or in some other way not fitting a unimodal response model—or they may
be genuinely specific with a habitat-optimum near the centre of the sampled
range of habitats. The correct interpretation may be found by the kind of
secondary analysis shown in Figure 4, or more straightforwardly just by
plotting the species’ abundances in ordination space.

C. Redundancy Analysis

In redundancy analysis sites are indicated by points, and both species and
environmental variables are indicated by arrows whose interpretation is
similar to that of the arrows in the PCA biplot. The pattern of abundance of
each species among the sites can be inferred in exactly the same way as in
a PCA biplot, and so may the direction of variation of each environmental
variable. One may also get an idea of the correlations between species’
abundances and environmental variables. Arrows pointing in roughly the
same direction indicate a high positive correlation, arrows crossing at right
angles indicate near-zero correlation, and arrows pointing in opposite
directions indicate high negative correlation. Species and environmental
variables with long arrows are the most important in the analysis; the longer
the arrows, the more confident one can be about the inferred correlation.
(It is assumed here that for the purpose of the ordination diagram the
environmental variables have been standardized to zero mean and unit
variance, so as to make the lengths of arrows comparable.) Jongman et al.
(1987) provide more quantitative rules for interpreting the ordination
diagrams derived from redundancy analysis.
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The data we use to illustrate redundancy analysis were collected to study
the relation between the vegetation and management of dune meadows on
the island of Terschelling, The Netherlands (M. Batterink and G. Wijffels,
unpublished). Figure 5 displays the main variation in the vegetation in
relation to three environmental variables (thickness of the A1 horizon,
moisture content of the soil and quantity of manuring). The arrows for Poa
trivialis and Elymus repens make small angles with the arrow for manuring;

Figure 5 Biplot based on redundancy analysis of vegetation with respect to three

environmental variables (quantity of manure, soil moisture and thickness of the A1

horizon) in dune meadows (s) on the island of Terschelling, The Netherlands. The

arrows for plant species and environmental variables display the approximate

(linear) correlation coefficients between plant species and the environmental

variables. Abbreviations: Ach mil, Achillea millefolium; Agr sto, Agrostis stolonifera;

Alo gen, Alopecurus geniculatus; Ant odo, Anthoxanthum odoratum; Bro hor, Bromus

hordaceus; Ele pal, Eleocharis palustris; Ely rep, Elymus repens; Leo aut, Leontodon

autumnalis; Loi per, Lolium perenne; Pla lan, Plantago lanceolata; Poa pra, Poa

pratensis; Poa tri, Poa trivialis; Rum ace, Rumex acetosa; Sag pro, Sagina

procumbens; Sal rep, Salix repens.

264 C.J.F. TER BRAAK AND I.C. PRENTICE



these species are inferred to be positively correlated with manuring. Salix
repens and Leontodon autumnalis have arrows pointing in directions roughly
opposite to that of manuring, and are inferred to be negatively correlated
with manuring. The former species are thus most abundant in the heavily
manured meadows of standard farms (positioned at the top of the diagram),
whereas the latter species are most abundant in the unmanured meadows
(owned by the nature conservancy and positioned at the bottom of the
diagram). The relationships of the species with moisture and thickness of the
A1 horizon can be inferred in a similar way. The short arrows for Bromus
hordaceus and Sagina procumbens, for example, indicate that their abund-
ance is not so much affected by moisture, manure and thickness of the
A1 horizon. Redundancy analysis can summarize the species–environment
relationships in such an informative way, because the gradients are short
(� 2SD: Ter Braak, 1987b).

D. Canonical Correspondence Analysis

In CCA, since species are assumed to have unimodal response surfaces with
respect to linear combinations of the environmental variables, the species
are logically represented by points (corresponding to their approximate
optima in the two-dimensional environmental subspace), and the environ-
mental variables by arrows indicating their direction and rate of change
through the subspace.

Purata (1986, and unpublished results) applied CCA to plant species
abundance data from 40 abandoned cultivation sites within Mexican
tropical rain forest. Data were available for 24 of these sites on the regrowth
age (A), the length of the cropping period in the past (C), and the proportion
of the perimeter that had remained forested (F). These three variables were
used as environmental variables in CCA. The remaining 16 sites were
entered as ‘‘passive’’ sites, to be positioned with respect to the CCA axes
according to their floristic composition in relation to the ‘‘active’’ sites.

Figure 6 illustrates the results. The first axis, with length 4.7 SD, was
interpreted as an indicator of the general trend of secondary succession. The
direction of the arrow for regrowth age shows that this trend runs broadly
from right to left. The species’ locations are consistent with their life-history
characteristics: the trend of succession runs from ruderals (to the right),
through pioneer shrubs and trees, to late-secondary canopy dominants and
shade-tolerant understorey species (to the left). The directions of the other
two arrows in relation to axis 1 show that a long cropping period delays
succession, while an extensive forested perimeter accelerates succession.
Axis 2 (3.0 SD) may (more speculatively) differentiate species whose
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establishment is favoured by the presence of mature forest around the site
from those that simply require a long time to grow.

CCA also allows the computation of unconstrained, ‘‘residual’’ axes
summarizing floristic variation that remains after the effect of the envi-
ronmental variables has been taken out. In Purata’s study, the successive
eigenvalues of the first three (constrained) CCA axes were 0.49, 0.34 and
0.18. (There cannot be more constrained axes than there are environmental

Figure 6 Ordination diagram based on canonical correspondence analysis of

successional plant communities with respect to three environmental variables

(regrowth age A, length of cropping period C, and extent of forested perimeter F)

on abandoned cultivation sites within Mexican tropical rain forest (Purata, 1986 and

unpublished). d, sites with environmental data; s, sites added ‘‘passively’’ on the

basis of floristic composition. The species shown are a selection among the 285

included in the analysis. u, denotes ruderals; j, pioneer shrubs; n, pioneer trees; m,

late-secondary canopy trees; and w, an understorey palm. Abbreviations: Asme,

Astrocaryum mexicanum; Bipi, Bidens pilosa; Ceob, Cecropia obtusifolia; Crni,

Croton nitens; Heap, Heliocarpus appendicalatus; Medi, Melampodium divaricatum;

Nelo, Neurolaena lobata; Pial, Piper amalago; Romi, Robinsonella mirandae; Sala,

Sapium lateriflorum; Trme, Trichospermum mexicanum; Trmi, Trema micrantha;

Vede, Vernonia deppeana; Zake, Zanthoxylum kellermanii.
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variables). The first residual axis gave an eigenvalue of 0.74, showing that
at least as much floristic variation was not explained by the environmental
variables. In our experience, terrestrial community data commonly give a
residual eigenvalue as large as the first constrained eigenvalue, however
carefully the environmental variables are chosen. Thus DCA and CCA tend
to give different ordinations, and CCA is more powerful in detecting
relationships between species composition and environment.

VI. CHOOSING THE METHODS

A. Which Response Model?

Regression methods can fit response models with a wide variety of shapes.
The linear and Gaussian-like models are convenient starting points; more
complex shapes can be fitted by adding further parameters, if the data are
sufficiently detailed to support it. Other species may be used as additional
explanatory variables if the specific aim is to detect species interactions
(Fresco, 1982). The shapes of the response functions may be made even
more general by applying Box–Cox transformations to the explanatory
variables (Bartlein et al., 1986) or still more general by fitting splines (Smith,
1979). Even with all these modifications, regression can still be done with
standard packages for Generalized Linear Modelling.

After species response curves or surfaces have been fitted by regression,
calibration based on the maximum likelihood principle can be used to make
inferences about the environment from community data. If the surfaces
fitted by regression have complex shapes, then calibration by numerical
maximization of the likelihood may be problematic. But even then, if there
are only a few environmental variables involved, the ‘‘most likely’’ combina-
tion of environmental values can be searched for on a grid across the
environmental space (Atkinson et al., 1986; Bartlein et al., 1986). So the type
of response model used in both regression and calibration should generally
be guided by the characteristics and resolution of the data, and inspection of
the data and the residuals after regression should show whether the model
being used is adequate for the purpose.

In contrast to regression and calibration, the ordination problem requires
the simultaneous estimation of large numbers of parameters and cannot be
solved practically without some constraints on the structure one wants to fit.
That these constraints may seem unduly restrictive simply shows that there
are limits to what ordination can achieve. The number of ordination axes to
be extracted must be small, and the type of response model must be
restricted, in order to permit a solution. For example, it seems necessary
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to disregard the possibility of bimodal species distributions (Hill, 1977).
Certainly bimodal distributions sometimes occur, but ordination has to
assume that species ‘‘on average’’ have simple distributions—otherwise, the
problem would be insoluble; the utility of ordination techniques depends on
them being robust with respect to departures from the simple models on
which they are based. The Gaussian model seems to be of the right order
of complexity for ordination of ecological data, but the full second-degree
model of Eq. (6) is already difficult to fit (Kooijman, 1977; Goodall and
Johnson, 1982). The Gaussian model with circular contour lines and equal
species tolerances, i.e. the unfolding model, might provide a good
compromise between practical solubility and realism in ordination.
Promising algorithms for unfolding are developed by Heiser (1987) and
DeSarbo and Rao (1984). DCA provides a reasonably robust approxima-
tion to ML Gaussian ordination and requires far less computing time.
Similarly, ML Gaussian canonical ordination is technically feasible, but
CCA provides a practical and robust approximation to it.

Non-linear methods are appropriate if a reasonable number of species
have their optima located within the data set. If the gradient length is
reduced to less than about 3 SD, the approximations involved in WA
become worse and ultimately (if the gradient length is less than about 1.5
SD) the methods yield poor results because most species are behaving
monotonically over the observed range. Thus if the community variation is
within a narrow range, the linear ordination methods—PCA and redund-
ancy analysis—are appropriate. If the community variation is over a wider
range, non-linear ordination methods—including DCA and CCA—are
appropriate.

B. Direct or Indirect?

Direct gradient analysis allows one to study the part (large or smart) of the
variation in community composition that can be explained by a particular
set of environmental variables. In indirect gradient analysis attention is first
focused on the major pattern of variation in community composition; the
environmental basis of this pattern is to be established later. If the relevant
environmental data are to hand, the direct approach—either fitting separate
response surfaces by regression for each major species, or analysing the
overall patterns of the species–environment relationship by constrained
ordination—is likely to be more effective than the traditional indirect
approach. However, indirect gradient analysis does have the advantage that
no prior hypothesis is needed about what environmental variables are
relevant. One does not need to measure the environmental variables in
advance, and one can use informal field knowledge to help interpret the
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patterns that emerge—hence the emphasis in the literature on ordination
as a technique for ‘‘hypothesis generation’’, the implication being that
experimental or more explicit statistical approaches can be used for
subsequent hypothesis testing. This distinction is not hard and fast, but it
does draw attention to the strengths and limitations of indirect gradient
analysis.

In Section V.D, we showed in passing how an indirect gradient analysis
can be carried out after a direct gradient analysis in order to summarize the
community variation that remains after known effects have been removed.
When the known environmental variables are not the prime object of study,
they are called concomitant variables (Davies and Tso, 1982) or covariables.
It would be convenient to solve for the residual (unconstrained) axes
without having to extract all the constrained axes first. Fortunately, this is
straightforward. In the iterative algorithm for PCA and CA, one simply
extends Step 3b such that the trial scores are not only made uncorrelated
with any previous axis (if present) but are also made uncorrelated with all
specified covariables (see Appendix for details). In this way the effects of the
covariables are partialled out from the ordination; hence the name ‘‘partial
ordination’’. The theory of ‘‘partial components analysis’’ and ‘‘partial
correspondence analysis’’, as we call these extensions of PCA and CA, is
given by Gabriel (1978, theorem 3) and Ter Braak (1988), respectively.
Swaine and Greig-Smith (1980) used partial components analysis to obtain
an ordination of within-plot vegetation change in permanent plots. Partial
correspondence analysis, or its detrended form, would be more appropriate
if the gradients were long.

C. Direct Gradient Analysis: Regression or Constrained Ordination?

Whether to use constrained ordination (multivariate direct gradient analysis)
instead of a series of separate regressions (the traditional type of direct
gradient analysis) depends on whether or not there is any advantage in
analysing all the species simultaneously. Both constrained and unconstrai-
ned ordination assume that the species react to the same composite grad-
ients of environmental variables, while in regression a separate composite
gradient is constructed for each species. Regression can therefore allow
more detailed descriptions and more accurate prediction and calibration, if
properly carried out (with due regard to its statistical assumptions) and if
sufficient data are available. However, ecological data that are collected
over a large range of habitat variation require non-linear models, and
building good non-linear models by regression is demanding in time and
computation. In CCA the composite gradients are linear combinations of
environmental variables and the non-linearity enters through a unimodal
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response model with respect to a few composite gradients, taken care of in
CCA by the procedure of weighted averaging. Constrained ordination is
thus easier to apply, and requires less data, than regression; it provides
a summary of the species–environment relationship, and we find it most
useful for the exploratory analysis of large data sets.

Constrained ordination can also be carried out after regression, in order
to relate the residual variation to other environmental variables. This type
of analysis, called ‘‘partial constrained ordination’’, is useful when the
explanatory (environmental) variables can be subdivided in two sets, a set of
covariables—the effects of which are not the prime object of study—and a
further set of environmental variables whose effects are of particular interest.

For example, in the illustration of Section V.C, the study was initiated to
investigate differences in vegetation among dune meadows that were
exploited under different management regimes (standard farming, biodyna-
mical farming, nature management, among others). Standard CCA showed
systematic differences in vegetation among management regimes. A further
question is then whether these differences can be fully accounted for by the
environmental variables moisture, quantity of manure and thickness of the
A1 horizon, whose effects are displayed in Figure 5, or whether the variation
that remains after fitting the three environmental variables (three cons-
trained ordination axes) is systematically related to management regimes.
This question can be tackled using partial constrained ordination, with the
three environmental variables as covariables, and a series of dummy
variables (for each of the management regimes) as the variables of interest.

Technically, partial constrained ordination can be carried out by any
computer program for constrained ordination. The usual environmental
variables are replaced by the residuals obtained by regressing each of the
variables of interest on the covariables (see Appendix). Davies and Tso
(1982) gave the theory behind partial redundancy analysis; Ter Braak (1988)
derived partial canonical correspondence analysis as an approximation to
‘‘partial Gaussian canonical ordination’’.

Partial constrained ordination has the same essential aim as Carleton’s
(1984) residual ordination, i.e. to determine the variation in the species data
that is uniquely attributable to a particular set of environmental variables,
taking into account the effects of other (co-) variables; however, Carleton’s
method is somewhat less powerful, being based on a pre-existing DCA
which may already have removed some of the variation of interest. Partial
constrained ordination is, by contrast, a true direct gradient analysis tech-
nique which seems promising, e.g. for the analysis of permanent plot data
(effects of time, with location and/or environmental data as covariables),
and a variety of other applications in which effects of particular environ-
mental variables are to be sorted out from the ‘‘background’’ variation
imposed by other variables.
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VII. CONCLUSIONS

Regression, calibration, ordination and constrained ordination are well-
defined statistical problems with close interrelationships. Regression is the
tool for investigating the nature of individual species’ response to environ-
ment, and calibration is the tool for (later) inferring the environment from
species composition at an individual site. Both tools come in various degrees
of complexity. The simplest are linear and WA regression and calibration.
The linear methods are applicable over short ranges of environment, where
species’ abundance appears to vary monotonically with variation in the
environment. The WA methods are applicable over wider ranges of
environment; WA regression is a crude method to estimate each species’
optimum, and WA calibration just averages the optima of the species
that are present. WA works with presence–absence data. If abundances
are available, they provide the weights. These WA techniques can be
shown to give approximate estimates of the species’ optima and envi-
ronmental values when the species’ response surfaces (the relationships
between the species’ abundance, or probability of occurrence, and the
environmental variables) are Gaussian (or for probabilities, Gaussian-
logit) in form. Gaussian regression and calibration are also possible, but the
WA techniques are simpler and are approximations to the Gaussian
methods.

These simple tools are suitable when there are many species of interest
and the exact form of the response surface is not critical, and they are
very easy to use. If the form of the response surfaces is critical, more
complex models can be fitted using Generalized Linear Modelling (for
regression) and maximum likelihood techniques (for calibration). These
more complex tools are becoming important in the theoretical study of
species–environment relationships (Austin, 1985) and environmental dyna-
mics (Bartlein et al., 1986). Naturally, they require skilled users who are
aware of their statistical assumptions, limitations and pitfalls.

Ordination and constrained ordination can be related to the simpler
methods of regression and calibration. Ordination is the tool for explora-
tory analysis of community data with no prior information about the
environment. Constrained ordination is the equivalent tool for the analysis
of community variation in relation to environment. Both implicitly assume
a common set of environmental variables and a common response model for
all of the species. (Without these simplifying assumptions, they could not
work; such major simplifications of data can only be achieved at the expense
of some realism.) The basic ordination techniques are PCA and CA. PCA
constructs axes that are as close as possible to a linear relationship with the
species. These axes can be found by a converging sequence of alternating
linear regressions and calibrations. Each axis after the first is obtained by
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partialling out linear relationships with the previous axis. CA is mathe-
matically related to PCA, but has a very different effect. CA axes can be
found by a converging sequence of WA regressions and calibrations. In CA,
axes after the first are obtained analogously with PCA; in DCA they are
obtained by removing all trends, linear or non-linear, with respect to
previous axes. CA suffers from the arch effect, which DCA eliminates. DCA
is a reasonably robust approximation to Gaussian ordination, in which the
axes are constructed so that the species response curves with respect to the
axes are Gaussian in form. Gaussian ordination is feasible but not
convenient. DCA is much more practical. But there are problems with the
detrending, and the method can break down when the connections between
sites are too tenuous. Some modifications—including an improved method
of detrending—may improve DCA’s robustness; alternatively, some forms
of nonmetric multidimensional scaling may be more robust (Kenkel and
Orlóci, 1986; Minchin, 1987).

Constrained ordination methods have the added constraint that the
ordination axes must be linear combinations of environmental variables.
This constraint can be implemented as an extra multiple regression step in
the general iterative ordination algorithm. PCA then becomes redundancy
analysis (a more practical alternative to canonical correlation), Gaussian
ordination becomes Gaussian canonical ordination, and CA becomes CCA
(Table 2). The constraint makes Gaussian canonical ordination somewhat
more stable than its unconstrained equivalent, but still CCA provides
a much more practical alternative. All these constrained methods are most
powerful if the number of environmental variables is small compared to
the number of sites. Then the constraints are much stronger than in
normal ordination, and the common problems of ordination (such as the
arch effect, the need for detrending and the sensitivity to deviant sites)
disappear.

Often, community–environment relationships have been explored by
‘‘indirect gradient analysis’’—ordination, followed by interpretation of the
axes in terms of environmental variables. But if the environmental data are
to hand, constrained ordination (‘‘multivariate direct gradient analysis’’)
provides a more powerful means to the same end. Hybrid (direct/indirect)
analyses are also possible. In partial ordination and partial constrained
ordination, the analysis works on the variation that remains after the effects
of particular environmental, spatial or temporal ‘‘covariables’’ have been
removed.

The choice between linear and non-linear ordination methods is not
a matter of personal preference. Where gradients are short, there are sound
statistical reasons to use linear methods. Gaussian methods break down,
and edge effects in CA and related techniques become serious; the repre-
sentation of species as arrows becomes appropriate. As gradient lengths
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increase, linear methods become ineffective (principally through the
‘‘horseshoe effect’’, which scrambles the order of samples along the first
axis as well as creates a meaningless second axis); Gaussian methods become
feasible, and CA and related techniques become effective. The representa-
tion of species as points, representing their optima, becomes informative.
The range 1.5–3 SD for the first axis represents a ‘‘window’’ over which both
PCA and CA/DCA, or both redundancy analysis and CCA, can be used to
good effect.
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Work (Ed. by L. Orlóci, C.R. Rao and W.M. Stiteler), pp. 127–174. International

Co-operative Publishing House, Fairiand MD.

McCullagh, P. and Nelder, J.A. (1983) Generalized Linear Models. Chapman and

Hall, London.

Macdonald, G.M. and Ritchie, J.C. (1986) Modern pollen spectra from the western

interior of Canada and the interpretation of Late Quaternary vegetation

development. New Phytol. 103, 245–268.

Meulman, J. and Heiser, W.J. (1984) Constrained multidimensional scaling: more

directions than dimensions. In: COMPSTAT 1984, pp. 137–142. Physica-Verlag,

Vienna.

Minchin, P. (1987) An evaluation of the relative robustness of techniques for

ecological ordination. Vegetatio 69, 89–107.

Montgomery, D.C. and Peck, E.A. (1982) Introduction to Linear Regression Analysis.

John Wiley, New York.

276 C.J.F. TER BRAAK AND I.C. PRENTICE



Nishisato, S. (1980) Analysis of Categorical Data: Dual Scaling and Its Applications.

University of Toronto Press, Toronto.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal

component analysis, correspondence analysis and multidimensional scaling.

Vegetation 52, 181–189.

Opdam, P.F.M., Kalkhoven, J.T.R. and Phillippona, J. (1984) Verband tussen

Broedvogelgemeenschappen en Begroeiing in een Landschap bij Amerongen. Pudoc,

Wageningen.

Peet, R.K. (1978) Latitudinal variation in southern Rocky Mountain forests.

J. Biogeogr. 5, 275–289.

Peet, R.K. and Loucks, O.L. (1977) A gradient analysis of southern Wisconsin

forests. Ecology 58, 485–499.

Pickett, S.T.A. (1980) Non-equilibrium coexistence of plants. Bull. Torrey bot. Club

107, 238–248.

Pielou, E.C. (1984) The Interpretation of Ecological Data. John Wiley, New York.

Prodon, R. and Lebreton, J.-D. (1981) Breeding avifauna of a Mediterranean

succession: the holm oak and cork oak series in the eastern Pyrenees. 1. Analysis

and modeling of the structure gradient. Oikos 37, 21–38.

Purata, S.E. (1986) Studies on secondary succession in Mexican tropical rain forest.

Acta Univ. Ups. Comprehensive Summaries of Uppsala Dissertations from the

Faculty of Science 19. Almqvist and Wiksell International, Stockholm.

Rao, C.R. (1964) The use and interpretation of principal components analysis in

applied research. Sankhya A 26, 329–358.

Robert, P. and Escoufier, Y. (1976) A unifying tool for linear multivariate statistical

methods: the RV-coefficient. Appl. Statist. 25, 257–265.
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APPENDIX

A general iterative algorithm can be used to carry out the linear and
weighted-averaging methods described in this review. The algorithm is
essentially the one used in the computer program CANOCO (Ter Braak,
1987b). It operates on response variables, each recording the abundance or
presence/absence of a species at various sites, and on two types of expla-
natory variables: environmental variables and covariables. By environ-
mental variables we mean here explanatory variables of prime interest, in
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contrast with covariables which are ‘‘concomitant’’ variables whose effect is
to be removed. When all three types of variables are present, the algorithm
describes how to obtain a partial constrained ordination. The other linear
and WA techniques are all special cases, obtained by omitting various
irrelevant steps.

Let Y¼ [ yki] (k¼ 1, . . . ,m; i¼ 1, . . . , n) be a species-by-site matrix con-
taining the observations of m species at n sites ( yki^ 0) and let Z1¼ [z1ji]
(l¼ 0, . . . , p; i¼ 1, . . . , n) and Z2¼ [z2ji] ( j¼ 1, . . . , q; i¼ 1, . . . , n) be
covariable-by-site and environmental variable-by-site matrices containing
the observations of p covariables and q environmental variables at the
same n sites, respectively. The first row of Z1, with index l¼ 0, is a row of
1’s which is included to account for the intercept in Eq. (4). Further,
denote the species and site scores on the sth ordination by u¼ [uk]
(k¼ 1, . . . ,m) and x¼ [xi] (i¼ 1, . . . , n), the canonical coefficients of the
environmental variables by c¼ [cj] ( j¼ 1, . . . , q) and collect the site scores on
the (s�1) previous ordination axes as rows of the matrix A. If detrending-
by-polynomials is in force (Step A10), then the number of rows of A, sA say,
is greater than s� 1. In the algorithm we use the assign statement ‘‘:¼ ’’, for
example a:¼ b means ‘‘a is assigned the value b’’. If the left-hand side of the
assignment is indexed by a subscript, it is assumed that the assignment is
made for all permitted subscript values; the subscript k will refer to species
(k¼ 1, . . . ,m), the subscript i to sites (i¼ 1, . . . , n) and the subscript j to
environmental variables ( j¼ 1, . . . , q).

Preliminary Calculations

P1 Calculate species totals { ykþ}, site totals { yþ i} and the grand total
yþ þ . If a linear method is required, set

rk :¼ 1, wi :¼ 1, w*
i :¼

1

n
ðA:1Þ

and if a weighted averaging method is required, set

rk :¼ ykþ, wi :¼ yþi, w*
i :¼ yþi=yþþ ðA:2Þ

P2 Standardize the environmental variables to zero mean and unit
variance. For environmental variable j calculate its mean z and
variance v

z :¼ �iw*
i z2ji, v :¼ �iw*

i ðz2ji � zÞ2 ðA:3Þ

and set z2ji :¼ ðz2ji � zÞ=
p
v.
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P3 Calculate for each environmental variable j the residuals of the
multiple regression of the environmental variables on the covari-
ables, i.e.

c*j :¼ ðZ1WZ0
1Þ

�1Z1Wz2j ðA:4Þ

~zz2j :¼ z2j � Z0
1c*j ðA:5Þ

where z2j¼ (z2j, . . . , z2jn)
0, W¼ diag (w1, . . . ,wn) and c*j is the ( pþ 1)-

vector of the coefficients of the regression of z2j on Z1. Now define
~ZZ2 ¼ ½~zz2ji� ( j¼ 1, . . . , q, i¼ 1, . . . , n).

Iteration Algorithm

Step A0 Start with arbitrary, but unequal site scores x¼ [xi]. Set x
0
i ¼ xi

Step A1 Derive new species scores from the site scores by

uk :¼
X
i

ykixi=rk ðA:6Þ

Step A2 Derive new site scores x* ¼ ½x*i � from the species scores

x*i :¼
X
k

ykiuk=wi ðA:7Þ

Step A3 Make x* ¼ ½x*i � uncorrelated with the covariables by calculating
the residuals of the multiple regression of x* on Z1:

x* :¼ x* � Z0
1ðZ1WZ0

1Þ
�1Z1Wx* ðA:8Þ

Step A4 If q � sA, set xi :¼ x*i and skip Step A5.
Step A5 If q> sA, calculate a multiple regression of x* on ~ZZ2

c :¼ ð ~ZZ2W ~ZZ0
2Þ

�1 ~ZZ2Wx* ðA:9Þ

and take as new site scores the fitted values:

x :¼ ~ZZ0
2c ðA:10Þ

Step A6 If s>1, make x¼ [xi] uncorrelated with previous axes
by calculating the residuals of the multiple regression of x on A:

x :¼ x� A0ðAWA0Þ
�1AWx ðA:11Þ
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Step A7 Standardized x¼ [xi] to zero mean and unit variance by

~xx :¼
X
i

w*
i xi, �2 :¼

X
i

w*
i ðxi � xÞ2

xi :¼ ðxi � xÞ=� ðA:12Þ

Step A8 Check convergence, i.e. if

X
i

w*
i ðx

0
i � xiÞ

2 < 10�10 ðA:13Þ

goto Step A9, else set x0i :¼ �xi and goto Step A1.
Step A9 Set the eigenvalue � equal to � in (A.12) and add x¼ [xi] as a

new row to the matrix A.
Step A10 If detrending-by-polynomials is required, calculate polynomials

of x up to order 4 and first-order polynomials of x with the
previous ordination axes,

x2i :¼ x2i , x3i :¼ x3i , x4i :¼ x4i , xðbÞi :¼ �xiabi ðA:14Þ

where abi are the site scores of a previous ordination axis
(b¼ 1, . . . , s� 1). Now perform for each of the (sþ 2)-variables
in (A.14) the Steps A3–A6 and add the resulting variables as
new variables to the matrix A.

Step A11 Set s :¼ sþ 1 and goto Step A0 if required and if further
ordination axes can be extracted, else stop.

At convergence, the algorithm gives the solution with the greatest real value
of � to the following transition formulae [where R¼ diag (r1, . . . , rm) and
W¼ diag (w1, . . . ,wn) and where the notation B0 is used to denote
B0(BWB0)�1BW, the projection operator on the row space of a matrix B
in the metric defined by the matrix [W]:

u ¼ R�1Yx ðA:15Þ

x* ¼ ðI � ~ZZ0
1ÞW

�1Y 0u ðA:16Þ

c ¼ ð ~ZZ2W ~ZZ0
2Þ

�1 ~ZZ2Wx* ðA:17Þ

�x ¼ ðI � A0Þ ~ZZ0
2c ðA:18Þ

The tilde above Z2 is there as a reminder that the original environmental
variables were replaced by residuals of a regression on Z1 in (A.5), i.e. in
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terms of the original variables

~ZZ0
2 ¼ ðI � Z0

1ÞZ
0
2 ðA:19Þ

Remarks

(1) Note that uk in the algorithm takes the place of bk in Section II.
(2) Special cases of the algorithm are: constrained ordination: p¼ 0;

partial ordination: q¼ 0; (unconstrained) ordination: p¼ 0, q¼ 0;
linear calibration and weighted averaging: p¼ 0, q¼ 1; (partial)
multiple regression: m¼ 1. The corresponding transition formulae
follow from (A.15)–(A.18) with the proviso that, if q¼ 0, Z2 in
(A.19) must be replaced by the n� n identity matrix and generalized
matrix inverses are used. Note that, if p¼ 0, Z1 is a 1� n matrix
containing 1’s; Z1 renders the centring of the species data in the
linear methods in Section II redundant.

(3) The standardization in P2 removes the arbitrariness in the units of
measurement of the environmental variables, and makes the
canonical coefficients comparable among each other, but does not
influence the values of �, u and x to be obtained in the algorithm.

(4) Step A6 simplifies to Step 3b of the main text if the rows of A are
W-orthonormal. The steps A3–A6 form a single projection of x* on
the column space of ðI � A0Þ ~ZZ0

2 if and only if A defines a subspace of
the row space of ~ZZ2. As each ordination axis defines such a sub-
space, this is trivially so without detrending. The method of
detrending-by-polynomials as defined in Step A10, ensures that A
defines also a subspace of ~ZZ2 if detrending is in force. The transition
formulae (A.15)–(A.18) define an eigenvalue equation of which all
eigenvalues are real non-negative (Ter Braak, 1987b).

(5) If a particular scaling of the biplot or the joint plot is wanted, the
ordination axes may require linear rescaling. With linear methods
one can choose between a Euclidean distance biplot and a covari-
ance biplot, which focus on the approximate Euclidean distances
between sites and correlations among species, respectively (Ter
Braak, 1983). With weighted averaging methods it is customary
to use the site scares x* (A.16) and the species scores u (A.15) to
prepare an ordination diagram after a linear rescaling so that the
average within-site variance of the species scores is equal to 1 (cf.
Section IV.C), as is done in DECORANA (Hill, 1979) and
CANOCO (Ter Braak, 1987b).
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