
45 

Progress of Theoretical Physics, Vol. 16, No. 1, July 1956 

A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model 

Tadao KASUY A 

Physical Institute, Nagoya University, Nagoya 

(Received February 3, 1956) 

The importance to the mechanism of ferromagnetim of exchange interaction between conduction 

electrons and unfilled inner shell electrons (called s-d interaction) has been pointed out by Zener. 

Especially for rare earth metals, this interaction seems to be the only mechanism which can cause 

ferro- and antiferromagnetism. However Zener's works are unsatistisfactory because his model is 

phenomenological and moreover does not involve antiferromagnetism and spin wave mode. 

Our paper considers this s-d interaction on a more rigorous basis. By a certain approximation, 

there appear long range eychange type interactions between d-electron spins and, in certain conditions 

both ferro- and antiferromagnetism appear. The excitations of spin wave modes are the same as 

those in the ordinary modes of the short range exchange force, viz, the energy of the spin wave 

excitations is proportional to q2 for ferromagnetism and q for antiferromagnetism in the region of 

small wave vector q. The T3/2 law for the temperature dependence of the magnetization of ferro

magnetism is applicable up to very high temperatures, and this result is in good agreement with the 

results of experiments on metallic ferromagnetism. 

§ I. Introduction 

Since Heisenberg,!> there have been many discussions on the origin of the ferro- and 

antiferromagnetism; however, no satisfactory theory has so far been offered. The simplest 

theory is that of Heisenberg using atomic wave functions, a standpoint which may be 

suitable for non metallic substances. Even in such a case, however, there exist certain 

ambiguities, as was pointed out by Slater.2> It is generally accepted that Heisenberg's 

model can not be adopted for metallic ferromagnetism where the situation is more difficult. 

It is conceivable that there are two different standpoints for the origins of ferro- and 

antiferromagnetism. One regards the exchange interaction between the inner shell electrons 

as very important to the origin of ferro- and antiferromagnetism, and considers the role of 

conduction electron to be negligible. The other regards the exchange interaction between 

the conduction electron and the inner shell electron as essential. The former inter

action may be essential for transition metals, e. g., Ni, Fe, Co, Cr, Mn, etc., but for rare 

earth metals, this interaction almost completely vanishes and the latter interaction seems to 

increase in importance. Even for transition metals, the latter interaction exists and plays 

an important role in many phenomena; for example, in the relaxation process of microw;tve 

resonance absorption ;3>4> in the anomalous electrical resistance of transition metals,"> and in 

the temperature dependence of the anisotropy energy of Ni,6> as was previously discussed 

by the author. This interaction (s-d interaction) was first discussed by Zener.7> However 

his treatment is only phenomenological and on many points unsatisfactory, because his 
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46 T. Kasuya 

tl: rory does not involve antiferromagnetism or ~pin wave eicitaticin. .Tn this paper we 

comK:er this interaction on a rigorous basis, and obtain some interesting results. 

§ 2. Basic Hamiltonian 

The original Hamiltonian is written as follows, 

(1) 

where the first term is the kinetic energy of the electrons, the second the interaction 

between the electrons and the ions, and the third the Coulomb interaction between the 

electrons. Here we consider that. the positions of ions are fixed in their equilibrium 

pos1t1ons. Now we treat Eq. (1) by the method of the· second quantization and expand 

the quantized wave functions as follows ; 

cf;(r) =2J2J a,.so,.(r) 
t • {2) 

cf;* (r) = 2J2J a!;, so;';. (r), 
t • 

where t and v represent the character of orbital state and the direction of spin respectively 

and SO,. ( r) satisfies the following equation, 

(3) 

where the potential v (r) is one to be determined later. 

By using expansion ( 2) , Hamiltonian (1) becomes 

H=2:;2J c,a,~a,.- 2J2J2J a,~(tjv-v 0 jt')a,,. 
t \1 t tl 11 

(4) 

Now v(r) is determined self-consistently as follows 

(5) 

Among the remaining terms of the third term of ( 4) , we neglect the inte!;:ction 

between the conduction electrons because this interaction gives the correlation and the eak: 

exchange interaction, and is negligible compared with the exchange · interaction between the 

conduction and the unfilled inner shell electrons. Among the remaining interactions 

between the unfilled shell electrons, the intra-atomic interaction gives a stron)S· Hund coupling. 

On the other hand, the inter-atomic interaction is complicated for transition metals, while 

for rare earth metals it is negligibly small. We omit the term " inter-atomic " in this 

paper. The remaining interactions between the conduction electrons and the unfilled shell 

electrons are composed of two terms. The first term represents the transition between the 

conduction and the unfilled shell electrons, and this is of a higher order than the second 

term. We neglect the first term in this paper, but as this interaction seems to play some 

roles in t~1.e pheno;nena oi rare earth mecals, we will calculate it in a later papers. The 
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A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model 47 

second term does not contain the transition between conduction and unfilled shell electrons. 

and is written as follows 

where large letters mean the operators of the unfilled shell electrons and small letters those 

of the conduction electrons. 

The first term in ( 6) represents the correlation energy and does not depend on the 

direction of the spins ; therefore we neglect this term. The second term represents the 

generalized exchange interaction between the conduction and the unfilled shell electrons, 

and depends on the direction of the spins. For rare eatth metals except Gd, there remains 

an orbital moment and J = L + S is a good quantum number ; hence the situati~m is 

quite complicated. With this situation we shall treat in another paper. Here a~ our 

first assumption we consider only where the orbital moment vanishes. This condition is 

fulfilled in Gd and transition metals. Next, we assume that the wave functions of the 

conduction electrons are well approximated by the Bloch type wave functions and the wave 

functions of the unfilled shell electron are approximated by atomic wave functions neglecting 

the overlapping between the different atomic wave functions. Then for the creation and 

annihilation operators of unfilled sheU · electrons·· we can substitute the spin operators Sno 

and we get the following Hamiltonian 

(7) 

where N is the number of magnetic lattice points in a unit volume, and 

does not depend on the lattice position R,.. When an external field H. is applied, we 

must add to (7) the Zeeman energy 

(9) 

A similar method was used first by Y. Hasegawa, which is based on atomic functions. 

For simplicity, we assume in this paper that the energy spectrum of the conduction 

electron is &ee electron like, differing only in the effective mass m. Then the quantum 

number t in (7) is equal to the wave vector k. Next, as J(k, k') depends sensitively on 

lk-k'l but on k or k' not sensitively, we assume that J(k, k') depends only on lk-k'I
It is difficult to obtain the actual functional form of J ( q), but, it is clear that roughly it 

behaves as follows; as q increases &om zero, J(q) decreases slowly, and when q approaches 

the principal vector of the reciprocal lattice K, J(q) decreases rapidly to become very 

small. From this simplification, Eq; (7) can be written also .in a different· form. In-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

6
/1

/4
5
/1

8
6
1
3
6
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



48 T. Kasuya 

traducing the well-known spin-wave operators 

S9=N-"'2 L; S,. exp(iqR .. ), 
n (10) 

where r; and f11 are the coordinate and the spin operator of i-th electron, respectively, we 

have 

(11) 

or in the ordinaty coordinates 

(12) 

where 

J(jr;-R .. j) =N-1 L;J(q) exp [i(r;-Rn)q]. (13) 
'1 

The physical meanings of Eqs. (7), (11), (12) are quite distinct, namely, the 

Coulomb interation between the conduction and the unfille-:1 shell electron is periodic and 

does not scatter the conduction electron, but when the spin directions of unfilled shell 

electrons are disturbed, the exchange interactions are not Feriodk and do scatter the con

duction electrons. The first order process gives rise to the resistivity, which effect has 

been calculated in another paper. The second order process gives rise to the effective spin-spin 

interaction between the unfilled shell electrons, which interaction we calculate in this work. 

§ 3. The _second order perturbation and the efi:·ective Hamiltonian 

The Hamiltonian is 

-N-1 L;L;~J(jk-k'j)exp [i(k-k')R,.] 
'" kl " 

where 

S.=~S;, 

" (2) 

The energy of the first order perturbation is 

(3) 

The energy of the second order perturbation is obtained as follows 
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A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model 49 

X {(f+(k') (1-f+(k)) +f-(k') (1-f+(k))s,.zs:. 

+ ~~~2:D 2 (ik-k'i) exp [i(k-k')R,.m]/ (flj2m) (V-k12) 

fr, /~:.1 n m 

X {f- (k') (1-f+ (k) )S,; s,.- +f+ (k') (1-f- (k) )S,,-; S,.+}] (4) 

ot·, exchanging the k and k', and rearranging 

X {(f+(k') +f-(k'))S,:S:.} 

-N-2 ~~~~f(lk-k'i) exp [i(k-k')R,.m]/W/2m) (k2-k12) 
h~ h~' n .,, 

X {f- (k')S;; s,.- + f+ (k')S,;; S,t} 

+ ~~ fCik-k'i) I W/2m) (li-k'2) {f- (k')f+ (k) -f+ (k')f-(k)} s. (s) 
1~ kl 

where f+ (k) and f- (k) are the Fermi distribution function of plus and minus spin electrons, 

respectively, and prime in ~~ means that the summation does not include terms where 

k=k', such terms having been already included in H(I>_ This calculation is similar to 

the nuclear I-I coupling in metals. B> H(2> · is now separable into two parts. One includes 

R,.=R,, and is written in the form uzSz as follows 

Hi~= -N- 2 ~,~~] 2 (ik-k'i)j(fJ 2 /2m) W-k' 2) {[+ (k') + r-(k')}S:,2 

k k' n 

-N- 2 2J~~] 2 (ik-k'i)/W/2m) (V-k' 2) {J+(k') +f-(k')} (S,.x2+S.f2) 

k kf n. 

x {J+ (k'> (1-r- (k) > -r- Ck'> c1-r (k) >} s.. (6) 

The last term in (6) is of a higher order when compared with H(I>. or the remaining 

terms of H(2>, because the expan.~ion parameter of this perturbation is 2m J ( 0) jfJ2 k/ where 

k1 is the wave vector of the Fermi surface or u./ N. 

The remaining terms of H(2> are written as a sum of the spin-spin interactions between 

the different lattice points : 

X {j+(k') +f-(k')}S,:s:. 

-N-2 ~~~~f(lk-k'i).exp [i(k-k')Rnm]/ W/2m) (k2-k12) 

k k' n"<'m 

X {([+(k') +f-(k')} (S,:S::.+SJ'Si/.) 

-N-2 ~~~~f(lk-k'i) exp [i(k-k')Rnm]/W/2m) (/C-k'2) 

k k-1 n"'<'m 
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50 T. Kasuya 

(7) 

where the last term is the higher order term and should be omitted in our approximation. 

In the first and the second terms of (6) and (7) we can replace {[+ (k) +f- (k)} /2 

with the average distribution function f(k) in our approximation and performing the sum

mation over k, H<2J becomes 

where 

"' m n m 

}(R,.m) =N"1 '2j](q) exp (iqR,.m), 
q 

J(q) = (1/4a)f(q)f(q), 

f(q) = 1 + (4k/-if) j4k1q·ln(2k,+q) /(2k1-q), 

a= 1/6 ·fl/m· q};jk1, 

J(O) =limJ(q) =J2 (0)/2a, 
q~O 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

and 2J' in (9) means the summation over all q, omitting q=O in the terms S,:S;:., qv 

is Debye's cut-off wave vector. 

The spin dependent Hamiltonian is now 

H8 = 2J 0 2 ~/2m· (al.,ak+ +4-ak_) -~H.(gS.+u.) 
k 

n m 
"' m 

In our approximation, the first term of this can be written in u., and u. determined 

by the relation oH8 jou.=O. Then, using (14), we have 

,. m 

u.= (~H.N+ J(o)S.) ja. (17) 

The relations (16), (17) are fundamental equations in the following discussions. 

The spin-spin interaction is thus of an exchange type. 

§ 4. The ground states 

As it is very difficult to obtain the exact solution for the ground state of the 

Hamiltonian (16), we discuss here only two physically important cases, that is, ferro

magnetic and antiferromagnetic ordering cases. 

When the ground state is ferromagnetic, all the spins of the unfilled shell electrons 

are parallel. This state is the exact solution of the Hamiltonian ( 16) and the ground 

state energy is 
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A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model 51 

(1) 

where K are the principal vectors of the reciprocal lattice, including K=O. 

Hereafter we do not consider the effects of the external field. The effects of the 

extemal field will be discussed separately-

For the antiferromagnetic ordering, we assume a simplified model where the crystal 

lattice is separable into two equivalent sublattices in each of which all the spins are parallel, 

the magnetization of both sublattices, however, being antiparallel. Contrary to ferromagnetism, 

this state is not an exact ground state. As it is difficult to obtain the exact ground state 

of antiferromagnetism, we calculate as usual by the method of spin-wave approximation and, 

in the next section, we obtain energy correction due to the quantum effect in this way. 

The zero order energy, namely rigid spin model, is easily obtained as follows 

Ea0= -NS 2 [~J(Rr,)- ~J(R")J 
R,. Rl' 

= -NS 2 /2[~(G)- ~](K) + ~J(Q)] 
G K 9 

=-NS2~(Q), 
9 

(2) 

where R,. and R" are respectively the distance between the lattice points on the same 

sublattice and different sublattices, G the principal veccor of the sublattice, and group {Q} 

is a part of the group {G} and equal to {G}- {K}, thus excluding Q=O. 

The difference between Ea0 and E1 is 

(3) 

The sign of (3) depends sensitively on the dependence of J(q) on q. Ferromagnetic 

ordering could be established when J(q) decreases rapidly with increasing q. 

As it is difficnlt to calculate J(q) exactly, we can mention in our approximation only 

that s-d interaction can establish both -ferromagnetism and antiferromagnetism. 

We must study the thermal stability of these ground states by examining the energy 

spectrum of the excited states. This is done in the next section. 

§ 5. The excited states of ferromagnetism 

In this section we calrulate the energy spectrum of the excited states when the 

ground state is ferromagnetic. 

In low temperatures, actually the spin wave method is a good approximation. Now 

we introduce the well-komn spin-wave operator 

S,,+ = (2S) :f2 (1-a;;' a .. j2S) 1' 2a,., 

S -- (2S) 112 a* (1-a* a j2S) 1' 2 
n- n n n ' (1) 

S-S;=a,.* a,., 

and 
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52 T. Kasuya 

an*=N- 112 2J exp (iqRn)4, 
q 

(2) 

then expanding with respect to the parameter 1 I 2S up to the term of the order of ( 1 I 2S) 0, 

H.= -NS2+2S 2J2J U(K) -j([K+q[)] a; a9 
q K 

+ (2N-1)2J2J2J2J2J UCIK+ql[) +J([K+q4[) -2j([K+qt+q4[)] 
q, q• q, q• K 

(3) 

The :first term in (3) is E1 in § 3. The second term is the excitation energy at 

absolute temperature zero. The third term is the :first order correction at :finite temperatures. 

In this section we consider only the second term. We are interested in the low temperature 

region, or in other words, in the small value region of wave vector q, and hence we can 

expand (3) by q. 

Introducing the following variables 

x=ql2k1, p=KI2k1, X=p2, 

iJ= {(K+q) 2-K2} l4k}=2px+'lf, 

the energy of the excited states of the spin wave of wave vector q is 

cq0=2S 2J U(K) -J([K+q[)] 
K 

S"-,{.J) d 1 .1)2 d2 1 .1)3 d3 }f(X) =-2 L..J u-+-u-+-u-+"·. . 
1' dX 2 dX2 6 dX3 

Considering the crystal is to be cubic, and taking terms up to q4, we have 

(4) 

(5) 

To perform further calculations, we neglect the derivative of J(q). This neglect 

may be a fairly good approximation when K=O, but not so good when K~O. Therefore 

this approximation may be justified when the contribution to cq0 is mainly from the part 

K=O. Then 

(7) 

1 1 ) 

3 X-1 

__ 1 2JY(X)-1 (1+-6-+ .. ·)] 
3 X>l X 2 sx 

(8) 
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A Theory of Metallic Ferro- and Antifemmdgneti.<m on Zener's Mndel 53 

A o= S 1 qf) ) 42jJ2(X) (-1_X+7 1nX112 +1 __ 1 __ 1_X-7 +_2__1_ 1 ) 
4 64a\ k1 P 8 X 312 X 112-l 4 X 2 X-1 3 X (X-1) 2 

= (S/240a) (q.vfk1) 4 [2jJ2 (X) (1 +X+ ... ) 
X<l 

+5/2 2j f(X)X-1 (i +2X-1 + ···)]. (9) 
X>l 

The condition of thermal stability of ferromagnetism is cq0 > 0, or A2° > 0. If the 

part K~O were to make a larger contribution than that of K=O, the condition of the 

thermal stability would be X <I, or in other words, qD/k1< 1, i.e., that the valency of 

the conduction electron must be larger than 2. In thermal stability, the part X> 1 con

tributes only almost _zero and we can neglect this part. 

Considering only the first term of the expansion of part X< 1, 

(10) 

For comparison, we give the result of the . ordinary nearest neighbors interaction. In 

this case 

where R0 is the distance between the nearest neighbouring spins. 

For simplicity, we put R0 as a diameter of the sphere having the same volume as 

the specific volume per magnetic lattice point. Then 

Therefore ( 11) is considerably larger than ( 10), i. e., the T 312 law of temperature de-· 

pendence of the magnetization may hold very well. We have calculated this phenomenon 

in the next section. 

§ 6. Temperature dependence of the magnetization 

Recently Schafroth9> calculated the temperature dependence of magnetization by the 

variational method based on Kubo's method.10> According to Schafroth the T 112 law does 

not hold except at very near zero. 

Such an implausible result is owing to the variational method, because by this method 

the treatment of the diagonal and non-diagonal parts is quite at disparity and thus the 

character of the exchange interaction is disregarded. Therefore an effective anisotropic 

field appears and the excitation of the spin-waves is unnaturally depressed. This is the 

reason for such an implausible result. To obtain reasonable .results we must recognize that 

the non-diagonal terms are important and that in the approximation of spin wave method 

we must use an expansion with r.espect to the parameter l/2S. A detailed discussion was 

given in a previous paperY> 

Here we calculate the departure of the temperature dependence of the magnetization 

from the T 312 law caused by the following ·three mechanisms, each up to the first order ; 

(i) the existence of the terms proportional to q4 in the excitation energy 89 ; (ii) the 
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54 T. Kasuya 

higher order terms in the expansion of the spin wave method, namely, the third term in 

eq. (3) of § 4; (iii) the restriction that the degree of freedom of motion of the spin 

system is finite. 

Now we consider the third term in eq. (3) of § 4. 

The excitation energy of the spin wave of wave vector q contributed by the third 

term in (3) of § 4 is 

Expanding in q and using the same method as in § 4, we wave 

(2) 

where 

x'=q'/2kft (3) 

and the others have the same meaning as in § 4. 

The form (2) is the same as the second term in (6), § 4, and written with 

A4° as 

(4) 

Adding this term,. the excitation energy of the spin wave of wave vector q becomes 

where 

- -A2° {1 +-1 2J (L)2 .!!9!.__} 
6 q' qn NS 

A4°. · (1/20) (qn/k1) 2 A2° 

A2°. ·(S/12a)(qnfk1) 2 2"jJ2 (K) 
K 

and the magnetization in finite temperature T is 

qD 

NS-S.=2J [exp(cqftcT) -1)-1• 
q=O 

(5) 

(6) 

(7) 

(8) 

(9) 

Replacing summation by the integration, and confining us only to the first order for 

the deviation of each of the three causes, we get 
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A Theory of Metallic Ferro- and Antiferromagnetism on Zmer's Model 

-0.43 ( :~Y' 2 exp c -A2°/tcT) J. 
Putting the values of ( 6) and (7), we have 

NS-S.=3.5 ( tc~r 2 [1-0.095 ( k )
2 tc~- 0·67 ( 9JJ )

2 
( tc~) 512 

A2 ' k1 A2 S k1 ' A2 

For example, taking tcT/ A2°= 1/2, the bracket in (11) is 

[1-0.05 (qv/k1) 2 - (0.21/S) (qJJ/k1) 2 -0.08] 

55 

(10) 

(11) 

(12) 

and the deviation is less than 15 % for the usual metal. The result that the T 3' 2 law 

holds very well is in good agreement with the experimental results for rare earth metals, 

especially for Gd.12l 

Contrary to the above result, the T 3' 2 law does not hold so well when we use the 

ordinary nearest neighbors interaction method. In that case 

ANA2°=- (1/20) (qiJR0) 2, 

A2=A2° {1- (0.45/S) (qvR0) 2(tcT/ A2°)"12} • 

and, as mentioned in § 4, by approximating 

(qnR0) 2 =23, 

the bracket in ( 10) becomes 

(13) 

(14) 

(15) 

[ 1 +2.2 ( ~~)+ ~ (~~) 512 
-0.43 c:~ y12 

exp ( -A2°/tcT)]. (16) 

The deviation is very much larger than that in (11) and the T 3' 2 law holds only in low 

temperatures. The peculiar term which appeared in Schafroth's method does not appear 

in ours. 

§ 7. The excited states of antiferromagnetism 

For antiferromagnetism, we also introduce the spin wave operators a~, aq and b~, bq, 

which are the creation and annihilation operators, respectively, at A and B sites. Then 

taking terms up to the two spin wave process, in the expansion, we have 

H.9=-NS2 2j J( Q) 
9 

+2S 2j [}j {](G) -J(/G+q/)}-2jj(Q)-2j](K)](ai aq+bi bq) 
q G Q IC 

(1) 

We easily diagonalize (1) by the well-known transformation, and (1) is written in 
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the new operators a:, aq, ~i and {19, as 

(2) 

where 

Ea= -NS2 2JJ(Q) -2S 2J[2J {](G) -J(IG+ql)} + 2JJ(Q)-2JJ(K)]-2J Sq 
!J qG Q K q 

(3) 

sq=4S [ {2J(J(Q)-J(IQ+ql))} {2JJ(Q)-2JJ(K) +}J-(J(K)-J(IK+ql))} T'2• 

Q Q K K 

(4) 

To perform this transformation, it is required that (i) the coefficient 01 the second term 

of (1) be posithre, and (ii) Sq in (4) be real. 

From § 3 and § 4, it is easily seen that 

2S 2J {J(Q)-J(IQ+ql)} =B2°(q/qn) 2, 
Q 

2S {2JJ(Q)-2JJ(K)} = (2/NS) (E1-Ea0)= L1E, 
Q K 

where B2° is obtained from A2° by replacing K with Q. 

By using (5), ( 6) and (7) 

Ea=E,o-2J [ {L1E+A2o(qfqn)2} 1!2_ (B2o) 11?qfq1J)2, 
q 

and the restrictions (i) and (ii) become 

(I) L1E> o, 

(II) A2°> o, 

(III) B2°> o. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(I) is fulfilled when antiferromagnetic state is more stable than fecrqmagne.tic in the ground 

state energy. (II) is the same as in § 4. (III) is usually fulfilled when (II) is fulfilled 

or, strictly speaking, when the valency of the conduction electron is larget than unity. 

These three restrictions are the same as of thermal stability of antiferromagnetism. 

§ 8. Conclusion 

Here ·we summarize the above calculations. 

(i) We assume that the conduction electron is nearly free electron like and that 

the uflfilled inner shell electron is localized and. the interaction between the unfilled shell 

electrons in the different lattice points is small. 

(ii) We assume that the orbital moment of the unfilled shell electrons is quenched. 
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This assumption is true for transition metals because in these metals the crystaline field is 

very strong. In rare earth metals, however, 1-s coupling is more important than the 

crystaline field andj is a good quantum number and hence the above assumption holds 

only for Gd. We will treat in another paper the case in which j is a well considered 

quantum number. 

(iii) We assume the orbital configuration of the unfilled inner shell electrons to be 

fixed. This is related to (ii). The effects of the excited configuration seem to be small. 

(iv) Under the above assumptions, the exchange interaction between the conduction 

and . the unfilled inner shell electrons is written as a form of exchange type interaction 

as in Eqs. ( 7) , ( 11) and ( 12) in § 2. The second order perturbation gives rise to the 

effective exchange-like interaction between the spins in the different lattice points. The 

character of this exchange-like interaction is a long range force and hence it is difficult to 

obtain the real ground state. The ordering of the ground state depends sensitively on the 

functional form of the generalized exchange . integral J ( q) . 

( v) When the ground state is ferromagnetic, the excited state is written by spin 

wave mode, and the excited energy is proportional to the square of the wave vector. The 

T 3' 2 law of temperature dependence of the magnetization holds very well, which is satis

factory to the experhnental fact of Gd. 

(vi) The excitation energy in the antiferromagnetic ordering is proportional to the 

absolute value of the wave vector. 

(vii) For the thermal stability, it is required. that the valence of the conduction 

electron be larger than 2. 

The phenomena in fairly high temperatures and in the paramagnetic region will be 

treated in a following paper. 

The author expresses his sincere appreciation to Prof. Ariyama for his encouragement. 
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