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Abstract—Magnetic angle sensors detect the angular position of a
permanent magnet attached to a rotating shaft. The magnet is
polarized diametrically to the rotation axis. No soft magnetic flux
guides are present. The semiconductor die is placed on and orthogonal
to the rotation axis. There are two kinds of systems: (i) perpendicular
systems detect the field components perpendicular to the rotation
axis, and (ii) axial systems detect the component parallel to the
rotation axis. The former use magneto-resistive sensors or vertical Hall
effect devices; the latter use Hall plates. This paper focuses on axial
systems, derives their conceptual limitations, and compares them with
perpendicular systems. An optimized system and optimum shapes
of magnets are reported. Angle errors due to assembly tolerances
of magnet and sensor versus shaft are explained. It is proven that
assembly tolerances of optimized axial systems give three times larger
errors than perpendicular systems.

1. INTRODUCTION

This paper deals with angle sensors as shown in Fig. 1. A permanent
magnet with diametrical magnetization is attached to the end of
a rotating shaft whose angular position should be measured. A
semiconductor die contains several magnetic field sensor elements.
It is positioned orthogonal to the rotation axis with its center right
on the rotation axis which is also a symmetry axis of the magnet.
Along this axis the magnetic field is perpendicular to the axis and
therefore parallel to the surface of the die. We call this class of sensors
that respond to the magnetic field components perpendicular to the
rotation axis perpendicular angle sensors. These can be magneto-
resistors (MR) like, e.g., anisotropic magneto-resistors (AMR) [1] or
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giant magneto-resistors (GMR) [2–5] or tunnelling magneto-resistors
(TMR). Alternatively one may also use vertical Hall effect devices
(VHall) [6]. MRs respond to the angle between the in-plane component
of the field and their in-plane reference direction, which is defined by
layout or pre-magnetization during the manufacturing process. VHalls
respond to a field component parallel to the die surface and orthogonal
to the current streamlines through the device. With two such devices
aligned in different directions one can infer both magnitude and angle
of the in-plane field. All sensor technologies have their pros and cons:
AMRs are accurate and stable, yet they are unambiguous only in a
range of 0◦ . . . 180◦. GMRs and TMRs cover the entire revolution
0◦ . . . 360◦, yet they are less accurate and stable due to their pinned
magnetization. All MRs need a minimum field strength (about 10 mT)
for accurate operation. GMRs and TMRs also have a maximum
allowed field (about 100 mT) to prevent minute drift of the pinned
layer at high temperatures over lifetime. VHalls have no upper limit
of destruction, are more robust, and their manufacturing costs are
cheaper. Yet they suffer from larger noise [7] and larger residual offset
[8] and also from crosstalk due to mechanical stress. Development of
all these sensor technologies is ongoing and it is likely that the limits
can be pushed significantly in the next decade.

Conversely, this paper focuses on axial angle sensors. They use
the axial magnetic field component to infer the rotation angle. Since
this component vanishes on the rotation axis one has to place the
sensor devices off axis, e.g., on a circle of 1 mm diameter concentric
to the axis (Section 3.2). As sensor elements one can use horizontal
Hall plates (HHall) [9, 10] or MAGFETs [11]. The main advantage is
the mature technology of HHalls, where the problems of offset [12]
and mechanical stress [13, 14] are solved. Another advantage is
the differential sensing principle, which is robust against background
magnetic fields. However, this works only if the Hall plates match well
despite mechanical stress gradients (Appendix E).

Which is the optimum angle sensor? A simple answer focuses on
the sensor elements, yet there differences diminish: of course VHalls
have more noise than MRs, yet for moderate speed this is irrelevant.
Hall devices have no hysteresis, yet this becomes irrelevant if MR-
technology pushes hysteresis limits below 0.05◦. Limitations like 180◦-
ambiguity of AMRs or mechanical stress on Hall devices can be tackled
by additional circuitry. In practice it turns out that a major part of
the angle error is caused by assembly tolerances. So a more prospective
answer on optimum sensors accounts for these tolerances. This error
can be limited by optimum layout and shape of magnets. Yet even then
a residual error remains due to misalignments. Are these limitations
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Figure 1. Angle sensor composed of a diametrically polarized magnet
attached to the end of a rotating shaft and a sensor die placed on the
rotation axis. In the case of axial angle sensors the magnetic field sensor
elements respond to the z-component of the field. For perpendicular
angle sensors the magnetic field sensor elements respond to the x-and
y-components of the field.

identical for all systems or are there some preferable over others?
Indeed, the following discussion shows that axial angle sensors have
considerably larger errors than perpendicular ones.

2. THE PRINCIPLE OF AXIAL ANGLE SENSORS

Figure 2 shows the axial field component of a diametrically polarized
magnet. Although the function has a complex shape for radial
distances near the perimeter, it is well behaved near the rotation
axis: there it is an odd function in y, proportional to y-position, and
independent of x-position

Bz(x, y) = Cy + O
(

y3
)

, C ≈ 33mT/mm for 0.5 mm air-gap (1)

When the magnet rotates by an angle ϕ also this plane rotates

Bz(x, y) = C(x sinϕ + y cos ϕ) + O
(

(x sinϕ + y cos ϕ)3
)

. (2)

Obviously one may sample the plane by an array of Hall plates
distributed over the silicon die. Then it is straightforward to infer the
rotation angle. Apparently the array of Hall plates must not extend
too far off the axis, because there the field deviates from the plane
and this leads to errors in the estimated angle. On the other hand the
sensor elements must not be too close to the axis, because then the
field is too small. Therefore the array of Hall plates is usually located
within an area of 2 mm × 2mm around the rotation axis.
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Figure 2. Axial field component of a nickel coated cylindrical NdFeB
magnet with 10 mm diameter and 4mm thickness, magnetized along
y-axis. The field is measured 0.5 mm above the top surface of the
magnet. The rotation axis is shown as an arrow. Near the center the
function is close to a plane that is parallel to the x-axis.

As for the shape of the array of Hall plates there are numerous
possibilities. In principle three Hall plates are enough to reconstruct
the plane equation. As all rotation angles should be detected with
the same sensitivity the Hall plates should be evenly distributed. This
leads to three Hall plates along a circle of diameter 2R0, concentric
to the rotation axis. The Hall plates are located at angles 0◦, 120◦,
and 240◦. However, the Hall plates have a finite size of around
100µm × 100µm and therefore it would be necessary to rotate their
shapes around the origin, too. In some CMOS processes this is
incompatible to basic layout rules: devices must be aligned along
the x- or y-axis. This calls for a system having four square Hall
plates positioned at the locations (x1, y1) = (R0, 0), (x2, y2) = (0, R0),
(x3, y3) = (−R0, 0), (x4, y4) = (0,−R0), where the subscripts label the
Hall plate. We call it an axialC4 system (angle sensor responsive to
the axial field component, C4: with 4 sensor elements on a circle). In
the absence of assembly tolerances the output signals of the Hall plates
are

h1 = Bz(R0, 0, εz), h2 = Bz(0, R0, εz),

h3 = Bz(−R0, 0, εz), h4 = Bz(0,−R0, εz) (3)

where εz is the axial distance of the Hall plates to the center of the
magnet. Thereby we assume that Hall plates respond only to z-
components of the magnetic field (cf. Appendix B for a more accurate
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nonlinear model). Since h1 = −h3 and h2 = −h4 we get

h13 = h1 − h3, h24 = h2 − h4. (4)

Equations (2) and (4) give

h13 = 2CR0 sinϕ + O
(

sin3 ϕ
)

, h24 = 2CR0 cos ϕ + O
(

cos3 ϕ
)

. (5)

Thus h13 and h24 are in quadrature and so one can compute the angle ϕ
(e.g., by the CORDIC algorithm). So the principle is straightforward,
but how about the error terms O

(

sin3 ϕ
)

and O
(

cos3 ϕ
)

?

3. MAGNETS FOR AXIAL ANGLE SENSORS

3.1. Symmetry Property of Useful Magnets

The symmetry properties h1 = −h3 and h2 = −h4 require

Bz(−x,−y, z) = −Bz(x, y, z). (6)

The field of a magnet with homogeneous magnetization ~M is given as
a surface integral in (A.1) in [4] (where primed coordinates denote the
source points and unprimed the test point):

Bz(x, y, z) =
µ0

4π

∮

A

z − z′
(

(x−x′)2+(y−y′)2+(z−z′)2
)3/2

(

~M · d ~A′

)

(7)

Thus one may write for Bz(−x,−y, z)

µ0

4π

∮

A

(z − z′)Mn (x′, y′, z′)
(

(x + x′)2 + (y + y′)2 + (z − z′)2
)3/2

dA′ (8)

where Mn(x′, y′, z′) is the component of the magnetization normal to
the surface of the magnet and pointing outwards. With

Mn

(

−x′,−y′, z′
)

= −Mn

(

x′, y′, z′
)

(9)

Equation (8) becomes

µ0

4π

∮

A

(z − z′) (−1)Mn (−x′,−y′, z′)
(

(x + x′)2 + (y + y′)2 + (z − z′)2
)3/2

dA′ (10)

and with −x′ = x′′, −y′ = y′′, z′ = z′′ one may write for (8)

−µ0

4π

∮

A

(z − z′′)Mn (x′′, y′′, z′′)
(

(x − x′′)2+(y − y′′)2+(z − z′′)2
)3/2

dA′′=−Bz(x, y, z). (11)

Thus, magnets with the mirror symmetry (9) fulfill (6). All magnets
with rotational shape belong to this group, but also block-shaped
magnets do — even more general shapes are thinkable.

So (9) is a necessary requirement, but is it also sufficient for a
good sensor? This is discussed in the next subsection.
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3.2. Rotational Symmetry of Useful Magnets

Consider a magnet of rotational geometry with homogeneous
magnetization in y-direction. In the general case (e.g., a cone) the
radius R′ is a function of z′. In cylindrical coordinates one gets

Bx (R, ψ, z) = µ0M sin (2ψ) b1 (12a)

By (R, ψ, z) = µ0M {b0 − cos (2ψ) b1} (12b)

Bz (R, ψ, z) = µ0M sinψb2 (12c)

b0 =
1

16

H/2
∫

z′=−H/2

R′
3RkF2

(

k2
)

− 4R′F1

(

k2
)

(

R2 + R′2 + (z − z′)2
)3/2

dz′ (12d)

b1 =
R

8

H/2
∫

z′=−H/2

R′2 3RF2

(

k2
)

−(15/8)R′kF3

(

k2
)

(

R2 + R′2+(z − z′)2
)5/2

dz′(12e)

b2 =
3R

4

H/2
∫

z′=−H/2

(z − z′)R′2F2

(

k2
)

(

R2 + R′2 + (z − z′)2
)5/2

dz′ (12f)

with k = 2RR′/(R2 + R′2 + (z − z′)2) and H being the thickness of
the magnet. Hereby (12c) was derived from (7), (12a) and (12b)
are obtained in an analogous way from (A.1) in [4]. Although
these integrals (12d), (12e), (12f) are complicated expressions
containing hypergeometric functions Fn(k2) = 2F1(n/2 + 1/4, n/2 +
3/4, n, k2) they bring new insight: The field Bz is sinusoidal versus ψ
— no higher harmonics are involved. With (4) and (12c) the signals
are

h13 = 2µ0Mb2 sinϕ, h24 = 2µ0Mb2 cos ϕ, (13)

ϕ is the rotation angle whereas ψ is the azimuthal coordinate of the
test point. Therefore homogeneously magnetized samples of rotational
symmetry are perfectly suited for axial angle sensors.

Does that mean that magnets of other than rotational symmetry
are not apt for axial angle sensors? As an example we have a look on
parallel epipeds of size 2a×2b×2c, magnetized in y-direction (denoted
by the underline). According to [15] the axial field is

Bz (R, ψ, z) =
µ0M

4π

2
∑

l,m,n=1

(−1)l+m+n ln
(

R cos ψ + (−1)la

+

√

(

R cos ψ + (−1)la
)2

+(R sinψ + (−1)mb)2 + (z + (−1)nc)2

)

(14)



Progress In Electromagnetics Research B, Vol. 49, 2013 83

For small R (14) can be developed into a Taylor series, but obviously
this series expansion contains higher harmonics in ψ. This shows that
block shaped magnets are not well suited for axial angle sensors. They
lead to angle errors even with perfectly accurate assembly and with
perfect Hall plates and signal conditioning circuit. Of course these
errors get smaller for large magnets R ≪ a, b. Fig. 3 shows an example
for a magnet of size 6 mm×6 mm×3mm and angle sensors located on a
Hall circle with 1.1mm diameter, 1mm below the magnet. Obviously
the axialC4 system has a significant error of 0.7◦ with 90◦ periodicity.
Fig. 4 shows an axialC8 system that is composed of two axialC4 sub-
systems rotated by 45◦ against each other. Each sub-system estimates
the rotation angle. The errors of each subsystem are like for the axialC4
system, also rotated by 45◦ against each other. Thus, if the estimated
angles of both sub-systems are averaged, their errors cancel (due to
the 90◦ periodicity) and only a minute error is left (less than 0.005◦).
The conclusion is that an axialC4 system leads to significant errors for
block-shaped magnets, yet these errors can be cancelled by an axialC8
system. However, the price is to double the computing power. The
system has to compute two angles of axialC4 sub-systems. This might
be done sequentially, yet it costs speed.

In practice, even magnets of rotational symmetry produce higher
harmonics so that (13) does not hold accurately. One reason is lack
of homogeneity of magnetization. Good homogeneity requires slim
magnets (i.e., large ratio of diameter over thickness). Other reasons
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Figure 3. Theoretical angle errors ∆ϕ of axial angle sensors with a
block-shaped magnet 6 mm×6 mm×3 mm. The Hall plates are located
on a circle with 1.1mm diameter, 1 mm below the bottom surface of
the magnet. The axialC4 system has a significant error of 0.7◦ with a
sin(4ϕ) dependency. An axialC8 system has a greatly improved error
with a sin(8ϕ) dependency.
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Figure 4. Layouts of axial angle sensors. The axialC4 angle sensor is
composed of four Hall plates evenly spaced at a Hall circle with radius
R0 around the rotation axis. The axialC8 angle sensor consists of two
axialC4 cells rotated 45◦ against each other. The output of the axialC8
angle sensor is the average of the outputs of both axialC4 cells. The
axialC8 angle sensor is more accurate and works with more general
shapes of magnets than the axialC4 angle sensor.

may be anisotropic sinter shrinkage of the magnet or soft magnetic
coating of rear earth magnets. In order not to pose too stringent
requirements on the magnet one has to use axialC8 instead of axialC4
systems. An alternative system with similar performance like axialC8
systems is sketched in Appendix D.

Applying Maxwell’s equations to (12) gives several relations
between derivatives, which will be used in the sequel to simplify

the angle error. From curl ~B = 0 one gets ∂Bx/∂y = ∂By/∂x,
∂By/∂z = ∂Bz/∂y, ∂Bx/∂z = ∂Bz/∂x. With R2 = x2 + y2 and
tanψ = y/x one gets ∂/∂x = cos ψ∂/∂R− (sinψ/R)∂/∂ψ and ∂/∂y =
sinψ∂/∂R + (cosψ/R)∂/∂ψ in cylindrical coordinates (R,ψ, z). This
gives

∂b1

∂R
+ 2

b1

R
=

∂b0

∂R
,

∂b2

∂R
− b2

R
= 2

∂b1

∂z
,

∂b2

∂R
+

b2

R
= 2

∂b0

∂z
. (15)

From div ~B = 0 one gets

2
∂b0

∂R
+

∂b2

∂z
= 0. (16)

Furthermore, each of the components Bx, By, Bz fulfills the Laplace
equation. This gives

∂2b0

∂R2
+

1

R

∂b0

∂R
+

∂2b0

∂z2
= 0 (17a)
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∂2b1

∂R2
+

1

R

∂b1

∂R
+

∂2b1

∂z2
= 4

b1

R2
(17b)

∂2b2

∂R2
+

1

R

∂b2

∂R
+

∂2b2

∂z2
=

b2

R2
(17c)

4. ERRORS DUE TO ASSEMBLY TOLERANCES

4.1. How Assembly Tolerances Affect the Magnetic Field

A reference frame (x, y, z) is fixed to the rotating magnet, and another

reference frame
(

x(8), y(8), z(8)
)

is fixed to the sensor die. The Hall
plates are assumed to be point sized. The first Hall plate is located
at

(

x(8), y(8), z(8)
)

= (R0, 0, 0), the second one at
(

x(8), y(8), z(8)
)

=

(0, R0, 0), the third one at
(

x(8), y(8), z(8)
)

= (−R0, 0, 0), and the fourth

one at
(

x(8), y(8), z(8)
)

= (0,−R0, 0). Since all Hall plates are on the

surface of the die z(8) = 0 holds for all of them (Errors due to chip
warpage are discussed in Appendix C). The coordinate transformation

between the two reference frames (x, y, z) and
(

x(8), y(8), z(8)
)

is given
in [1, 4, 5]: it is a lengthy function of the rotation angle and the
assembly tolerances. All relevant assembly tolerances are listed in
Table 1. They are also identical to preceding works [1, 4, 5].

Table 1. Assembly tolerances.

Symbol Description

z

ϑ

Eccentricity of the magnet with respect to the axis of rotation

Shift of magnet along the axis of rotation

Eccentricity of sensor die with respect to the axis of rotation

Distance  of Hall plates to center of magnet

Angle between magnetization and tilt axis of magnet

Tilt of magnet against axis of rotation

Angle of rotation of the shaft

Angle between x-axis on sensor die and tilt axis of sensor die

Tilt of die against axis of rotation

Azimuthal twist angle of sensor die in its own surface

x

rδ  = δ  sinη

ε  = ε  cosχ,

ε  = ε  sinχ

δ 

ε 

α 

β 

ϕ 

γ 

λ 

δ  = δ  cosη,x r

y

z

r

y r
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Thus we can express the vertical magnetic flux density on the
surface of the die

B(8)
z

(

x(8), y(8), 0
)

= (cos β cos λ − cos γ cos ϕ sinβ sinλ

+ sinβ sin γ sinλ sinϕ)Bz(x, y, z)

+ (cos α cos λ sinβ − (cos ϕ sinα + cos α cos β sinϕ) sin γ sinλ

+(cos α cos β cos ϕ − sinα sinϕ) cos γ sinλ)Bx (x, y, z)

+ (sinα cos λ sinβ + (sinϕ cos α + sinα cos β cos ϕ) cos γ sinλ

+(− sinα cos β sinϕ + cos α cos ϕ) sin γ sinλ)By (x, y, z) (18a)

with

x = δx + cos α sinβ
(

εz − R(8) sinλ cos
(

ϑ + ψ(8)
))

+(cosαcosβcosϕ−sinα sinϕ)
(

εx+R(8)cosγcos λcos
(

ϑ+ψ(8)
)

−R(8) sin γ sin
(

ϑ + ψ(8)
))

− (cosϕ sinα+cosαcos βsinϕ)
(

εy+R(8) sinγ cosλcos
(

ϑ+ψ(8)
)

+R(8) cos γ sin
(

ϑ + ψ(8)
))

(18b)

y = δy + sinα sinβ
(

εz − R(8) sinλ cos
(

ϑ + ψ(8)
))

+(sinαcos βcos ϕ+cos αsinϕ)
(

εx+R(8)cos γcos λ cos
(

ϑ+ψ(8)
)

−R(8) sin γ sin
(

ϑ + ψ(8)
))

+(cos ϕ cos α−sinα cos β sinϕ)
(

εy+R(8)sin γ cos λ cos
(

ϑ+ψ(8)
)

+R(8) cos γ sin
(

ϑ + ψ(8)
))

(18c)

z = δz + cos β
(

εz − R(8) sinλ cos
(

ϑ + ψ(8)
))

+R(8) sinβ sin (γ + ϕ) sin
(

ϑ + ψ(8)
)

− sinβ cos ϕ
(

εx + R(8) cos γ cos λ cos
(

ϑ + ψ(8)
))

+sinβ sinϕ
(

εy + R(8) sin γ cos λ cos
(

ϑ + ψ(8)
))

(18d)

where we used x(8) = R(8) cos ψ(8), y(8) = R(8) sinψ(8). All Hall plates
are at R(8) = R0 and ψ(8) = 0, π/2, π, 3π/2, respectively. If assembly
tilts β, λ, twist ϑ, and eccentricities δx, δy, εx, εy vanish (18a)



Progress In Electromagnetics Research B, Vol. 49, 2013 87

simplifies to

B(8)
z

(

x(8), y(8), 0
)

= Bz

(

R0 cos
(

α+γ+ϕ+ψ(8)
)

, R0 sin
(

α+γ+ϕ+ψ(8)
)

, δz+εz

)

.(19)

For magnets with rotational symmetry this gives

h13 = 2µ0Mb2 sin (α + γ + ϕ) , h24 = 2µ0Mb2 cos (α + γ + ϕ) (20)

with b2 = b2(R0, δz + εz). So the system estimates the rotation angle
by

ϕ′ = arctan (h13/h24) − α − γ. (21)

With assembly tolerances the true rotation angle ϕ and the estimated
angle ϕ′ differ by the error ∆ϕ = ϕ − ϕ′. Thus, (21) gives

tan∆ϕ =
h24 sin (α + γ + ϕ) − h13 cos (α + γ + ϕ)

h24 cos (α + γ + ϕ) + h13 sin (α + γ + ϕ)
. (22)

This holds for arbitrary magnets and arbitrary radius R of the Hall
circle.

4.2. Errors of AxialC4 Sensors due to Assembly Tolerances

In (22) the signals h13 and h24 are lengthy functions of rotation angle,
assembly tolerances, and magnet according to (4) and (18). The
expressions get shorter if we approximate them by a Taylor series
like in [1, 4, 5], which is admissible for small assembly tolerances. A
convenient way to do this with an algebraic computer program like
MATHEMATICA is to multiply all small quantities β, λ, ϑ, δx, δy, εx, εy

in (18) by a parameter s, and let the program do the series expansion
in s = 0 up to second order of s. Thereby the coordinates of the test
point depend on the assembly tolerances. So they are functions of s:
R → R(s), ψ → ψ(s), z → z(s). Therefore derivatives of coordinates
with respect to s show up in the series

B(8)
z = Bz

+s{Bx(β cos α+λ cos(α+γ+ϕ))+By(β sinα+λ sin(α+γ+ϕ))

+z′
∂Bz

∂z
+ ψ′

∂Bz

∂ψ
+ R′

∂Bz

∂R

}

+ s2

{−β2 − λ2 − 2βλ cos (γ + ϕ)

2
Bz

+
z′′

2

∂Bz

∂z
+

(z′)2

2

∂2Bz

∂z2
+

ψ′′

2

∂Bz

∂ψ
+ ψ′z′

∂2Bz

∂ψ∂z

+
(ψ′)2

2

∂2Bz

∂ψ2
+

R′′

2

∂Bz

∂R
+ R′z′

∂2Bz

∂R∂z
+ R′ψ′

∂2Bz

∂R∂ψ
+

(R′)2

2

∂2Bz

∂R2
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+(β cos α + λ cos (α + γ + ϕ))

(

R′
∂Bx

∂R
+ ψ′

∂Bx

∂ψ
+ z′

∂Bx

∂z

)

+(β sinα+λ sin(α+γ+ϕ))

(

R′
∂By

∂R
+ψ′

∂By

∂ψ
+z′

∂By

∂z

)}

+O
(

s3
)

(23)

with Bx, By, Bz evaluated at R(0) = R0, ψ(0) = α+ γ +ϕ+ψ(8), and
z(0) = εz + δz. The first derivatives are

R′ =
dR(0)

ds
= εr cos

(

χ − γ − ψ(8)
)

+ δr cos
(

α − η + γ + ϕ + ψ(8)
)

+βεz cos
(

γ + ϕ + ψ(8)
)

(24a)

ψ′ =
dψ(0)

ds
= ϑ +

εr

R0
sin

(

χ − γ − ψ(8)
)

− δr

R0
sin

(

α−η+γ+ϕ+ψ(8)
)

−β
εz

R0
sin

(

γ+ϕ+ψ(8)
)

(24b)

z′ =
dz(0)

ds
= −λR0 cos ψ(8) − βR0 cos

(

γ + ϕ + ψ(8)
)

(24c)

The second derivatives are

R′′ =
d2R(0)

ds2
=

δ2
r

2R0
+

ε2
r

2R0
+

β2ε2
z

2R0
−

(

β2+λ2
)R0

2
+β

δrεz

R0
cos(α−η)

+β
εrεz

R0
cos(χ+ϕ)+

δrεr

R0
cos(α+χ−η+ϕ)−βλR0(cos(γ+ϕ)

+cos
(

γ+ϕ+2ψ(8)
))

−λ2 R0

2
cos

(

2ψ(8)
)

− ε2
r

2R0
cos

(

2
(

χ−γ−ψ(8)
))

−β
εrεz

R0
cos

(

χ−2γ−ϕ−2ψ(8)
)

− β2 ε2
z

2R0
cos

(

2
(

γ+ϕ+ψ(8)
))

−β2 R0

2
cos

(

2
(

γ+ϕ+ψ(8)
))

− δ2
r

2R0
cos

(

2
(

α−η+γ+ϕ+ψ(8)
))

+2εrϑ sin
(

χ−γ−ψ(8)
)

− δrεr

R0
cos

(

α−χ−η+2γ+ϕ+2ψ(8)
)

−β
δrεz

R0
cos

(

α−η+2
(

γ+ϕ+ψ(8)
))

− 2βεzϑ sin
(

γ + ϕ + ψ(8)
)

−2δrϑ sin
(

α − η + γ + ϕ + ψ(8)
)

(25a)

ψ′′ =
d2ψ(0)

ds2
= −2

εr

R0
ϑcos

(

χ−γ−ψ(8)
)

−2βϑ
εz

R0
cos

(

γ+ϕ+ψ(8)
)

−2
δr

R0
ϑcos

(

α−η+γ+ϕ+ψ(8)
)

+βλ(sin (γ+ϕ)



Progress In Electromagnetics Research B, Vol. 49, 2013 89

+sin
(

γ + ϕ + 2ψ(8)
))

− ε2
r

R2
0

sin
(

2
(

χ − γ − ψ(8)
))

−2β
εrεz

R2
0

sin
(

χ − 2γ − ϕ − 2ψ(8)
)

+β2 ε2
z

R2
0

sin
(

2
(

γ + ϕ + ψ(8)
))

+
β2

2
sin

(

2
(

γ + ϕ + ψ(8)
))

+
δ2
r

R2
0

sin
(

2
(

α − η + γ + ϕ + ψ(8)
))

+
λ2

2
sin

(

2ψ(8)
)

+2
εrδr

R2
0

sin
(

α − χ − η + 2γ + ϕ + 2ψ(8)
)

+2β
εzδr

R2
0

sin
(

α − η + 2
(

γ + ϕ + ψ(8)
))

(25b)

z′′ =
d2z(0)

ds2
= −β2ε2

z + 2λϑR0 sinψ(8)

−2βεr cos (χ + ϕ) + 2βϑR0 sin
(

γ + ϕ + ψ(8)
)

(25c)

Introducing (23) into (3), (4) shows that some terms cancel, others
double — depending on if they are even or odd with respect to
mirror symmetry to the axis

(

x(8), y(8), z(8)
)

→
(

−x(8),−y(8), z(8)
)

.

For instance linear terms in s cancel except for ψ′ ∂Bz

∂ψ . The results for

h13 and h24 are lengthy and thus not reported here.
Inserting (12) into these results gives still long expressions with 11

functions characterizing the magnet: b1, b2, ∂b0/∂z, ∂b1/∂z, ∂b2/∂z,
∂b0/∂R, ∂b1/∂R, ∂b2/∂R, ∂2b2

/

∂z2, ∂2b2

/

∂R2, ∂2b2

/

∂R∂z. They are
reduced to 6 by the 5 substitutions

∂2b2

∂R2
=

−2

R

∂b1

∂z
− ∂2b2

∂z2
,

∂b1

∂R
=

−1

2

∂b2

∂z
− 2

b1

R
,

∂b0

∂R
=

−1

2

∂b2

∂z
,

∂b0

∂z
=

b2

R
+

∂b1

∂z
,

∂b2

∂R
=

b2

R
+ 2

∂b1

∂z
,

(26)

which follow from (15)–(17). The resulting equations for h13 and h24

are inserted into (22), again all small assembly tolerances are multiplied
by the parameter s, and a 2nd order Taylor series in s is computed.
This gives the error of an axial angle sensor due to assembly tolerances

tan∆ϕaxial ∼= tan∆ϕaxial
min + Λaxial (27)

tan∆ϕaxial
min =

3

4
β2 sin 2α +

3

4
λ2 sin 2 (α + γ + ϕ)

+βλ (sin (γ + ϕ) + 3 sinα cos (α + γ + ϕ)) − ϑ (28)
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Λaxial = Λaxial
1

b1 (R0, εz + δz)

b2 (R0, εz + δz)
+

Λaxial
1z R0

b2 (R0, εz + δz)

∂b1 (R0, εz + δz)

∂z
+

Λaxial
2z R0

b2 (R0, εz + δz)

∂b2 (R0, εz + δz)

∂z

+Λaxial
2Rz

R2
0

b2 (R0, εz + δz)

∂2b2 (R0, εz + δz)

∂R∂z

+Λaxial
2zz

R2
0

b2 (R0, εz + δz)

∂2b2 (R0, εz + δz)

∂z2
(29)

Λaxial
2Rz = (1/(2R0)) sin (2 (α + γ + ϕ)) {εrλ cos (χ − γ)

+βεr cos (χ − 2γ − ϕ) + βεzλ cos (γ + ϕ) + β2εz cos (2 (γ + ϕ))

+δrλ cos (α − η + γ + ϕ) + βδr cos (α − η + 2 (γ + ϕ))} (30a)

Λaxial
2zz = (−1/4) sin (2 (α + γ + ϕ))

{

λ2 −
(

ε2
r/R2

0

)

cos (2 (χ − γ))

−2β
(

εzεr/R2
0

)

cos (χ − 2γ − ϕ) −
(

δ2
r/R2

0

)

cos (2 (α − η + γ + ϕ))

−2
(

δrεr/R2
0

)

cos (α − χ − η + 2γ + ϕ) + 2λβ cos (γ + ϕ)

+β2
(

1 − ε2
z/R2

0

)

cos (2 (γ + ϕ))

−2
(

δrβεz/R2
0

)

cos (α − η + 2 (γ + ϕ))
}

(30b)

Λaxial
2z = (1/R0) (β cos α + λ cos (α + γ + ϕ))

(βεz sinα + δr sin η + εr sin (α + χ + ϕ)) (30c)

Λaxial
1z =

(

3β2/4
)

sin (2α) + β2
(

ε2
z/R2

0 + 3/4
)

sin (2α + 4 (γ + ϕ))

+
(

3λ2/2
)

sin (2 (α + γ + ϕ)) +
(

ε2
r/R2

0

)

sin (2 (α − χ + 2γ + ϕ))

+ (3βλ/2) [sin (2α + γ + ϕ) + sin (2α + 3 (γ + ϕ))]

+2
(

εrβεz/R2
0

)

sin (2α − χ + 4γ + 3ϕ)

+2
(

δrεr/R2
0

)

sin (3α − χ − η + 4γ + 3ϕ)

+
(

δ2
r/R2

0

)

sin (4 (α + γ + ϕ) − 2η)

+2
(

δrβεz/R2
0

)

sin (3α − η + 4 (γ + ϕ)) (30d)

Λaxial
1 = (2/R0)

{

β2εz sin (2α + 4 (γ + ϕ))

+βεr sin (2α − χ + 4γ + 3ϕ) + εrλ sin (2α − χ + 3γ + 2ϕ)

+βδr sin (3α − η + 4 (γ + ϕ)) + βεzλ sin (2α + 3 (γ + ϕ))

+λδr sin (3 (α + γ + ϕ) − η)} (30e)

To sum up, the total angle error is composed of two parts:

• The first one is ∆ϕaxial
min . It depends on the tilt and twist angles

of magnet (α, β) and sensor (γ, λ) against the rotation axis, but
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it does not depend on the eccentricities (εr, δr, χ, η). It also does
not depend on any properties of the magnet.

• The second part of the angle error (Λaxial) is a sum over five
derivatives, which account for inhomogeneities of the magnetic
field. Therefore they also depend on the radius of the Hall circle
(R0). For one specific magnet numerical values of these derivatives
are given in Table A1 of Appendix A.

It is possible to simplify the expression Λaxial for small R0.

lim
R→0

b2 (R, z)=R

H/2
∫

z′=−H/2

3

4
R′2 z − z′

(

R′2 + (z − z′)2
)5/2

dz′ (31a)

lim
R→0

1

R

∂b2 (R, z)

∂z
= lim

R→0

∂2b2 (R, z)

∂R∂z
= lim

R→0

−8

R2
b1 (R, z)

=

H/2
∫

z′=−H/2

3

4
R′2 R′2 − 4 (z − z′)2

(

R′2 + (z − z′)2
)7/2

dz′ (31b)

lim
R→0

1

R

∂2b2 (R, z)

∂z2
= lim

R→0

−8

R2

∂b1 (R, z)

∂z

=

H/2
∫

z′=−H/2

15

4
R′2

(

z−z′
) 4 (z−z′)2−3R′2

(

R′2+(z−z′)2
)9/2

dz′ (31c)

Finally one ends up with only two functions that describe the magnet.

lim
R→0

Λaxial = Λaxial
T T̃ axial + Λaxial

E Ẽaxial (32a)

Λaxial
T = (β cos α+λ cos(α+γ+ϕ))(δr sinη+εr sin(α+χ+ϕ)

+βεzsinα) + (1/4)
{

β2εz sin (2α) + βδr sin (α + η)

+βεr sin (2α + χ + ϕ) + βεzλ sin (2α + γ + ϕ)

+ δrλsin(α+η+γ+ϕ)+εrλ sin(2α+χ+γ+2ϕ)} (32b)

Λaxial
E = (1/8)

{

δ2
r sin (2η) + ε2

r sin (2 (α + χ + ϕ)) + β2ε2
z sin(2α)

+2βεzδr sin(α+η)+2βεzεr sin(2α+χ+ϕ)

+2δrεr sin (α + χ + η + ϕ)} (32c)

T̃ axial= lim
R→0

1

b2 (R, εz + δz)

∂b2 (R, εz + δz)

∂z
, (32d)

Ẽaxial= lim
R→0

1

b2 (R, εz + δz)

∂2b2 (R, εz + δz)

∂z2
(32e)
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The so-called shape functions T̃ axial, Ẽaxial are analogous to T̃ , Ẽ
in [1]. They describe how tilts and eccentricities lead to angle errors.
Also some of the terms in (32b) and (32c) are identical to (20) in [1].

There is no simple relationship between T̃ axial, T̃ or Ẽaxial, Ẽ.

T̃ = lim
R→0

1

R

b2 (R, εz + δz)

b0 (R, εz + δz)
, Ẽ = lim

R→0

2

R2

b1 (R, εz + δz)

b0 (R, εz + δz)
(33)

Although the shape functions of perpendicular angle sensors were
defined as derivatives of field components in [1], they can also be
expressed as simple ratios of field components according to (33).

Moreover, the relation T̃ T̃ axial = −4Ẽ holds.

4.3. Errors of AxialC8 Sensors due to Assembly Tolerances

An axialC8 sensor is made of two axialC4 sensor layouts rotated against
each other by 45◦. The rotated axialC4 angle sensor of Fig. 4 has Hall
plates at

(

x(8), y(8), z(8)
)

=
(

R0

/√
2, R0

/√
2, 0

)

,
(

−R0

/√
2, R0

/√
2, 0

)

,
(

−R0

/√
2,−R0

/√
2, 0

)

, and
(

R0

/√
2,−R0

/√
2, 0

)

. Repeating the
calculation of the last subsection gives

tan∆ϕ̂axial ∼= tan∆ϕ̂axial
min + Λ̂axial (34)

∆ϕaxial
min = ∆ϕ̂axial

min (35)

Λ̂axial = Λ̂axial
1

b1 (R0, εz + δz)

b2 (R0, εz + δz)
+

Λ̂axial
1z R0

b2 (R0, εz + δz)

∂b1 (R0, εz + δz)

∂z

+
Λ̂axial

2z R0

b2 (R0, εz + δz)

∂b2 (R0, εz + δz)

∂z

+Λ̂axial
2Rz

R2
0

b2 (R0, εz + δz)

∂2b2 (R0, εz + δz)

∂R∂z

+Λ̂axial
2zz

R2
0

b2 (R0, εz+δz)

∂2b2 (R0, εz+δz)

∂z2
(36)

Λ̂axial
2Rz = (1/(2R0)) cos (2 (α + γ + ϕ)) {εrλ sin (χ − γ)

+βεrsin(χ−2γ−ϕ)−βεzλ sin(γ+ϕ)−β2εz sin(2 (γ+ϕ))

−δrλ sin(α−η+γ+ϕ)−βδr sin(α−η+2 (γ+ϕ))}
Λ̂axial

2zz = (1/4) cos (2 (α + γ + ϕ))
{(

ε2
r

/

R2
0

)

sin (2 (χ − γ))

+2β
(

εzεr

/

R2
0

)

sin(χ−2γ−ϕ)−
(

δ2
r

/

R2
0

)

sin(2 (α−η+γ+ϕ))

−2
(

δrεr

/

R2
0

)

sin (α − χ − η + 2γ + ϕ)

+2λβ sin (γ + ϕ) + β2
(

1 − ε2
z

/

R2
0

)

sin (2 (γ + ϕ))

−2
(

δrβεz

/

R2
0

)

sin (α − η + 2 (γ + ϕ))
}
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Λ̂axial
1z =

(

3β2
/

4
)

sin(2α)−β2
(

ε2
z

/

R2
0+3/4

)

sin(2α+4 (γ+ϕ))

−
(

ε2
r

/

R2
0

)

sin (2 (α − χ + 2γ + ϕ))

+ (3βλ/2) [sin (2α + γ + ϕ) − sin (2α + 3 (γ + ϕ))]

−2
(

εrβεz

/

R2
0

)

sin (2α − χ + 4γ + 3ϕ)

−2
(

δrεr

/

R2
0

)

sin (3α − χ − η + 4γ + 3ϕ)

−
(

δ2
r

/

R2
0

)

sin (4 (α + γ + ϕ) − 2η)

−2
(

δrβεz

/

R2
0

)

sin (3α − η + 4 (γ + ϕ))

Λ̂axial
1 = −Λaxial

1 , Λ̂axial
2z = Λaxial

2z , (37)

where we denoted the parameters of the 45◦ rotated system by a hat.
For small R the results are identical to the last subsection

lim
R→0

Λ̂axial = lim
R→0

Λaxial = Λaxial
T T̃ axial + Λaxial

E Ẽaxial (38)

Thus, if an axialC8 sensor estimates the angle by applying some
function to the angles ϕaxial, ϕ̂axial obtained by the two axialC4
subsystems, its angle error does not change much. In the limit of
small R it is even identical to the axialC4 sensor (see (38)). At large
R0 there are differences between (30) and (37), yet they are small.

5. OPTIMUM MAGNET FOR AXIAL ANGLE SENSORS

For arbitrary R it is difficult to find an optimum magnet which
minimizes Λaxial. The question is, if a magnet exists, which makes all
five derivatives in (29) vanish. It is much simpler to find an optimum
magnet for small R, because this only means to make the two shape
functions vanish: T̃ axial = Ẽaxial = 0. Since the shape functions of
perpendicular and axial angle sensors are different it is obvious that in
general optimum magnets are different for both types of sensors.

For a spherical magnet with homogeneous magnetization in y-
direction one gets T̃ axial = −4/z, Ẽaxial = 20

/

z2. This is similar to the

shape functions for perpendicular sensors T̃ = −3/z, Ẽ = −3
/

z2 [1, 4].
In both cases, the shape functions do not vanish except for large z,
which means also large εz in Λaxial

T , Λaxial
E so that Λaxial does not vanish.

For cylindrical magnets it is always possible to find an axial
position εz which makes T̃ axial vanish: e.g., a 3 mm thick magnet with
10mm diameter with Hall plates 1.27 mm above or below the magnet.
Unfortunately Ẽaxial is large at the zeros of T̃ axial. Therefore the angle
error cannot be reduced significantly by this method.

One way to decrease both shape functions is to increase the
diameter of a cylindrical sample. This leads to large magnets with



94 Ausserlechner

diameters beyond 20 mm. In any case it is preferable to use a large
weak magnet (ferrite) instead of a small strong one (rare earth). If
both are adjusted to generate the same field strength at the sensor the
shape functions of the large magnet are smaller than the ones of the
small magnet and this gives smaller errors due to assembly tolerances.

In order to make both shape functions vanish one can use a
cylindrical magnet with a small recess in the surface facing the sensor.
This strategy worked for the perpendicular angle sensors in [1] and we
can also apply it to axial angle sensors. Yet the resulting magnets are
different! As an example we assume that the magnet is 3 mm thick,
its recess is 1 mm deep, and the sensor should be positioned 2mm
ahead of the recess (εz = 3.5mm). The radii of the magnet (R′

2)
and of the recess (R′

1) are two parameters that are varied in order
to make the shape functions vanish. The solutions are two curves in

 

Optimum magnet

0
~axial

=

T

0
~ axial

=

E

 

 

2

 

 

 
not physically meaningful Shaded  area:  

3mm

1mm  

 
 

R'  [m]

pole with

sign-reversal

R '  = 4.68 mm2

R '  = 3.48 mm1

R'  [m]1

R '       R '2 1^

Figure 5. Optimized magnet: Root locus for vanishing shape
functions in the (R′

1, R′
2)-plane. The magnet has a diameter of 2R′

2 and
it is 3mm thick. It has a 1 mm deep cylindrical hole with diameter 2R′

1
on its top facing the sensor die. The axial distance between top surface
of the magnet and the sensor elements is 2mm. The magnetization
is homogeneous and points in y-direction. At the intersection of the
curves both shape functions vanish. Thus the optimum magnet has
R′

1 = 3.48mm, R′
2 = 4.68mm — there the robustness of the angle

sensor against assembly tolerances is maximized.
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the (R′
1, R

′
2)-plane: one curve represents all combinations (R′

1, R
′
2) to

make T̃ axial = 0, the other curve represents all combinations (R′
1, R

′
2)

to make Ẽaxial = 0. Both curves are given in Fig. 5. Luckily there is
an intersection. At this specific set R′

1 = 3.48mm, R′
2 = 4.68mm both

shape functions vanish. This gives an optimum magnet with 9.36 mm
diameter and 3 mm thickness and a 1 mm deep hole having 6.96 mm
diameter.

6. AXIAL VERSUS PERPENDICULAR SENSORS

Although large contributions to the angle error vanish for optimized
magnets there is still some part left: ∆ϕaxial

min in (28). This is similar to
perpendicular angle sensors [1, 4, 5]: also there optimization of magnets
can avoid large angle errors but a residual angle error is left

tan∆ϕperpendicular
min =

(

β2
/

4
)

sin 2α +
(

λ2
/

4
)

sin 2 (α + γ + ϕ)

+βλ sinα cos (α + γ + ϕ) (39)

Comparison of (28) and (39) gives an important relation, which is a
central aspect of this work

tan∆ϕaxial
min = 3 tan∆ϕperpendicular

min + βλ sin (γ + ϕ) (40)

This means that the angle errors of axial angle sensors are about three
times larger than the errors of perpendicular angle sensors.

How can we understand this? In (1) we stated that the ideal
magnetic field for axial angle sensors has a z-component which varies
linearly against y-position. Yet it also has to satisfy Maxwell’s
equations, which means that its curl must vanish. Hence the ideal
field is

~Baxial = const × (z~ny + y~nz) (41a)

 

ϕ∆

ME-error  360°

2*AE-error  ϕ
 

Figure 6. Definition of ME -angle error and AE -angle error.
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This is in contrast to the much simpler homogeneous fields of
perpendicular angle sensors

~Bperpendicular = const × ~ny (41b)

Perpendicular angle sensors ideally work with homogeneous magnetic
fields, whereas axial angle sensors ideally work with fields which
are linearly varying in two components. Hence, it is intuitively
understandable that homogeneous fields give rise to smaller distortions
due to assembly tolerances than inhomogeneous gradient fields.

In order to get a better picture of the difference in errors between
axial and perpendicular angle sensors we performed a Monte Carlo
simulation with 10000 cases of random assembly tolerances on the
basis of (28) and (39) (for optimized magnets). The angles β, λ were
Gaussian distributed with zero mean and 1◦ standard deviation. The
angles α, γ were uniformly distributed in [0◦, 180◦]. ϑ was 0◦. For each

case the complete curves ∆ϕperpendicular
min and ∆ϕaxial

min were computed
for the entire revolution 0 < ϕ < 360◦ and the maximum magnitude
of ∆ϕmin was looked for. This is the ME -error as defined in [1, 4, 5]
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Figure 7. Comparison of ME -angle errors for axial and perpendicular
systems with optimized magnets. The angle errors are given by (28)
and (39). The diagram has 10000 dots, each one representing one
case of assembly tolerances of a Monte Carlo simulation. The tilt
angles β, λ were Gaussian distributed with zero mean and 1◦ standard
deviation. ϑ was 0◦. Under these realistic assumptions the axial
angle sensors have roughly 2.8 times larger ME -angle errors than
perpendicular angle sensors. The excess ME -angle error is positive
for all 10000 samples — so among the 10000 cases there was not a
single case where the axial angle sensor showed smaller error than the
perpendicular one.
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ME -error and (b) largest ME-error. The values of assembly tolerances
are given in the plots.
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Figure 9. ME -angle errors for axial and perpendicular angle
sensors with magnet “ML” as defined in [5]. The plot shows the
complementary cumulative distribution function (CCDF), which plots
the percentage of systems having an ME -angle error exceeding the
value on the abscissa [4]. This gives T̃ axial = −186m−1, Ẽaxial =

−338938m−2, T̃ = 196.1 m−1, Ẽ = 9124.1m−2. The angle errors are
given by (27), (28), (32) for the axial sensor and by (20) in [1]. Both
curves in the diagram were obtained by 10000 raw data, respectively,
each data point representing one case of assembly tolerances of a Monte
Carlo simulation. The angles β, λ were Gaussian distributed with
zero mean and 1◦ standard deviation. ϑ was 0◦. The eccentricities
εx, εy, δx, δy were Gaussian distributed with zero mean and 0.1mm
standard deviation. Angles α, γ were uniformly distributed in [0◦,
180◦]. Under these realistic assumptions the worst case of 1000 axial
angle sensors has 0.8◦ ME -angle error whereas for perpendicular angle
sensors it has only 0.25◦.
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(Fig. 6). It is the largest deviation between estimated and true angle
within 360◦ rotation of the magnet.

The results are shown in Fig. 7, where the excess ME -error of axial
systems (= MEaxial − MEperpendicular) is plotted on the ordinate and
the ME -error of perpendicular systems (= MEperpendicular) is plotted
on the abscissa. The interesting finding is that for all 10000 cases the
excess ME -error is positive! This means that in all cases the ME -error
of axial sensors is larger than the ME -error of perpendicular sensors.
A linear fit shows that MEaxial ≈ 2.7593 × MEperpendicular. For the
same set of data the AE -error as defined in [1, 4, 5] and Fig. 6 was also
computed. It is half of the difference between maximum and minimum
of ∆ϕmin in 0◦ ≤ ϕ < 360◦. Again the excess AE -error of axial systems
is positive and a linear fit gives AEaxial ≈ 2.4694×AEperpendicular. Thus
the three results AE -error, ME -error, and (40) consistently show that
axial angle sensors have 2.5, 2.8, and ≈ 3 times larger errors caused by
assembly tolerances than perpendicular angle sensors.

In Fig. 7 the ME -errors are small: MEperpendicular < 0.16◦ and
MEaxial < 0.4◦. This is due to the assumption that the magnets
are optimized so that their shape functions vanish. In this paragraph
we compare axial and perpendicular sensors for a typical magnet of
10mm diameter, 2 mm thickness, and a distance of 1mm between the
surface of the magnet and the sensors. The same magnet “ML” was
used in [5]. For the perpendicular angle sensors we assumed optimized
XMR-layout [1, 5], and for the axial angle sensors we used the small-R
approximation (32). As tolerances we assume 1◦ and 0.1mm standard
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Figure 10. Excess ME -errors of axial angle sensors for the data of
Fig. 9. It assumes slightly negative values for a few combinations of
assembly tolerances, yet the majority of axial angle sensors has larger
ME -error than perpendicular angle sensors.
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deviations and Gaussian distributions with zero mean. The angles
α, γ were uniformly distributed in [0◦, 180◦]. The Monte Carlo
simulation comprised 10000 cases of tolerances. Two specific cases are
given in Fig. 8. In Fig. 9 the complementary cumulative distribution
function CCDF shows a huge difference between axial angle sensor and
perpendicular angle sensor: the worst errors of perpendicular systems
are nearly 4 times smaller than of axial ones. The data of Fig. 9 is
rearranged in Fig. 10, which shows the excess ME -error. There it is
visible that for some of the 10000 random cases of assembly tolerances
the excess ME -error is negative (−0.13◦). In other words, for these
cases the magnet is better suited for axial than for perpendicular angle
sensors. Yet on average the perpendicular angle sensor has 2.85 times
smaller ME -error than the axial angle sensor.

7. CONCLUSION

We coined the terms axial versus perpendicular angle sensors for
angle sensors that estimate the rotational position of a magnet by
detecting the magnetic field components parallel versus orthogonal to
the rotation axis. The basic building block of axial angle sensors is
the axialC4 cell, where four Hall plates are arranged evenly on a circle
that is concentric to the axis of rotation. For good angle accuracy
the axialC4 cell needs a diametrically magnetized magnet of rotational
symmetry (Fig. 3). Contrarily perpendicular angle sensors work with
all shapes of magnets. The axial angle sensor can make up for this
insufficiency by adding a second axialC4 cell, the layout of which is
rotated against the first axialC4 cell by 45◦. In such an axialC8 sensor
both subsystems estimate the rotation angle and the system uses the
average of both estimations as best guess (Fig. 4).

The dominant part of angle errors is caused by assembly tolerances
of magnet and sensor versus rotation axis (tilts and eccentricities).
Assembly tolerances lead to distortions of the field on the sensor. Due
to the nonlinearity of these distortions the error caused by several
simultaneous tolerances is notably larger than the sum of errors of
individual tolerances [5]. Therefore the worst case out of thousand
systems in the production line has a significantly larger angle error
than typical systems (Fig. 9). For axial sensors the errors caused
by assembly tolerances are minimized by optimized magnets with
vanishing shape functions (Fig. 5). Also the error of perpendicular
angle sensors can be minimized by optimized magnets, yet the magnets
for axial and perpendicular sensors are different.

Even for optimized shapes of the magnet a certain angle error is
unavoidable due to assembly tolerances, namely tilts of magnet and
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sensor against the rotation axis. This holds for all kinds of magnetic
angle sensors. However, for axial angle sensors this unavoidable
angle error is three times larger than for perpendicular angle sensors
(see (40)). These differences are not just theoretical — they are indeed
relevant in practice, particularly in high volume production. In the
future it should be possible to reduce these errors by adding a soft
magnetic layer with high permeability across the entire bottom surface
of the sensor die according to [16].

APPENDIX A.

In Table A1 we summarize the magnetic field derivates of (29) for the
magnet of Fig. A1.

APPENDIX B.

Here we discuss the angle error caused by the magnetic nonlinearity
of the Hall plates. Thereby we neglect assembly tolerances. At large

Table A1. Magnetic field derivatives for the magnet of Fig. A1 at
R0 = 1 mm. b0, b1, b2 were checked by a finite element simulation.

z [mm] b0 b2
b1
b2

−2.5 −0.110 −0.023 0.019

2.5 −0.099 0.020 −0.002
R
b2

∂b1
∂z

R
b2

∂b2
∂z

R2

b2
∂2b2
∂z2

R2

b2
∂2b2
∂R∂z

0.046 −0.150 −0.382 −0.122

0.022 0.012 −0.176 −0.011

  

R 

z 

z = 0.0015m  

z = –  0.0015m  R = 0.003m R = 0.006m

Figure A1. Magnet with rotational symmetry. The magnetization is
homogeneous and points in y-direction.
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fields the Hall signal is proportional to

h ∝ Bz

/(

1 − (8/π − 1)µ2B2
)

(B1)

with the Hall mobility µ ≈ 0.14/T in silicon and B2 = B2
x + B2

y +

B2
z [17]. The question is if the denominator may lead to angle

errors. For magnets with homogeneous magnetization in y-direction
and rotational shape Section 3.2 gives

B2 = (µ0M)2
{

b2
0 + b2

1 + b2
2

/

2 − cos (2ϕ)
(

2b0b1 + b2
2

/

2
)}

(B2)

So if the magnet fulfils the condition

−4b0b1 = b2
2 (B3)

the magnetic nonlinearity of the Hall plates leads to zero angle error.
The task is to find values for εz,H, R′(z′) that fulfil (B3) for a given
R (which is determined by the layout of the sensor).

Inserting (B1) and (B2) into (28) with α = γ = 0 gives the angle
error caused by the nonlinearity of the Hall effect

∆ϕNL
∼= (8/π − 1) (µµ0M)2

(

b0b1 + b2
2

/

4
)

sin (4ϕ) (B4)

With the values of Table A1 we obtain small errors: 0.00018◦

at z = −0.0025 m and 0.00032◦ at z = −0.0025m for µ0M = 1 T.
Moreover the argument from Section 3.2 again holds: since the error
has a 90◦ periodicity it is greatly reduced in an axialC8 system. Thus
the nonlinearity of the Hall effect in silicon does not play a notable
role in errors of axial angle sensors.

APPENDIX C.

So far we assumed that the chip surface is exactly plain. Yet, in [18] it
was proven that the chip has a typical warpage of about 0.1◦ depending
on temperature, aging of organic materials, and moisture content of the
mould compound of the sensor package. Axial sensors are larger than
perpendicular ones due to the Hall circle with diameter 2R0. Does this
warpage lead to angle errors?

We assume a test point at azimuthal position ψ = ϕ in Fig. C1.
When the magnet is rotated by ϕ in negative direction this point is at
Hall plate 1. There the axial field component is Bz(ϕ) and the radial
one is BR(ϕ) = Bx(ϕ) cos ϕ + By(ϕ) sin ϕ. The normal field on the
Hall plate 1 is

B⊥

1 = Bz(ϕ) cos θ + BR(ϕ) sin θ (C1)
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Figure C1. Magnetic field components on a warped chip.

For the other Hall plates we have to replace ϕ → ϕ + ψ(8). With
(12a)–(12c) we get the signals

h13 = 2 (b2 cos θ + (b0 + b1) sin θ) sin ϕ (C2)

h24 = 2 (b2 cos θ + (b0 + b1) sin θ) cos ϕ (C3)

Symmetric warpage across x- and y-axis of the chip would not lead to
errors. Yet asymmetric warpage means θ = θy in (C2) and θ = θx in
(C3) with θx 6= θy. This leads to an angle error

sin∆ϕwarp =
h13 cos ϕ − h24 sinϕ

√

h2
13 + h2

24

∼= sin(2ϕ)

2
√

2

b0 + b1

b2
(θy − θx) (C4)

Inserting the numbers of Table A1 for the magnet of Fig. A1 gives
∆ϕwarp ∼= 1.7(θy − θx) sin(2ϕ). For the warpage we take the measured
values of Fig. 19 in [18]: at low temperature we get θx = 0.076◦,
θy = 0.05◦ for 2R = 1.1 mm. This leads to an angle error of 0.044◦.
Note that even though the warpage (in Fig. 19 in [18]) is smaller at
room temperature the difference θy − θx is constant up to 70◦C.

To sum up: warpage is not a significant problem as long as the
Hall circle has a diameter about 1 mm and the aspect ratio of chip and
package is within 0.7 . . . 1.4.

APPENDIX D.

This paper discussed axial angle sensors that estimate the angular posi-
tion of the magnet by the gradient of the plane Bz

(

x(8), y(8), z(8) = 0
)

,
which leads to (21). The state of the art knows different algorithms

which look for the zero crossing of the field Bz(x
(8), y(8), z(8) = 0) = 0.
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To this end they place an array of Hall plates on the die and look for
neighbors detecting magnetic fields with opposite polarity. Since the
field has a sinψ-behavior one can interpolate the exact ψ-value for zero-
crossing between these two neighbors. This algorithm is simpler than
the arctan-calculation in (21), which saves resources and time delay.
It is also better than axialC4 systems because it works with general
shapes of magnets just like axialC8 systems. Yet, it does not reduce
angle errors caused by assembly tolerances, because they result from
the distortion of the field onto the tilted chip surface. The problem of
mismatch of Hall plates is slightly less, because the neighboring Hall
plates are closer than the Hall plates in an axialC4 angle sensor, which
usually improves matching. However, simple zero tracking systems do
not cancel homogeneous disturbance fields any more: a background
field lifts the entire Bz-plane thereby shifting the zero trace laterally
so that it does not go through the rotation axis any more. Better algo-
rithms detect also the second neighbor pair of Hall plates around the
zero-crossing which is roughly opposite the first one. Then it is again
possible to cancel homogeneous disturbance fields.

All algorithms fit a plane into an array of test points defined by
the Hall plates on the chip. They compute the orientation of this
plane (which correlates with the zero crossing of this plane) and infer
the rotation angle. The details of signal conditioning differ between
various types of axial angle sensors, but the results of Sections 4, 5, 6
still hold.

APPENDIX E.

Mechanical stress affects offset and magnetic sensitivity of Hall plates.
We briefly discuss its influence on the angle error.

If the Hall plates are operated in a spinning current scheme [12],
the raw offset of about 10 mT is reduced by two to three orders in
magnitude so that finally the signals only have a residual offset of
about 30µT. If the Bz-field is 30 mT at each Hall plate the signals are

h13 = 2 × 30mT × sinϕ ±
√

2 × 30µT, (E1a)

h24 = 2 × 30mT × cos ϕ ±
√

2 × 30̆µT (E1b)

Thereby the 30µT of h13 and the 30̆µT of h24 are uncorrelated,
because they originate from different pairs of Hall plates. With (22)
the error caused by offset at rotational position ϕ is

tan∆ϕoff =

(

2 × 30mT × cos ϕ ±
√

2 × 30̆µT
)

sinϕ

−
(

2 × 30mT × sinϕ ±
√

2 × 30µT
)

cos ϕ

2 × 30mT +
√

2
(

±30µT ± 30̆µT
)

sinϕ cos ϕ
(E2)
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The worst case angle error occurs at ϕ = 45◦. It is

∆ϕoff < arctan

√
2 × 30̆µT

2 × 30mT
= 0.04◦ (E3)

Hence, with strong magnets the offset does not give large errors.
The magnetic sensitivity of Hall plates depends on the sum

of in-plane stress components ∝ (1 + P12 (σxx + σyy)), with P12 ≈
45%/GPa [14]. The current which supplies the Hall plates is defined
by resistors, which suffer from piezo-resistivity of about −24%/GPa in
the case of generally used n-doped resistors [14]. Thus the Hall output
signals have a sensitivity to mechanical stress of roughly 69%/GPa.
If all Hall plates experience the same mechanical stress this would
not affect the angle error, because equal factors in the nominator and
denominator of (22) cancel. However, in practice the package is not
symmetrical and the die is positioned asymmetrically due to pick-
and-place tolerances at the assembly line. SMD packages suffer from
mechanical stress asymmetries coupled from printed circuit boards to
the chip. For a guess of inhomogeneities of mechanical stress on the
Hall plates we refer to [18]: there measurements in Fig. 20 show that
σxx+σyy changes by 80 MPa between packages that were first dried out
in an oven and afterwards stored at large ambient humidity for several
days. We estimate that stress inhomogeneity across the Hall circle is
equal to at least 1/8th of this stress drift. This gives a mismatch of
69%/GPa×10MPa = 0.69% between h13 and h24. With (22) the error
is

tan∆ϕmismatch =
cos ϕ sinϕ − (1 − 0.0069) sinϕ cos ϕ

cos2 ϕ + (1 − 0.0069) sin2 ϕ
(E4)

So the worst case angle error is

∆ϕmismatch < arctan (0.0069/2) = 0.2◦ (E5)

Thus, stress induced mismatch is a significant source of errors in axial
angle sensors. Note that stress is not constant versus lifetime; it
depends on temperature and moisture content of the mold compound
of the sensor package and the printed circuit board. One efficient way
to tackle this problem is by way of stress compensation circuits [19, 20].

With (E5) we can also take account of other sources of mismatch
in magnetic sensitivity of the Hall plates (e.g., spread of thickness of
Hall plate) by replacing the factor 0.0069 with the mismatch.
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