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The propagation of waves in a metamaterial consisting of split ring resonators sSRRsd and metallic

rods is considered in several steps. The first involves the rods in isolation, the second the SRRs in

isolation, and the third a combination of the two, which includes the coupling between neighboring

SRRs and allows the propagation of magnetoinductive sMId waves. The mathematical formulation

is based on a conventional description of loaded transmission lines. A dispersion equation is derived

to show the main features of known experimental results, including all the stop bands and

passbands, the latter exhibiting both forward and backward waves. The interaction between

electromagnetic and MI waves is presented in the form of a coupled dispersion equation. The

applicability of the approaches based on negative material parameters is discussed. © 2005

American Institute of Physics. fDOI: 10.1063/1.1850182g

I. INTRODUCTION

The experimental results of Smith et al.
1,2

and Shelby et

al.
3,4

with split ring resonators sSRRsd,
5

metallic rods,
6

and

their combinations displayed some striking phenomena,

which were fully corroborated by later measurements.
7,8

The

main aim was to confirm Veselago’s prediction
9

that negative

refraction may occur when the effective permeability and the

effective permittivity of a material are both negative. This

correlation between negative material parameters and nega-

tive refraction has now been widely accepted.

It is certainly a possible explanation, but is it the only

explanation? It seems rather artificial to have to invoke nega-

tive material parameters when the physics consists of noth-

ing more than coupling of waves to a periodic array. In fact,

an alternative explanation has been proposed by Lindell et

al.
10

based on the familiarity of microwave engineers with

backward wave amplifiers, oscillators, and antennas.
11,12

The

authors maintained that negative refraction is simply a con-

sequence of the existence of backward waves sBWd and they

even proposed that all the media having negative parameters

should be referred to as BW media instead.

The present paper addresses the questions on whether we

could still explain the experimental results quoted above if

the concept of negative material parameters had never been

proposed, and on what kind of mathematical apparatus that

would require. The principal effects to explain are

sid the exponential decay of the input electromagnetic wave

below a certain frequency when only a set of metallic

rods is present;

siid the exponential decay of the input electromagnetic wave

in a certain frequency band when only a periodic array

of SRRs is present;

siiid transmission with moderate attenuation when the fre-

quency is within the stop band of the SRRs and below

the cut-off frequency of the rods; and

sivd refraction according to an inverse Snell’s law when a

wave is incident upon an ordinary sright handed in Ve-

selago’s terminologyd medium from one satisfying con-

dition siiid.

We assert here that all these phenomena can be explained by

using nothing more sophisticated than the standard methods

of loaded transmission line theory known to engineers at

least for half a century. These were established by Brillouin
13

and have been widely used to describe the properties of ar-

tificial dielectrics ssee, for example, the book by Collin
14

d.

Apart from the main body of the experiments concentrat-

ing on the negative material parameter aspects of metamate-

rials, there is another set of experimental results available

concerned with waves on an array of magnetically coupled

resonant elements, namely, capacitively loaded loops,
15

‘Swiss Rolls’,
16

and SRRs.
17

It should be emphasized that

these waves, known as magnetoinductive sMId waves, are

not simple analogs of longitudinal plasma waves. A longitu-

dinal plasma wave swhich has its electric-field vector in the

longitudinal directiond exists only at a single frequency andad
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will not couple to a transverse electromagnetic wave. MI

waves exist within a band of frequencies and do couple to

electromagnetic waves. The transverse magnetic field of an

input electromagnetic wave will, via the currents set up in

the resonant elements, influence not only the electromagnetic

wave itself but will also set up the MI waves.

These concepts have been discussed in several theoreti-

cal publications
18,19

that do not invoke negative material pa-

rameters, and indeed it would not be easy to fit the MI waves

into negative parameter theories. If one accepts that the ef-

fective permeability may be negative then it would be diffi-

cult to argue that the relative permeability seen by the MI

wave is only that of free space. We do not wish here to

prejudge the issue; a theory might be developed that includes

both negative material parameters and MI waves. However,

there is no other theory at the moment that could explain all

the four phenomena above and could, in addition, incorpo-

rate MI waves.

The theory we present here is a one-dimensional one. It

uses only circuit elements to model the well-known array of

SRRs and rods, a unit of which is shown in Fig. 1. It needs to

be emphasized that in our circuit approach there are no free

parameters. Each one of the circuit elements is related to the

actual properties of the array. We do, however, make the

simplifying assumption that losses may be neglected. In

Secs. II and III we consider the loading of a transmission line

by an inductance and by a resonant circuit, respectively, to

simulate the effect of metallic rods and SRRs. In Sec. IV a

combined loading is considered which makes allowance for

the propagation of MI waves as well. There is a discussion in

Sec. V concerned with the role of negative material param-

eters and whether they are necessary. Conclusions are drawn

in Sec. VI.

II. PERIODIC LOADING OF A TRANSMISSION LINE
BY METALLIC RODS

A short metallic rod of length a and radius r can be

characterized by a self-inductance Lr. Its value can be found

in text books published some time ago ssee, e.g., Ref. 20d.

The inductance of such a rod in a cubic lattice of side a may

be found as

Lr = smoa/2pdflns2a/rd − 1g . s1d

Here mo is the permeability of free space. A section of a

transmission line of length a loaded by such an inductance is

shown in Fig. 2sad in the form of a four pole. The corre-

sponding dispersion equation for a periodic array can be

readily obtained from Brillouin’s theory,
13

which is at the

same time astonishingly simple and amazingly powerful.

Once the loading impedance is inserted in the transmission

line the problem is reduced to finding the transfer-matrix

coefficients of the corresponding four pole and then the dis-

persion equation is obtained by equating the sum of the main

diagonal elements with 2 cosskad. A little arithmetical effort

will lead to

4 sin2ska/2d = sv2 − vp
2d/vt

2. s2d

Here v is the angular frequency, ka is the phase change per

period, vp
2 = sLrCtd

−1, vt
2= sLtCtd

−1, and Lt and Ct are the in-

ductance and capacitance per length a of the transmission

line. If the medium is free space then Lt=moa, Ct=«oa, and

vt=c /a where «o is the free-space permittivity and c is the

velocity of light. The dispersion characteristic is shown as

the full line in Fig. 2sbd, for vp /vt=0.1. It applies to an

electromagnetic wave incident upon the rod medium with an

electric polarization parallel with the direction of the rod.

Clearly, the wave is propagating above the cut-off frequency

vp, which may also be referred to as the effective plasma

frequency in view of the close analogy to ideal plasmas. Also

shown as the dotted line is the characteristic without the

rods, which is straight over this range of ka.

III. PERIODIC LOADING OF THE TRANSMISSION LINE
BY SRRs

The split ring resonator may be modeled as a resonator

coupled to the electromagnetic wave. In the simplest form, it

may be represented as a resonant LC circuit coupled to the

transmission line. The coupling is assumed to be purely mag-

netic. An incident electromagnetic sEMd wave will always

excite an emf in the SRR as long as its magnetic field is not

in the plane of the rings. For simplicity we shall assume that

FIG. 1. Schematic of an electromagnetic wave incident upon an element of

an array composed of split ring resonators and rods.

FIG. 2. sad Equivalent circuit of length a of a transmission line loaded with

metal rods; sbd dispersion diagram predicted by Eq. s2d with vp /vt=0 sdot-

ted lined and vp /vt=0.1 sfull lined.
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the magnetic field is perpendicular to the plane of the rings

and that the orientation of the splits is such as to exclude the

excitation of an electric dipole moment. A single element of

the periodic structure may then be represented by the circuit

shown in Fig. 3sad, as proposed by Martin et al.
21

Here M’ is

a mutual inductance responsible for the coupling, and L and

C are the equivalent inductance and capacitance of the SRR.

The actual values of L and C were obtained by Marques et

al.
22

by deducing an equivalent circuit from plausible physi-

cal assumptions. For a more detailed analysis in terms of

distributed and lumped circuit elements, see Refs. 23,24.

Our aim is to assign from the underlying physics a value

for every one of our circuit elements. We have so far ac-

counted for Lt ,Ct ,Lr ,L, and C. The remaining element, M’,

will be found ssee Appendixd by considering the excitation of

the SRR by the magnetic field of the electromagnetic wave.

The dispersion equation corresponding to the periodic

circuit shown in Fig. 3sad can again be obtained by the same

method as in the previous section although with a little more

effort. We find that,

4 sin2ska/2d = s1 − q2dsv2/vt
2dfsv2 − vq

2d/sv2 − vo
2dg .

s3d

Here q2=M’2 /LLt!1 is the normalized coupling coefficient,

vo
2= sLCd−1, and vq

2=vo
2 / s1−q2d. This dispersion charac-

teristic is shown as the full lines in Fig. 3sbd, for the param-

eter values vo /vt=0.1 and q2=0.1. Also shown as the dotted

lines is the equivalent characteristic obtained with q2=0,

when the transmission line is uncoupled from the SRRs. In

this case, there are two curves, one for the EM wave and the

other for the SRRs. These curves always cross. When q2

Þ0, a stop band is opened near the intersection. As a result,

two passbands are created from v=0 to v=vo and from v

=vq upwards, with forward waves propagating in both

bands. The stop band ranges from v=vo to v=vq. Its rela-

tive width is equal to

Dv/vo = svq − vod/vo = q2/2. s4d

Thus, the fractional band gap is proportional to the normal-

ized coupling coefficient.

IV. COMBINED LOADING BY METALLIC RODS AND
SRRs TOGETHER

A. The general dispersion equation

We shall now, in Fig. 4, combine the loads shown in

Figs. 2sad and 3sad and, in addition, we shall take into ac-

count that neighboring SRRs are coupled to each other. The

magnetic flux generated by one SRR intersects the plane of

neighboring SRRs and will consequently induce a voltage in

them. This effect can be represented by a mutual inductance

M between neighboring elements. If both the size of the

element and the period are small relative to the wavelength

then the calculation of the mutual inductance between two

loops is relatively easy, it can be found in most text books on

electromagnetic theory ssee, e.g., Ref. 25d. The derivation of

the dispersion equation for the circuit of Fig. 4 is straightfor-

ward again but needs a fair amount of algebraic manipula-

tions. We obtain it in the form of a quadratic equation in v2,

v4f1 − q2 + k cosskadg − v2hf1 + k cosskadg

3f4vt
2 sin2ska/2d + vp

2g + svo
2 − q2vp

2dj

+ vo
2f4vt

2 sin2ska/2d + vp
2g = 0. s5d

Here k=2M /L is the nearest-neighbor coupling coefficient

for the MI waves. We illustrate the use of Eq. s5d with a

number of examples.

B. Neighboring SRRs uncoupled, k=0

In this case, the dispersion Eq. s5d may be reduced to the

form

4 sin2ska/2d = s1 − q2dfsv2 − vp
2d/vt

2gfsv2 − vq
2d/

sv2 − vo
2dg . s6d

Equation s6d is clearly very similar to Eq. s3d, except that v2

is replaced by v2−vp
2. Note that the same form was ob-

tained sapart from the constants, and in the approximation

when ka!1d by Smith et al.,
2

starting with the expression

for the effective value of the permeability
5

and multiplying it

FIG. 3. sad Equivalent circuit of length a of a transmission line loaded with

SRRs; sbd dispersion diagram predicted by Eq. s3d with v0 /vt=0.1 and q2

=0 sdotted lined and siid q2=0.1 sfull lined.

FIG. 4. Equivalent circuit for a transmission line loaded with metal rods and

SRRs.
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by the effective permittivity of an ideal plasma. It is now

clear that ours is an alternative derivation using different

physical principles but leading to the same functional rela-

tionship.

We shall now summarize in Fig. 5 the different interpre-

tations of the two approaches. The three cases that we have

been investigating are represented by three frequency scales,

upon which the values of vo ,vq, and vp are marked. Repre-

sentations in terms of stop bands and passbands are above

the lines and those in terms of effective material parameters

swhether they are positive or negatived are below the lines. It

may be seen that if the bands generated by each form of load,

presented in isolation, are of different kind si.e., one is a

passband and the other one is a stop bandd, the result for the

combined load is a stop band. Conversely, if the bands are of

the same kind the result is a passband. In terms of negative

material parameters this means, as has been stated many

times before in the literature, that there is propagation, pro-

vided that both material constants are of the same sign. It

also follows from Eq. s6d that when both the SRR and the

rods present stop bands on their own, the net effect appears

as a passband in which backward waves propagate.

Clearly, Fig. 5 explains the experimental results sid–siiid

mentioned in the Introduction. Since our analysis is a one-

dimensional one, negative refraction does not directly follow

from it. But it does follow indirectly. We have shown the

presence of a backward wave, and Lindell et al.
10

proved that

negative refraction is a consequence of a backward wave

incident upon a forward wave medium.

C. Neighboring SRRs coupled

Returning now to the general case it may be shown that

Eq. s5d may be rewritten in a physically more meaningful

form

hv2f1 + k cosskadg − v0
2jhv2 − fvp

2 + 4vt
2 sin2ska/2dgj

= q2v2sv2 − vp
2d . s7d

When q2=0 the left-hand side of Eq. s7d yields two waves

propagating independently of each other, one is the electro-

magnetic wave affected by the rods and the other one is the

MI wave. The dispersion equation of the former is given by

Eq. s2d whereas that of the latter one is of the form

v/vo = f1 + k cosskadg−1. s8d

When k is negative this is a backward wave, as may be seen

in Fig. 6 where the dispersion curves are plotted by full lines

for v0 /vt=0.1, vp /v0=1.15, and k=−0.1. It needs to be

emphasized that this is not the backward wave that comes

about when both material constants are negative, as dis-

cussed in Sec. IV B. That wave may be obtained by taking

k=0, the same values of vp and vt, and a finite value of q2,

say, 0.1. The corresponding dispersion curves are plotted in

Fig. 6 with dotted lines. So we now have two backward

waves, one under the condition that k=0 and the other one

when q2=0. Under experimental conditions we do not nor-

mally have the option of choosing one of the coupling con-

stants zero and the other one as finite, they must both be

different from zero. To see their joint effect we shall now

take their values as k=−0.1 and q2=0.1, and with vp and vt

remaining the same we plot the resulting dispersion diagrams

in Fig. 6 with dot-dash lines. The edge of the backward wave

region may be seen to have moved up from 0.105 to 0.112.

We may therefore conclude from Fig. 6 that one of the con-

sequences of the inductive coupling between the elements is

a shift in the position of the backward wave region.

Another, equally important, effect is that the EM and MI

waves may actually couple to each other. This may become

clearer if we choose vp so that the dispersion characteristics

of EM and MI waves intersect each other when q2=0. This is

shown in Fig. 7 for v0 /vt=0.1, vp /v0=0.9, and k=−0.1

FIG. 5. Representation in frequency space of passband and stop band for

loaded transmission lines. FIG. 6. Dispersion diagrams predicted by Eq. s5d with vp /v0=1.15,

v0 /vt=0.1 and sid k=−0.1 and q2=0 sfull lined, siid k=0 and q2=0.1 sdotted

lined, and siiid k=−0.1 q2=0.1 sdot-dash lined.

FIG. 7. Dispersion diagrams predicted by Eq. s5d with vp /v0=0.9, v0 /vt

=0.1, k=−0.1 and sid q2=0 sdotted lined, and siid q2=0.1 sfull lined.
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with q2=0 for the dotted lines and q2=0.1 for the full lines.

As may be expected, the interaction leads to the appearance

of a stop band.

It would, of course, be possible to investigate many

other configurations in which EM and MI waves interact,

e.g., when the elements line up at an angle to each other in

which case the forward MI wave can be excited. The pres-

ence or absence of rods would also make a great difference.

The most interesting question to explore is the possibility of

exciting a MI wave at one end of the array and gradually

transfer its power to an EM wave, a mechanism which may

make the launching of an electromagnetic way possible. We

intend to return to all these questions in a subsequent paper.

V. DISCUSSION

The periodic loading of transmission lines by lumped

elements has been successfully applied to the solution of

many electromagnetic problems in the last half century.

However, with the advent of negative parameter materials a

new direction appeared. It was argued by Eleftheriades et

al.
26

that the traditional way of representing transmission

lines using shunt capacitance and series inductance, as in the

present paper, should be reversed in the case of negative

parameter materials. In this case, a transmission line should

be represented using series capacitance and shunt inductance.

Starting with this principle, Eleftheriades et al. realized

that a large number of different circuits may exist which will

all show negative refraction, and this claim was demon-

strated experimentally by a two-dimensional s2Dd realization

of loaded transmission lines. Among other things, they dem-

onstrated focusing by these circuit analogs. Similar argu-

ments have been used by Alu and Engheta,
27

who modeled a

negative-permeability material by a negative inductance, and

a negative-permittivity material by a negative capacitance.

Using these concepts, they have offered explanations of reso-

nances and tunneling in adjacent materials which can have

various combinations sboth positive and negatived of permit-

tivities and permeabilities.

The major difference between the approaches above and

ours is that our circuit models are entirely conventional, so

that we can ignore a host of problems that have recently

arisen. These include how to treat negative parameter mate-

rials, which of the square roots to take in the expressions for

velocity and for the refractive index, and whether we should

worry about causality.

We may now ask, is it a good thing that after several

decades Veselago’s ideas
9

of negative refraction, focusing by

a slab, inverted Doppler effect, etc., suddenly became sub-

jects of intense investigations? It is all to the good because

the idea stimulated further research and a number of phe-

nomena and potential devices have appeared as a conse-

quence. It would, however, be desirable to answer the ques-

tion whether negative parameter materials have any deeper

meaning, i.e., are there any physical phenomena, which can

only be explained by negative material parameters or is it

simply a useful artifice that often helps physical intuition?

We believed the latter to be true, and are prepared to go even

further and offer the following conjecture: any experimental

results explained by negative material parameters can also be

explained without any recourse to them. The crucial point is

to look at the properties of backward waves. Engineers, due

to their familiarity with devices based on backward waves,

regard them as just one of the manifestations of the multi-

farious nature of electromagnetic phenomena. Physicists are

just warming to the idea.

VI. CONCLUSIONS

Dispersion equations based on the standard method of

periodically loaded transmission lines have been derived for

a metamaterial structure consisting of metallic rods and split

ring resonators. The derivation is simple and does not require

the introduction of concepts such as negative permittivity or

permeability. It has also been possible to formulate the inter-

action between electromagnetic and magnetoinductive

waves; this may lead to a way of launching electromagnetic

waves. The role of negative material parameters has been

discussed, and compared with descriptions in terms of back-

ward waves.

APPENDIX: MUTUAL INDUCTANCE M’ AND THE
WIDTH OF THE SRR STOP BAND

The voltage induced in the resonant SRR may be ex-

pressed as jvM’It, where It is the current flowing in the

transmission line. The same voltage can be expressed by

field quantities as jvpro
2moHt, where Ht is the magnetic field

of the electromagnetic wave and ro is the equivalent radius of

the SRR. Considering that for the unit cell Ht= It /a we find,

M’ = pro
2mo/a . sA1d

The width of the SRR stop band follows then from Eq. s4d as

Dv/vo = q2/2 = M’2/2LLt = p2ro
4mo/2La3. sA2d

This is of course the width of the negative permeability re-

gion for which both numerical and analytical solutions exist.

It is interesting to note that the analytical solutions of

Gorkunov et al.,
28

for no interaction between the elements,

have exactly the same expression as Eq. sA2d. Such agree-

ment is quite remarkable considering that the two approaches

are entirely different. That of Gorkunov et al. is based on the

concept of polarization and on averaging magnetic fields,

neither of which is considered by us.
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