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The importance to the mechanism of ferromagnetim of exchange interaction between conduction
electrons and unfilled inner shell electrons (called s-d interaction) has been pointed out by Zener.
Especially for rare earth metals, this interaction seems to be the only mechanism which can cause
ferro- and antiferromagnetism. However Zener’s works are unsatistisfactory because his model is
phenomenological and moreover does not involve antiferromagnetism and spin wave mode.

Qur paper considers this s-d interaction on a more rigorous basis. By a certain approximation,
there appear long range erchange type interactions between d-electron spins and, in certain conditions
both ferro- and antiferromagnetism appear. The excitations of spin wave modes are the same as
those in the ordinary modes of the short range exchange force, viz, the energy of the spin wave
excitations is proportional to g2 for ferromagnetism and ¢ for antiferromagnetism in the region of
small wave vector g. The T3 law for the temperature dependence of the magnetization of ferro-
magnetism is applicable up to very high temperatures, and this result is in good agreement with the
results of experiments on metallic ferromagnetism.

§ 1. Introduction

Since Heisenberg,” there have been many discussions on the origin of the ferro- and
antiferromagnetism ; however, no satisfactory theory has so far been offered. The simplest
theory is that of Heisenberg using atomic wave functions, a standpoint which may be
suitable for non metallic substances. Even in such a case, however, there exist certain
ambiguities, as was pointed out by Slater.”’ It is generally accepted that Heisenberg’s
model can not be adopted for metallic ferromagnetism where the situation is more difficult.
It is conceivable that there are two different standpoints. for the origins of ferro- and
antiferromagnetism. One regards the exchange interaction between the inner shell electrons
as very important to the origin of ferro- and antiferromagnetism, and considers the role of
conduction electron to be negligible. The other regards the exchange interaction between
the conduction electron and the inner shell electron as essential. The former inter-
action may be essential for transition metals, e. g., Ni, Fe, Co, Cr, Mn, etc., but for rare
earth metals, this interaction almost completely vanishes and the latter interaction seems to
increase in importance. Even for transition metals, the latter interaction exists and plays
an important role in many phenomena ; for example, in the relaxation process of microwave

39 in the anomalous electrical resistance of transition metals,” and in

resonance absorption ;
the temperature dependence of the anisotropy energy of Ni” as was previously discussed
by the author. This interaction (s-d interaction) was first discussed by Zener.” However

his treatment is only phenomenological and on many points unsatisfactory, because his
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thcory does not involve antiferromagnetism or spin wave escitation. In this paper we

consicer this interaction on a rigorous basis, and obtain some interesting results.
§ 2. Basic Hamiltonian
The original Hamiltonian is written as follows,
_ 2 2
H=3pt/2m+ 31 Son(Ir— R + 35 ¢/ )
n

where the first term is the kinetic energy of the electrons, the second the interaction
between the electrons and the ions, and the third the Coulomb interaction between the
electrons. Here we consider .that the positions of ions are fixed in their equilibrium
positions. Now- we treat Eq. (1) by the method of the second quantization and expand
the quantized wave functions as follows ;

¢ (r) =2; a4y Pry (1)
) =SS a ek ),

where ¢ and v represent the character of orbital state and the direction of spin respectively

(2)

and ¢,,(r) satisfies the following equation,

{P2/2m—|—v(r)} 0 (1) =& 05, (1), 3)
where the potential v(r) is one to be determined later.
By using expansion (2), Hamiltonian (1) ‘becomes

H=33} E,a,;"aw—zzlz a ¥ (tlv—v,|t Yy,
+%22222% "tTv“cf:L(tu tziez/r

t1 2 I3 f4

L'ty > Arap psye 4)

Now v(r) is determined self-consistently as follows
v(r) —v,(7) =;§ (¢; 7|/ |lr—r||t5 V) ek ay,. (5)

Among the remaining terms of the third term of (4), we neglect the interaction
between the conduction electrons because this interaction gives the cotrelation and the eak
exchange interaction, and is negligible compared with the exchange - inferaction between the
conduction and the unfilled inner shell -electrons. Among the remaining interacijons
between the unfilled shell electrons, the intra-atomic interaction gives a strongy Hund coupling.
On the other hand, the inter-atomic interaction is complicated for transition metals, while
for rare earth metals it is negligibly small. We omit the term “ intet-atomic” in this
paper. The remaining interactions between the conduction electrons and the unfilled shell
electrons are composed of two terms. The first term represents the transition between the
conduction and the unfilled shell electrons, and this is of a higher order than -the second
term. We neglect the first term in this paper, but as this interaction seems to play some
roles in the phenomena of rare earih meuals, we will calculate it in a later papers. The
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A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model 47

second term does not contain the transition between conduction and unfilled shell electrons.
and is written as follows

SIS SN AR a (T, 46 /7|t Ty Arey

TiwxTe tixta Vv @

+%%2222 A;w-alﬁb(TI’ t1|e2/'|T2, t2>AT5|J-alav (6)

71 3 Vv ®

where large letters mean the operators of the unfilled shell electrons and small letters those
of the conduction electrons.

The first term in (6) represents the correlation energy and does not depend on the
direction of the spins; therefore we neglect this term. The second term represents the
generalized exchange interaction between the conduction and the unfilled shell electrons,
and depends on the direction of the spins. For rare earth metals except Gd, there remains
an orbital moment and J=L-+S is a good quantum number; hence the situation is
quite complicated. With this situation we shall treat in another paper. Here as our
first assumption we consider only where the orbital moment vanishes. This condition is
fulfilled in Gd and transition metals. Next, we assume that the wave functions of the
conduction electrons are well approximated by the Bloch type wave functions and the wave
functions of the unfilled shell electron ate approximated by atomic wave functions neglecting
the overlapping between the different atomic wave functions. Then for the creation and
annihilation operators of unfilled shell' electrons we can substitute the spin operators S,
and we get the following Hamiltonian

Hg:;Ev 8:“:;‘ dw—N_I;‘%E%}J(f, t’) €xp [i(k,——k,;)Rﬂ]
X {(dh ap—afay )S;+atay S +a 4.8}, )

where ‘N is the number of fhagnetic lattice poinés in a unit volume, and
J@&, &) =NSS drdry @ (r) 9F (1) € /713 * Pan (r9) 90 (r) exp [i(k,—Ek)R,] (8)

does not depend on the lattice position R,. When an external field H, is applied, we
must add to (7) the Zeeman energy

Hyeman = —‘8 H, {212 ("t'i/' dp—ax ‘t;~) +gsz} . (9)

A similar method was used first by Y. Hasegawa, which is based on atomic functions.

For simplicity, we assume in this paper that the energy spectrum of the conduction
electron is free electron like, differing only in the effective mass m. Then the quantum
number ¢ in (7) is equal to the wave vector k. Next, as J(k, k') depends sensitively on
|k—E'| but on k or ¥ not sensitively, we assume that J(k, k') depends only on |k—K|.
It is difficult to obtain the actual functional form of J(g), but, it is clear that roughly it
behaves as follows; as g increases from zero, [(g) decreases slowly, and when ¢ approaches
the principal vector of the reciprocal lattice K, J(g) decreases rapidly to become very
small. From this simplification, Eq. (7) can be written also in a different” form. In-
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troducing the well-known spin-wave operators

§,=N""38, exp(iqR,),
" (10)
O'q=N_”2 >t o; exp(iqr,),

i

where r; and 0, are the coordinate and the spin operator of i-th electron, respectively, we

have
HS=%‘,$ ska,;‘,‘,akv—%J(q)SqG_q, (11)
or in the ordinary coordinates
Hy=31 p/2m~ I3 J(Ire—Ro|)S,04 (12)
where
J(Ir—R,]) =N“%‘.J(¢1) exp [i(r,—R,) q). (13)

The physical meanings of Eqs. (7), (11), (12) are quite distinct, namely, the
Coulomb interation between the conduction and the unfilled shell electron is periodic and
does not scatter the conduction electron, but when the spin directions of unfilled shell
electrons are disturbed, the exchange interactions are not periodic and do scatter the con-

duction electrons. The first order process gives rise to the resistivity, which effect has

been calculated in another paper. The second order process gives rise to the effective spin-spin
interaction between the unfilled shell electrons, which interaction we calculate in this work.

§ 3. The second order perturbation and the effective Hamiltonian

The Hamiltonian is
H,s=§k] BE/2m (o, ap, +aif a,.) —BH, (95,4 0,)
~ N SIS (kK Dexp [i(k— k) R,]

X A{(af aps —af ap ) S+ aff ap Sy +af_ap, S}, (1)
where
S2=2 sﬂ"

ce=2107 =3 (als are i a.).

(2)

The energy of the first order perturbation is
H®Y=—N-]J(0)0,S.. (3)

The energy of the second order perturbation is obtained as follows
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H®=—N=[37355 5P (|k—FK]) exp [i(k—K) R,/ (#*/2m) (€ —K)

X{fE)Y Q= B®)+f~E)YQ—f*R))S S
+%%;%}J%[k—k’|) exp [i(k—FK') R,/ (°/2m) (F—Fk?)
X E)YQ—F*@®)S ST+ ®F) A—f~(®))S 8] (4
or, exchanging the k and K/, and reatranging
H®=—N=23V315 3 P (|k—FK|) exp [i(k—K)R,,,)/ (#/2m) (E—Fk*)
T Wn m
XAF*(®) +f ~(K)) S 83
—NESSSF((E—F) exp[i(k—K')R,,]/ (#/2m) (K —F?)
¢ k' n om
X~ ®)S S+ (k) S}
+IISIF (k=) / /2m) F=E) {f~ @) "B ~F*O)f~B}S. (5)
where f* (k) and f~ (k) are the Fermi distribution function of plus and minus spin electrons,
respectively, and prime in >\ means that the summation does not include terms where
k=K, such terms having been already included in H®. This calculation is similar to

the nuclear I-I coupling in metals.”’ H® is now separable into two parts. One includes
R,=R,, and is written in the form o,S5, as follows

HE = — NSYSISVP (kK )/ (#/2m) (E—) {f* ®) -+~ ()} S5
—NSISISUR (k) / (5/2m) (B =K {f* () +f~ ()} (S2+52)
+ N SIS (k=K / (5 2m) (B —k?)
XA A—f ) =F B A=f* @IS (©)

The last term-in (6) is of a higher order when compared with H® or the remaining
terms of H®, because the expansion parameter of this perturbation is 2m J(0) /6%k? where
k; is the wave vector of the Fermi surface or o,/N.

The remaining terms of H™ are written as a sum of the spin-spin interactions between
the different lattice points :

HE=—N"SYSISISUP(h—K|) exp [i(h—K) Ry )/ (5/2m) (€ =)
X AF* () +f ()} 285
— N SISUSISU P (R — W) exp [i(k— k) Rynl/ 5/ 2m) (=)
XA W) +f~ W)} (S S2+5252)
— NS (R—K]) exp [i(k— )R]/ (5/2m) (€~ ")
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XAfH®)—f~(®)} (5 S —S5a S), (7)
where the last term is the higher order term and should be omitted in our approximation.
In the first and the second terms of (6) and (7) we can replace {f* (k) +f~(k)}/2
with the average distribution function f(k) in our approximation and performing the sum-
mation over k, H® becomes

H® = —g%f (Roum) St S;—-%%J Rum) (87 S 48488, (8)
where
J Ryw) =N"1 %’J (¢) exp (iqR,,.), 9
J(Rm)=N"‘E”](q) exp (iqR,,), (10)
J(@9) = (1/4a)F(9f(9), (11)
(@) =1+ (4k7 — ') [4k;q-In(2k;+9) / (2k,—9q), (12)
a=1/6-¥/m-q; [k, (13)
J(0) =1qi$] (9) =J?(0) /24, (14)

and 3 in (9) means the summation over all ¢, omitting q=0 in the terms S5, q»
is Debye’s cut-off wave vector.
The spin dependent Hamiltonian is now

Hy=316%% /2m- (af ap, +aft &) —BHL(95.+0)
~ N (008~ S5 Ren) S S5~ S Ren) SISE+SESD- (19

In our approximation, the first term of this can be written in o,, and o, determined
by the relation dH;/da,=0. Then, using (14), we have

HS= _B-I_Lg(]- +J(0)/94)Sz—N(fgI—Iz)g/Zd_,%l‘g.](Rmn)Snsm, (16)

.= (ABHzN—l_J (O)Sz) /d. (17)

The relations (16), (17) are fundamental equations in the following discussions.
The spin-spin interaction is thus of an exchange type.

§4. The ground states

As it is very difficult to obtain the exact solution for the ground state of the
Hamiltonian (16), we discuss here only two physically important cases, that is, ferro-
magnetic and antiferromagnetic ordering cases.

When the ground state is ferromagnetic, all the spins of the unfilled shell electrons
are parallel. This state is the exact solution of the Hamilionian (16) and the ground
state energy is
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Ej=—(BH,)*/2a- N—(9+](0) /a) BH.NS—N§*> ] (K), 1)

where K are the principal vectors of the reciprocal lattice, including K=0.

Hereafter we do not consider the effects of the external field. The effects of the
external field will be discussed separately. )

For the antiferromagnetic ordering, we assume a simplified model where the crystal
lattice is separable into two equivalent sublattices in each of which all the spins are parallel,
the magnetization of both sublaitices, however, being antiparallel. Contrary to ferromagnetism,
this state is not an exact ground state. As it is difficult to obtain the exact ground state
of antiferromagnetism, we calculate as usual by the method of spin-wave approximation and,
in the next section, we obtain energy correction due to the quantum effect in this way.
The zero order energy, namely rigid spin model, is easily obtained as follows

ES=—NS[SJ(R) ~3JR,)]
= —N$/2[3(6) 30 +3J(Q]
= —NS“’%}(Q), 2)

where R, and R, are respectively the distance between the lattice points on the same
sublattice and different sublattices, G the principal vector of the sublattice, and group {Q}
is a part of the group {G} and equal to {G} — {K}, thus excluding ¢=0.

The difference between E,’ and E; is

ES—E=NS[3} ()~ 3@} )

The sign of (3) depends sensitively on the dependence of J(q) on g¢. Ferromagnetic
ordering could be established when J(gq) decreases rapidly with increasing g.

As it is difficnlt to calculate J(g) exactly, we can mention in our approximation only
that s-d interaction can establish both -ferromagnetism and antiferromagnetism.

We must study the thermal stability of these ground states by examining the energy
specttum of the excited states. This is done in the next section.

§ 5. The excited states of ferromagnetism

In this section we calculate the energy spectrum of the excited states when the
ground state is ferromagnetic.

In low temperatures, actually the spin wave method is a good approximation. Now
we introduce the well-komn spin-wave opetator

Si=(28)"*(1—d} a,/25)""a,,
Sy =(28)"a} (1 —a;f a,/25)'", ®
S—Snz == d”* dps

and
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4,=N""2> exp(—igR,)a,
? (2)
af=N"3\exp (iqR,)d},
q

then expanding with respect to the parameter 1/2§ up to the term of the order of (1/25)°,
H=—N§$+253 51 J&) —J(K+qD]4} o,

+(2N"‘)EZZEEU(!K+%I)+J(!K+q4l> —2]J(|K+q,+q.))]

91 92 9s 9a
><3(q1+q2—qs—q4+K) ‘191* ‘193* dq, dg,. 3)
The first term in (3) is E; in §3. The second term is the excitation energy at
absolute temperature zero. The third term is the first order correction at finite temperatures.
In this section we consider only the second term. We are interested: in the low temperature
region, or in other words, in the small value region of wave vecior ¢, and hence we can
expand (3) by gq.
Introducing the following variables
x=q/2k, p=K/2k, X=p,
0= {(K+q)’—K’} /4k}=2px -+, (4)

the energy of the excited states of the spin wave of wave vector ¢ is

&'=28 3 [J(K) ~J(K+4qD]

—-— d 1 ed 1 d
a 28%{6dx+ dX2+ 6 e =t }](X)' )

Considering the crystal is to be cubic, and taking terms up to ¢', we have

840:“28‘?{"2(%;( 3 dX2)+— dx2+7 a’Xs)} J&X). ()

To perform further .calculations, we neglect the derivative of J(g). This neglect
may be a faitly good approximaiion when K=0, but not so good when K3c0. Therefore
this approximation may be justified when the contribution to &, is mainly from the part

K=0. Then
&' =4,(9/90)* + A4 (q/90)* 7)

S 2 1 X4 1 1
A0=_9_ qv) 20X 1 -
! 84( ky ST )(6X"'2 XP_1 T 3 X1

=3 (g )2[ Sreo(1 +%X +)

12a kf

S NI (R | ®)

3 Xx>1
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__J(q,,>ZJQ(X) 1 X+47 X1'2+1_LL¥;+ 1 1 )

8 XW X"2-1 4 X*X—1 3 X (X—1)°
= (5/2404) (g2/k)'[Z]F (X) (1+X+-+)
+5/2§f(X)X‘1(1+2X“‘+---)]. 9)

The condition of thermal stability of fettomagnetism is €'>0, or 4,">0. If the
part K350 were to make a larger contribution than that of K=0, the condition of the
thermal stability would be X'<1, or in other words, g,/k,<1, i.e., that the valency of
the conduction electron must be latger than 2. In thermal stability, the part X>1 con-
tributes only altmost zero and we can neglect this part.

Considering only the first term of the expansion of part X <1,

AL/ A= (1/20) (qn/k)>. (10)
For comparison, we give the result of the ordinary nearest neighbors interaction. In
this case

AL/ A= — (1/20) (gnR,)* (11)

where R, is the distance between the nearest neighbouring spins.
For simplicity, we put R, as a diameter of the sphere having the same volume as
the specific volume per magnetic lattice point. Then

(9pRy)*=23. (12)

Therefore (11) is considerably larger than (10), i.e., the T°° law of temperature de-
pendence of the magnetization may hold very well. We have calculated this phenomenon
in the next section.

§ 6. Temperature dependence of the magnetization

Recently Schafroth® calculated the temperature dependence of magnetization by the
vatiational method based on Kubo’s method.”” According to Schafroth the T°? law does
not hold except at vety near zero.

Such an implausible result is owing to the variational method, because by this method
the treatment of the diagonal and non-diagonal parts is quite at disparity and thus the
character of the exchange interaction is distegarded. Therefore an effective anisotropic
field appears and the excitation of the spin-waves is unnaturally depressed. This is the
reason for such an implausible result. To obtain reasonable results we must recognize that
the non-diagonal terms are important and that in the approximation of spin wave method
we must use an expansion with respect to the parameter 1/2S5. A detailed discussion was
given in a previous paper.””)

Here we calculate the departure of the temperature dependence of the magnetization
from the T law caused by the following three mechanisms, each up to the firsi order;
(i) the existence of the terms propottional to g¢* in the excitation energy &,; (ii) the
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higher otder terms in the expansion of the spin wave method, namely, the third term in
eq. (3) of §4; (iii) the restriction that the degree of freedom of motion of the spin
system is finite.

Now we consider the third term in eq. (3) of §4.

The excitation enetgy of the spin wave of wave vector g contributed by the third
term in (3) of §4 is

4,=2 qZ‘. ny/N -2 J(K+q) +J(K+q') —J(K) —J(K+q+4q'])]. (1)

Expanding in ¢ and using the same method as in § 4, we wave

— By P
4,= Tsz;v fz(

> L0, @

dX et 3 dX s
where

&' =q'/2ky, (3)

and the others have the same meaning as in § 4.
The form (2) is the same as the second term in (6), §4, and written with

Al as
10 2 I \2 n !
A=_A°<_q___> <L>_q_ 4
? 3 ! 9p % q N. S ( )
Adding this term, the excitation energy of the spin wave of wave vector ¢ becomes
&=4, (q/qp)2+/14°(q/qD)4, (5)
where

i 8 A (1 Yo

=4, 1+__— g 6
{ <q,)> g ©
A'=(1/20) (92/kp)* 4, (7
4°=(5/124) (g0/kp)* 3, (K) (8)

and the magnetization in finite temperature T is
9p
N§—§,= 20 [exp(&,/6T) — 1] (9
=

Replacing summation by the integration, and confining us only to the first order for
the deviation of each of the three causes, we get

3/2
NS—S,=3.5<’C_T [1—1 o kT A7 + sA—4
4y 47 4 47
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A20 Y2 °
-—o.43<ﬁ> exp (— A4, /:cT)]. (10)
Putting the values of (6) and (7), we have
NS—S§, —35("T ”[1—0.095(“) q” ’“T "
0N\1/2
—0.43 (%) exp (——A;’/ICT)]. 1)

For example, taking «T/A,'=1/2, the bracket in (11) is
[1—0.05(gn/k;)*— (0.21/5) (gp/k;)*—0.08] (12)

and the deviation is less than 15% for the usual metal. The result that the T°?2 law
holds very well is in good agreement with the experimental results for rare earth metals,
especially for Gd."”

Contrary to the above result, the T*? law does not hold so well when we use the
ordinary nearest neighbors interaction method. In that case

47/4'=— (1/20) (g2Ry)", (13)
A=A {1— (0.45/5) (qoR,)* (e T/4)"?}, (14)
and, as mentioned in §4, by approximating
(goR,)?=23, (15)
the bracket in (10) becomes
[1 +2. 2( >+£ 5I‘z—-o.43 (fl; 1ﬂexp (—A2°/ch)]. (16)

The deviation is very much larger than that in (11) and the T*? law holds only in low
temperatures. The peculiar term which appeared in Schafroth’s method does not appear
in outs.

§ 7. The excited states of antiferromagnetism

For antifertomagnetism, we also introduce the spin wave operators a%, 4, and &%, b,
which are the creation and annihilation operators, respeciively, at A and B sites. Then
taking terms up to the two spin wave process, in the expansion, we have

Hs=—N32%‘I'J ()
+25 >;j [33{7(6) ~J (6 +4D} —;J(Q) ~ S0 (e 4y +b7 by)
—ng?[;J(IQ-I-qI) —2J(K+4gD] b +c.c. (1)

We easily diagonalize (1) by the wellknown transformation, and (1) is written in
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the new operators af, a,, ;‘ and f3,, as
Hy—E,+ S36,(af o+ 656,

where

()

E,=—N§* 2H(Q—28 qZ[% (@) ~J(6+qD} -+§‘_.J(Q) *%](K')']*g &

(3)

&=45[{SUJ(Q=J(10+aD)} 3@ —3J(0 + U —J(K-+4))} ]~

%)

To perform this transformation, it is requited that (i) the coefficient o1 the second term

of (1) _be positive, and (ii) &, in (4) be real.
From §3 and §4, it is easily seen that

23% {J& —J(K+qD} =A20(9/91))2’
23% {J(@ —J(1Q+4qD} =B(9/95)%
23{%](@ —§](K)} =(2/NS) (E,—E,)=4E,

where B, is obtained from 4," by replacing K with Q.
By using (5), (6) and (7)
E,=E/—2[{4E+4"(3/90) " — (B) "9/90T,
7

&=2[B{4dE+4,"(4/95)} T" /90
and the restrictions (i) and (ii) become
(I) 4E>o,
an 4’>o,
amy B'>o.

(5)
(6)
&

(3)
)

(10)

(I) is fulfilled when antiferromagnetic state is mote stable than fetromagnetic in the ground
state energy. (II) is the same as in §4. (III) is usually fulfilled when (II) is fulfilled
or, strictly speaking, when the valency of the conduction electron is larget than unity.

These three restrictions are the same as of thermal stability of antiferromagnetism.

§ 8. Conclusion

Here ‘we summarize the above calculations.

(i) We assume that the conduction electron is nearly free electron like and that
the unfilled inner shell electron is localized and. the interaction between the unfilled shell

electrons in the different lattice points is small.

(i) We assume that the orbital moment of the unfilled shell electrons is quefched,
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This assumption is true for transition metals because in these metals the crystaline field is
very strong. In rare earth metals, however, l-s coupling is more important than the
crystaline field and'j is a good quantum mnumber and hence thé above assumption holds
only for Gd. We will treat in another paper the case in which j is a well considered
quantum number.

(iii) We assume the orbital configuration of the unfilled inner shell electrons to be
fixed. This is related to (ii). The effects of the excited configuration seem to be small.

(iv)  Under the above assumptions, the exchange interaction between the conduction
and. the unfilled inner shell electrons is written as a form of exchange type interaction
as in Eqs. (7), (11) and (12) in §2. The second order perturbation gives rise to the
effective -exchange:like ‘interaction between the spins in the different lattice points. The
character of this exchange-like interaction is a long range force and hence it is difficult to
obtain the real ground state. The ordering of the ground state depends sensitively on the
functional form of the generalized exchange integral J(g).

(v) When the ground state is ferromagnetic, the excited state is written by spin
wave mode, and the excited energy is propottional to the squate of the wave vector. The
T law of temperature dependence of the magnetization holds very well, which is satis-
factory to the experimental fact of Gd.

(vi) The excitation energy in the antiferromagnetic ordering is proportional to -the
absolute value of the wave vector.

(vii) For the thermal stability, it is required that the valence of the conduction
electron be larger than 2.

The phenomena in faitly high temperatures and in the paramagnetic region will be
treated in a following paper.

The author expresses his sincere appreciation to Prof. Ariyama for his encouragement.
He also wishes to thank Prof. Matsubara for his many valuable discussions.
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