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The Generalized Quantum Langevin Equation (GLE) approach to the quantum transport of 

many electron systems is developed to study the high electric field transport. Two GLE equations, 

one for the center-of-mass momentum and the other for the center-of-mass energy, are obtained. 

The non-linear transport effects due to the presence of a high electric field are reflected directly in 

the memory functions of momentum and energy. By including velocity fluctuations, “collision 

broadening” and the “intra-collision field effect” appear in our transport equations quite naturally. 

In our theory, these quantum effects are illustrated by the phenomena of the level broadening, the 

velocity fluctuation relaxation and acceleration effects. 

1. Introduction 

High electric field transport has been studied for the last three decadeslm4). 

In recent years it has received considerable attention due to the remarkable 

advance in the techniques of crystal growth and device processing5V6) which 

affords a new realm of physics on the submicrometer and subpicosecond 

dimensional scale. Theoretically, the high electric field transport has been 

discussed primarily in terms of the Boltzmann equationlT3). However, in the 

domain of ultrasmall structures (submicrometer) and ultrafast times (sub- 

picosecond), simple arguments based on the uncertainty principle show that 

high field transport in semiconductors needs a more exact approach than that 

offered by the semiclassical Boltzmann equation4”). A lot of theoretical 

attempts have been made toward developing a high field transport theory 

which would be capable of including a variety of high field effects in submicron 

structures, such as hot electron effects, ballistic electrons, and large electron 

density gradients. Among them, to name a few, there are the Monte Carlo 

technique*), the resolvent method’.“), the Green’s function method”“*), the 
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Wigner representation approach’“.‘4 ), the path integ,ralr5), the generalized 

Langevin equation (GLE) 16-19) and the balance equations”-*‘). 

Through these intense theoretical studies, new phenomena of high field 

transport are indeed predicted. Among these, the “collisional broadening” 

(CB) and the “intra-collisional field effect” (ICEF)4,Y.10) have perhaps attrac- 

ted most of the attention. Originally, these two effects (CB and ICFE) were 

predicted by Barker in an effort to derive the steady-state Boltzmann high field 

transport equation by using resolvent super-operator techniques’.“‘). As the 

concept of a distribution is suspect under high field transport (since, to quote 

Thornber”), “. . . the electron . . . never has a well-defined momentum .“), 

the standard approach of calculating a distribution is unsatisfactory. Also, the 

electron-electron interactions are hardly taken into account in the resolvent 

technique”). Many other attempts have been made toward a detailed explora- 

tion of the CB and ICFE effects”). Up to now a first principles account of the 

effects and a full understanding are still lacking. In this paper we study high 

field transport by the generalized Langevin equation (GLE) approach. Special 

attention will be given to the CB and ICFE effects. 

Previously, we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse d the GLE method to study the low field quantum 

transport, especially with high order impurity scattering”). Also, a brief 

account of the derivation of the steady state equation, as well as the transient 

equation by GLE have been reported”). In general, our method is developed 

by connecting the works of Ford, Lewis and 0’Conne1125.2h), who have 

demonstrated the usefulness of the GLE approach to heat bath problems, to 

that of Ting et al. ‘8,22), who have introduced the concept of the center of mass 

of the electrons to study electronic quantum transport. The basic idea of our 

theory is the visualization of the center of mass of the electrons as a quantum 

particle, while the relative electrons and phonons act as a heat bath, which is 

coupled to the center of mass through electron-impurity and electron-phonon 

interactions’“). In the procedure of solving the second order Heisenberg 

equations of the fluctuating density of the relative electrons, the GLE of the 

center of mass of electrons is obtained directly. At the same time, the memory 

function, which contains all the information about the effect of the heat bath 

on the transport properties of the quantum particle, is also obtained without 

any assumed approximations for the electron-impurity, electron-phonon and 

electron-electron interactions. The advantages of our approach are the direct- 

ness achieved in obtaining the GLE and the simplicity of including higher order 

approximations, which is very often difficult in other techniques’-‘“). In the 

present paper we apply this new approach to perform a systematic first 

principles study of high field transport. 

Some restrictions are made for the present discussion. First, we account for 

the periodic lattice simply through the renormalization of the electron mass, 

i.e. we consider a single parabolic energy band only and neglect the interband 



THEORY OF HIGH ELECTRIC FIELD TRANSPORT 3 

transition and the Stark ladder effects27). Secondly, the electron-electron 

interaction will be neglected for the sake of briefness of the discussion. The 

discussion of the interacting electron case under the random phase approxima- 

tion (RPA) can be carried out parallel to the treatment in ref. 19, without 

essential difficulties. Finally, the system under investigation is assumed to be 

homogeneous in electron density. The inclusion of diffusion effects will be the 

subject of a later publication. 

In section 2, the Hamiltonian of N independent electrons interacting with 

phonons and impurities is described in the center of mass and relative electron 

coordinates. The non-linear GLE equations of momentum and energy of the 

center of mass are obtained in their microscopic forms by eliminating the heat 

bath variables in the equation of motion of the momentum and energy of the 

center of mass, respectively. In section 3, we first present the general transport 

equation in our approach, which is obtained after the ensemble average over 

the momentum and energy GLE equations. The equations are then applied to 

study the steady state and transient transport. For the steady state case, we 

stress the velocity fluctuation effect, which induces the level broadening and 

mobility reduction in our treatment. In the study of transient transport, we pay 

special attention to the effect of acceleration due to the heat-bath-center-of- 

mass coupling. In the final section we discuss more about the velocity guctua- 

tion and acceleration effects. 

2. Non-linear generalized Langevin equations 

Consider a set of N non-interacting electrons under the influence of a 

spatially uniform electric field E. The electrons are coupled with phonons and 

an array of ni randomly distributed impurities. In the center of mass and 

relative coordinates description, the total Hamiltonian is written as1g,22) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H=H,+H,+H,. (2.1) 

(2.2) 

(2.3) 

HI = 2 u(q) eiq.(R-Ra)pq + 2 M( qh) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeiq’R(O$ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOFA) E H$ + Hfh 
q4 @ 

(2.4) 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and R, A4 = Nm are the center-of-mass momentum, position and mass, 

respectively, Planck’s constant fi = 1 is used throughout the calculation, and R, 
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is the position of the ath impurity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(q) denotes the Fourier transform of the 

impurity potential, M( q, A) is the electron-phonon matrix element, which 

satisfies the Hermitian condition M( q, A) = M*(- q, A). Ci, and C,, are 

creation and annihilation operators for relative electrons with wave vector k, 

spin u and energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd = 1 k1*/2m, and 

Pq = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPkp = c C:-y12,~Ck+q/2,~ (2.5) 

is the electron density operator. In addition, bi* and b,, are creation and 

annihilation operators for phonons with wave vector q, energy ,R,, in branch A. 

An electron-phonon operator is defined as 

o,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b,, + bfqh)pg = otA + oFA = c Ok p,, , (2.6) 

where A and E refer to the absorption and emission, respectively, of a phonon. 

The superscripts “im” and “ph” refer to the impurity and phonon contribu- 

tions, respectively, to the interaction Hamiltonian. Since we are here con- 

cerned with the spin-independent properties only, we suppress the spin indices 

u in the following. 

The Hamiltonian H may be interpreted as the Hamiltonian of a quantum 

particle (Hc) immersed in a heat bath (H,), which interact through their 

coupling (HI). This interpretation is significant because then we can relate it to 

the problems involving the interaction of a quantum system with a heat bath 

which have been studied intensively in recent years25326). 

The essential feature of the motion of the center of mass is that of a 

Brownian particle, while the phonons and relative electrons play a role as 

frictional and random forces via their coupling to the center of mass coordi- 

nates. We use the same basic procedure that we used in ref. 19 which, for the 

most part, was confined to the weak-field case. Here we concentrate on the 

high-field case. As in ref. 19, we eliminate the heat bath variables; in our case 

it is convenient to choose p, and O,,, which are coupled to center of mass 

through Hi in (2.4). Then the equation of motion for the quantum particle (the 

center of mass) can be recast in the form of a generalized quantum Langevin 

equation, which is the central idea of the following derivation. In the expres- 

sions (2.2)-(2.4), we have R, P as quantum particle variables, and pp, O,, the 

heat bath variables. Apart from the fact that p,, and O,, are defined in their 

second quantized forms, our problem differs from that of FL0 in that we have 

a complicated heat bath. 

The equation of motion for the quantum particle is obtained via the 

Heisenberg equations of motion, which are (with time differentiation denoted 

by a dot) 
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P = -i[P, H] = -i[P, (Hc + Hr)] 

= NeE - i 2 qu( q) eiqe(R-R~)pq - i 2 qM( qh) eiq’ROq, 
4-24 9h 

=Nf+g’” +gph, (2.7) 

Here the last two terms on the right-hand side of (2.7) are the heat bath forces 

due to impurities and phonons, respectively. For later use we write these heat 

bath forces in terms of new quantities, U:(R), lJ1, M,,(R), gr and g$, 

defined by 

gim ~ 2 gr E _i 2 qu( q) eiqa(R-Rn)pq G -i C qUa eiq’Rpq 

9 920 4 

= -i 2 qUb(R)p, , 
4 

(2.9) 

gPh = 7 g”,’ = -i z qM(qh) eiq’ROq, = -i 2 qMq,(R)OqA . (2.10) 
QA 

We stress that these forces on the quantum particle are of quantum mechanical 

nature, and the coordinates R of the quantum particle enter these forces in the 

form of the phase factor q -R. 

Following FLO, we now seek explicit expressions for the operators of the 

heat bath pq and O,, by solving their Heisenberg equations of motion. The 

details of the derivation can be found in ref. 19 and the results are listed in 

appendix A. Making use of (2.5) and recalling that spin indices are suppressed, 

we substitute the expressions pkq, Otq, and OiqA of (A.l)-(A.3), respectively, 

into (2.7) and after rearranging terms we obtain the following generalized 

quantum Langevin equation for the motion of the center of mass: 

I 

Ml?, + 
I 

/A&& t, t’)MZ?,(t’) dt’ = F,(t) + Nf,(t) . (2.11) 
--m 

Here both the forces g’” and gPh defined in (2.9) and (2.10) have been split 

into a random force F(t) and a frictional force, the latter being the second term 

on the left-hand side of (2.11). The random force is 

F(t) = -i c c qua(R) e-iwkq~~q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 9 

(2.12) 
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pi, and OiciE (A.l)-(A.3), 

wkq = ‘k+qlZ - Ek-q/2 3 
(2.13) 

and where ck and flqh refer to free electron and phonon energies, respectively. 

The matrix elements of the memory term ~(t, t’) in (2.11) are combinations of 

the electron-impurity and electron-phonon scatterings, and to the lowest 

order of electron-impurity and electron-phonon interactions it may be written 

in the form 

p&i; t, t’) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/_L$(zi; t, t’) + p$(R; t, t’) + &(R; t, t’) 

= T p.g,(li; t, t’> > 

where 

t-(&k t, t’) = c &&; t, 0 = 2 dHq.,p e 
iq.(R(r)-R(t’))-iw&(f-f’) 

kq kq 

and (suppressing the phonon branch index A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 
im 4&Nb12 

kq.aP = 
Mwg 

4 kq ’ 

im 

wkq 
= wkq 3 

em3 = 
4ApIMq12 

4kqbqbtg ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

Mofq 

wkq 
= wkq + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘q 3 

dE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4&lM,12 

kq .a P = jyg WE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4,,b!,b_, , wkEq = wkq - ‘q 7 

kq 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

with +kq defined in (A.4). 

We note that although the GLE in (2.11) is formally the same as that of 

Mori’s expression28), they are quite different in nature. Mori’s GLE is a 

stochastic equation obtained by projection operator techniques in which the 

memory term is inherently a combination of some equilibrium averaged 

quantities, whereas we used a microscopic method, not involving projection 

operator techniques, and the memory elements (2.14) are in microscopic form. 

Also, we note that the factor iq. (R(t) - R(P)) = iq - j:, k(s) ds appearing in 

(2.15) reflects the dependence of the memory function on the external field 

through the velocity of the center of mass, k. In the low field case, which we 

studied in ref. 19, this factor can be neglected and the memory function (2.15) 

is independent of the field strength. In this paper we study the high field 
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transport, and use k in the argument of p to stress the field dependent 

non-linear effects. 

To this point we have obtained the generalized Langevin equation (GLE) 

(2.11) for the center-of-mass momentum. It has been shown”) that starting 

from that equation one can obtain the electric conductivity and study the 

transport of the many electron system very conveniently. On the other hand, in 

the study of the electronic quantum transport one is often interested also in 

energy transfer to the heat bath, which is particularly important in high field 

transport’-‘). Thus we derive the GLE for the center-of-mass energy in the 

following. 

The derivation of the GLE of the center-of-mass energy operator .s&(t) = 

~M&(c)~ is made quite direct by using the momentum GLE equation (2.11). 

Multiplying both sides of (2.11) by k(t), and noticing that ds,(t)ldt = 

fi * (M&), we obtain the GLE energy equation 

f 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pEa(Ei; t, t’)~,(t’) dt’ + Q(t) = W(t) + NeE * k(t) , (2.19) 

-m 

where 

W(t) = R(t) - F(t) (2.20) 

is the instantaneous power supplied by the fluctuation force F(t), which is 

defined in (2.12). The second term on the LHS of (2.19), which acts like a 

frictional power, was originally in the form of & - 1: p(t, t’)Mk(t’) dt’. By 

using the expression (2.14) of ~(t, t’), we performed a partial integral to obtain 

the second term on the LHS of (2.19), where the energy memory function 

cL,,,(k f, l’) = 2 ; (1 d;,,,,qt - t’) + * p;_#i; t, t’)} ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lWk q 

s 

(2.21) 

and where dill and &$.; t, t’) are the same as in (2.15). The Q(t) in (2.19) 

represents the contribution to the frictional power due to the acceleration, 

which has the form 

(2.22) 

As expected, the evolution of the center-of-mass energy, being a slow 

variable, obeys the GLE (2.19), which is similar to that of the GLE (2.11) of 

the center-of-mass momentum. The random power W(t) of (2.20) obviously 
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preserves the features of a random term, i.e. it will disappear after averaging 

over the system. As for the energy memory function pu,(t, t’) of (2.21), it is 

composed by two parts, namely, the Markov term with a s(t) function and a 

non-Markov term. Our formula shows that in the low field limit (k-+0), the 

second term on the RHS of (2.21) will be negligible, and then the evolution of 

the cb is basically Markovian. The non-Markov behaviour of the energy 

evolution represented by the second term on RHS of (2.21) will become 

important when the field gets higher. The interesting feature of this term is that 

not only does it display the memory effects through the ks contained in it, but 

also it is inhomogeneous in time due to the presence of k(t). In other words, 

the evolution of the center-of-mass energy, in the high field case, displays 

memory effects and local time behavior, and it is generally in a non-equilib- 

rium state under the external field. So in our theory it is possible to treat the 

equilibrium and non-equilibrium situations consistently. Also we remark that 

the clean separation of the Markov and non-Markov behaviours in our energy 

memory function (2.21) is consistent with other studies of open systems2’). A 

final note about the energy GLE (2.19) is that, as an energy evolution 

equation, the terms on the right-hand side are actually the sum of the rate of 

change of the energy of the center of mass, relative electrons and phonons. 

The rate of change of the energy operator of relative electrons H,, and 

phonons HP,, , have been worked out in appendix B and appendix C. By using 

the expressions (B.4), (C.4) for fi, and J&,, respectively, we can rewrite 

(2.19) as an energy balance equation 

-$ cd(t) + k,(t) + ci,,(t) = NeE - i(t) . 

The derivation of the above formula is presented in appendix D. A similar 

expression to (2.23) has been derived by Ting et a1.22,23) in another approach. 

Even though we have arrived at the same energy balance form as Ting et al. 

did, the fi, and fi,,,, in our expressions are different from those of Ting et al. in 

that they are expressed in terms of non-Markovian memory functions, as can 

be seen in (B.4) and (C.4), respectively. Besides, our derivation of (2.23) is 

direct and it is in a microscopic form, whereas Ting et al. take averages from 

the beginning. Furthermore, our emphasis is not on the energy balance 

equation per se but on the energy GLE equation (2.19), which will form the 

essence of our subsequent discussions. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHigh electric field quantum transport equations 

have operator equations (2.11) and (2.19), illustrating the 

the momentum and the electronic center of 
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mass, respectively. We stress that, as distinct from the low field case, the 

memory functions depend on k. On averaging these equations over the 

ensemble, we will obtain the macroscopic momentum and energy transport 

equations. In general, at any time t, one can denote the velocity i(t) as the 

sum of the drift velocity V(t) = d(t) and its fluctuation Sk(t) = d(t) - ii(t), i.e. 

d(t) = v(t) + sk(t) ) si(t) = 0 ) (3.1) 

where we use a bar to denote the ensemble average over the center-of-mass 

coordinates. Then after averaging over the whole system, the GLE equations 

(2.11) and (2.19) are replaced by 

(pap@; t, t’))Mdip(t’) dt’ = NeE, , (3.2) 

; t, t’)) ER,a(t’) dt’ + Q(t) = NeE - V(t) , (3.3) 

where the symbol ( ) denotes the ensemble average over relative electrons, 

phonons and impurities, .sV = ~MV(t)* and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAERR = $A4 ah(t )* . The remaining 

complication of the present equations (3.2) and (3.3) lies in the average over 

the center of mass, the complication arising from the fact that the memory 

functions p,@(k; t, t’) and p,,,(&; t, t’) defined in (2.14) and (2.21) are all 

functions of li. 

The momentum and energy GLE equations (3.2) and (3.3) are quite 

rigorous and general; while we have restricted our treatment to lowest-order in 

the electron-impurity and electron-phonon interactions, our results are valid 

for all values of the electric field. In this section we derive the transient and 

steady state transport equations from eqs. (3.2) and (3.3). In both cases the 

fluctuation parts 8&(t) of the velocity k(t) in (3.1) can be treated as small 

quantities with respect to the drift velocity V(t). 

For the purpose of solving the GLE equations (3.2) and (3.3) it is conveni- 

ent to write the time dependent factor in the memory functions (2.14) and 

(2.21) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-iw&(t - t') + iq - I k(t,) dt, = io,(V)(t - t’) 

I f 

+ iq * r’<t,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdt, + 8k(t,) dt, , 
1 

(3.4) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3.5) 

and the OJ~;, are defined by (2.16)-(2.18). 

3.1. Steady state transport 

Under steady state, the transport is time independent, and we have 

V(t) = v,x ) I%) = 0 , ISzQt)l -+ v, , (3.6) 

where for definiteness we have taken the electric field E along the X-direction 

and, as a consequence, so is the drift velocity V,. It follows from (2.14) and 

(3.4) that, to the lowest non-vanishing order of Sk, 

p(&; t, f) = c d;, ei9vd(‘-“)~l~i,(‘-“) = p(vd; t _ t’) , 

kq 
\ 

(3.7) 

i.e. the dependence on time takes a simple form. In (3.7) we have used a bar 

over ~1, to represent the energy level broadening effect due to ad (see 

appendix E for detail). To lowest non-vanishing order in 8li(t), the evaluation 

of (3.2) and (3.3) is now quite straightforward. After some algebra we obtain 

from (3.2) the momentum transport equation 

MV,, 
b4vd~ t- t’))(M Sli~(t’)/V,) dt’ = NeE , (3.8) 

where the momentum transport time 

- = [ ( p(V,; t - t’)) dt’ = j- ( p(Vd; t’)) dt’ = ( /.L(V~; o = 0)) , 
1 

(3.9) 
7 

-cc 0 

with p(w) denoting the Fourier transform of the memory function”). The 

second term on the LHS of (3.8) is the contribution due to velocity fluctua- 

tions, which represents a new contribution to the balance equation, not 

considered by others, with 

/_((V&t-t~)=C 
%Yl4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

kq (q,V, - wf,)’ diq,uu e 

i(y,Vd-w~,)(l-t’) 

\ 

(3.10) 

When m is independent of time, we can rewrite (3.8) as 
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Mv, M6V 
-+ 

7 
+ = NeE , 

7, 
(3.11) 

where SV, = Edt(t)/V,, and the inverse of the momentum fluctuation relaxa- 

tion time 

(,&V&f-t'))dt'=(p;(Vd;u=O)) (3.12) 

with pi(w) denoting the Fourier transform of the momentum fluctuation 

memory function defined in (3.10). Eq. (3.11) is the momentum balance 

equation in our formalism. It is new and differs from former momentum 

balance equations in two aspects. First, unlike the ordinary balance equation 

which originates from the Boltzmann equation20’21), where a Markovian 

momentum relaxation time is used, we have the momentum relaxation time r, 

which depends on all time from --0~1 to t. Secondly, the velocity fluctuation 

contribution to electronic quantum transport is similar to that due to the 

“collisional broadening” and “intra-collision-field effect” found in the ap- 

proach beyond conventional Boltzmann equation’). The level broadening 

appears very naturally in our approach when we consider the averaging effect 

of the velocity fluctuation (see appendix E and (3.7)). Whereas the 7: in (3.11) 

is similar to the “time duration of collision”, the effect of the second term on 

the LHS of (3.11) is to reduce the overall mobility. This is easily seen, if we 

write (3.11) as 

MV, - =NeE, - = 

r* 
(3.13) 

Now we go back to the derivation of the energy balance equation. Under the 

steady state condition (3.6), the Q(t) in (3.3) which is defined by (2.22), 

vanishes. It is straightforward to reduce the energy transport equation (3.3), by 
‘2 

use of (2.23), into (to order of 6R ) 

where .ssli = 1 M Sk ', and 

(3.14) 

(3.15) 

(3.16) 
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Eq. (3.14) shows that the energy supplied by the external field is dissipated by 

relative electrons and phonons. In (3.15) and (3.16) we have introduced the 

following quantities: the inverse of the energy transport time through relative 

electrons in the absence of energy fluctuations is given by 

(3.17) 

where l/r is defined in (3.9), and 

(3.18) 

(3.19) 

The inverse of the energy fluctuation transport time due to relative electrons is 

given by 

where l/r’ is defined in (3.12), and the inverse of the energy fluctuation 

transport time due to phonons is given by 

1 = 

-=I S,ph 
*, 

0 

where 

1 
S,ph ’ 

7, 
(3.20) 

( P:,~~(&; t)) dt , (3.21) 

PF s3ph(Vd; t) = 2i z .Oq[ 3]S(t) (3.22) 

Eq. (3.14) is the energy balance equation in our formalism, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANeEI/, is the 

power supplied by external field E. On the LHS, it shows that the energy gain 

of the center-of-mass electrons is dissipated through the heat bath, i.e. the 

relative electrons and phonons. Under steady state conditions, the energy 

fluctuation G is generally time independent, so the first term of the LHS of 

(3.14) disappears. Also, one usually assumes that the lattice is in contact with 

another huge heat bath which keeps the lattice temperature fixed3”), while the 

energy of relative electrons do not change. Then one possible approach is to 

reduce the energy balance equation (3.14) into22) 

(tip,) = NeEV, , (3.23) 
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<m =o, (3.24) 

where (fir,,) and (&) are defined in (3.15) and (3.16), respectively. As (H,) 

is a function of the electron temperature T,, from (3.23) and (3.24) one can 

obtain T, and then calculate V, and other quantities via (3.8). Thus, the high 

field steady state transport problem is put into a numerically solvable 

framework. 

3.2. Transient transport 

We now investigate the time dependent behavior, the transient transport. 

The electric field E is assumed to be turned on at t = 0 and we take the initial 

drift velocity to be V(0) = 0. 

In the case of transient transport, the GLE equations (2.11) and (2.19) are 

self-contained differential-integral equations, i.e. both sides of these equations 

contain ri<t) as can be seen directly by substituting (2.15), (2.21) and (3.4) in 

these equations. Therefore, one must make an approximation with respect to 

the v(t) contained in (3.4). In this paper we restrict ourself to the following 

approximations: 

* I 

z v(t) = 0 and 
I 

I+,) dt, = 
I 

I$,) dt, . (3.25) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘1 f--f, 

The first condition in (3.25) is to assume that the rate of change of the 

acceleration of the center of mass is very small, which is consistent with the 

experimental results for the transient velocity31). The second approximation in 

(3.25) is to assume that the acceleration contribution to the memory function 

in (3.2) and (3.3) has an effective range of time t,, which is introduced in the 

present calculation phenomenologically. By using (3.4) and (3.5), the memory 

function (2.14) can be written as 

exp ioz(V)(t - t’) + iq * [ 1 ?k(t,) dt,] , (3.26) 

s I’ 

where 

w:(v) = w,(V) - q * V(t)t, ) (3.27) 

and w,(V) is defined in (3.5). In general one can also assume that the 
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fluctuation is relatively small, i.e. M?(t) 6 V(t). It follows from (2.14) that, to 

the lowest non-vanishing order of M?(t), 

/+(i; t, t’) = c diq,,p eio~(v)(rp”) = pu,,(v; t _ p) , 

kq 
s 

(3.28) 

i.e. the dependence on time takes a relatively simple form. In (3.28), similar to 

(3.7) we have used a bar over CX~ to denote the level broadening effect due to 

velocity fluctuation. To lowest non-vanishing order in Sk(t), the evaluation of 

(3.2) and (3.3) is now quite straightforward. After some algebra we obtain 

from (3.2) the momentum transport equation 

(j&V(t); t - t’))(M ~d,‘(t’)lV(t)) dt’ 

+ &,(t)M~(t) + AS,,,(t) $j z ~=NCE, 

where the inverse of the instantaneous momentum transport time 

(3.29) 

1 * 
zc 

- = 1 (~x,(v; t - t’>) dt’ = j- (~x,(v; t’)) dt’ 
4V) _r 

n 

(3.30) 

and px,(V; t’) is defined in (3.28), which, we stress again, is a level broadened 

function. The third term on the LHS of (3.29) is the contribution due to 

velocity fluctuations, with 

(3.31) 

and it represents a new contribution to the balance equation, previously 

discussed by us’“). For clarity, we emphasize that the superscript “6” is a label, 

signifying contributions due to fluctuations, in contrast to the subscript “(Y” 

which denotes spatial directions. The last two terms on the LHS of (3.29) are 

contributions due to acceleration, not seen in the steady state equation (3.8), 

with 

(3.32) 

(3.33) 
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and w,(V) = q,V(t). Similarly, from (3.3) and (3.28) we obtain the energy 

transport equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(&,(v; t - t’)) QJ~‘) dt’ 

+ A.(t)&(t) + A:,&) $ esk, (t) = NeEV(t) , 

where the inverse of the instantaneous energy transport time 

1 
- = II.. ( pE(v; t - t’)) dt' = f ( p,(v; t’)) dt’ , 
r,(V) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

(3.34) 

(3.35) 

where pu,(V, t - t’) is defined as in (2.21) except that the argument on the RHS 

is (t- t’), analogous to (3.28), and q-k(t) s replaced by q,V(t). The fourth 

term on the LHS of (3.34) is due to the velocity fluctuations and 

&(v; t - t’) = 2 2i(4,)2 & 

kq (&(V))3 f*,aa~(t - t’) . 

s 

(3.36) 

Similar to the momentum transport equation (3.29), the last two terms on the 

LHS of the energy transport equation (3.34) are contributions due to accelera- 

tion, with 

(3.38) 

In summary, eqs. (3.29) and (3.34) are the momentum and energy transient 

transport equations. For steady state conditions, one has v(t) = 0 and desk(t)/ 

dt = 0; then the terms in (3.29) and (3.34) due to acceleration vanish and one 

recovers the steady state transport equations (with V(t) = V, and t, = 0) (3.11) 

and (3.14). Also, we have shown in the previous subsection that the total effect 

of the velocity fluctuations is to broaden the energy level and to reduce the 

overall mobility. In the following discussion we will concentrate on the effects 

of the acceleration on the transport properties and neglect the velocity 

fluctuations to write (3.29) and (3.34) as 
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(1 + A(V))Ml+) + + = NeE , 

(1+ A(V)).+(t) + 3 = NeEV(t) , 
P 

(3.39) 

(3.40) 

where A(V) represents the A,(V) and A,(V), which are defined in (3.32) and 

(3.37), at Sri = 0. 

We note that the second term on the LHS of (3.40), according to appendix 

D, is 

$=(H,)+(H,,), 
F 

where (fi,), (fir,,) represents 

(3.41) 

the energy changing rate of the relative 

electrons and phonons separately. Eq. (3.41) is equivalent to saying that the 

dissipation of the center-of-mass electrons is through the relative electrons and 

phonons. As (H,) . IS a function of the electron temperature T,, (3.39) and 

(3.40) are numerically solvable to obtain the time dependent T,(t) and V(t). 

We leave the details of the numerical work for a future study and here just 

make a few more comments about the physics of our transient transport 

equations (3.39) and (3.40). 

First, we remark that the A(V) in (3.39) and (3.40) is related to the 

imaginary part of the memory function (3.28). Actually, if one performs the 

Fourier transform of (3.28) defined by 

I_L(V; w) = p,(V; w) + ip*(V; o) = J p(V; t’) e’“” dt’ , 

0 

(3.42) 

then it follows that 

(3.43) 

where we used @‘; w) = C, p,(V, 0). From (3.43) one observes A(V) is 

generally finite as E_L~(w) is an odd function of w, which can be seen from (3.28) 

and (3.42). 

Secondly, the momentum transport equation (3.39) can be rewritten into a 

form similar to the classical Langevin equation 

V(f) eE 
V(t) + - = - 

T*(V) m*(v) ’ 
(3.44) 

where 
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m*(V) = m(l+ A(V)), T*(V) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr(V)(l + A(V)). (3.45) 

To the lowest order of V(t) (linear GLE case), it may be verified that (3.45) 

becomes time independent, which will be denoted by m * = m*(V+ 0), T* = 

T*(V+ 0). Then (3.44) has the same form as the classical Langevin equation 

and it is straightforward to obtain the well known Drude form of the dynamical 

conductivity from (3.44)) 

U(W) = 
iNe2 

m*(w + i/7*) ’ 
(3.46) 

which is in agreement with the result of Ting and Nee’*), except that they have 

neglected the low field contribution of A = (6pJ,/60)/,,, in (3.45). On the 

other hand, in the high field case, the A(V) of (3.43) is time dependent, and so 

is the M*(V) and T*(V) of (3.45). In consequence, the transient equations 

(3.39) and (3.40), h w ere A(V) plays an important role, are quite different 

from the ordinary transport equations. This latter conclusion is at variance with 

the recent work of Xing and Ting23), who found that the non-linear transient 

transport equations still have the ordinary form of the transport equation, i.e. 

with the A(V) in (3.39) and (3.40) missing and the t, contained in l/r(V) and 

l/r,(V) neglected. We feel that the absence of A(V) in ref. 23 (where the 

non-linear GLE has not been derived) is the result of using an unjustified 

“classical” approximation (absence of memory effect) in the high field case 

(see, in particular, ref. 23, eq. (53)). This extra term gives strong support to 

the use of non-linear GLE equations in the analysis of non-linear transient 

transport problems. 

In this section we have derived the high field steady state and transient 

quantum transport equations, starting from the GLE equations (3.2) and (3.3), 

which, and to first order to the electron-impurity and electron-phonon 

interactions, are exact results for all values of the electric field. In the steady 

state case, we obtained the momentum balance equation (3.11) and energy 

balance equation (3.14), where the velocity fluctuation effects have been taken 

into account. In the transient case, by using approximation (3.25), we get the 

momentum transport equation (3.29) and energy transport equation (3.34). 

We found that the high field transient transport equations are different from 

the low field corresponding equations, due to the acceleration effect. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusion and discussion 

presented a generalized quantum Langevin equation 

approach to the study of high field quantum for an 
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impurity-phonon system. We have derived, rigorously, the momentum and 

energy nonlinear GLE for the center-of-mass electrons in their operator forms 

(2.11) and (2.19), respectively. After ensemble averaging, these equations are 

reduced to the momentum and energy transport equations (3.2)) (3.3), which 

can be used to study steady state as well as the transient transport. Our 

transport equations differ from the conventional transport equations”X”‘m23), 

which are often deduced either from the Boltzmann equation or the motion of 

the center of mass without fluctuation, in three aspects. They are the energy 

level broadening, the transport time renormalization by velocity fluctuation 

and the acceleration contributions to the transient transport. These effects are 

basically illustrated by the diffusion constant D, the velocity fluctuation trans- 

port time 76 and the acceleration contribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(V), respectively. We discuss 

these three key effects in turn in the following. 

4.1. Level broadening and diffusion constant D 

It is generally recognized that the dissipation in a many-body system results 

from interactions between an actually observed subsystem and a heat bath into 

which energy flows in an irreversible way’2,33 ). Nevertheless, the clear descrip- 

tion and solutions to the ultimate transition from reversibility to irreversibility 

remains a difficult problem. In the study of the electron transport properties, 

one basic question often asked in this respect is that how can the microscopical- 

ly &function-like electron energy level (which in many cases may cause the 

divergence problem) be broadened. We think that this question has got a clear 

answer in our GLE approach. 

In our description, the fluctuation of the center of mass of the electrons 

(caused by the interaction with the heat bath), causes the energy level 

broadening in a natural way through the statistical average (see appendix E). 

In other words, the broadening is a statistical result, i.e. while the individual 

electrons are still in their quantum mechanical states, the total system displays 

dissipation with a decay factor proportional to Dq* (see (E.5)) through the 

average of velocity fluctuation. It is interesting to note that if we approximate 

the q in (E.5) as q/o- lp’, the inverse of the mean free path, and use 

D = 121N7, then we have Dq2 = 1 /T, and (E.4) is reduced to the result of the 

usual self-consistent Green’s function calculation. 

Also, we stress that the D which appears in (E.3) is the self-diffusion 

constant of the center of mass, which is known to be N times smaller than the 

single electron diffusion constant D, in the low field limit18). In general, D is 

complicated and field dependent, but in the classical limit we can use the 

Einstein relations to write34) 

k3~e(W 
DO’) = Nm . (4.1) 



THEORY OF HIGH ELECTRIC FIELD TRANSPORT 19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D(V) will increase dramatically following the heating of electrons in the high 

field (represented by T,(V)). Thus, in our theory the level broadening due to 

velocity fluctuations will be more prominent for small systems and high fields. 

This latter property is analogous to that of the broadening due to the intrafield 

collision effect studied by Barker et al.‘). 

4.2. Mobility reduction and velocity fluctuation transport time 7’ 

In our study, the velocity fluctuation transport time 7’ is introduced in the 

momentum transport equations (3.11) to illustrate the relaxation of the extra 

momentum M ?&(t)“/V, due to the velocity fluctuations. (Note that a similar 

quantity can be introduced to the transient transport eq. (3.29).) The presence 

of the term M 8d(t)‘/V,TS in (3.11) reduces the mobility of the center of mass. 

This can be easily observed by rewriting (3.11) as 

where 

1 1 sdo”1 
-_=-+ 
r* 7 77. 

(4.2) 

(4.3) 

It follows that the overall mobility eT*/m is smaller than the classical mobility 

eT/m. Furthermore, (4.3) tells us that the significance of this reduction depends 

on the magnitude of the dimensionless quantity 

-$ln~+(-&1.f)2]}, 

(4.4) 

where the equality is the result of (3.10) and (3.12). (4.4) shows that this 

correction term will disappear in the low field limit where 1 /T is independent of 
.2 

V,. Also, since in the classical limit 6R = k,T,INm, this high field correction 

is expected to be stronger for small N (small systems) and high T, (high field) 

situation. The mobility reduction and the level broadening, together with their 

strong dependence on the size of the system and the strength of the electric 

field, are the basic features of the quantum correction in the high field 

transport found by other theoretical methods. Our approach affords a much 

simpler, direct and numerical tractable way to study these effects. 

4.3. Acceleration effects and A(V) 

In the conventional transient equation20’23 ), the acceleration effect appears 

only as a Newtonian force Mv(t). A contribution to the phase factor of the 
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memory function (3.26) due to the -q *v(t)t, in (3.27) and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(V) directly 

displayed in our transport equations (3.39) and (3.40) represent another two 

effects of the acceleration not considered by others. From our derivation, it is 

clear that both effects stem from the acceleration contributions to the frictional 

force due to the electron-impurity and electron-phonon interactions. 

The acceleration contribution to the memory function is expected to enhance 

the rate of increase of the velocity when we turn on the electric field. This can 

be explained in the following way. The memory function (3.26) is influenced by 

the velocity V(t) contained inside its phase factor. In the high V(t) (non-linear) 

regime, an increase of V(t) will result in a decrease of mobility, which is 

proportional to the inverse of the imaginary part of memory function. When 

we turn on the electric field (v > 0), the memory function (3.26) at the time t 

appearing in V(t) should be calculated by using a smaller velocity V(t) -  v(t)t,, 

because of the acceleration effect. So the actual instantaneous mobility (and 

velocity) will be larger than the value obtained by neglecting the q. v(t)t, term. 

Finally, the terms proportional to A(V) in our transient equations (3.39) and 

(3.40) represent another important effect of the acceleration. In particular, in 

the subpico-second situation when the instant transport behavior near time 

equal zero becomes important and the M$‘, .G, in (3.39) and (3.40) dominates, 

then the role of A(V) is expected to be dramatic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix A 

solution the operator and electron-phonon 

Ok, in case high fields to order the 

impurity electron-phonon 

For reader’s we here solutions proof, 

refer ref. for Also suppress phonon index 

The density is 

pkq(t) eeiokqfpiq 
I 

e + + . 

(A.11 
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The electron-phonon absorption operator is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ok(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 
-i@++$Po~pA _ i I dt’ e -i(~~,+n,)(~-~‘)~kq~q(~)~q~~ . (A.21 

-m 

The electron-phonon emission operator is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O,“,(t) = e 
-i(m,,-$)tOiqE _ i 

I 
dt’ e- i(w,,-n,)(t-l’)~~~M,()~~~~_~ . (A.3) 

--m 

In these equations we have used the symbol “ 0 ” to denote the correspond- 

ing free operator, wkr is defined in (2.13), and 

4, = [f&, PiI = c:-,I,~,-q/2 - c:+qI2ck+IIz . (A4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix B 

The calculation of &, the rate of change of the Hamiltonian of the relative 

electrons 

The equation of motion for the relative electron Hamiltonian H, can be 

obained by directly using (2.1) and (2.3), from which we have 

fie = -i[H,, H] = ix [U:(R) + 
.Q 

~,(~P, + ~~,h,Pk, 

= iC W#)P,, + ~qWOkql~kq 7 (B.1) 
fq 

where ok9 is defined in (2.13). 

Substituting the expressions listed in (A.l)-(A.3) into (B.l), we obtain 

he(t) = h:(t) + z i dt’ e 
-iu+,(t-t’)+iq.(R(t)-R(t’)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4kqw kq{ iUf i2 

--m 

+ IM,12(bqb: e.iR,(t-r’) + bl,b_, eind-t’))} , 

where 4kq is defined in (A.4) and 

03.2) 

I%:(t) = i X ukq e ++q’[Ub(R)piq + M,(R)(O~~ e-‘4’ + 0;: e+‘+)] . 
kq 

(B-3) 
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Performing a double partial integration with respect to the terms containing 

w&’ and (wkq k 0,)t’ in (B.2), we obtain 

where & = C, p:(q), s = i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, E, are defined in (2.21), I,+ = iMZ?(t)* and 

Q.(t)=: 2 %-$ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/.L~~,~~(~; t, t’&(t’) dt’ . 

-m 
s 

VW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix C 

The calculation of I$,, the rate of change of the Hamiltonian for the phonons 

The equation of motion for the phonon Hamiltonian HP,, can be obtained by 

directly using (2.1) and (2.3), from which we have 

aph = -i[H,,, H] = ix M,(R)Qr(Ocq - OkEq) . 
kg 

(C.1) 

Substituting the expressions for Ot,” listed in (A.2), (A.3) into (Cl), we 

obtain 

fip,(q = fi&) + z j dt’ e-~~~,(~-~‘)+iq~(R(~)-R(t’))~kq~q~~q~* 

-0z 

x [b,b: eiR,(r-r’) _ bi,b_, e-la~n,ct-r’)] , 
(C.2) 

where 

Z-j;,(t) = i C flq e-‘“d~,(~)(O~,A e+ia*r - 0:: e-‘“d) . 
kg 

(C.3) 

Performing a double partial integration with respect to the terms containing 

(wkq k f2,)t’ in (C.2), (C.2) can be recast into 

i&,(t) = q,(t) + _I 7 3 (/_L;,q(R; t, t’) - P:*,,(k t, t’h,W dt’ I 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,,,(t) > CC.41 
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where pF,E = C, pt*E(q) are defined in (2.21), am, = iM@,(t)2 and 

(C-5) 

Appendix D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The derivation of eq. (2.23) 

Adding (B.4) and (C.4), we obtain 

i&(t) + f&(t) = z 3 { j pI,_,tJk t, f’)+(t’) dt’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ:,(t)} - w(t) 2 

--m 
s 

(D.1) 

where m&, PZ~,~,,(R; t, 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ&(t) are defined by (2.15)-(2.18), (2.21) and 

(2.22), respectively, and W(t) = -L?:(t) - a;,(t), fii,“(t) and BE,,(t) are de- 

fined in (B.3) and (C.3). The Fourier transform of (D.l) is 

- W(w). P.2) 

It is straightforward to show that the term proportional to (WI, - q - k) /q - k 

on the RHS of (D.2) will vanish after we take the real part of pta,nrl and Q;,. 

Thus (D.2) can be rewritten as 

Z&(w) + ci,,(~) = ti,J& +R,(w) + Is(w) - W(w). (D.3) 

Next, we take the inverse Fourier transform of this equation, which we 

substitute into the energy GLE (2.19), to obtain (2.23). 

Appendix E 

The proof that level broadening is due to velocity fluctuations and the derivation 

of (3.7) 

In this appendix, we prove the statement that in our formalism the velocity 

fluctuation is the cause of the level broadening in the steady state transport. 
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First, we recall that the momentum memory operator appearing in (3.7) 

before the averaging over center-of-mass coordinates is (see (2.15) and (3.1)) 

p(k’; t, t’) = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdig exp i(w,, - w&)(t - t’) + iq - 
i I 

Sk(s) ds , (E.1) 
kq 
s 

where oO = q,Vd and where the velocity fluctuation Sk is included. Eq. (E.l) 

reduces to (3.7) when Sk = 0, and in this case the time dependence of /.~(t - t’) 

is plane-wave like, and energy levels are 6 functions. The situation is different 

once we include the Sh in (E. 1). Now we must take average over the 

configurations of 8&. Here we use the cumulant approximation3’) 

exp[iq*~S&(s)d~}=exp{iq*c, - $qtczu), (E.2) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C2a = 
II 

ds du Sfi,(s) M?,(u) = @R,(t) - 6R,(t’))’ =2DU(t - t’) , 

1’ I’ 
(E.3) 

the last step resulting from the usual definition of the self-diffusion constant34) 

D(t) = 1 lim,,, m. Using (E.2) and (E.3), the average of (E.l) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p(d; t, t’) = c dig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 
i(wo-w~4)(r-r')-o,q~(r-r') 

kg 
WV 

Defining 

--s 5 

Okq = @kq - iDq2, 

(E.4) is reduced to (3.7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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