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ABSTRACT 

We set up a general framework for higher order probabilities. A simple HOP (Higher Order 

Probability space) consists of a probability space and an operation PR, such that, for every event A and 

every real closed interval zL PR(A ,A) is the event that  A's "true" probability lies in A. (The ' t rue"  

probability can be construed here either as the objective probability, or the probability assigned by an 

expert, or the one assigned eventually in a fuller state of knowledge.) In a general HOP the operation PR 

has also an additional argument ranging over an ordered set of time-points, or, more generally, over a 

partially ordered set of stages; PR(A,t,z~) is the event that  A's probability at stage t lies in A. First we 

investigate simple HOPs and then the general ones. Assuming some intuitively justified axioms, we derive 

the most general structure of such a space. We also indicate various connections with modal logic. 

IA part of this paper has been included in a talk given in a NSF symposium on foundations of probability and causality, 
organized by W. Harper and B. Skyrms at UC irvine, July 1985. ! wish to thank the organizers for the opportunity to 

discuss and clarify some of these ideas. 
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Introduction 

The assignment of probabilties is the most established way of measuring uncertainties on a 

quantitative scale, in the framework of subjective probability, the probabilities are interpreted as 

someone's (the agent,'s) degrees of belief. Since justified belief amounts to knowledge, the assignment of 

probabilities, in as much as it can be justified, expresses knowledge. Indeed, knowledge of probabilities, 

appears to be the basic kind of knowledge that is provided by the experimental sciences today. 

This is knowledge of a partial, or incomplete, nature, but not in the usual sense of ~partial ' .  Usually 

we mean by 'partial knowledge ~ knowledge of some, but not all, of the facts in a certain domain. [~ut 

knowing that a given coin is unbiased does not enable one to deduce any non-tautological Boolean 

combination of propositions which describe outcomes in the next, say fifty tosses. And yet it constitutes 

very valuable knowledge about these very same outcomes. What is the objective content of this 

knowledge ? What kind of fact is the fact that the true probability of mheads" is 0.5, i.e., that the coin is 
/ 

unbiased ? I shall not enter here into these classical problems 2. | take it for granted that, among 

probability assignments, some are more successful, or better tuned to the actual world, than others. 

Consequently probability assignments are themselves subject to judgement and evaluation. Having,for 

example, to estimate the possibility of rain I might give it, going by the sky's appearance, 700~. But I 

shall be highly uncertain about my estimate and will adopt the different value given, five minutes later, in 

the weather forecast. 

Thus we have two levels of uncertainty: 

1. Uncertainty concerning the occurence of a certain event - expressed through the assignment of 
probabilities. 

2. Uncertainty concerning the probability values assigned in 1. 

2My Salzburg paper {If~83] has been devoted to these questions. The upshot of the analysls there has been that even a 
"purdy subjective n probability implies a kind of factual claim, for one can ~sses it8 success in the actual world, Rather than 
t w o  different kinds, subjective and objective probabflties are better to be regarded as two extremes of a spectrum. 
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When this second level is itself expressed by assigning probabilities we get second order probabilities. 

An example of a second order probability is furnished by a cartoon in aThe New Yorker" showing a 

forecaster making the following announcement: 

"There is nvw 60~ chance of rain tomorrow, but, there is 70% chance that later this evening the 

chance of rain tomorrow will be 80~. m 

Just as we can iterate modal or epistemic operators, so in the system to be presented here we can 

iterate the probability-assignment operator to any depth. The goal of this paper is to present a general 

and adequate semantics for higher order probabilities and to obtain, via representaton theorems, nice 

easily understood structures which give us a handle on the situation. 

The basic structure to be defined here is a H O P  (Higher Order Probability space). A simple HOP is 

based on a field of events, F ,  and on a binary operator PR( , ) which associates with every event A and 

every real closed interval A an event PR(A,,~) in F. The intended meaning is that PR(A,A) is the event 

that A's true probability lies in the interval A. 

"True probability" can be understood here as the probability assigned by an ideal expert or by 

someone fully informed. It is however up to us (or to t h e  agent} to decide what in the given context 

constitutes an "ideal expert" or "someone fully informed:.: If 'full information" means knowing all the 

facts then, of course, the true (unknown to us) probability has only two values 0 and 1; this will make the 

HOP trivial in a certain sense. In the other extreme, the agent may regard himself as being already fully 

informed and this leads to the "opposite" trivialization of the HOP. Generally, the agent will regard the 

expert as being more knowledgeable than himself, but not omniscient; e.g., the expert might know the true 

bias of a coin but not the outcomes of future tossings, or he might have statistical information for 

estimating the bias, which the agent lacks. 

The agent himself at some future time can be cast in the role of being 'fully informed'. Thus, if P is 

the forecaster's present probability function and if PR represents his state of knowledge later in the 

evening, then his announcement in "The New Yorker' cartoon can be summed up as follows, where 

A = 'tomorrow it will rain': 
P(A)=.6 P(PR(A , [.8,81))----.7 

In order to represent knowledge at different stages, we make PR into a 3-place operator: 

PR(At t t Zi) is the event that  the probability of A at stage t lies in A~ The stages can be time-points, in 

which case t ranges over sortie ordered set. More generally, the set of stages is only partially ordered, 

whe re ,  < t if the knowledge at stage t includes the knowledge at stage s. (Different agents may thus be 

represented in the structure.) This is how a HOP is defined in general. We shall first establish the 
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properties of simple HOPs, then use them to derive those of the more general spaces. 

We shall also define, in a seperate section, a formal logical calculus, to be called probability logi¢, 

which is naturally associated with simple HOPs. Various modalities can be reconstructed within this 

calculus. The general HOPs give rise to stage-dependent modalities whose calculus will be outlined at the 

end of the paper. 

The import of the subject for various branches of philosophy and for the foundations of probability 

is obvious. Also obvious should be its bearing upon applied probabilistic reasoning in distributed networks, 

or upon efbrts to incorporate such reasoning in AI systems. Mathematically, most of this paper is rather 

easy. Our goal has not been to prove difficult theorems, but to clarify some basic concepts and to outline 

a general, conceptually "clean', framework within which one can use freely and to good effect statements 

such as: 'With probability 0.7 Adam will know at stage 3 Bob's probability for the event A, with error 

0.01' (where Adam and Bob are either people or processors). Statements of this form express intuitive 

thinking which may underly involved technical proofs; to use them openly and precisely can help us as a 

guide for finding and organizing our arguments. 

A theoretic framework for higher order probabilities may also yield insights into systems of 

reasoning which employ non-probabilistic certainty measures. For when probability is itself treated like a 

random variable, we can use various methods of %ale" estimation which do not necessarily yield a 

probability measure. For example, define the certainty measure of an event A to be the largest a such 

that, with probability 1, the probability of A is > or. This is only one, apparently the most conservative, 

measure among various measures that can be used. 

Higher order probabilities have been considered by De-Finetti, but rejected by him owing to his 

extreme subjectivist views. Savage considered the possibility but did not take it up, fearing that the higher 

order probabilities will reflect back on the ground level, leading to inconsistencies. Instances of higher 

order probabilities figure in works of Good [1965] and Jaynes [1958]. More recent philosophical works are  

by Demeter [1985], Gardenfors [1975] (for qualitative probabilities), Miller [1960], Skyrms [1980 A], [1980 

B] - who did much to clarify matters, van-Frassen [1984], and others. 

Due to limitations of space and deadline I have not entered into details of various proofs. Some of 

the material has been abridged; I have included some illustrative examples of simple HOPs, but not the 

more interesting ones of general HOPs (which arise naturally in distributed systems). Also the 

bibliography is far from complete. 
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Simple HOPs 

D e f i n i t i o n  a n d  B a s i c  P r o p e r t i e s  

As in Kolmogoroff's framework [19331 we interpret propositions as subset__.~ of some universal set, say 

IV, and we refer to them as events. We can regard W as the set of all possible worlds. Thus we have 

X = set of all worlds in which X is true and we get the following standard correspondence: 

V (disjunction) ~ U (union) 
A (conjunction) ~ Cl (intersection) 

( nega t i on )~  - (complementa t ion)  

T e r m i n o l o g y :  A Boolean Algebra (of sets) is a class of sets closed under finite unions (and 

intersections) and under complementation (with respect to some presupposed universal set, in our case 

- 1,tl). A fiel___d is a Boolean algebra closed under countable unions (what is known also as a a-algebra). The 

field (Boolean algebra) generate d by a class S of sets is the smallest field (Boolean algebra) which contains 

S as a subclass. Note that  in generating a Boolean algebra we apply finitary operations only, whereas in 

generating a field infinitary countable operations are used. A field is countably generated if it has a 

countable set of generators. All probabilities are assumed here to be countably additive. 

A H O P  is a 4-tuple (W, F, P, PR), where F is a field of subsets of W, to be called events, P is a 

probability over F and PR is a mapping associating with every A E F and every real closed interval ,5 an 

event PR(A,A), 

PR : F X set of closed intervals .o, F 

As explained in the introduction PR(A,,5) is the event that  the true (or the eventual, or the expert- 

assigned) probability of A lies in A. P is the agent's current subjective probability. 

Among the closed intervals, we include also the empty interval, 0. The minimal and maximal 

elements of F are, respectively, 0 and 1; that  is: 0 ~. empty subset of W =  False, 1 ~. W.~  True. 

In the explanations I shall use 'probability" both for the agent's current subjective probability as 

well as for the true, or eventual one; the contexts indicate the intended reading. 

The following axioms are postulated for a HOP: 

(I) PR(A, [0,1]) ~ I (For every A, the event that A's probability lies in [Off/is W, i.e., true.) 

(II) PR[A,O] = 0 (That A's probability lies in the empty interval is the empty event, i.e., false.) 
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(Ill) I f  ~ iUAe is an interval then eR(A, a lOae)  ---- PR(A,a I) U PR(A,a e) (A's probability lies in 

the interval ~ l U ~ 2  iff it lies either in A 1 or in A2) 

In the follwing two axioms WnW is a running index ranging over {1,£,.. }. 

(IV) NnPR(A, zAn) = PR(A, NnAn) (A's probability lies in every `sn iff it lies in their intersecton). 

(V) If, for all n#rn,  AnNA m = q}, then NnPR(A , [an, fin]) G PR(U n A n , [~notn, Cnfln]) (For 

pairwise disjoint Ans, if An's probability lies in [an, fi n ], n=l,2, . . . ,  then the probability of On(An) lies in 

Note that axioms (I)-(V) involve only W, F and PR. The crucial axiom which connects PR with P 

will be stated later. 

T H E O R E M  1 For every HOP, H = ~  F, P, PR) there is a mapping p which associates with 

every x in W a probability, Pz ,over F such that 

(1) PR(A,zA) = {x : pz(A)e ~} 

The mapping p is uniquely determined by (1) and can be defined by: 

(2) pJm)  = inf{o, : • C r e ( A ,  [0,o4)} 

a8 well as by: 

(2') px(A) = ~up{a : • E PR(A, [aft])}. 

Vice verea, if, for every x E W, Pz i8 a probability over F such that {z : pJA)  E ,5} is in F for all 

a E F and all real closed ,5, and i f  we use (1) as a definition of PR then Azioms (I)-~V) are satisfied. 

We call p the kernel of the HOP. 

The proof of Theorem 1 is nothing more than a straight.forward derivation of all the required 

details from the axioms, using (2) as the definition of p .  (The =vice versa" part is even more immediate 

than the first part.) 

We can now extend PR and define PR(A,_=), for arbitrary subsets = of reals, as {~ : pJA)  E .U}. If w 

is a Borel set then PB(A,.~) is in F. 

The meaning of p~ is obvious: it is the probability which corresponds to the m_ax!n~M state of 
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k n o w l e d ~ n  world x - the distribution chosen . .~ theexper t  of_that_ worl__ ~. 

NotaUo.:  For. e PR(A, ,)=dr Pn(A, 

The picture is considerably simpler in the discrete case, where W is countable. Assuming with no 

loss of generality that  {x} E F for every x E W, the probability of some A C W is simply the sum of the 

probabilities of the worlds in A. In that  case, we can eliminate the closed intervals and consider only the 

special cases PR(A,a) where ce ranges over [0,1]; also our 5 axioms can be replaced by 3 simpler ones. 

Discrete cases arise in many situations and are very useful as illustrative examples. But to consider only 

the discrete case is highly restrictive. 

Notation: For x,y E W, A EF, put: p(z,A) •dr pJA) and (assuming {y}EF) p(x,y) •df p(z,{y}) 

and = dr e({u} ). 

In the discrete case P is obviously determined by the values P(x), zEW. Thus, ordering IV, we can 

represent P as a probability vector (a countable vector of non-negative entries which sum up to 1). 

Similarly the kernel p becomes a probab!!t~'.matri x (a countable square matrix in which every row is a 

probability vector). Examples (i) and (ii) in the E x a m p l e l  subsection can serve to illustrate the situation 

(the discussion there presupposes however the next subsection). 

Mathematically, what we have got is a Markov process (with initial probability P and transition 

probabilities p(x, ), zEW). But the interpretation is altogether different from the usual interpretation of 

such a structure. The connection between P and the kernel p is established in the sixth axiom. 

A x i o m  (VI)  A n d  I t s  C o n s e q u e n c e s  

Let P(AIB ) be the conditional probability of A, given B. It is defined in the case that  P(B) ~ 0 as 

P(ANB)/P(B). It is what the agent's probability for A should be had he known B. 

A x i o m  (VIw) If P(PR(A , h ,  fi])) ~ 0 then a < P(A I PR(A , h,f~]}) < 1~ . 

Axiom (VIw) (the weak form of the forthcoming Axiom ( V I ) ) i s  a generalization of Miller's 

Principle to the case of intervM-based events. Rewritten in our notation, Miller's Principle is: 

P(A [ PR(A,a)) = a. Axiom (VIw) appears to be the following rule: My probability for A should be no 

less than a and no more than fi, were I to know that  in a more informed state my probability for A will 

be within these bounds. Plausible as it sounds, the use of the hypothetical "were I to know that.., j needs 

in this context some clarification. Now a well-known way of explicating conditional probabilties is through 

conditional bets. Using such bets van-Frassen [1984] gives a Dutch-book argument for the Principle: Its 
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violation makes possible a system of bets (with odds in accordance with the agent's probabilities) in which 

the agent will incur a net loss in all circumstances. In this argument PH(A,~) is interpreted as the event 

that the agent's probability for A at a certain future time will be c~, in which case he should accept at that 

time bets with odds c~. The same kind of Dutch-book can be constructed if Axiom (VIw) is violated. 

(Here it is crucial that we use an interval, the argument fails if we replace [o~,~] by a non-convex Borel 

set.) 

Axiom (VI) is the interval-based form of the stronger version of Miller's Principle which was 

suggested by Skyrms [1980 A]. 

A x i o m  (VI) I f  C is a finite intersection of events of the form PR(B,z~}, and i f  

P(G N PR[A,[o~,/3])} ~ O, then 

. _< P(A ] C n _< 

The same intuition which prescribes (VIw) prescribes (VI); also here the violation of the axiom 

makes possible a Dutch-book against the agent. What is essntial is that events of the form PR(B, zS) be, 

in principle, knowable to the agent, i.e., be known (if true) in the maximal states of knowledge as defined 

by our structure. 3 

In what follows integrating a function f(t) with respect to a probability m is written as f f ( t) ,  m(dt). 

L e m m a  1 Axiom (VIw) implies that the following holds for all A C F: 

(3) P(A) = fp(x,A). P(dx) 

The proof consists in applying the formula P(A)=,UcP(A]Bi).P(Bi) , where the Bi's form a 

partition, passing to the limit and using the definition of an integral. 

The implication (3) ~ (VIw) is not true in general. Note that in the discrete case (3) becomes: 

(3 d) PCx) = PCy) 

which means that the probability vector is an eigen-vector of the kernel. 

Def in i t ion  Call two worlds x,y E W epistimieally equivalent, (or, for short, ~ )  and denote 

it by x ~_ y ,  if Pz = Py • For S - a class of events, define K[S] to be the field generated by all events of 

the form PR(A,z~), AES, ~ - a real closed interval. 

3It is important to restrict C in Axiom (VI) to an intersection of such events. The removal of this restriction will cause  

the pz's to be two-valued functions, meaning that all f a c t s  are  known in the maximal knowledge states. 
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Epistemic equivalence means having the same maximal knowledge. Evidently z _~ y iff, for all A 

and all A, xCPR(A,A) ¢~ yEPR(A,Zi); this is equivalent to: for all CEK[F], zEC ¢~ yet?. If K/F] is 

generated by the countably many generators Xn, n=O,1,.., then the equivalence classes are exactly all 

non-empty intersections NnX n' where each Xn' is either X n or Ks complement. Hence the equivalence 

classes are themselves in K/if], they are exactly the atom._s of this field. The next lemma shows that the 

condition that K[F] be countably generated is rather mild, for it holds whenever F itself is countably 

generated (which is the common state of affairs}: 

L e m m a  2 I f  S i8 either countable or a countably generated field, then K[S] i8 countably generated. 

(As generators for K[S] one can take all PR(A,,A), AES, A - a rational closed interval; the second 

claim is proved by showing that if S' is a Boolean algebra that generates the field S then K[S]fK[S].) 

Terminology:  A 0-se___A is a set of probability 0. Something is said to hold for almost all z if it 

holds for all x except for a 0-set. The probability in question is P, unless specified otherwise. 

Th e o r em 2 I f  F is countably generated then aziora (VI) is equivalent to each of the following 

conditions: 

(A) (3) hold8 (for all A) and the following is true: Let C 

to which x belongs, then 

pz(Cz) ---- 1 for almost all z. 

be the episternic equivalence class 

(B) (3) holds and, for almost all x, for all A: 

(4) p=(A) ---- ]py(A)" pz(dy) 

The proof that axiom (VI) is equivalent to (A) and implies (B) uses only basic measure theory. The 

present proof of (B) =~ (A) relies on advanced ergodie theory 4 and I do not know if this can be avoided. 

Fortunately the rest of this paper does not rely on this implication (except the corresponding implication 

in Theorem 3). Note that in the discrete case (4) is equivalent to: 

(4d)  p(x,Z)-~- ~yp(x,y)'p(y~Z) 

(4d) means that the kernel, as a matrix, is equal to its square. 

Let {E u : u E U} be the family of epistemic equivalence classes, with different indices attached to 

4I am thankful to my colleagues at the Hebrew University H. Furstenberg, I. Katzenelson and B. Weiss for their help in 

this item. Needless to say that errors, if any, are my sole responsibility. 
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different classes. Let Pu be the common Pz for z E Eu; let m be the probability, defined for all V C U 

such that  UueuEu E F, by: 

m/V) = P(U.e V E )  

Then (A) is equivalent to the following condition: 

(C)  For all A in F 

and .for almost all (with respect to m) u 

P(A) = S d'JA)" m(d ) 

The first equality in (C) is a recasting of (3); it can be equivalently described by saying that  P is a 

mixture of the Pu's with weight function m. Altogether (C) means that  we have here what is known as 

the disintegration of the prob:~bility space. It makes for a rather transparent structure. 

For W- countable the disintegration means the following: After deleting from the kernel-matrix rows 

and columns which correspond to some set of probability 0, the rest decomposes into submatrices around 
/ 

the main diagonal in each of which all rows are equal, with O's in all other places; P itself is a mixture of 

these rows. Such HOPs are exactly those that  can be constructed as follows (hence this is the method for 

setting up higher order probabilities which avoid a Dutch book): 

• Chose a partition { E  : uCU} of W into non-empty disjoint sets, with different u '8 marking 

different eets. 

• Chose for each u in U a probability~ Pu' on W such that Pu(Eu) = I for all u E U' ,  where U' 

is 8ome non-empty eusbset of U. 

• Chose  a probabi l i ty ,  m,  on U such that m(U~=,l, and let P be the mizture of the Pu's with 

weight function m. 

• For each u E U and each x E E u put p$ ffi Pu and define PR(A,~)to be { z :  pz(A)Ea}. 

The construction is essentially the same for a general W (with a countably generated F}; some 

additional stipulations of measurability should be included in order to make possible the formation of the 

mixture and to ensure that  the PR(A,~A)'s are in F. 

D e f i n l t | o n  Call Pu and its corresponding equivalence class, Eu, ontologica_ ~ if Pu( /~)  ~- 1, call it 

and its corresponding class coherent if P is a mixture of ontological /~'s. Call a world o n t o l ~  

(coherent) if it belongs to an ontological (coherent) equivalence class. 

An ontological class is of course coherent. A coherent class which is not ontological must get the 

value 0 under its own Pu" It represents a state of knowledge in which the agent knows for sure that  his 
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eventual probability function will be different from his current one (and that it will be an ontological one). 

The set of ontological worlds gets the value 1 under P and under each p~ where z is coherent. It is 

refered to ~ the ontolo i c ~ a r t  of the HOP. Together with the structure induced by the original HOP it 

forms by itself ~ simple HOP. Similarly we define the coherent part of the HOP as the set of all coherent 

worlds (together with the induced structure). As far as calculating probabilities goes, only the ontological 

part matters. Coherent non-ontological worlds are useful as representatives of transitory states of 

knowledge. 

E x a m p l e s  

Example 1: w =  {wl, we, ws} ~ -  (1/3, 1/3, 1/3) and the kernel matrix is: 

.5 .5 0 

0 .5 .5 
.8 0 .5 

The agent's current probability assigns each world the value 1/3. Eventually, in world wl he will know 

that he is not in w3 and he will assign each of the worlds wl, wg the value 0.5. This is the meaning of the 

first row. The other rows are similarly interpreted. 

By direct checking one can verify that (Vlw) is satisfied. (The checking of all cases in this example 

is easy because PR(A,a}-~O only for a ffi 0.5,1.) However the matrix is not equal to its square, hence 

Axiom (VI) is violated, as indeed the following case shows: Put A~ffi{wl}, CffiPR({we},O.5). Then 

C={z : p(z, w2)ffiO.5} ={wI, w~} and similarly PR(A,O.5)ffi{wl, w3}. Hence A =ffi PR(A,O.5) N C implying 

P(A [ PR(A,O.5) N C)=I~0.5. This can be used to construct a Dutch book against the agent. 

Note also that the epistemie equivalence classes are {wl},{w~} and {w3} and that non is 

ontological; hence also there are no coherent worlds here. 

Example 2 W = {wIme , . . . ,ws} ,  P is: (.I, .2, .2, .l, .4, o, o, o} and the kernel matrix 

is: 



286 SESSION 6 

.2 .4 

.2 .4 

.2 .4 

.4 

.4 

.4 

.2 .8 

.2 .8 

I 

.05 .2 .2 .05 .2 .5 0 0 

.2 .1 .1 .2 .I .I .1 .I 

where all undisplayed entries are 0. The sets {wl,we, w8}, {w$,w5} and {w6} are equivalence classes 

which are ontological. P is a mixture of these 3 types of rows, with weights 0.5, 0.5, 0, respectively. Hence 

condition (C) is satisfied, therefore also Axiom (VI). w7 is a coherent non-ontological world, because the 

7th row is a mixture of the first three types (with weights .25, .25, .5) w8 is not coherent. The ontological 

part consists of the upper left 6 X 6 matrix and the coherent part of the 7 X 7 one. 

The example can be made more concrete by the following scenario. A number is to be chosen from 

{1,2,8}. For i=1,2,3, the number chosen in wi is i, but in each of these 3 worlds the maximal knowledge 

consists in assigning probabilities 0.2, 0.4, 0.4 to the 3 possibilities. In w$ the number chosen is I and in 

w5 it is 2; in either of these worlds the maximal knowledge consists in assigning the probabilities 0.2, 0.8. 

In w6 the number is 2 and it is also assigned probability 1. In the agent's current state he assigns 

probability 0 to finding himself eventually in the third state of maximal knowledge, and equal probabilities 

to the first and second states. World w7 represent a similar situation but with different weights. We can 

imagine 3 lotteries for ehosing the number; in each equivalence class the maximal knowledge is knowledge 

of the chosen lottery. 

E x a m p l e  3: Let H be the probability of 'heads u of some given coin of unknown bias. Treat  H as 

a random variable. The agent's knowledge is represented by a probability distribution for H. Say it is the 

uniform distribution over [0,1]. The expert does not know the value of H but he has some additional 

information. Say his additional information is the value of N -  the number of Uheadsm in 50 independent 

tosses. Then our worlds can be regarded as pairs (h,n), such that in (h,n) the event H-~hNN=n is true; 

here h is a real number in [0,1] and n an integer between 0 and 50. The field F is generated by the sets 

[o ,Z]x n=o,...,5o. 

Given H=h, we get the binomial distribution bh,5o for N. This fact, together with the agent's 
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uniform distribution for H, determines his probability P over F. The expert's probability in world (h,n) is 

obtained by conditioning on his information, it is P(IN=n). There are 51 equivalence classes which 

correspond to the 51 possible values of N and all worlds are ontological. 

As is well known, different values of N give rise to different conditional distributions of H. Therefore 

the events N=n are in the field generated by the events s PR(HE[o~,t~], .,!l). The whole field F is therefore 

generated by events which are either of the form HE[a,t~] or obtained from these by applying the operator 

PR. Consequently we can give an abstract description of this HOP which does not mention the fifty 

tosses. The only function of the tosses is to affect the distribution of H; in our framework such changes in 

distribution constitute themselves events which can be treated directly, without having to bring in their 

causes. 

T h e  C a s e  o f  a G e n e r a l  F i e l d  

The restriction that  F be countably generated is a mild one. The probability spaces which commonly 

appear in theory, or in applications, are essntially of this nature 6. Usually we are interested in properties 

that involve only countably many generators. We will first show that for studying such properties we can 

always restrict ourselves to the case where the underlying field is countably generated. 

De f in i t i on  Given a simple HOP (W, F, P, PR) and given SCF, define H[S] as the smallest field 

containing S and closed under PR (i.e., A E HIS] =~ PR(A,~5) E HIS] for every real closed interval A). 

HIS], together with the restrictions of P and PR to it, forms a subHOP, where this notion is defined 

in the obvious way. 

L e m m a  3 I f  S i~ a Boolean algebra and, for every A in S and every rational closed interval ~, 

PR(A,A) is in S, then HIS] is the field generated by S. 

This means that, once we have a Boolean algebra closed under PR(,A) for all A with rational end- 

points, we get all the rest by countable Boolean operations without using PR. 

C o r o l l a r y  I f  S is either countable, or a countably generated field, then HIS] i8 countably 

generated. 

5Actually there are 51 real numbers @n such that the event Nffiffin is the same as PR[H~I/P, Crn). 

6They are seperable, i.e., for some countably generated field every event in the space differs from a set in the field by a 
0-set. 
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Using this we can derive from Theorem 2 an analogous result for general fields: 

T h e o r e m  3 Aziom (V]) ie equivalent to each of the followinjl conditions: 

(A') 

(B') 

(3) holds and for every C in K[F], for almost all z: pJC}=l i f  z6C, pJC]=o otherwiee. 

(3) holds and for every A in F (4) is true for almost all z. 

A. 

(B')  differs from the analogous (B) of Theorem 2 in that  the exceptional 0-set for (4) can depend on 

Say that A is equal a.e. to B if A-B and B-A are 0-sets. Say that  two classes of sets are equal 

modulo O-set~ if every member of One is equal a.e. to some member of the other. 

Assuming Axiom (VI) we get: 

Corollary I f  s c F ,  then: (i) The yield8 KIS], KIKfS]] and K[H[SI] are equal modulo O-sets. (ii) 

I f  S is a boolean algebra then HIS] ie equal modulo O-sets to the field generated by S U K[S]. 

(To show, for example, that  K/SI=KIK/S/I modulo 0-sets, consider CEK/S]; by Theorem 8~ 

{z :px(C)E,a} is equal a.e. to C if za=[1,1], is equal a.e. to W-C if •=[0,0], and is a 0-set if 0,1 ~ A. 

Hence, for all A, PR(C,d) is equal a.e. to one of: C, W-C, W, ~. Since KFFK[S]] is generated by such sets, 

the claim follows.) 

Roughly speaking, (ii) means that, modulo 0-sets, nested applications of PR reduce to non-nested 

applications. A stronger, syntactical version of this is given in the next section. 

Probability Logic 

Let S be a set of reals such that 0,1 E •. Call an interval with end-points in ~ a ~-int~wal. 

Let P R L  z be the calculus obtained by adjoining sentential operants, PR(,A), to the propositional 

calculus, where A ranges over all closed S-intervals. Here, for the sake of convenience, I use 'PR' for the 

syntactical operant, as well as for the operation in HOPs. Given some class {X~:iCI} of sentential 

variables, the class of all wffs {well formed formulas) of P R L ~  is the smallest such that: 

s Every sentential variable is a wff 

• If ~ and ~ are wffs, so are - ~  and ¢ , ~  where ,  is any of the standard binary connectives. 
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e If ~ is ~ wff and AL is ~ closed t-interval then PR(~,A) is a wff. 

Let H = (W,F,P, PR) be a simple HOP and let ~ be ~ mapping which maps each sentential variable 

to a member of F. Then the value l~[H,r of the wff ~ is defined by interpreting the sentential connectives 

the corresponding Boolean operations and each syntactic operant PR(,A)as the operation PR(,A)of 

the HOP, 

Definit ion A wff ¢, is p-valid, to be denoted [=p~,, if, for every simple HOP H which satisfies 

Axiom (VI) and every r, the probability of [¢~[H,r is 1. Two wffs ~,00 are p-equivalent if ~ is p-valid. 

Call ~ a PC-formula if it is a wff of the propositional calculus, i.e., does not contain any PR. 

Theorem 4 Every wff  of P R L j  ie p-equivalent to a Boolean combination of PC-formulas and 

formulae of the form PR(a, Zl) in which a rangeo over PC-formulae. 

This means that as far as probabilities are concerned (i.e., if we disregard O-sets) we need not use 

nested PEs.  

Theorem 5 Translate into P R L  8 the w fro of propooitional modal logic with the neceoeity 

oprant N, b~/ replacing each N(CJ) by PR(;O , [1,I]). L~ O* be the tranolation of O. Then 

i l l  

Thus $5 becomes a fragment of P R L  F This relation becomes more explicit if we rewrite 'PR($,A] 

as 'Nd¢/.  

It can be shown that for .~ == set of rationals the set of p-valid wffs k recursive. Also PRL B can be 

provided with a natural set of formal axioms so that, with modus ponens as derivation rule, p-validity 

coincides with provability. 

Some Q u e s t | o n s  

Other validity notions can be considered (e.g., that 101H,r always contains all coherent worlds in the 

HOP), as well as other interpretations of the necessity operant {e.g., as ~APR{~,[1,1/JJ. What modal logks 

are thereby obtained? 
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General HOPs 

In general, a HOP is a stucture of the form: 

(W, F, P, T, PR) 

where, as before, ~ F, P) is a probability space, T == (T, <') is a partially ordered set and where 

PR : F X T X set of closed intervals ~ F 

PR(A,t,A) is the event that the probability of A at stage t lies in A. If the stages coincide with time 

points then the partial ordering of T is total. As before, P is the current subjective probability; here 

• current" is earlier (i.e., less than or equally informative) than the stages in T. Put: 

PRt(A'A ) =dr PR(A,t,A ) 

The first five axioms (I*) - (V*) in this setting are the obvious generalizations of our previous 

axioms (I) -(V). Namely, we replace 'PR' by 'PR t and require that the condition hold for all t in T. 

Theorem 1 generalizes in the obvious way and we get, for each t E T and each z E W, a probability 

Pt,z which detemrines Pitt; it represents the maximal state of knowledge at stage t in worlds  _. 

The "correct" generalization of Axiom (VI) is not as obvious, but is not difficult to find: 

Axiom (VI*) For each lET the following holds: I f  C is a finite intersection of events of the form 

PRs(B,A ) where every s is ~ t, and P(C n VRt(a,la, l~]) ) # O, then 

a _< P(AIUnPRJA,Ia,  B])) <_ B 

The argument for this axiom is the same as the argument for Axiom (Vl). The essential point is 

that if s < t then true events of the form PRe(13,A ) are known at stage t. The same Dutch book 

argument works for Axiom (VI*). 

As before, we consider fields generated by knowable events and define epistemie equivalence; but 

now these concepts depend on the stage parameter, to be displayed here as an additional subscript. Thus 

we put: 

z s t 11 ~ d l  Pt,~ '=' Pt,tt 

Then a:~ty iff zEA ~ yEA, for all AfiKJF]. 

Theorem 6 

conjunction op 

Assume F to be eountably generated, th¢n Aziom (VI*) is equivalent to the 

(D) For each t E T the simple HOP ~ F, P, PR t ) satisfies Axiom (Vl). 

and 
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(E) For each s ~ t, z ~ t y  =~ z~ey,  for almost all z,~l (i.e., for all Z,~l E W' where P(W~ •, I). 

(E) means that, as we pass to more progressive stages, almost everywhere epistemi¢ equivalence is 

the same or becomes stronger; the partition into equivalence cla~ses can change only by becoming more 

refined. 

Like Theorem 2 the last theorem has a version that applies to general fields but I shall not enter 

here into it. In the following theorem F is assumed to be countably generated. 

Theorem 7 Assume Aziom (VI*). Let s ~ t. Then, for almost all z, p,,, is a mlzture of pt,ll's 

(where !1 ran#es over W). Consequently, for almost all z, ~ F, p,,= , PR t ) is a simple HOP satisf#ing 

Aziom (VI). 
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Logic o f  H O P s  a n d  S t a g e  D e p e n d e n t  M o d a l i t i e s  

Fix a partially ordered set T ---- {T, <'). The logic PRL~. r (which corresponds to HOPs with set of 

stages T) is defined in the same way as PRLt/, except that PR has an additional argument ranging over T. 

As before we employ a systematically ambiguous notation. Define ~ to be p-valid if it gets probability I in 

all HOPs in which the set of stages is T. 

Now consider a propositional modal language, M T , in which we have, instead of a single necessity 

operant, an indexed family N e t E T. Nt~ states that ~ is necessary at stage t, i.e., necessary, by virtue of 

the maximal knowledge available at that stage. 

For ~EM T , let ~* be the wff obtained by replacing each Nt~ by PRJ~, [i,I]). It can be shown that 

the set of all ~ in M T such that ~* is p-valid is exactly the set of wffs derirvable, by modus ponens and 

the rule: if I"~ then l---Nt~b, from the following axioms: 

(i) All tautologies. (ii) For each t E T, the axiom schemas of 85, with N replaced by Nt, and 

(iii) Ns¢~ --. Nt~ ,  for each s _< t. 

Note that (iii) accords well with the intended meaning of the Nt's: If something is necessary at 

stage s it is also nesessary at later stages. On the other hand, something not necessary at stage s can be 

necessary later. 
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