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Abstract19

In many experiments, neuroscientists tightly control behavior, record many trials, and obtain trial-averaged20

firing rates from hundreds of neurons in circuits containing billions of behaviorally relevant neurons. Di-21

mensionality reduction methods reveal a striking simplicity underlying such multi-neuronal data: they can22

be reduced to a low-dimensional space, and the resulting neural trajectories in this space yield a remarkably23

insightful dynamical portrait of circuit computation. This simplicity raises profound and timely conceptual24

questions. What are its origins and its implications for the complexity of neural dynamics? How would the25

situation change if we recorded more neurons? When, if at all, can we trust dynamical portraits obtained26

from measuring an infinitesimal fraction of task relevant neurons? We present a theory that answers these27

questions, and test it using physiological recordings from reaching monkeys. This theory reveals conceptual28

insights into how task complexity governs both neural dimensionality and accurate recovery of dynamic29

portraits, thereby providing quantitative guidelines for future large-scale experimental design.30
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1 Introduction31

In this work, we aim to address a major conceptual elephant residing within almost all studies in mod-32

ern systems neurophysiology. Namely, how can we record on the order of hundreds of neurons in regions33

deep within the brain, far from the sensory and motor peripheries, like mammalian hippocampus, or pre-34

frontal, parietal, or motor cortices, and obtain scientifically interpretable results that relate neural activity35

to behavior and cognition? Our apparent success at this endeavor seems absolutely remarkable, consid-36

ering such circuits mediating complex sensory, motor and cognitive behaviors contain O(106) to O(109)37

neurons [Shepherd, 2004] - 4 to 7 orders of magnitude more than we currently record. Or alternatively, we38

could be completely misleading ourselves: perhaps we should not trust scientific conclusions drawn from39

statistical analyses of so few neurons, as such conclusions might become qualitatively different as we record40

more. Without an adequate theory of neural measurement, it is impossible to quantitatively adjudicate where41

systems neuroscience currently stands between these two extreme scenarios of success and failure.42

One potential solution is an experimental one: simply wait until we can record more neurons. Indeed,43

exciting advances in recording technology over the last several decades have lead to a type of Moore’s44

law in neuroscience: an exponential growth in the number of neurons we can simultaneously record with a45

doubling rate of 7.4 years since the 1960’s [Stevenson and Kording, 2011]. Important efforts like the BRAIN46

Initiative promise to ensure such growth in the future. However, if we simply extrapolate the doubling rate47

achieved over the last 50 years, we will require about 100 to 200 years to record 4 to 7 orders of magnitude48

more neurons. Thus, for the near future, it is highly likely that measurements of neural dynamics at single49

cell, single spike-time resolution in mammalian circuits controlling complex behaviors will remain in the50

highly sub-sampled measurement regime. Therefore we need a theory of neural measurement that addresses51

a fundamental question: how and when do statistical analyses applied to an infinitesimally small subset of52

neurons reflect the collective dynamics of the much larger, unobserved circuit they are embedded in?53

Here we provide the beginnings of such a theory, that is quantitatively powerful enough to (a) formu-54

late this question with mathematical precision, (b) make well defined, testable predictions that guide the55

interpretation of past experiments, and (c) provide a theoretical framework to guide the design of future56

large scale recording experiments. We focus in this work on an extremely commonly used experimental57

design in which neuroscientists repeat a given behavioral or cognitive task over many trials, and record58

the trial averaged neural dynamics of many neurons. An advantage of this design, which has promoted59

its widespread usage, is that the neurons need not be simultaneously recorded. This resulting trial average60

firing rate dynamics can be thought of as a collection of neural trajectories exploring a high dimensional61

neural space, with dimensionality equal to the number of recorded neurons (see e.g. Fig 1 below for a con-62

ceptual overview). They reflect a fundamental description of the state space dynamics of the neural circuit63

during cognition and behavior. Almost always, such trajectories are analyzed via dimensionality reduction64

(see [Cunningham and Yu, 2014] for a review), and almost ubiquitously, a large fraction of variance in these65

trajectories lives in a much lower dimensional space.66

The resulting neural trajectories in the low dimensional space often provide a remarkably insightful dy-67

namical portrait of circuit computation during the task in a way that is inaccessible through the analysis68

of individual neurons [Briggman et al., 2006]. For example, curvature in the geometry of these dynamical69

portraits recovered from macaque prefrontal cortex by [Mante et al., 2013] revealed a novel computational70

mechanism for contextually-dependent integration of sensory evidence. Similarly, dimensionality reduction71

by [Machens et al., 2010] uncovered dynamical portraits which revealed that macaque somatosensory cor-72

tices compute both stimulus frequency and time in a functionally but not anatomically separable manner73

in a tactile discrimination task. Dynamical portraits obtained by [Mazor and Laurent, 2005] revealed that74

neural transients in insect olfactory areas rapidly computed odor identity long before the circuit settled to75
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a steady state. And an analysis of neural dynamics in macaque parietal cortex showed that the dynamical76

portraits were largely one-dimensional, revealing an emergent circuit mechanism for robust timing in atten-77

tional switching and decision making [Ganguli et al., 2008a]. Also, the low-dimensional activity patterns78

found in primary motor-cortex provide causal constraints learning itself [Sadtler et al., 2014] .79

Given the importance of these dynamical portraits as a first window into circuit computation, it is im-80

portant to ask if we can trust them despite recording so few neurons? For example, would their geometry81

change if we record more neurons? How about their dimensionality? The ubiquitous low dimensionality of82

neural recordings suggests an underlying simplicity to neural dynamics; what is its origin? How does the83

number of neurons we need to record to accurately recover dynamical portraits scale with the complexity of84

the task, and properties of the neural dynamics? Indeed which minimal properties of neural dynamics are85

important to know in order to formulate and answer this last question?86

Our theory provides a complete answer to these questions within the context of trial averaged experimen-87

tal design. Central to our theory are two main conceptual advances. The first is the introduction of neural task88

complexity (NTC), a mathematically well defined quantity that takes into account both the complexity of89

the task, and the smoothness of neural trajectories across task parameters. Intuitively, the NTC measures the90

volume of the manifold of task parameters, in units of the length scales over which neural trajectories vary91

across task parameters, and it will be small if tasks are very simple and neural trajectories are very smooth.92

We prove that this measure upper bounds the dimensionality of neural state space dynamics. This theorem93

has important implications for systems neuroscience: it is likely that the ubiquitous low dimensionality of94

measured neural state space dynamics is due to a small NTC. In any such scenario, simply recording many95

more neurons than the NTC, while repeating the same simple task will not lead to richer, higher dimensional96

datasets; indeed data dimensionality will become independent of the number of recorded neurons. One97

would have to move to more complex tasks to obtain more complex, higher dimensional dynamical portraits98

of circuit computation.99

The second conceptual advance is a novel theoretical link between the act of neural measurement and a100

technique for dimensionality reduction known as random projections. This link allows us to prove that, as101

long as neural trajectories are sufficiently randomly oriented in state space, we need only record a number102

of neurons proportional to the product of the number of task parameters and the logarithm of the NTC. This103

theorem again has significant implications for systems neuroscience. Indeed, it quantitatively adjudicates104

between the two extremes of success or failure raised above, fortunately, in the direction of success: it105

is highly likely that low dimensional dynamical portraits recovered from past experiments are reasonably106

accurate despite recording so few neurons, because those tasks were so simple, leading to a small NTC.107

Moreover, as we begin to move to more complex tasks, this theorem provides rigorous guidance for how108

many more neurons we will need to record in order to accurately recover the resulting more complex, higher109

dimensional dynamical portraits of circuit computation.110

Below, we build up our theory step by step. We first review the process of recovering state space dy-111

namical portraits through dimensionality reduction in neuroscience. We then introduce the notion of NTC,112

and illustrate how it provides an upper bound on neural dimensionality. Then we review the notion of ran-113

dom projections, and illustrate how the NTC of an experiment also determines how many neurons we must114

record to accurately obtain dynamical portraits. Along the way, we extract a series of experimentally testable115

predictions, which we confirm in neural recordings from the motor and premotor cortices of monkeys per-116

forming reaches to multiple directions. We end in the discussion with an intuitive summary of our theory117

and its implications for the future of large scale recordings in systems neuroscience.118
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2 Recovery of neural state space dynamics through dimensionality reduction119

Imagine an experiment in which a neuroscientist records trial averaged patterns of neural activity from a set120

of M neurons across time. We denote by xi(t) the trial averaged firing rate of neuron i at time t. These data121

are often visualized by superimposing the firing rates of each neuron across time (Fig. 1A). Alternatively,122

these data can be thought of as a neural trajectory in an M dimensional space (Fig. 1B). At each time, the123

measured state of the neural circuit consists of the instantaneous pattern of activity across M neurons, which124

corresponds to a point in M dimensional space, where each dimension, or axis in the space corresponds to125

the firing rate of one neuron. As time progresses, this point moves, tracing out the neural trajectory.126
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Figure 1: Conceptual overview of state space dynamics through dimensionality reduction. (A) The trial averaged

firing rate dynamics of M neurons. (B) This data can be equivalently thought of as tracing out a neural state space

trajectory in an M dimensional firing rate space with one axis per neuron. Here only three of the M axes are shown,

and as illustrated, sometimes such a trajectory can be largely confined to a lower dimensional subspace, here a two

dimensional subspace. (C) A decomposition of the data in (A) into two static spatial patterns across neurons (red and

blue patterns, left). The population activity pattern at each instant of time is a weighted sum of the two static basis

patterns, where the weighting coefficients (red and blue traces, right) depend on time. If all population patterns across

time can largely be explained by linear combinations of these two patterns, then the neural trajectory corresponding to

the data in (A) will be largely confined to explore a two dimensional subspace within M dimensional firing rate space,

shown for example in B. Two special points in the subspace correspond to the two basis patterns in (C), i.e. the endpoints

of the two red and blue vectors in (B), and the subspace is spanned by all linear combinations of these two patterns. (D).

One can then accurately visualize the state space dynamics in pattern space, by plotting the time-dependent weighting

coefficients in (C) against each other. Each axis in pattern space corresponds to how much each basis pattern is present

in the neural population.

It is difficult to directly understand or visualize this trajectory, as it evolves in such a high-dimensional127

ambient space. Here dimensionality reduction is often used to simplify the picture. The main idea behind128

many linear dimensionality reduction methods is to decompose the entire set of dynamic neural activity129

patterns across neurons, unfolding over time, into a time dependent linear combination of a fixed set of130

static patterns across neurons (Fig. 1C). The hope is that the data can be dramatically simplified if a linear131

combination of a small number of static basis patterns are sufficient to account for a large fraction of variance132

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/214262doi: bioRxiv preprint 

https://doi.org/10.1101/214262
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the data across time. When this is the case, the neural state space dynamics can unfold over time in a much133

lower dimensional pattern space, whose coordinates consist of how much each static pattern is present in the134

neural population (Fig. 1D).135

Mathematically, the decomposition illustrated in Fig. 1C can be written as xi(t) =
∑D

α=1 u
α
i cα(t),136

where each M dimensional vector uα is a static basis pattern across neurons, each cα(t) is the amplitude of137

that pattern across time (Fig.1C), and D denotes the number of patterns or dimensions retained. Principal138

components analysis (PCA) is a simple way to obtain such a decomposition (see Supplementary Material for139

a review). PCA yields a sequence of basis patterns uα, α = 1, . . . ,M each accounting for a different amount140

of variance µα in the neural population. The patterns can be ordered in decreasing amount of variance141

explained, so that µ1 ≥ µ2 ≥, . . . ,≥ µM . By retaining the top D patterns, one achieves a fraction of142

variance explained given by χ2 = 1
µTot

∑D
α=1 µα, where µTot =

∑M
α=1 µα is the total variance in the neural143

population. Dimensionality reduction is considered successful if a small number of patterns D relative to144

number of recorded neurons M , accounts for a large fraction of variance explained in the neural state space145

dynamics.146

How well does dimensionality reduction perform in practice in neurophysiology data? We have per-147

formed a meta-analysis (Fig. 2) of a diverse set of 20 experiments spanning a variety of model organisms148

(macaques, rodents, and insects), brain regions (hippocampal, prefrontal, parietal, somatosensory, motor,149

premotor, visual, olfactory and brainstem areas), and tasks (memory, decision making, sensory detection150

and motor control). This meta-analysis reveals that dimensionality reduction as a method for simplifying151

neural population recordings performs exceedingly well. Indeed it reflects one of the most salient aspects of152

systems neurophysiology to have emerged over the last couple of decades: namely that neuronal recordings153

are often far lower dimensional than the number of recorded neurons. Moreover, in each of these works, the154

associated low dimensional dynamical portraits provide insights into relations between neural population155

activity and behavior. Despite this almost ubiquitous simplicity found in neural population recordings, prior156

to this work, we are unaware of any simple, experimentally testable theory that can quantitatively explain157

the dimensionality and accuracy of these recovered dynamical portraits.158

3 Neural Task Complexity and Dimensionality159

We now begin to describe such a theory. Central to our theory is the notion of neural task complexity160

(NTC), which both upper bounds the dimensionality of state space dynamics and quantifies how many161

neurons are required to accurately recover this dynamics. Here, we first consider the dimensionality of the162

dynamics, and later we consider the accuracy of the dynamics. To introduce the NTC intuitively, imagine163

how many dimensions a single neural trajectory could possibly explore. Consider for concreteness, the trial164

averaged neural population activity while a monkey is performing a simple reach to a target (Fig. 3AB). This165

average reach lasts a finite amount of time T , which for example could be about 600ms. The corresponding166

neural trajectory (Fig. 3C) can explore neural space for this much time, but it cannot change direction167

infinitely fast. The population response is limited by an autocorrelation time τ (see supplementary methods168

for details). Roughly, one has to wait an amount of time τ before the neural population’s activity pattern169

changes appreciably (Fig. 3B) and therefore the neural trajectory can bend to explore another dimension170

(Fig. 3C). This implies that the maximal number of dimensions the state space dynamics can possibly171

explore is proportional to T/τ . Of course the constant of proportionality is crucial, and our theory, applicable172

to reaching data described below, computes this constant to be

√

2
π (see supplementary material for a proof173

and a definition of τ ), yielding, for this experiment, an NTC =
√

2
π

T
τ .174

Now most tasks have more than just time as a parameter. Consider a slightly more complex experiment in175
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Figure 2: The ubiquity of low dimensionality relative to number of recorded neurons. In many exper-

iments (e.g. in insect [Stopfer et al., 2003, Mazor and Laurent, 2005, Assisi et al., 2007, Raman et al., 2010,

Haddad et al., 2010] olfactory systems, mammalian olfactory [Bathellier et al., 2008, Haddad et al., 2010], pre-

frontal [Narayanan and Laubach, 2009, Peyrache et al., 2009, Machens et al., 2010, Warden and Miller, 2010,

Mante et al., 2013], motor and premotor,[Paz et al., 2005, Churchland et al., 2012], somatosensory

[Chapin and Nicolelis, 1999], visual [Hegdé and Van Essen, 2004, Matsumoto et al., 2005], hippocam-

pal [Sasaki et al., 2007], and brain stem [Bromberg-Martin et al., 2010] systems) a much smaller number of

dimensions than the number of recorded neurons captures a large amount of variance in neural firing rates.

which a monkey reaches to 8 different targets (Fig. 3D). Now the manifold of trial averaged task parameters176

is a cylinder, parameterized by time t into the reach and reach angle θ (Fig. 3E). Since for each time t and177

angle θ, there is a corresponding trial averaged neural activity pattern across neurons xi(θ, t), the neural state178

space dynamics is fundamentally an embedding of this task manifold into neural space, yielding a curved179

intrinsically two dimensional neural manifold that could potentially explore many more than two dimensions180

in firing rate space by curving in different ways (Fig. 3F). How many dimensions could it possibly explore?181

Well the same argument that we made for time into a reach at fixed angle, also holds for reaching across182

all angles at a fixed time into the reach. The total extent of angle is 2π. Moreover, the neural population183

response cannot vary infinitely fast across angle; it has a spatial autocorrelation length ∆. Intuitively, this184

means that the two patterns of activity xi(θ1, t) and xi(θ2, t) across neurons at two different reach angles θ1185

and θ2 at the same time t will not be appreciably different unless |θi − θj | > ∆. Roughly, one can think of186

∆ as the average width of single neuron tuning curves across reach angle.187

Thus, just as in the argument for time, because the total angle to be explored is limited to 2π, and patterns188

are largely similar across angular separations less than ∆, the maximal number of dimensions a single circle189

around the neural manifold at any fixed time could explore, is proportional to 2π
∆ , where the proportionality190

constant is again

√

2
π . Now intuitively, the number of dimensions the full neural manifold could explore191

across both time and angle would be maximized if these explorations were independent of each other. Then192

the maximal dimensionality would be the product of

√

2
π

T
τ and

√

2
π

2π
∆ (see supplementary material for a193

proof), yielding an NTC = 4T
τ

1
∆ .194

More generally, consider a task that has K task parameters indexed by k = 1, . . . ,K, each of which195
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Figure 3: Trial averaged neurophysiology as an embedding of a task manifold into a neural manifold. (A) A

monkey reaching to a single target. The task is parameterized simply by time t. (B) Schematic of neuronal firing rate

data during the reach, and (C) the associated neural trajectory. (D) A monkey reaching to several targets. (E) The

associated task manifold is a cylinder parameterized by time into the reach and reach angle. (F) The neural state space

dynamics is a smooth embedding of the task manifold into neural firing rate space.

vary over a range Lk, and for which neural activity patterns have a correlation length λk. Then the NTC is196

NTC = C

∏K
k=1 Lk

∏K
k=1 λk

. (1)

For example, in the special case of reaches to all angles we have considered so far, we have K = 2, L1 = T ,197

λ1 = τ , L2 = 2π, λ2 = ∆, and C = 2
π . In the general case, our theory (see supplementary material) pro-198

vides a precise method to define the autocorrelation lengths λk, in a manner consistent with the intuition that199

a correlation length measures how far one has to move in behavioral manifold, to obtain an appreciably dif-200

ferent pattern of activity across neurons in the neural manifold (Fig. 3EF). Moreover, our theory determines201

the constant of proportionality C, as well as provides a proof that the neural dimensionality D, measured202

by the participation ratio of the PCA eigenvalue spectrum (see methods) is less than the minimum of the203

number of recorded neurons M and the NTC:204

D ≤ min {M,NTC}. (2)

Also, in the supplementary material, we consider a much simpler scenario in which there are a finite set of P205

neural activity patterns, for example in response to a finite set of P stimuli. There, the NTC is simply P , and206

we compute analytically how measured dimensionality D increases with number of recorded neurons M ,207

and how it eventually asymptotes to the NTC if there are no further constraints on the neural representation.208

In the following, however, we focus on the much more interesting case of neural manifolds in (1).209

We note that the NTC in (1) takes into account two very distinct pieces of information. First, the nu-210

merator only knows about the task design; indeed it is simply the volume of the manifold of task parameters211
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(e.g. Fig. 3E). The denominator on the other hand requires knowledge of the smoothness of the neural212

manifold; indeed it is the volume of an autocorrelation cell over which population neural activity does not213

change appreciably across all K task parameters. Thus the theorem (2) captures the simple intuition that214

neural manifolds of limited volume and curvature (e.g. Fig. 3CF ) cannot explore that many dimensions215

(though they could definitely explore fewer than the NTC). However, as we see below the precise theorem216

goes far beyond this simple intuition, as it provides a quantitative framework to guide the interpretation of217

past experiments and design future ones.218

4 A Dimensionality Frontier in Motor Cortical Data219

To illustrate the interpretative power of the NTC, we re-examined the measured dimensionality of neural220

activity from the motor and premotor cortices of two monkeys, H and G, recorded in [Yu et al., 2007],221

during an eight-direction center-out reach task, as in Fig. 3D (see also, Methods). The dimensionality of222

the entire dataset, i.e. the number of dimensions explored by the neural manifold in Fig. 3F, was 7.1 for223

monkey H and 4.6 for monkey G. This number is far less than the number of recorded single units, which224

were 109 and 42 for monkeys H and G respectively. So a natural question is, how can we explain this order225

of magnitude discrepancy between the number of recorded units and the neural dimensionality, and would226

the dimensionality at least increase if we recorded more units? In essence, what is the origin of the simplicity227

implied by the low dimensionality of the neural recordings?228

Here, our theorem (2) can provide conceptual guidance. As illustrated in Fig. 4A, our theorem in general229

implies that experiments in systems neurophysiology can live within 3 qualitatively distinct experimental230

regimes, each with its own unique predictions. First, the dimensionality D could be close to the number of231

recorded neurons M but far less than the NTC. This scenario suggests one may not be recording enough232

neurons, and that the dimensionality and accuracy of dynamic portraits may increase when recording more233

neurons. Second, the dimensionality may be close to the NTC but far below the number of neurons. This234

suggests that the task is very simple, and that the neural dynamics is very smooth. Recording more neurons235

would not lead to richer, higher dimensional trial averaged dynamics; the only way to obtain richer dynamics,236

at least as measured by dimensionality, is to move to a more complex task. Finally, and perhaps most237

interestingly, in the third regime, dimensionality may be far less than both the NTC and the number of238

recorded neurons. Then, and only then, can one say that the dimensionality of neural state space dynamics is239

constrained by neural circuit properties above and beyond constraints imposed by the simplicity of the task240

and the smoothness of the dynamics alone.241

Returning to the motor cortical data, it is clear that scenario (i) is ruled out in this experiment. But242

without the definition and computation of the NTC, one cannot distinguish between scenarios (ii) and (iii).243

We computed the spatial and temporal autocorrelation lengths of neural activity across reach angle and time,244

and found them to be ∆ = 1.82 radians and τ = 126 ms in monkey H, and ∆ = 1.91 radians and τ = 146245

ms in monkey G. Given that the average reach duration is T = 600 ms in both monkeys, the NTC = 4T
τ

1
∆246

is 10.5 for monkey H and 8.6 for monkey G. Comparing these NTCs to the dimensionalities D = 7.1 for247

monkey H and D = 4.6 for monkey G, and the number of recorded neurons M = 109 for monkey H and248

M = 42 for monkey G (see Fig. 4B), we see that this experiment is deep within experimental regime (ii) in249

Fig. 4A.250

This deduction implies several striking predictions for motor cortical dynamics. First, assuming the rest251

of the unrecorded neurons are statistically homogenous to the recorded neurons (implying that population252

smoothness τ and ∆ would not change much as we added more neurons to our measured population),253

then if we were to record more neurons, even roughly all 500 million neurons in macaque motor cortex,254

the dimensionality of the neural manifold in each monkey would not exceed 10.5 and 8.6 respectively.255
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Figure 4: A Dimensionality frontier in motor cortical data. (A) A schematic of the dimensionality frontier imposed

by theorem (2). Allowed possibilities of dimensionality D and neural task complexity, NTC, exhibit 3 distinct regimes:

(i) the number of recorded neurons M but not NTC restricts dimensionality, (ii) NTC but not M restricts D, and (iii) D
is far less than both M and NTC, reflecting an unexplained circuit constraint beyond smoothness and task simplicity.

(B) The number of recorded neurons M , neural task complexity, NTC and dimensionality D are 109, 10.5, and 7.1

respectively for Monkey H, and 42, 8.6 and 4.6 for monkey G. (C) Dimensionality and NTC as we explore segments

of neural trajectories of different durations at fixed angle, on the full neural manifold in Fig 3E. Temporal segments of

different durations were chosen from a uniform distribution between 100ms and 600ms from all reach angles. For each

segment we computed its dimensionality and plotted it against its ownT

τ
ratio to obtain the scatter plot. The red curve

indicates the dimensionality frontier, predicted by theory to be proportional to T

τ
. (D) Dimensionality and NTC as we

explore along all angles on the neural manifold in 3E at fixed times. Relative to movement onset, at each 10ms interval

we computed the number of dimensions explored across angles against 2π

∆
to obtain the scatter plot. Due to the natural

variability in the time-dependent population tuning width, we were able to obtain ∆’s of different values. The red curve

indicates the dimensionality frontier, predicted by theory to be proportional to 2π

∆
. Moreover in both (C) and (D), we

repeat the above analyses, while discarding a randomly chosen one third (red triangles) or two thirds (blue circles) of the

recorded neurons for monkey H (top panels) and one half (red triangles) of the recorded neurons for monkey G (bottom

panels).

Equivalently, if we were to drop a significant fraction of neurons from the population, the dimensionality256

would remain essentially the same. In essence, dimensionality would be largely independent of the number257

of recorded neurons. The second prediction is that if we were to vary the NTC, by varying the task, then this258

would have a significant impact on dimensionality: it would be proportional to the NTC.259

We confirm both of these predictions in Fig. 4CD. First, in the given dataset, we cannot increase the NTC260

further, but we can reduce it by restricting our attention to subsets of reach extents and angles. In essence we261

explore restricted one-dimensional slices of the full neural manifold in Fig. 3F as follows. First, in Fig. 4B,262

we explore different random time intervals at different fixed angles, and we plot the dimensionality explored263

by the segment of neural trajectory against the duration T of the trajectory divided by its autocorrelation τ .264

Moreover, we vary the number of recorded neurons we keep in our analysis. Second, in Fig. 4C, we pick265

different times and we plot the number of dimensions explored by the neural manifold (now a circle) across266

all angles at each chosen time, against 2π
∆ , where ∆ is the smoothness parameter of the neural circle at that267
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time, again also varying the number of neurons in our analysis. As can be clearly seen, in both monkeys268

the predictions of the theory in experimental regime (ii) in Fig. 4A are confirmed: dimensionality is largely269

independent of the number of recorded neurons, and it hugs closely the dimensionality frontier set by the270

NTC.271

Overall, these results suggest a conceptual revision in the way we may wish to think about neural com-272

plexity as measured by its dimensionality. Essentially, neural state space dynamics should not be thought273

of as inherently simple just because its measured dimensionality is much less than the number of recorded274

neurons. Instead, by properly comparing dimensionality to neural task complexity, we find neural state space275

dynamics in motor cortex is as complex and as high-dimensional as possible given basic task constraints and276

neural smoothness constraints. In essence, the neural state space dynamics represented in Fig. 3F is curving277

as much as possible within its speed limits set by spatiotemporal autocorrelation lengths, in order to control278

reaching movements.279

We note that theorem (2) is not circular; i.e. it is not tautologically true that every possible measured280

neural state space dynamics, assuming enough neurons are recorded, will have dimensionality close to the281

NTC. In the supplementary material, we exhibit an analytical example of a very fast neural circuit, with282

a small temporal autocorrelation τ , recorded for a long time T , that nevertheless has dimensionality D283

much less that T
τ because the connectivity is designed to amplify activity in a small number of dimensions284

and attenuate activity in all others, similar to the way non-normal networks have been proposed to play a285

functional role in sequence memory [Ganguli et al., 2008b]. Finally, what kind of neural dynamics would286

have a maximal dimensionality, equal to its NTC? As we show in the Supplementary material, a random287

smooth manifold, with no other structure beyond smoothness, has such maximal dimensionality.288

5 Beyond dimensionality: accurate recovery of the geometry of dynamical portraits289

The above theory reveals a simple sufficient condition under which the dimensionality of dynamical portraits290

would remain unchanged if we recorded more neurons: namely if the number of recorded neurons exceeds291

the NTC, and the unrecorded neurons are statistically similar to the recorded neurons so as not to change292

population smoothness estimates. But importantly, even if we obtain the dimensionality of neural state space293

dynamics correctly by simply recording more neurons than the NTC, our theory so far does not provide any294

guarantee that we obtain their geometry correctly. Here we address the fundamental question of how many295

recorded neurons are sufficient to obtain the correct dynamical portrait of circuit computation at a given level296

of precision? By definition, the correct dynamical portrait is what we would obtain from dimensionality297

reduction applied to recordings of all the neurons in the behaviorally relevant brain region in question.298

Importantly, how does the sufficient number of recorded neurons scale with the complexity of the task, the299

desired precision, the total number of neurons in the brain region, and other properties of neural dynamics?300

And, interestingly, what minimal aspects of neural dynamics are important to know in order to compute this301

number?302

To introduce our theory, it is useful to ask, when, intuitively, would recordings from a subset of neurons303

yield the same dynamical portrait as recordings from all the neurons in a circuit? The simplest visualizable304

example is a circuit of 3 neurons, where we can only measure 2 of them (Fig. 5A). Suppose the set of neural305

activity patterns encountered throughout the experiment consists of a single neural trajectory, that does not306

curve too much, and is somewhat randomly oriented relative to the single neuron axes (or equivalently, neural307

activity patterns at all times are distributed across neurons). Then the act of subsampling 2 neurons out of 3308

is like looking at the shadow, or projection of this neural trajectory onto a coordinate subspace. Intuitively,309

it is clear that the geometry of the shadow will be similar to the geometry of the neural trajectory in the full310

circuit, no matter which 2 neurons are recorded. On the other hand, if the manifold is not randomly oriented311
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with respect to single neuron axes, so that neural activity patterns may be sparse (Fig. 5B), then the shadow312

of the full neural trajectory onto the subspace of recorded neurons will not preserve its geometry across all313

subsets of recorded neurons. The challenge of course, is to make these intuitive arguments quantitatively314

precise enough to guide experimental design.315

To develop our theory of neural measurement, lets first assume the optimistic scenario in Fig. 5A, and316

pursue and test its consequences. If, in general, the neural data manifold (i.e. Fig. 3F) is randomly oriented317

w.r.t. the single neuron axes, then a measurement we can currently do, namely record from M randomly318

chosen neurons (Fig. 5C, top), becomes equivalent to a measurement we do not yet do, namely record from319

M random linear combinations of all neurons in the circuit (Fig. 5C, bottom). The former corresponds to320

projecting the neural manifold onto a coordinate subspace as in Fig. 5A, while the latter corresponds to321

projecting it onto a randomly oriented M dimensional subspace. If the neural manifold is randomly oriented322

to begin with, the nature of the geometric distortion incurred by the shadow, relative to the full manifold, is323

the same in either case.324

This perspective allows us to then invoke a well-developed theory of how smooth manifolds in a high325

dimensional ambient space become geometrically distorted under a random projection (RP) down to a lower326

dimensional subspace [Baraniuk and Wakin, 2007, Clarkson, 2008]. The measure of geometric distortion ǫ327

is the worst case fractional error in euclidean distances between all pairs of points on the manifold, measured328

in the subspace, relative to the full ambient space (see Methods). The theory states that, to achieve a desired329

fixed level of distortion, ǫ, with high probability (> 0.95 in our analyses below) over the choice of random330

projection, the number of projections M should exceed a function of the distortion ǫ, the manifold’s intrinsic331

dimension K (1 for trajectories, 2 for surfaces, etc..), volume V , and curvature C, and the number of332

ambient dimensions N . In particular the theory states that M ≥ K
ǫ2 (c1 logCV + c2 logN + c3), where c1,333

c2, and c3 are fixed constants, is sufficient. Thus intuitively, manifolds with low intrinsic dimensionality334

that do not curve much and have limited volume do not require that many measurements to preserve their335

geometry. Intriguingly, the number of ambient dimensions has a very weak effect; the number of required336

measurements grows only logarithmically with it. This is exceedingly fortunate, since in a neuroscience337

context, the number of ambient dimensions N is the total number of neurons in the relevant brain region,338

which could be very large. The logarithm thus ensures that this large number alone does not impose a339

requirement to make a prohibitively large number of measurements. Translating the rest of this formula to340

a neuroscience context, K is simply the number of task parameters, and CV , or curvature times volume, is341

qualitatively related to the NTC in (1); the numerator is the volume of the manifold in task space, and the342

reciprocal of correlation length is like curvature (short correlation length implies high curvature). Making343

this qualitative translation, the theory of neural measurement as a random projection suggests that as long as344

the number of recorded neurons obeys345

M =
K

ǫ2
(c1 logNTC + c2 logN + c3) , (3)

then we can obtain dynamical portraits with fractional error ǫ, with high probability over the choice of a346

random subset of recorded neurons. Remarkably, this predicts the number of recorded neurons need only347

scale logarithmically with the NTC to maintain a fixed precision.348

Thus this theory makes a striking prediction that we can test in neural data: for a fixed number of task349

parameters K, and a fixed number of total neurons N , if we vary the number of recorded neurons M and the350

NTC, and compute the worst case fractional error ǫ in the recovered dynamical portraits relative to what we351

would get if we recorded all N neurons, then the iso-contours of constant distortion will be straight lines in352

a plane formed by M and the logarithm of the NTC. Of course we cannot currently record all N neurons in353

motor cortex, so we simply treat the dynamical portraits obtained in each monkey from all recorded neurons354
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Figure 5: Conditions for accurate recovery of the geometry of dynamical portraits . A. A simple example of a

K = 1 dimensional neural trajectory in N = 3 ambient dimensions, that is not aligned with respect to single neuron

axes, so that neural patterns at all times are distributed across neurons. Recording any subset of M = 2 neurons induces

only small geometric distortions in the neural trajectory relative to recording all N = 3 neurons. B. A simple example of

a neural trajectory that is largely aligned with respect to the axis of neuron 2. Measuring any subset of neurons that does

not include neuron 2 incurs a large distortion in the trajectory. C. For neural manifolds that are randomly oriented with

respect to the single neuron axes, recording a random sample (RS) of M neurons (top) yields similar dynamical portraits

as those obtained from recording a set of M random linear combinations, or random projection (RP), of all N neurons in

the circuit. D. Example neural trajectories from two reach angles under different levels of distortion. The trajectories are

projected into the top 2 PCSs, and only rotated for optimal alignment against fully observed trajectories. E. Variations

(95% interval) of recovered PCs under different levels of distortion. F. For each monkey, the 95th percentile of the

distortion distribution obtained after measuring M random linear combinations of all N recorded neurons (N = 109
for monkey H and N = 42 for monkey G), for random neural trajectory intervals of varying duration T . For each M
and T we conducted 200 random trials and in 95% of trials the distortion ǫ between the resulting dynamical portrait

and that obtained from all N recorded neurons for the same neural trajectory was less than the reported distortion. The

iso-contrours of constant distortion are indeed straight lines in the M -log T plane, as predicted by Eq. (3). For the

iso-contours ǫ = 0.2, 0.3, and 0.4, linear regression of M against log T yields excellent fits (R2’s of 0.93, 0.95 and

0.96 respectively for monkey H; 0.91, 0.93 and 0.96 for monkey G). G. Exactly the same analysis as F except now

the measurement process corresponds to random samples of M neurons as opposed to M random projections of all N
neurons. H. A quantitative comparison of panels F and G through a scatter plot of the number of randomly sampled

neurons versus random projections required to obtain the same distortion on neural trajectories of varying duration.
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as the ground truth: i.e. we take N = 109 in monkey H and N = 42 in monkey G, as the total number355

of neurons, and we subsample a smaller number of neurons M from this pool. Also, we focus on the case356

K = 1, as the neural manifold in Fig. 3F is sampled smoothly only in time, and not angle; the reaches357

were done at only 8 discrete angles. Therefore we vary the NTC exactly as in Fig. 4C, by choosing random358

intervals of neural trajectories of varying durations T at each angle. For each interval duration T , which359

in this restricted context we can think of as simply proportional to the NTC, we use data from a random360

subset of M neurons, and compute the distortion ǫ(M,T ) in the resulting dynamical portraits relative to the361

assumed ground-truth portrait obtained from all N recorded neurons. The theory above in Eq. (3) predicts362

exactly the same scaling in this scenario, with NTC replaced by time T .363

Examples of the effects of different distortions ǫ, obtained by by sampling different sets of M neurons,364

are shown in Fig. 5D for dynamic portraits and Fig. 5E for individual PC’s. More generally, for each M and365

T , we conducted 200 trials and we plotted the 95’th percentile of resultant distribution of distortion ǫ as a366

heat map in Fig. 5FG. (i.e. 95% of trials had distortion less than what is reported). In panel F, we measured367

M random projections, or M random linear combinations of all N recorded neurons, for varying intervals of368

duration T , as the subsampled dataset, corresponding to the hypothetical experiment in Fig. 5C, bottom. It is369

clear that the iso-contours of constant distortion ǫ are well fit by straight lines in a plane formed by M and the370

logarithm of time T . This is a completely expected result, as this analysis is simply a numerical verification371

of an already proven theory. However, it forms a quantitative baseline for comparison in panel G, where we372

repeat the same analysis in panel F , except we record random subsamples of M neurons, as in experiment373

5C, top. We obtain a qualitatively similar result as in panel F , which is remarkable, since this analysis is374

no longer a simple numerical verification of a mathematical theory. Rather, it is a stringent test of the very375

assumption that the neural manifold in Fig. 3F is randomly oriented enough with respect to single neuron376

axes so that random projections form a good theoretical model for the traditional measurement process of377

randomly sampling a subset of neurons. In essence it is a test of the assumption that the neural manifold is378

more like Fig. 5A than Fig. 5B, so that the two experiments in Fig. 5C yield similar geometric distortions379

in dynamical portraits as a function of recorded neurons M and neural task complexity NTC. In particular,380

the striking scaling of recorded neurons M with the logarithm of the NTC to maintain fixed precision in381

recovered dynamical portraits, predicted by the random projection theory of neural measurement, is verified.382

Moreover, we quantitatively compare the discrepancy between the two measurement scenarios in Fig. 5H,383

by creating a scatter plot of how many randomly sampled neurons versus random projections it takes to384

get the same distortion ǫ across all possible neural trajectory durations T , or equivalently, NTC’s. Even385

at a quantitative level, the data points are close to the unity line, relative to the total number of recorded386

neurons, suggesting that for this dataset, random projection theory is an impressively good model for the387

neural measurement process.388

In the Supplementary Material, we study how these results are modified as neural activity patterns be-389

come more sparse and aligned with single neuron axes (i.e. less extreme versions of Fig. 5B). Remarkably,390

the linear scaling of number of neurons with the logarithm of NTC at fixed error is preserved, albeit with391

a higher slope and intercept. By comparing the neural data to simulated data with different levels of spar-392

sity, we find that the neural data is indeed close to randomly aligned with respect to single neuron axes, as393

suggested by the closeness of the points in 5H to the unity line.394
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6 Discussion395

6.1 An intuitive summary of our theory396

Overall, we have generated a quantitative theory of trial averaged neural dimensionality, dynamics, and397

measurement that can impact both the interpretation of past experiments, and the design of future ones. Our398

theory provides both quantitative and conceptual insights into the underlying nature of two major order of399

magnitude discrepancies dominating almost all experiments in systems neuroscience: (1) the dimensionality400

of neural state space dynamics is often orders of magnitude smaller than the number of recorded neurons401

(e.g. Fig. 2), and (2) the number of recorded neurons is orders of magnitude smaller than the total num-402

ber of relevant neurons in a circuit, yet we nevertheless claim to make scientific conclusions from such403

infinitesimally small numbers of recorded neurons. This latter discrepancy is indeed troubling, as it calls404

into question whether or not systems neuroscience has been a success or a failure, even within the relatively405

circumscribed goal of correctly recovering trial-averaged neural state space dynamics in such an undersam-406

pled measurement regime. To address this fundamental ambiguity, our theory identifies and weaves together407

diverse aspects of experimental design and neural dynamics, including the number of recorded neurons, the408

total number of neurons in a relevant circuit, the number of task parameters, the volume of the manifold of409

task parameters, and the smoothness of neural dynamics, into quantitative scaling laws determining bounds410

on the dimensionality and accuracy of neural state space dynamics recovered from large scale recordings.411

In particular, we address both order of magnitude discrepancies by taking a geometric viewpoint in412

which trial-averaged neural data is fundamentally an embedding of a task manifold into neural firing rate413

space (Fig 3EF), yielding a neural state space dynamical portrait of circuit computation during the task. We414

explain the first order of magnitude discrepancy by carefully considering how the complexity of the task,415

as measured by the volume of the task manifold, and the smoothness of neural dynamics, as measured by416

a product of neural population correlation lengths across each task parameter, can conspire to constrain the417

maximal number of linear dimensions the neural state space dynamics can possibly explore. We define a418

mathematical measure, which we call neural task complexity (NTC), which, up to a constant, is simply the419

ratio of the volume of the task manifold and the product of neural population correlation lengths (Eq. (1))420

and we prove (see Supplementary material) that this measure forms an upper bound on the dimensionality421

of neural state space dynamics (Eq. (2)). We further show in neural data from the motor cortex of reaching422

monkeys, that the NTC is much smaller than the number of recorded neurons, while the dimensionality423

is only slightly smaller than the NTC (Fig. 4). Thus the simplicity of the center out reach task and the424

smoothness of motor cortical activity, are by themselves sufficient to explain the low dimensionality of the425

dynamics relative to the number of recorded neurons. A natural hypothesis is that for a wide variety of tasks,426

neural dimensionality is much smaller than the number of recorded neurons because the task is simple and427

the neural population dynamics is smooth, leading to a small NTC. In such scenarios (experimental regime428

(ii) in Fig. 4A), only by moving to more complex tasks, not by recording more neurons, would we obtain429

richer higher dimensional trial averaged state space dynamics.430

We address the second, more troubling, order of magnitude discrepancy by making a novel conceptual431

link between the time-honored electrophysiology tradition of recording infinitesimally small subsets of neu-432

rons in much larger circuits, and the theory of random projections, corresponding in this context to recording433

small numbers of random linear combinations of all neurons in the circuit. In scenarios where the neural434

state space dynamics is sufficiently randomly oriented with respect to single neuron axes (e.g. Fig. 5A) these435

two different measurement scenarios (Fig. 5C) yield similar predictions for the accuracy with which the dy-436

namics are recovered as a function of the number of recorded neurons, the total number of neurons in the437

circuit, the volume of the task manifold, and the smoothness of the neural dynamics. A major consequence438
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of the random projection theory of neural measurement is that the worst case fractional error in the geometry439

of recovered neural state space dynamics increases only with the logarithm of the total number of neurons in440

the circuit (Eq. (3)). This remarkable property of random projections goes hand in hand with why systems441

neuroscience need not be daunted by so many unrecorded neurons: we are protected from their potentially442

detrimental effect on the error of state space dynamics recovery by a strongly compressive logarithm. More-443

over, the error grows linearly with the number of task parameters, and only again logarithmically with the444

NTC, while it decreases linearly in the number of recorded neurons (Eq. (3)). Thus recording a modest445

number of neurons can protect us against errors due to the complexity of the task, and lack of smoothness in446

neural dynamics.447

This theory then resolves the ambiguity of whether systems neuroscience has achieved success or has448

failed in correctly recovering neural state space dynamics. Indeed it may well be the case that in a wide449

variety of experiments, we have indeed been successful, as we have been doing simple tasks with a small450

number of task parameters and NTC, and recorded in circuits with distributed patterns of activity, making451

random projections relevant as a model of the measurement process. Under these conditions, we have452

shown there is a modest requirement on the number of recorded neurons to achieve success. Our work453

thereby places many previous works on dimensionality reduction in neuroscience on much firmer theoretical454

foundations. Having summarized our theory, below we discuss its implications and its relations to other455

aspects of neuroscience.456

6.2 Dimensionality is to neural task complexity as information is to entropy457

To better understand the NTC, and its relation to dimensionality, it is useful to consider an analogy between458

our results and applications of information theory in neuroscience [Reike et al., 1996]. Indeed, mutual in-459

formation has often been used to characterize the fidelity with which sensory circuits represent the external460

world. However, suppose that one reported that the mutual information rate I(S,R) between the sensory461

signal S and the neural response R were 90 bits per second, as it is in the fly H1 neuron [Strong et al., 1998].462

This number by itself would be difficult to interpret. However, just as dimensionality is upper bounded by the463

neural task complexity, mutual information I is upper bounded by entropy H , i.e. I(S,R) ≤ H(R). Thus464

if one measured the entropy rate of the response spike train to be 180 bits per second [Strong et al., 1998],465

then by comparing the mutual information to the entropy one could make a remarkable conclusion, namely466

that the neural code is highly efficient: the fidelity with which the response R codes for the stimulus S is467

within a factor of 2 of the fundamental limit set by the entropy of the neural response R.468

Similarly, the observation that the dimensionality of recordings of 109 neurons in Monkey H in Fig. 4469

is 7.1, is by itself, difficult to interpret. However, if one computed the NTC to be 10.5, then by comparing470

dimensionality to the NTC, one could make another remarkable conclusion, namely that motor cortex is471

exploring almost as many dimensions as possible given the limited extent, or volume of behavioral states472

allowed by the task, and the limited speeds with which neural population dynamics can co-vary across473

behavioral states. Thus just as entropy, as an upper bound on mutual information, allows us to measure474

the fidelity of the neural code on an absolute scale from 0 to 1 through the ratio of information to entropy,475

the NTC, as an upper bound on dimensionality, allows us to measure the complexity of neural state space476

dynamics on an absolute scale from 0 to 1, through the ratio of dimensionality to NTC. When this ratio is 1,477

neural dynamics is as complex, or high dimensional, as possible, given task and smoothness constraints.478
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6.3 Towards a predictive theory of experimental design479

It may seem that neural task complexity could not be useful for guiding the design of future experiments,480

as its very computation requires knowing the smoothness of neural data, which would not have yet been481

collected. However, this smoothness can be easily estimated based on knowledge of previous experiments.482

As an illustration, consider how one might obtain an estimate of how many neurons one would need to483

record in order to accurately recover neural state space dynamics during a more complex reaching task in484

3 dimensions. For concreteness, suppose a monkey has to reach to all points on a sphere of fixed radius485

centered at the shoulder of the reaching arm. The manifold of trial averaged task parameters is specified486

by time t into the reach, which varies from 0 to T ms, and the azimuthal and altitudinal angles φ and θ,487

each of which range from 0 to 2π. Now lets assume the smoothness of neural population dynamics across488

time will be close to the average of what we observed for 2 dimensional reaches (τ = 126 and 146 ms489

in monkeys H and G). Also lets assume reaches will take on average T = 600 ms as it did in the case of490

two dimensional reaches. Then the we obtain the estimate T
τ = 600

136 = 4.41. Now again, lets assume that491

both azimuthal (∆φ) and altitudinal (∆θ) neural correlation lengths would be the average of the angular492

correlation length of two dimensional reaches (∆ = 1.82 and 1.91 radians in monkeys H and G), yielding493

2π
∆φ

= 2π
∆θ

= 2π
1.865 = 3.37. Then the NTC, according to Eq. (1), is proportional to the product of these494

3 numbers, where in 3 dimensions, the constant of proportionality could be taken to be C =
(

2
π

)3/2
. This495

product yields an estimate of NTC =
(

2
π

)3/2 × 4.41× 3.37× 3.37 = 25.4.496

If we trust this estimate, then this simple computation, coupled with our theorems proven above, allows497

us to make some predictions that can guide experimental design. For example, the theorem in Eq. (1) implies498

that no matter how many neurons we record in monkey motor and premotor cortices, the dimensionality of499

the trial averaged state space dynamics will not exceed 25. Moreover, the theorem in Eq. (3) tells us that500

if we wish to recover this state space dynamics to within fractional error ǫ = 0.2, relative to what we501

would obtain if we recorded all task relevant neurons, then we should record at least M = 300 neurons (see502

Supplementary Material). Now of course, we may not wish to trust this estimate, because we may have mis-503

estimated the neural correlation lengths. To be safer, we could easily underestimate the correlation lengths,504

and thereby obtain a safe overestimate of the NTC and requisite number of neurons to record. But overall, in505

this fashion, by combining an estimate of a likely NTC in future experiments with the new theorems in this506

work, we can obtain back of the envelope estimates of the dimensionality and accuracy of recovered state507

space dynamics, as neuroscience moves forward to unravel the neural basis for more complex behavioral508

and cognitive acts.509

6.4 Departures from our assumption of statistical homogeneity510

A critical assumption in using our theory to guide future experiments is that the set of unrecorded neurons511

is statistically similar to the set of recorded neurons, so that the denominator of the NTC in Eq. (1) will512

not change much as we fix the task and record more neurons. There are several important ways that this513

assumption could be violated. For example, there could be strong spatial topography in the neural code of514

the relevant circuit, so that as we expand our electrode array to record more neurons, the new neurons might515

have fundamentally different coding properties. Also, we may wish to record from multiple task relevant516

brain regions simultaneously, in which case our theory would have to apply to each brain region individually.517

Moreover, there may be multiple cell types in the relevant brain region. Unfortunately, most electrophysiol-518

ogy recordings do not give us access to cell type information (though spike width can sometimes serve as a519

proxy for the excitatory/inhibitory distinction). Thus the recovered neural state space dynamics reflects the520

combined action of all cell types. However, if we had access to cell type information, me may wish to define521
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state space dynamical variables for each cell type. Then the theory would apply to each cell type alone.522

However, if cells of different types are strongly coupled, it is not clear that the collective dynamics of the cir-523

cuit should be well explained by reduced degrees of freedom, or state, that are in one-to-one correspondence524

with cell types. This is an important empirical issue for further studies.525

In essence, our theory applies to a spatially well mixed, statistically homogenous, localized brain region526

whose dynamics is relevant to the task. Fortunately, a wide variety of phylogenetically newer brain regions527

that evolved to learn new connectivities to solve tasks that evolution itself could not anticipate, for example528

prefrontal, parietal, pre-motor and motor cortices, and even older hippocampal circuits, exhibit precisely529

these kinds of mixed representations, in which the coding properties of individual neurons exhibit no dis-530

cernible spatial topography, and almost every neuron codes for a mixture of multiple task parameters (e.g.531

[Machens et al., 2010, Mante et al., 2013, Rigotti et al., 2013, Raposo et al., 2014]). These are precisely the532

properties that make the neural manifold randomly oriented with respect to single neuron axes, and there-533

fore make our random projection theory of neural measurement relevant, and the recovery of state space534

dynamics relatively easy despite subsampling.535

But ironically, these very same properties make the goal of understanding what each and every individual536

neuron in the circuit does a seemingly difficult and questionable endeavor. While this endeavor has indeed537

traditionally been the putative gold standard of understanding, perhaps instilled in systems neuroscience by538

the tremendous success of Hubel and Wiesel in discovering single cell orientation tuning in primary visual539

cortex [Hubel and Wiesel, 1959], it is unclear that it will continue to be a profitable path going forward,540

especially in recently evolved brain regions where mixed representations dominate. But fortunately, the541

path of moving away from understanding single neurons to recovering collective state space dynamics, is542

a promising route forward, and indeed one that has firmer theoretical justification now, even in the face of543

extreme neural subsampling.544

6.5 A why question: the neuroscientist and the single neuron545

We have shown that when neural representations are distributed, or randomly enough oriented with respect to546

single neuron axes (Fig. 5A), so that random projections constitute a good model of the neural measurement547

process (Fig. 5C), then the life of the neuroscientist studying neural circuits becomes much easier: he or she548

can dramatically subsample neurons, yet still recover global neural state space dynamics with reasonable549

accuracy. However, neural systems evolved on earth long before neuroscientists arrived to study them. Thus550

no direct selection pressures could have possibly driven neural systems to self-organize in ways amenable551

to easy understanding by neuroscientists. So one could then ask a teleological question: why did neural552

systems organize themselves this way?553

One possible answer lies in an analogy between the neuroscientist and the single neuron, whose goals554

may be inadvertently aligned. Just as a neuroscientist needs to read the state of a cortical neural circuit by555

sampling O(100) randomly chosen neurons, a downstream cortical neuron needs to compute a function of556

the state of the upstream circuit while listening to O(10, 000) neurons. Intuitively, if neural activity patterns557

are low dimensional enough, and distributed enough across neurons, then the single neuron will be able558

to do this. Indeed, a few works have studied constraints on neural representations in the face of limited559

network connectivity. For example, [Valiant, 2005] showed that the sparser neural connectivity is, the more560

distributed neural representations need to be, in order for neural systems to form arbitrary associations561

between concepts. Also [Sussillo and Abbott, 2012] showed that if neural representations in a circuit are562

low dimensional and randomly oriented with respect to single neuron axes, then a neuron that subsamples563

that circuit can compute any function of the circuit’s state that is computable by a neuron that can listen564

to all neurons in the circuit. And finally, [Kim et al., 2012] showed that the hippocampal system appears565
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to perform a random projection, transforming a sparse CA1 representation of space into a dense subicular566

representation of space, yielding the ability to communicate the output of hippocampal computations to the567

rest of the brain using very few efferent axons.568

These considerations point to an answer to our teleological question: in essence, our success as neuro-569

scientists, in the accurate recovery of neural state space dynamics under extreme subsampling, may be an570

exceedingly fortunate corollary of evolutionary pressures for single neurons to communicate and compute571

accurately under the constraints of limited degree network connectivity.572

6.6 Beyond the trial average: towards a theory of single trials573

A natural question is how this theory would extend to the situation of single trial analyses. Several new574

phenomena can arise in this situation. First, in any single trial, there will be trial to trial variability, so that575

neural activity patterns may lie near, but not on, the trial averaged neural manifold, illustrated for example576

in Fig. 3F. The strength of this trial to trial variability can be characterized by a single neuron SNR, and it577

can impact the performance of various single trial analyses. Second, on each and every trial, there may be578

fluctuations in internal states of the brain, reflecting potentially cognitive variables like attention, or other579

cognitive phenomena, that are uncontrolled by the task. Such fluctuations would average out in the trial580

averaged manifold, but across individual trials would manifest as structured variability around the manifold.581

It would be essential to theoretically understand methods to extract these latent cognitive variables from the582

statistics of structured variability. Third, the trial averaged neural manifold may have such a large volume,583

especially in a complex task, so that in a finite number of trials P we may not be able to sufficiently cover this584

volume. One would like to know then, what is the minimum number of training trials P one would require,585

to successfully decode behavioral or cognitive variables on subsequent, held-out, single trials. Moreover,586

how would this minimum number of trials scale with properties of the trial averaged manifold, obtained587

only in the limit of very large numbers of trials?588

We have already begun to undertake a study of these and other questions. Our preliminary results, some589

of which were stated in [Gao and Ganguli, 2015], suggest that the basic theory of trial averaged neural data590

analysis forms an essential springboard for addressing theories of single-trial data analysis. For example, in591

the case of the last question above, we find that the number of training trials P must scale with the NTC of592

the trial averaged neural manifold, in order for subsequent single trial decoding to be successful. Moreover,593

we have analyzed theoretically the recovery of internal states reflected in the spontaneous activity of large594

model neural circuits, while subsampling only M neurons for a finite amount of time T
τ (a dimensionless595

ratio of recording time to single neuron correlation time τ ). We find that the dynamics of these internal596

states can be accurately recovered as long as (a) both M and T
τ exceed the intrinsic dimensionality explored597

by the manifold of latent circuit states, and (b) the square-root of the product of neurons M and T
τ exceeds598

a threshold set by both this dimensionality and the single neuron SNR [Gao and Ganguli, 2015]. In turn599

the dimensionality of the manifold of latent circuit states is upper bounded by its NTC, so the NTC of a600

latent neural manifold determines the viability of single trial analyses, just as it does in the recovery of601

neural manifolds explicitly associated with externally measured task parameters. And finally, one may be602

tempted to conjecture that, due to finite SNR, single trial decoding performance may grow without bound603

as the number of recorded neurons increase - a result that is qualitatively different from the trial averaged604

theory, which suggests that only modest only numbers of neurons are required to accurately recover neural605

state space dynamics. However, there are several reasons to believe that such a qualitative discrepancy may606

not bear out. For example, neural noise may be embedded in the same direction as the signal, resulting in607

information limiting correlations [Moreno-Bote et al., 2014]. Moreover, empirically, in single trial decoding608

in the brain machine interface community, decoding performance already achieves a point of diminishing609
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returns at even modest numbers of recorded neurons. The precise theoretical reasons for this remain an610

object of future study.611

But overall, our initial results in a theory of single-trial analyses, to be presented elsewhere, suggest612

that the theory of trial-averaged neural dimensionality, dynamics and measurement, presented here, not only613

provides interpretive power for past experiments, and guides the design of future trial averaged experiments,614

but also provides a fundamental theoretical building block for expansion of the theory to single trial anal-615

yses. In essence, this work provides the beginnings of a theoretical framework for thinking about how and616

when statistical analyses applied to a subset of recorded neurons correctly reflect the dynamics of a much617

larger, unobserved neural circuit, an absolutely fundamental question in modern systems neuroscience. A618

proper, rigorous theoretical understanding of this question will be essential as neuroscience moves forward619

to elucidate the neural circuit basis for even more complex behavioral and cognitive acts, using even larger620

scale neural recordings.621

7 Materials and Methods622

7.1 Dimensionality Measure623

Our measure of dimensionality is derived from the eigen-spectrum of the neuronal covariance matrix. This624

matrix underlies PCA, and indicates how pairs of neurons covary across time and task parameters (see625

Supplementary material). The eigenvalues of this matrix, µ1 ≥ µ2 ≥, . . . ,≥ µM , reflect neural population626

variance in each eigen-direction in firing rate space. The participation ratio (PR),627

PR =
(
∑

i µi)
2

∑

i µ
2
i

, (4)

is a natural continuous measure of dimensionality. Intuitively, if all variance is concentrated in one dimen-628

sion, so that µα = 0 for α ≥ 2, then PR=1. Alternatively, if the variance is evenly spread across all M629

dimensions, so that µ1 = µ2 = . . . µM , then PR= M . For other PCA eigenspectra, the PR sensibly interpo-630

lates between these two regimes, and for a wide variety of uneven spectra, the PR corresponds to the number631

of dimensions required to explain about 80% of the total population variance (see Supplementary material).632

7.2 Preprocessing of the Motor Cortical Dataset633

We use multi-electrode array recordings from two monkeys’ (H and G) PMd and M1 areas as they performed634

an eight-direction center-out delayed reach task [Yu et al., 2007]. There are between 145 and 148 trials in635

monkey H’s dataset and between 219 and 222 trials in monkey G’s dataset for each of the eight reach direc-636

tions. Neural activities from each trial are time aligned to hand movement onset (time of 15% maximal hand637

velocity), and restricted to the -250ms to 350ms range time window around movement onset. Each spike638

train is smoothed with a 20ms gaussian kernel, and averaged with trials of the same reach angle to obtain the639

averaged population firing rates for the eight conditions. To homogenize the activity levels between neurons640

of different firing rates, and to highlight variability in the data resulting from task conditions, we further641

applied the square-root transform to population firing rates [Thacker and Bromiley, 2001], and subtracted642

their cross-condition average [Churchland et al., 2012].643
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7.3 Distortion Measure644

To quantify the geometric distortion of dynamic portraits incurred from projecting them down from the N645

dimensional space of all neurons to the M dimensional subspace of recorded neurons (or M dimensional646

random subspace for a random projection), we adopt the pairwise distance distortion measure widely em-647

ployed in the theory of random projections. Let P be the M -by-N linear projection operator that maps648

points from the full N -dimensional neural space into the M -dimensional subspace. For any pair of neural649

activity patterns xi and x
j in the full N -dimensional space, the pairwise distance distortion induced by P is650

defined as651

dij(P) =

√

N

M

||Px
i −Px

j ||
||xi − xj || − 1, (5)

where the
√

N/M ratio compensates for the global distortion introduced simply by the reduction in dimen-652

sionality, and ||v|| denotes the Euclidean length of a vector v. A distortion of 0 indicates that the pairwise653

distance is the same both before and after the projection (up to an overall scale). The worst case distortion654

over all pairs of points (i, j) on the neural manifold is given by,655

dmax(P) = max
i,j

dij(P). (6)

Since under either random projection or random sampling, P is a random mapping, dmax(P) is a random656

variable. We characterize the distortion by the 95th percentile of the distribution of this random variable, i.e.657

that ǫ for which658

Prob (dmax(P) ≤ ǫ) = 0.95.

Thus with high probability (95%), over the random set of M measurements, the worst case distortion over659

all pairs of points on the neural manifold, will not exceed ǫ. In Fig. 5, for each value of M and T , we660

estimated ǫ by computing dmax(P) 200 times for different random choices of P, and set ǫ to be the 95th661

percentile of this empirical distribution of distortions.662
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I Introduction697

In this supplementary material, we fill in the technical details associated with the main manuscript, and698

present proofs of the theorems stated there. The outline of the supplementary material is as follows.699

In Sec. II, after reviewing principal components analysis, we justify the participation ratio as a reason-700

able measure of neural dimensionality, and explain its relation to more traditional measures like fraction of701

variance explained as a function of the number of principal components retained. We also explain rigorously702

how neural dimensionality is intimately related to task dimensionality through simple properties of linear703

algebra. Finally we compute the dimensionality of simple stationary tasks.704
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In Sec. III we introduce the logic behind neural task complexity (NTC) and why it places an upper bound705

on neural dimensionality. Along the way we prove a series of rigorous theorems in which we successively706

destroy structure in neural data, and show that the resultant destroyed dataset has higher dimensionality707

than the original dataset. The final outcome of this destruction of structure yields a simple dataset that is708

characterized purely by the number and range of task parameters and the local smoothness of the original709

dataset along each task parameter. The dimensionality of this simple dataset is by definition the NTC, and by710

construction it forms an upper bound on the dimensionality of the original dataset. Along the way we prove711

several intermediate results: (1) destroying long range correlations in a dataset increases its dimensionality;712

(2) making a dataset more homogeneous increases its dimensionality; (3) the best stationary approximation713

to a dataset has higher dimensionality than the original one; and (4) a particular factorization of a dataset714

across multiple task parameters has higher dimensionality than the original. Overall, this section proves the715

central results of Equations (1) and (2) in the main paper.716

In Sec. IV we provide examples of the relationship between measured dimensionality, number of717

recorded neurons, and neural task complexity for a diverse set of theoretical models for datasets. We begin718

with a set of discrete stimuli, which we do not consider in the main paper, but include here for completeness.719

We then consider the case of random smooth neural manifolds, as an example of a model dataset in which720

actual dimensionality equals the neural task complexity. For both of these datasets, we show that the mea-721

sured dimensionality initially grows with the number of recorded neurons, but then saturates to the value of722

the actual dimensionality as soon as the number of recorded neurons exceeds the actual dimensionality by723

a factor of about 10. This is consistent with the theory of random projections discussed later in which the724

preservation of geometric structure in data (including its dimensionality) to within a fractional error, requires725

a number of neurons that varies inversely with the error tolerance. Finally, at the end of Sec. IV we provide726

a theoretical neural network model that generates a dataset that lies deep within the elusive experimental727

regime (iii) in Figure 4A of the main paper. In this regime, the actual dimensionality is much less than the728

NTC (as well as the number of measured neurons), indicating that some neural network property is constrain-729

ing dimensionality to a smaller value than that predicted by limited recording time and neural smoothness730

alone. In our example, this property is non-normal amplification which rapidly constraints network activity731

to a small number of neural activity patterns.732

In Sec. V we begin with a self-contained review of seminal results in random projection theory. We733

then explore random projections of smooth manifolds in detail using simulations to quantitatively determine734

different constants of proportionality relating the number of required projections to the volume, smoothness,735

and ambient dimension of the manifold. These numerical simulations demonstrate that the constants of736

proportionality, which were not measured quantitatively in prior work, are not that large and are indeed737

O(1). Finally, we explore the effects of sparsity on neural activity, confirming that the essential theoretical738

prediction verified in Fig. 5 in the main paper, namely that the number of recorded neurons M need only739

scale logarithmically with the NTC in order to achieve a constant level of distortion, holds even when the740

data is quite sparse.741

II The relation between neuronal and task dimensionality742

II.I Review of principal components analysis as a dimensionality reduction method743

Trial averaged neural data is often described by an M -by-NT data matrix, X. The M rows of X correspond744

to M recorded neurons, while the NT columns of X correspond to all experimental task conditions - i.e. the745

columns could range over all combinations of time points and task parameter values occurring throughout746

the experiment. Each matrix element Xia reflects the firing rate of neuron i in task condition a. For example,747
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for a simple task unfolding over time as shown in Fig. 1 of the main paper, each column of X represents a748

pattern of firing rates across M recorded neurons at some specified time, and NT is equal to the total number749

of sampled time points.750

Principal components analysis (PCA), as a method of dimensionality reduction, starts from the M by M751

neuronal covariance matrix,752

C
Neuron =

1

NT
XX

T . (7)

Here we have assumed that the data matrix X is centered, so that the sum of the columns is 0 (i.e.
∑NT

a=1 Xia =753

0 ∀ i ). Geometrically, this means the cloud of NT neural activity patterns in M dimensional firing rate space,754

where each point in the cloud corresponds to a column of X, has its center of mass at the origin. Each matrix755

element CNeuron
ij then reflects how strongly the firing rates of neurons i and j co-vary across task parameters.756

PCA relies on the eigen-decomposition of CNeuron, given by757

C
Neuron =

M
∑

α=1

µαu
α
u
αT , (8)

where u
α’s are the eigenvectors of CNeuron and the µα’s denote the associated ordered eigenvalues, so that758

µ1 ≥ µ2 ≥, . . . ,≥ µM . Each eigenvector uα can be thought of as a static, spatial basis pattern of firing rates759

across neurons (i.e. the red and blue patterns in Fig. 1C of the main paper). Each eigenvalue µα reflects the760

amount of neural population variance along firing rate direction u
α. Also, if we project neural activity onto761

pattern u
α, we obtain the amount of pattern α in the neural population in task condition a:762

cαa =
M
∑

i=1

u
α
i Xia. (9)

The variance of cαa across task conditions a is precisely (up to a normalization by NT ) the variance of763

the neural population in the direction u
α, i.e. the eigenvalue µα. In the special case, where a simply764

indexes time, we can think cαa as one component of a dynamical trajectory in pattern space (i.e. the temporal765

components in Fig. 1C of the main paper). A low, D dimensional dynamic portrait of the trial-averaged766

data can then be obtained by plotting the top cαa against each other, for α = 1, . . . , D (i.e. Fig. 1D of767

the main paper). The fraction of variance explained by the top D dimensions is r = 1
µTot

∑D
α=1 µα, where768

µTot =
∑M

α=1 µα is the total variance in the neural population.769

Dimensionality reduction by PCA is considered successful if a small number of patterns D relative to770

number of recorded neurons M , accounts for a large fraction of variance explained in the neural state space771

dynamics. One possible measure of dimensionality is the minimal number of basis patterns in the projection772

one must keep to achieve some pre-specified fraction, r, of the neural population’s total variance:773

D(r) = argmin
D

s.t.

∑D
α=1 µα

µTot

≥ r. (10)

Note, that like any sensible measure of dimensionality based on the neuronal covariance eigenspectrum,774

this measure is invariant to an overall scaling of the eigenvalues. Fig. 2 of the main paper indicates that775

many experiments yield exceedingly low dimensional neural state space dynamics, in that a small number of776

dimensions relative to number of recorded neurons account for a large fraction of explained variance. Indeed,777

in many experiments, there is an order of magnitude discrepancy between dimensionality and number of778

recorded neurons, and one of our goals below is to understand the origin of such a large discrepancy, as well779

as to understand the accuracy of the dynamical portraits given by cαa in the face of extreme subsampling in780

the number of recorded neurons.781
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II.II Participation ratio as a measure of dimensionality782

While commonly used, measures of dimensionality associated with a given fraction of variance explained783

are not easily amenable to theoretical analysis. Here, we introduce a closely related measure, namely the784

participation ratio (PR) of the neural covariance eigenvalue spectrum, that obeys many of the same properties785

as more traditional measures, but is in contrast, much more amenable to theoretical analysis. The PR is786

defined as787

PR(CNeuron) =

(

∑M
i=1 µ

i
)2

∑M
i=1 µ

i2
=

[

TrCNeuron
]2

Tr [CNeuron]
2 =

[

∑M
i=1 C

Neuron
ii

]2

∑M
i,j=1

[

CNeuron
ij

]2 (11)

Like the fraction of variance explained measure, the participation ratio is also invariant to an overall scaling788

of eigenvalues. The PR is often used in statistical mechanics to quantify the number of active degrees of789

freedom in a thermally fluctuating system. Here we are using it to measure how many dimensions of the790

eigen-spectrum are active, relative to the total variance.791

To gain an intuitive understanding of the participation ratio, let us consider an exactly rank-D neural792

covariance matrix C
Neuron with variance evenly spread across D dimensions: i.e. µα = µ for α ≤ D,793

and µα = 0 for α > D. The PR is invariant to the overall scale µ and evaluates exactly to D2/D = D794

as expected. For a more complex example, consider the eigenvalue spectrum of a typical trial-averaged795

dataset with full-rank but exponentially decaying eigenvalues: µα = µe−
α
D . The spectrum’s PR is again796

independent of the overall scale µ and evaluates to 2D in the limit that D ≪ M , which is an intuitively797

sensible answer, and this value of dimensionality explains roughly 86% of the total variance. As we will798

further demonstrate below in more examples, the PR and the the measure of dimensionality D(r) based799

on a fraction r of variance explained, are often scaled versions of each other with the scaling constant800

depending on the shape of the eigenvalue spectrum. Moreover, for several typical spectra, keeping a number801

of dimensions equal to the PR leads to a fraction of variance explained between 80% to 90%.802

While closely related to fraction of variance explained, the considerable theoretical advantage of the803

PR as a dimensionality measure is that it is an exceedingly simple function of the matrix elements of the804

neural covariance C
Neuron. In particular, the numerator and denominator in Eq. (11) are simple quadratic805

functions of the matrix elements. In contrast the eigenvalues µα are highly complex functions of the matrix806

elements, as they are roots of the characteristic polynomial P(µ) = det
[

C
Neuron − µI

]

, whose coefficients807

themselves are polynomials in the matrix elements of CNeuron of all degrees ranging from 0 to M . In turn,808

D(r) defined in Eq. (10), as a nontrivial function of the eigenvalue spectrum, inherits this complexity as809

a function of the matrix elements of CNeuron. Thus the PR is a singular measure in that it embodies many810

of the intuitive properties we would associate with the notion of dimensionality, and is well correlated with811

traditional measures of dimensionality, yet it retains considerable analytical simplicity as a direct function812

of the matrix elements of CNeuron.813

II.III A duality between neuronal dimension and task dimension814

While the M by M neuronal covariance matrix C
Neuron is widely used for dimensionality reduction, and815

yields a set of neural basis patterns from which a dynamical portrait may be constructed, the overall structure816

or pattern of its matrix elements, CNeuron
ij is usually nonintuitve and cannot be succinctly summarized. (See817

Supplementary Fig. 6A). Alternatively, consider the closely related NT by NT task covariance matrix,818

C
Task =

1

M
X

T
X. (12)
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While the matrix elements C
Neuron
ij reflect how the firing rates of neurons i and j co-vary across NT task819

parameters, the matrix elements C
Task
ab reflect how similar (if positive) or different (if negative) the neural820

population activity patterns across M neurons are for two different task conditions a and b.
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Supplementary Figure 6: Neuron-by-neuron covariance versus task-by-task correlation. A. The complex M by M
neuron-by-neuron covariance matrix for reaches to a single direction in Monkey H (M = 109 recorded neurons. )

C
Neuron, of the motor cortical data recorded from a monkey reaching to a single target; B. The corresponding NT by

NT time-by-time task correlation matrix, CTask, where NT = 600, corresponding to the T = 600ms duration of a trial

averaged reach with bin width 1ms. C. Example Gaussian auto-correlation function for a stationary task. Here the

auto-correlation function is f(∆t/τ) where the time-scale τ = 125ms and f(x) is a Gaussian profile of variance 1.

821

A well known property of linear algebra [Strang and Aarikka, 1986] is that the nonzero eigenvalues of822

C
Task are exactly the same as the nonzero eigenvalues of CNeuron (after a global rescaling of NT

M due to the823

specific normalizations chosen in Eq. (8) and (12)). This implies that any measure of dimensionality based824

on a scale invariant function of eigenvalue spectra (this of course includes both D(r) and PR), will be exactly825

the same, no matter whether it is computed with the spectrum of CNeuron or CTask. It is this precise sense in826

which neural dimensionality and task dimensionality are inextricably linked.827

The advantage of C
Task is that the overall structure or pattern of its matrix elements are often much828

easier to understand intuitively, and therefore to simplify. Compare for example Supplementary Fig. 6A to829

Supplementary Fig. 6B, as an example of a dual pair of CNeuron and C
Task in the case of a simple task in830

which the only task parameter is time into a reach. While the former matrix elements are difficult to interpret,831

the latter are simple. They reflect the simple fact that patterns of neural activity are more similar to each832

other the more closely they occur in time relative to each other. When the neuronal dimensionality, measured833

through the PR, is computed using C
Task instead of CNeuron in (11), it is clear that neural dimensionality is834

a very simple function of the similarity of neural activity patterns across pairs of task parameters. This is a835

key observation that will drive our theory below.836

II.IV Dimensionality of simple stationary tasks unfolding over time837

To gain further intuition behind the PR, and its relation to D(r), we consider the calculation of both in the838

special case of a simple task indexed only by time, where the task covariance matrix is stationary (up to839

boundary effects due to finite time T ), which means that the similarity of two neural population activity840

patterns at two different times depends only on the relative time difference; i.e. C
Task
t1,t2 = f(|t1 − t2|/τ),841

where f(x) is a smooth and symmetric auto-correlation function (Supplementary Fig. 6C). Here we have842

separated our description of the autocorrelation function into an intrinsic time scale τ , and an overall shape843

f(x) which takes as its argument a dimensionless ratio of actual time separation to τ . The width of f(x) as844

a function of x is chosen to be O(1).845
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Now, while in any given experiment, CTask
t1,t2 will never exactly be of this stationary form, we show846

below that we can always find a best stationary approximation to C
Task
t1,t2 , and that the dimensionality of847

this approximate stationary version of the task is higher than that of the original. Therefore, understanding848

the dimensionality of idealized stationary tasks becomes important, and also relevant to understanding the849

dimensionality of more general non-stationary tasks.850

To begin, we first note that CTask
t1,t2 is of course a symmetric matrix, but also a Toeplitz matrix, as its851

diagonal elements CTask
t,t and off diagonal elements CTask

t,t+∆t, are independent of time t. As the size of such852

a T by T matrix becomes large, summations of any continuous function, F (·), of the matrix’s eigenvalues,853

like the numerator and denominator of the PR in Eq. (11), can be expressed using the Fourier transform of854

its central row [Gray, 1972], which is a discretized version of the auto-correlation function, f(t/τ). If we855

denote the Fourier transform of this autocorrelation by856

f̂(ω) = lim
T→∞

T/2
∑

t=−T/2

f(t/τ)eiωt, (13)

which exists as long as f(x) is absolutely summable, then we have857

lim
T→∞

1

T

T−1
∑

j=0

F (µj) =
1

2π

∫ π

−π

dωF (f̂(ω)), (14)

In practice, when the Toeplitz task-by-task correlation matrix is of a finite size T , the above expression still858

yields an accurate approximation under some restrictions: first, the stationary task needs to be in the regime859

where the duration of the task is much longer than the neural activities’ characteristic time scale, i.e. T ≫ τ .860

Second, when the recorded firing rates are discretized, binned or smoothed before analysis, the bin size or861

the smoothing kernel of the trial-averaged data needs to be much smaller than characteristic time scale. In862

other words, if dt is the temporal bin-width, then τ ≫ dt is needed for the approximation to be accurate.863

Since both assumptions hold to a reasonable approximation in most large scale recordings collected in864

neuroscience today, we use Eq. (13) and Eq. (14) to compute the neural dimensionality of a stationary task.865

First, we reformulate the participation ratio in terms of the Fourier transform of the auto-correlation function866

governing the task-by-task correlation matrix,867

PR(CTask) ≈ T

2π

(

∫ π

−π
dωf̂(ω)

)2

∫ π

−π
dωf̂(ω)2

. (15)

We then approximate the numerator term,

∫ π

−π

dωf̂(ω) = lim
T→∞

T/2
∑

t=−T/2

f(t/τ)

∫ π

−π

dωeiωt

= lim
T→∞

T/2
∑

t=−T/2

f(t/τ)
2 sin(πt)

t

= 2πf(0),
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and the denominator term,

∫ π

−π

dωf̂(ω)2 = lim
T→∞

T/2
∑

t1,t2=−T/2

f(t1/τ)f(t2/τ)

∫ π

−π

dωeiω(t1−t2)

= lim
T→∞

T/2
∑

t=−T/2

2πf(t/τ)2 (Integral evaluates to 2πδt1,t2 )

≈ 2π

∫ ∞

−∞

dtf(t/τ)2 (T ≫ τ ≫ 1, Summation by integration)

= 2πτ

∫ ∞

−∞

dtf(t)2, (Perform the change of integration variable t/τ → t)

to obtain C
Task’s participation ratio in terms of the task’s stationary auto-correlation function,868

PR =
f(0)2

∫∞

−∞
dtf(t)2

T

τ
. (16)

Interestingly, the measured dimensionality of neural state space dynamics associated with a simple stationary869

task scales linearly with the ratio of T/τ , with the constant of proportionality depending only on the shape870

of the auto-correlation function f(x). This result is the mathematical instantiation of the intuition embodied871

in Fig. 3C of the main paper, namely that a neural trajectory of duration T and autocorrelation with intrinsic872

timescale τ can explore at most order of magnitude T
τ dimensions, because one must wait an amount of time873

τ before the neural trajectory can bend enough to explore another dimension. The constant of proportionality874

in Eq. (16) is, for a wide variety of autocorrelation profiles f(x), typical of neural data, simply an O(1) pre-875

factor, which we explore next.876

II.V Example stationary tasks: relation between participation ratio and fraction of variance ex-877

plained878

For concreteness, and further intuition, we compute the two measures of dimensionally, PR and D(r)879

for some example stationary tasks, with their respective auto-correlation functions. For the exponential,880

f(t/τ) = e−|t|/τ , the Gaussian, f(t/τ) = e−t2/τ and the power-law, f(t/τ) = (|t|/τ + α)−β , auto-881

correlation functions, we tabulate the analytical expressions for their participation ratio in Supplementary882

Table 1. In all three cases, their Fourier transforms are decreasing functions in frequency, which allows us883

to compute the dimensionality D(r) associated with a given fraction r of variance explained:884

D(r) =
T

π



argmin
ω∗

∫ ω∗

−ω∗
dωf̂(ω)

∫ π

−π
dωf̂(ω)

≥ r



 . (17)

We obtain simple analytical expressions for D(r) in Supplementary Table 1 for the exponential and Gaussian885

auto-correlation functions. In these cases, just like the PR, D(r) also scales linearly with T/τ for any886

given desired r, indicating a semblance of universality in the conclusion that any reasonable measure of887

dimensionality is proportional to T/τ for a simple stationary task with intrinsic autocorrelation time scale888

τ . This holds true regardless of the particular fraction of variance r desired in the measure D(r), or the889

particular shape of the autocorrelations (exponential or Gaussian) we have examined.890
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f(t/τ) = exp (−|t|/τ) f(t/τ) = exp
(

−t2/τ2
)

f(t/τ) = (|t|/τ + α)
−β

PR
T

τ

√

2

π

T

τ

2β − 1

2α

T

τ

D(r) tan
(πr

2

) 1

π

T

τ
inverf(r)

2

π

T

τ
-

Supplementary Table 1: Analytical expressions for the participation ratio and the factional variance explained dimen-

sionality measures for the Gaussian, exponential and power-law auto-correlation functions.

However, more quantitatively, what fraction of variance is actually explained by keeping a number of891

dimensions equal to the PR in these examples? This fraction r of variance explained corresponds to the892

solution to the equation D(r) = PR. For the exponential case, this equation reduces to tan
(

πr
2

)

= π, which893

has an approximate solution of r = 0.8. For the Gaussian case, this equation reduces to inverf(r) =
√

π
2 ,894

or r = erf
(√

π
2

)

= 0.92.895

We verify the correctness of these analytical expressions by comparing them against measured dimen-896

sionalities of numerically generated temporal correlation matrices under a variety of parameter combina-897

tions (Supplementary Fig. 7A,B). Overall, for both PR and D(r) (with r = 0.9), the numerical results show898

excellent agreement with our analytical expressions throughout the range of simulated T/τ values (Supple-899

mentary Fig. 2A,B). For the the dimensionality measure D(r) applied to the power-law auto-correlation900

function, the linear scaling with T/τ is numerically evident, despite the lack of an analytical formula.901
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Supplementary Figure 7: Numerical verifications of analytically computed participation ratios and fractional variance

explained for the Gaussian, exponential and power-law auto-correlation functions. A, B. Analytical (lines) versus simu-

lated (circles) participation ratio and fractional variance explained measured of dimensionality in the regime with large

T/τ . C, D. Same as A, B, except zoomed in to show the small T/τ regime.

For completeness, we also conducted a comparison between the analytic approximations for dimension-902

ality and their direct numerical calculation when T/τ is small, a regime in which the assumptions required903

for the accuracy of the analytical approximation to the eigenspectra of Toeplitz matrices in Eq. (14) are vi-904

olated. As shown in the zoomed-in views (Supplementary Fig. 7C,D), the main deviation, in this regime, of905

the correct numerical result from its analytical approximation is a constant under-estimation by the analytical906

approximation. This deviation is simple to understand: if we consider a dataset with just two data points (so907

that the duration T equals the bin-width dt, which could be much less than the autocorrelation time τ - i.e.908

T = dt ≪ τ ), the measured dimensionality will always be one, corresponding to the line connecting them,909

regardless of how close they are in time. The analytical expressions above for dimensionality are not valid in910
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this regime, which violates the condition dt ≪ τ ≪ T necessary for accuracy of the analytic approximation911

to the eigenspectra of Toeplitz matrices in Eq. (14).912

In summary, for a stationary task, characterized by an intrinsic autocorrelation time scale τ and total913

duration T , and sampled in time using bin width dt, both measures of dimensionality, D(r) for any r914

and PR, are proportional to T/τ in the experimentally relevant regime dt ≪ τ ≪ T , independent of the915

particular shapes of the auto-correlation function we have considered (exponential, Gaussian, and power916

law), and independent of the bin-width. Moreover, for a variety of typical auto-correlation functions, a917

number of dimensions equal to the PR explains about 80% to 90% of neural population variance in the data.918

Having now described the PR, and demonstrated its utility as a sensible measure of dimensionality, as well919

as its similarity to the more traditional measure D(r), we focus on the PR in our subsequent theoretical920

development, due to its theoretical simplicity.921

III Towards Neural Task Complexity: upper bounds on dimensionality through922

destruction of structure923

We now aim to address the first order of magnitude discrepancy in systems neuroscience that we consider924

in this work, namely that the dimensionality of neural state space dynamics is often far less than the number925

of recorded neurons, as exemplified by the meta-analysis of 20 datasets in Fig. 2 of the main paper. We926

seek to explain the origin of this underlying simplicity. Our approach is to ask how high dimensional trial927

averaged neural state space dynamics could possibly be, given a limited extent of behavioral task parameters928

visited throughout any given experiment, and the smoothness of neural activity patterns across these task929

parameters. To address this, we describe a sequence of successive destructions of structure in neural state930

space dynamics, and prove that each destruction of structure necessarily increases the dimensionality of the931

dynamics. At the end point of this sequence of destruction, we are left with an exceedingly simple neural932

state space dynamics that has no structure whatsoever, above and beyond a limited volume and smoothness.933

The dimensionality of this resulting destroyed state space dynamics is by definition the neural task complex-934

ity (NTC) of the original state space dynamics, and by construction, this NTC constitutes an upper bound on935

the dimensionality of the original state space dynamics.936

As described in the previous section, the structure of neural state space dynamics is well characterized by937

the NT by NT task correlation matrix C
Task, and because of the duality between neural dimensionality and938

task dimensionality described above, we can compute neural dimensionality, as measured by its participation939

ratio, by replacing C
Neuron with C

Task in (11), obtaining,940

PR =

[

∑NT

a=1 C
Task
aa

]2

∑NT

a,b=1

[

CTask
ab

]2 . (18)

Any destruction of structure in the neural state space dynamics corresponds to a manipulation of the matrix941

elements CTask
ab , that essentially alters the correlation between the neural state, as a pattern of activity across942

M neurons, at two different task parameter values a and b.943

III.I Increasing dimensionality by reducing long-range correlation944

The simplest destruction of structure in C
Task is simply to reduce the magnitude of any off-diagonal element945

C
Task
ab for a 6= b. This decreases a single term in the denominator of (18) without changing the numerator,946

which only depends on the diagonal elements CTask
aa , and therefore increases the dimensionality. Intuitively,947
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reducing the squared correlation between neural activity patterns at two different task parameters allows the948

resulting dynamics to explore more dimensions.949

As specific example, consider a single periodic neural trajectory that is confined to oscillate with period950

τ . Then the task parameter a indexes time t, and the task correlation matrix C
Task
t1t2 has peaks in off-diagonal951

bands whenever t1 − t2 is an integer multiple of τ , reflecting the fact that after every time τ , the neural952

dynamics is forced to revisit the same neural activity pattern by virtue of the oscillation. Consider instead a953

destroyed dynamics in which all off-diagonal elements CTask
t1t2 areset to 0 for all |t2 − t1| ≥ τ

2 . The resulting954

destroyed dynamics only has a central band of correlation for |t2 − t1| ≤ τ
2 , reflecting the smoothness in955

time, but not the periodicity, of the original dynamics. The destroyed dynamics behaves more like a smooth956

random walk with an approximate autocorrelation time τ , that never revisits the same point in neural state957

space over long times, and therefore can explore more dimensions than the original periodic dynamics. In958

this sense, the destruction of long-range temporal correlations necessarily increases dimensionality.959

III.II Increasing dimensionality by homogenizing dynamics960

A second way to destroy structure in the task-by-task correlation matrix C
Task
ab is to homogenize it by re-961

placing each of a subset of the matrix’s off-diagonal entries with their average. This replacement increases962

dimensionality by again reducing PR’s denominator, without affecting the numerator, which only depends963

on diagonal elements. To see this, first consider Jensen’s inequality, which states that for any convex function964

g,965

〈g(x)〉 ≥ g(〈x〉),
where x is any random variable drawn from a distribution P (x), and 〈·〉 denotes an average with respect966

to this distribution. To apply Jensen’s inequality, consider a specific subset of K off diagonal elements967

of CTask
ab , indexed by γ = 1, . . . ,K, taking the values xγ . Here each γ indexes a particular pair of task968

parameters (ab) with a 6= b, and xγ is the value C
Task
ab . Let the distribution P (x) = 1

K

∑K
γ=1 δ(x − xγ).969

P (x) places equal probability mass on the chosen elements. Also let g be the convex function g(x) = x2.970

Then according to Jensen’s inequality, the average of the squares of x1, . . . , xK is greater than or equal to971

their average squared, or972

1

K

K
∑

γ=1

x2
γ ≥

(

1

K

K
∑

γ=1

xγ

)2

.

If we denote the average by x̄ = 1
K

∑K
γ=1 xγ , this means that replacing each xγ with the average value x̄973

leads to a smaller denominator in Eq. (18), since the above inequality implies
∑K

γ=1 x
2
γ ≥∑K

γ=1 x̄
2 = Kx̄2.974

By reducing the denominator of the PR without changing the numerator, the dimensionality goes up.975

Thus intuitively, any inhomogeneities in the off diagonal task-task correlation matrix C
Task
ab reflect in-976

herent structure in the neural state space dynamics, through different degrees of similarity between neural977

activity patterns at different pairs of task parameters a and b. Destroying such structure by homogenizing it,978

i.e. replacing a subset of off-diagonal elements by their average, necessarily increases the dimensionality of979

the resulting destroyed dynamics.980

III.III The best stationary approximation to a task has higher dimensionality than the original task981

A simple, but important application of the above method for destroying structure is the result that the best982

stationary approximation of the task-by-task correlation matrix associated with a single task parameter (Sup-983

plementary Fig. 8A,B) has increased dimensionality. Consider a simple task where the task parameter a984
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indexes time t only. In general such a task will be non-stationary, so that the matrix elements CTask
t1t2 will not985

be a function of the time separation |t2 − t1| only. What is the best stationary approximation to this neural986

dynamics, described by a corresponding stationary task-task covariance matrix C
Sta
t1t2 = f(|t2 − t1|), where987

by definition, the best one minimizes the squared error988

E =
∑

t1, t2

(

C
Task
t1t2 −C

Sta
t1t2

)2
.

By the usual result that the single number x̄ that minimizes the squared distance to a fixed collection of989

K numbers x1, . . . , xK is the average of those numbers, x̄ = 1
K

∑K
γ=1 xγ , it is easy to see that the best990

stationary approximation is the one that averages the diagonals and off-diagonals of CTask:991

C
Sta
t1,t2 =

〈

C
Task
t,t+(t2−t1)

〉

t
= F (|t2 − t1|). (19)

When t2 6= t1 the average corresponds to homogenizing in time an off-diagonal band of CTask, which by992

the above section increases dimensionality by decreasing the denominator of the PR in (18). However, the993

diagonal band is also averaged. Fortunately, this does not change the numerator of the PR, which is simply994

the sum of the diagonals squared. Thus overall, the best stationary approximation to a task, by destroying995

structure in the original task associated with temporal inhomogeneities, has increased dimensionality relative996

to the original task. See Supp. Fig. 8AB for an example of a non-stationary task and its best stationary997

approximation. In neural data analyzed in this work, this best stationary approximation is very well modeled998

by a Gaussian shaped autocorrelation profile (Supp. Fig. 8C).

 

Temporal Correlation

0.5

-0.5

time (ms)

ti
m

e
 (

m
s)

350-250

-250

350

 

Stationary Approximation

0.5

-0.5

time (ms)

ti
m

e
 (

m
s)

350-250

-250

350

A B Auto-correlation Function

∆ t (ms)
-300 -300

C

Supplementary Figure 8: Example stationary approximation of a trial-averaged dataset. A. The task-by-task correlation

matrix, CTask, of motor cortical state space dynamics while Monkey H is reaching to a single target. B. The best

stationary approximation C
Sta to C

Task obtained by replacing the diagonal and the off-diagonals with their respective

averages. C. A Gaussian fit (red) to the measured auto-correlation function of the best stationary approximation (blue).

999

In general, once we have the best stationary approximation C
Sta and its associated autocorrelation func-1000

tion F (∆t), we can proceed in one of several ways to obtain an upper bound on the dimensionally of the1001

original neural state space dynamics described by C
Task. First, a natural further destruction of structure is to1002

destroy long range correlations, as described above, by setting to 0 F (∆t) for |∆t| greater than some thresh-1003

old, which is chosen to include the central peak of F near the origin, but exclude other structure associated1004

with peaks in F away from the origin. This process is designed to obtain dimensionality upper bounds that1005

incorporate local smoothness alone, and no other longer range structure.1006

With this modified F one could write F in the form F (∆t) = f(∆t/τ), thereby separating the width of1007

the central peak of F , as described by τ , and the shape of the central peak of F , as described by the function1008
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f(x) which has width in its dimensionless argument x of O(1). Then the resulting dimensionality upper1009

bound is given by Eq. (16). This dimensionality upper bound is proportional to T/τ , up to a constant O(1)1010

factor that depends on the detailed shape of f(x). It turns out that in the neural data analyzed in this paper,1011

the shape of f(x) was well approximated by a Gaussian profile, yielding the constant factor

√

2
π and the1012

resulting NTC for a single task parameter of1013

NTC =

√

2

π

T

τ
, (20)

reported in the main paper.1014

Now this procedure for obtaining an NTC that upper-bounds neural dimensionality seems to depend on1015

knowing many details of the neural data beforehand. However, it is exceedingly easy to estimate a likely1016

NTC before the neural data is collected. Basically, one simply needs to estimate τ , the approximate width1017

of the central peak of the temporal autocorrelation function of the neural trajectory, and know the total1018

duration T of the neural trajectory. One need not know in detail the exact shape of the central peak, as this1019

only contributes an O(1) constant of proportionality. For example, if it is Gaussian then this constant is1020
√

2
π = 0.8, while if it is exponential then it is 1 (see e.g. Supp. Table 1). However, when one is attempting1021

to explain 1 to 2 order of magnitude discrepancies between neural dimensionality and number of recorded1022

neurons, then these O(1) differences in NTC due to different shapes of the auto-correlation function are1023

not that important. Similarly, when one is attempting to estimate a likely NTC in future recordings for the1024

purposes of designing experiments, these O(1) differences again are not as important - i.e. they may not be1025

the dominant source of estimation error.1026

III.IV For multiple task parameters, a factorized stationary approximation to a task has higher1027

dimensionality1028

For datasets with K task parameters, the task-by-task correlation matrix has a block structure. For example,1029

for the eight-direction center-out reach task in shown in Figure 3D of the main paper with K = 2, the1030

correlation matrix consists of eight-by-eight blocks of T -by-T temporal correlation or cross-correlation1031

matrices (Supplementary Fig. 9A): entries of the (1, 1) block denote the correlations between neural activity1032

patterns at different time points for reaches to the first target, whereas entries of the (1, 2) block denote the1033

cross-correlations between neural activity patterns at some time during the reach to the first target and at a1034

different time during the reach to the second target.1035

To upper bound the dimensionality of such compound correlation matrices, with multiple task param-1036

eters, we destroy structure in a specific way that leads to a stationary and factored approximation to the1037

original correlation matrix. The dimensionality of this stationary factored approximation is then defined1038

to be the NTC, and by construction, it upper bounds the dimensionality of the original data. To arrive at1039

the stationary factorized approximation, we follow a two-step procedure (Supplementary Fig. 9B). The first1040

step is to obtain a stationary approximation to the original task covariance matrix, using an extension of the1041

logic we used in the K = 1 parameter case. With K parameters, the task manifold in parameterized by a1042

K-tuplet of numbers (t1, . . . tK). Let two K-tuplets, (t11, . . . t
K
1 ) and (t12, . . . t

K
2 ) denote two points on the1043

task manifold, and let the task correlation matrix C
Task
(t1

1
,t1

2
),...,(tK

1
,tK

2
)

denote the correlation between the two1044

neural activity patterns associated with two points on this task manifold. In general, this task correlation will1045

not be stationary, in that it will not be a function of only differences between points, i.e. of ∆tk = tk2 − tk1 .1046
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We can find the best stationary approximation by averaging along off-diagonals through1047

C
Task
(t1

1
,t1

2
),...,(tK

1
,tK

2
) ≈

〈

C
Task
(t1,t1

2
−t1

1
),...,(tK ,tK

2
−tK

1
)

〉

t1,...,tK
= f approx(∆t1, . . . ,∆tK). (21)

Via arguments similar to those presented in the previous section, the resulting stationary, block Toeplitz1048

approximation of the task correlation matrix has a higher dimensionality than the original task correlation1049

matrix. Interestingly, this approximation is diagonalizable, since it is an example of a Hewitt block Toeplitz1050

matrix, but its correlation structure is still too complex for the resulting dimensionality upper bound to be1051

intuitive and interpretable.1052
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Supplementary Figure 9: Example stationary and factor approximation of a trial-averaged dataset of a monkey doing

the eight-direction center-out reach task. A. The compound task-by-task correlation matrix, CTask, of the motor cortical

data during reaches to all possible directions. Inner indexes denote time during the reaches, while the outer blocks

denote the different reach targets. B. The factored and stationary approximation to A as the Kronecker product of an

angle-by-angle and a time-by-time stationary correlation matrices.

Instead, we apply a second approximation step to factorize the contributions of each task parameter.1053

Formally, we decompose the approximate stationary compound correlation function, f approx(∆t1, . . . ,∆tK),1054

into a product of individual task parameters’ auto-correlation functions,1055

f approx(∆t1, . . . ,∆tK) ≈
K
∏

k=1

gk(∆tk). (22)

This factorization is the same as approximating the stationary compound correlation matrix with a Kronecker1056

product,1057

C
Task
(t1

1
,t1

2
),...,(tK

1
,tK

2
) ≈

K
∏

k=1

C
k
tk
1
,tk

2

=

K
∏

k=1

gk(∆tk) (23)

where each of the component matrix is a task parameter’s stationary correlation matrix, whose NTC and di-

mensionality is given by the corresponding auto-correlation function, gk(·). Since the resulting eigenvalues

of the Kronecker product are all possible outer products of the form of
∏K

k=1 µ
k,ik , with µk,ik denotes the
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ikth eigenvalue of the C
k factor, the participation ratio of the factored and stationary approximation is,

PR(
K
∏

k=1

C
k
tk
1
,tk

2

) =

(

∑

i1i2...iK

∏K
k=1 µ

k,ik
)2

∑

i1i2...iK

∏K
k=1 µ

k,ik2

=

∏K
k=1

(
∑

ik
µk,ik

)2

∏K
k=1

∑

ik
(µk,ik)

2

=
K
∏

k=1

PR
(

C
k
)

= C

∏K
k=1 Lk

∏K
k=1 λk

,

which is precisely the product of the NTCs for each of the task parameters.1058

For this approximation to be an upper bound on the original correlation matrix’s dimensionality, we

still need to prescribe a factorization procedure that yields a guaranteed increase in dimensionality. The

factorization we choose is a recursive projection procedure, where we successively replace the off-diagonal

blocks of the stationary approximation with their projections onto the diagonal blocks. In terms of the

auto-correlation factors, gk(·)s, the recursive projection procedure is given by,

g1(∆t1) = f approx(∆tt, 0, . . . , 0) (24)

g1(∆t2) =

〈

g1(∆t1)f approx(∆t1,∆t2, 0, . . . , 0)
〉

∆t1

〈g1(∆t1)2〉∆t1

g1(∆t3) =

〈

g1(∆t1)g2(∆t2)f approx(∆t1,∆t2,∆t3, 0, . . . , 0
〉

∆t1,∆t2

〈g1(∆t1)2g2(∆t2)2〉∆t1,∆t2

...

To see that this procedure produces an approximation that upper bounds dimensionlality, we first note that the1059

numerator of the resulting approximation’s participation ratio is unchanged from the stationary approxima-1060

tion, since only the off-diagonal blocks are replaced by projections. Secondly, we note that the denominator1061

of the participation ratio, which is the sum of squares of the off-diagonal blocks’ entries, can only be de-1062

creased by the projections. Consequently, the dimensionality of the factored approximation upper bounds1063

that of the stationary approximation which in turn upper bounds that of the original task correlation matrix.1064

For example, one can compare the original task correlation matrix (Fig. 9A) to its stationary factorized1065

approximation (Fig 9B) in the case of a center out reach task studied in the main paper.1066

III.V Algorithmic computation of neural task complexity1067

Here we summarize the algorithmic steps required to compute the NTC.1068

To compute the NTC of a trial-averaged dataset with a single task parameter, t, in practice, we have the1069

following procedure:1070

• Mean-subtract each neurons’ averaged activity across task parameters from each row of the neurons1071

by task parameter data matrix X.1072

• Compute data’s task-by-task correlation matrix C
Task = X

T
X.1073
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• Find the best stationary approximation of C
Task, and construct the corresponding auto-correlation1074

function f approx(∆t) =
〈

C
Task
t,t+∆t

〉

t
. If necessary, set any long-range correlations to zero, while1075

keeping the short-range correlations induced by smoothness alone.1076

• If f approx(·) can be fitted with a simple form, such as the Gaussian, exponential or power-law auto-1077

correlation function whose participation ratio we’ve computed analytically (See Supplementary Table1078

1), extract the relevant auto-correlation scale τ and substitute it into the appropriate participation ratio1079

expression to obtain the NTC.1080

• If the stationary approximation has a non-classical functional form for the auto-correlation function,1081

one can still compute an NTC that depends, up to an O(1) factor, on the detailed shape of this auto-1082

correlation function through the formula for the PR derived in (16).1083

To compute the NTC of a dataset with multiple task parameters, we have the following procedure:1084

• Mean-subtract each neurons’ activity averaged over all task parameters for rows of the data matrix X.1085

• Compute the compound task-by-task correlation matrix, CTask = X
T
X.1086

• Compute C
Task’s stationary approximation with the averaging procedure,1087

f approx(∆t1, . . . ,∆tk) =
〈

C
Task
(t1,t1

2
−t1

1
),...,(tK ,tK

2
−tK

1
)

〉

t1,...,tK
,

and its factorization with the prescribed recursive projection procedure (24),1088

f approx(∆t1, . . . ,∆tk) ≈
K
∏

k=1

gk(∆tk).

• Compute the correlation lengths and the dimensionalities for the individual task parameter’s the sta-1089

tionary approximation, Ck, as described for the single-parameter case. The resulting product of di-1090

mensionalities is then the NTC for this dataset of multiple task parameters.1091

IV Examples of the relationship between dimensionality and neural task complex-1092

ity1093

IV.I Dimensionality and neural task complexity for discrete stimuli or behavioral conditions1094

Thus far, we focused on continuous task parameters that evoke smoothly evolving neural activity patterns,1095

and showed how to compute a simple NTC measure that upper bounds the dimensionality of the neural data1096

by taking into account only the extent of each task parameter and the neural correlation length along each1097

task parameter. Is there a similar concept of NTC for stimuli or behaviors that are discrete? With P discrete1098

stimuli, the resulting trial-averaged neural activity patterns can, of course, span a P -dimensional subspace1099

of the neural space as long as the number of recorded of neurons exceeds that of the number of trials, i.e.1100

M ≥ P . Thus P is a natural, if trivial, measure of NTC in this case.1101

A more interesting quantity in this situation may be the dimensionality of a random data set. Consider1102

for example a situation in which P stimuli or behavioral conditions, indexed by a = 1, . . . , P , yield P1103

random (mean subtracted) activity patterns across all N neurons in a circuit. By this we mean that the1104
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mean subtracted activity xia of neuron i in stimulus a are uncorrelated across both neurons and stimuli, and1105

drawn i.i.d from a Gaussian distribution of mean 0 and variance 1 (since our dimensionality measures are1106

independent of overall scale, we simply normalize the variance to be 1). This means that for large N ≫ P ,1107

the task correlation matrix of the full neural population, CTask = 1
NX

T
X, where X is the N by P data1108

matrix, converges to a P by P identity matrix, and therefore has a dimensionality, measured by its PR, to be1109

P . This is a reflection of the fact that in very high dimensions (N ≫ P ), all
(

P
2

)

pairs of random vectors in1110

N dimensional space are overwhelmingly likely to be close to right angles with respect to each other. Thus1111

the P neural patterns form an orthogonal basis and have dimensionality P .1112

However, the situation is very different if we don’t record all N neurons, but instead record only M1113

neurons, where M may be the same order of magnitude as the number of stimuli/behaviors, P . The data1114

matrix X is then a smaller M -by-P dimensional random matrix, whose entries are generated i.i.d. with zero1115

mean and unit variance. In the limit in which M and P are large, while the ratio is O(1), the distribution of1116

eigenvalues of CTask, converges to the Marchenko-Pastur law [Marchenko and Pastur, 1967],1117

PCTask(µ) =
1

2πµP

√

[

(
√
P +

√
M)2 − µ

] [

µ− (
√
P −

√
M)2

]

. (25)

This law allows us to evaluate the numerator of the PR, which is the squared sum of the eigenvalues of1118

C
Task, as well as the denominator, which is the sum of squares of eigenvalues of C

Task. The resulting1119

dimensionality, or ratio of these two quantities, is simply,1120

PRrand =
P

(

1 + P
M

) . (26)

This of course reduces to the previous result of dimensionality P when the number of recorded neurons M1121

is much larger than P . For example, if M = 10 × P , then the measured dimensionality would be about1122

0.9 × P . However, the cloud of neural activity patterns becomes geometrically distorted as we subsample1123

neurons down to the point where M is not much larger than P . In that case, all
(

P
2

)

pairs of neural activity1124

patterns are no longer sufficiently orthogonal, leading to a proliferation of small, but non-negligible, off1125

diagonal elements in the P by P matrix C
Task that conspire to reduce the measured dimensionality of the1126

random neural dataset, relative to what one would find if one recorded all N neurons.1127

The dimensionality PRrand of a random dataset yields an interesting null model with which to compare1128

dimensionality measured in actual experiments with P discrete stimuli, especially after the neural activity1129

patterns have been normalized to have the same length in firing rate space. Indeed, comparison of measured1130

dimensionality to this null model dimensionality, as opposed to the NTC upper bound, which is simply P ,1131

provides a powerful guideline for the interpretation of neural data. When the measured dimensionality is1132

far below PRrand, the dataset is more correlated and lower-dimensional than what one would expect from1133

random data, suggesting that circuit dynamics may be constraining neural activity patterns to live in a low1134

dimensional space. On the other hand, when the measured dimensionality is higher than PRrand, the neural1135

circuit may be actively de-correlating neuronal activity patterns to make them more orthogonal than one1136

would expect by chance.1137

IV.II Random smooth manifolds have dimensionality equal to neural task complexity1138

We return to the case of a smooth, trial averaged neural state space dynamics in a task with K task param-

eters. What kind of state space dynamics would have a dimensionality that would necessarily saturate the

upperbound set by the NTC, given we have recorded enough neurons M? Intuitively, the answer is a smooth
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random manifold that has the same autocorrelation lengths across task parameters and moreover factorizes

across task parameters, with no other structure to further constrain its dimensionality. Such a random neural

manifold for the state space dynamics is generated randomly by drawing each neuron’s response given the

task parameters independently from a stationary random gaussian process with covariances determined by

the data’s factored correlations. Formally, the joint distribution of the neural activities is Gaussian, and obeys

the following,

E
[

xi(t
1, . . . , tK)

]

= 0

Cov
[

xi(t
1
i , . . . , t

K
i )xj(t

1
j , . . . , t

K
j )
]

= δij

K
∏

k=1

gk(tkj − tki ),

where xi(t
1, . . . , tK) denotes neuron i’s firing rate at the point in the task manifold given by the K-tuplet1139

(t1, . . . , tK). Since the task-by-task correlation matrix of this generated manifold is exactly factored and1140

stationary as specified, its measured dimensionality must saturate the NTC upper bound constrained by only1141

smoothness, as long as we measure enough neurons M , so that the empirically measured autocorrelation1142

functions converge in limit to those that generated them.1143

We simulate such a smooth random manifold with K = 2 and gaussian auto-correlation functions with1144

circular boundaries parameterized by lengths L1,2 = 100 and autocorrelation lengths λ1,2 = 12, 20 in1145

arbitrary units. This yields an NTC of 26. With a large total population of N = 1000, relative to the NTC,1146

the measured participation ratio of the simulated manifold is 26, and indeed saturates the dimensionality1147

upper bound set by the NTC as predicted.1148
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Supplementary Figure 10: Measured dimensionality of subsampled a random smooth manifold. A random smooth

manifold with intrinsic dimensionality of 2 is generated with 1,000 simulated neurons as a Gaussian process with an

NTC of 26 (L1,2 = 100, λ1,2 = 12, 20). For each value of M , a random subset of the simulated neurons is kept to

simulated recording. Measured participation ratios of the resulting subsampled data are plotted as function of M , and

compared against the NTC (horizontal line).

In practice, however, we never record from the entire population of N neurons. Suppose we only record a1149

subset of M neurons. How would the measured dimensionality scale with M , and how large would M have1150

to be before the measured dimensionality approached the true dimensionality of the random smooth mani-1151

fold which is equal to the NTC? We answer these questions by subsampling the number of neurons in the1152

generated random dataset. When plotted as a function of the number of recorded neurons, M , (Supplemen-1153

tary Fig. 10), the measured participation ratio of the subsampled data stayed close to the true dimensionality1154

as long as the number of recorded neurons is much higher than the NTC. Only when the number of recorded1155

neurons gets closer to the NTC, does the measured dimensionality start to decrease significantly due to the1156

more stringent constraint of the limited number of recorded neurons.1157
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These results are completely parallel to the case of random clouds of P points discussed in the previous1158

section, as opposed to smooth manifolds discussed here. There we found that measured dimensionality1159

monotonically increased with number of recorded neurons M in an analytically controllable manner (See1160

Eq. (26)) ultimately saturating as M ≫ NTC = P . In fact, the red curve in Fig. 10 reflecting the measured1161

dimensionality as a function of number of recorded neurons, is the analog for smooth random manifolds of1162

Eq. (26) for random point clouds.1163

IV.III Intrinsic constraints on neural dynamics can prevent dimensionality from approaching the1164

NTC1165

In this section, we demonstrate an example simulated dataset that does not saturate the NTC dimensionality1166

upper bound like the random smooth manifold. The key idea is to generate neural firing rate patterns that are1167

fundamentally constrained by neural network connectivity. In particular, we build an N -dimensional linear1168

dynamical system that evolves according the difference equation,1169

x
t+1 = Wx

t + ηηηt, ηηηt ∼ N (0, I),

where ηηηt is a time-dependent driving input. The length-N vector xt denotes the population activity pattern1170

at time t, and the N -by-N connectivity matrix W defines the connectivity of the network. For simplicity,1171

we assume the inputs to be white noise.1172

…
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Supplementary Figure 11: A. Architectures of a non-normal linear dynamical system with non-smooth trajectories but

low dimensionality. B. Fitted auto-correlation function of the simulated data with an exponential function. The data is

simulated with a = 0.3, b = 0.7, N = 400 and a duration of 800. C. Measured dimensionality of subsampled simulated

data compared against the NTC.

We construct a non-normal system with a distributed delay-line architecture (Supplementary Fig. 11A).1173

Its connectivity has the general form,1174

W = U











a b
a b

. . .
. . .

a











U
T ,

where a and b are the feedback and feedforward gains at each node; and U is an arbitrary orthogonal matrix1175

that distributes the nodes across neurons. With a reasonably large feedforward gain, b, input evoked network1176

activity patterns propagate rapidly from one pattern to another associated with successive nodes, resulting1177
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in fast-changing single-neuron time courses with a low smoothness value and a high NTC. Despite the non-1178

smooth responses, the system, however, can still be low-dimensional. By the time an input signal propagates1179

to the end of the delay line, it would have incorporated feedforward amplification from all preceding nodes1180

so that the final variance of neural activity along the pattern associated with the last node dominates the total1181

variance of the entire network, resulting in very low dimensionality of the recorded data.1182

To demonstrate a numerical example, we constructed such a non-normal system with N = 400, a = 0.3,1183

b = 0.7 and a random orthogonal matrix U, and simulated recordings of neural activity patterns over a1184

duration of 800 time steps. By construction, the simulated neural activity patterns have a short characteristic1185

time scale of τ = 7.8 time-steps, obtained by fitting an exponential auto-correlation function to the stationary1186

approximation of the temporal correlation matrix. The corresponding NTC of the simulated data is then1187

800/7.8 = 102, which is not saturated by the data’s dimensionality of 40, measured by the participation1188

ratio (Supplementary Fig. 11C).1189

Overall, this model constitutes an example of the elusive experimental regime (iii) in Fig. 4A of the main1190

paper. One need not record all N = 800 neurons in the circuit for the dimensionality to stabilize. In fact the1191

dimensionality stabilizes already at M = 400 neurons, which is about 10 times the actual dimensionality1192

of 40. So basically, the actual dimensionality is both much less than the number of recorded neurons and1193

much less than the NTC - the key signatures of experimental regime (iii). In this case, the gap between the1194

actual dimensionality and the NTC reflects an additional circuit constraint that does not arise from temporal1195

smoothness alone. This constraint corresponds to preferential amplification of a subset of activity patterns1196

associated with the nodes near the end of the hidden delay line.1197

V Neural task complexity and random projections as a theory of neural measure-1198

ment1199

V.I Review of random projection theory1200

Dimensionality reduction techniques such as principal component analysis attempt to reduce the dimen-1201

sionality of neural data in a targeted way by computing some data-dependent statistics first, such as the1202

covariance matrix. Alternatively, a dataset may also be dimensionally reduced by simply projecting full data1203

points in a high N -dimensional space (in our application with think of N as the total number of behaviorally1204

relevant neurons in a circuit) into a randomly chosen M -dimensional subspace (M will correspond to the1205

number of recorded neurons and is much less than N ). Despite its simplicity, random projections have1206

been shown to nicely preserve the geometric structure of the original high-dimensional data. This structural1207

preservation is measured through the fractional distortion in distance between pairs of data points before and1208

after the projection. Formally, for a pair of N -dimensional data points, xt1 and xt2 and an M -by-N random1209

orthogonal projection operator P, the pairwise distance distortion is defined as,1210

dt1,2 =

√

N

M

‖Pxt1 −Pxt2‖2
‖xt1 − xt2‖2

− 1,

where the ratio
√

N/M corrects for the expected shrinking of distances under a projection from N to M1211

dimensions. If this distortion were equal to 0 for all possible pairs, the geometric structure of the dataset1212

would be preserved, since all pairs of points would have the same distance (up to an overall scale) before1213

and after the projection. However, when M < N , this is impossible for all pairs of points.1214

The Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984, Dasgupta and Gupta, 2003], a fun-1215

damental result in the theory of random projections, considers high-dimensional datasets with P arbitrary1216
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points in the high N -dimensional space. The lemma states that, with a probability of at least 1−ρ, a random1217

projection of the P data points into a M -dimensional subspace has bounded pairwise distance distortions1218

for all possible pairs,1219

−ǫ ≤ dij ≤ +ǫ, ∀i, j
as long as the target subspace’s dimensionality, M , is of the order,1220

M ∼ O
(

1

ǫ2
log

P

ρ

)

,

where ǫ denotes the maximal, or worse case distortion in distances between all pairs of data points. In other1221

words, the JL lemma tells us that, for random projections to preserve the geometry of a dataset up to some1222

level of tolerance ǫ in the fractional error of pairwise distances, it is sufficient to scale the dimensionality M1223

of the projected subspace as 1/ǫ2 and only as the logarithm of the number of data points, P .1224

While proven initially for sets of arbitrary data points, the JL lemma has also been extended to datasets1225

with known prior structures. One such extension considers points occupying a D-dimensional linear sub-1226

space of the full N -dimensional space [Indyk and Motwani, 1998]. The corresponding condition to preserve1227

the geometry of a dataset up to a maximal distortion level ǫ requires the projected subspace dimension M to1228

scale as1229

M ∼ O
(

D

ǫ2

)

+O
(

1

ǫ2
log

1

ρ

)

.

Note that a subspace of dimension D is extremely “large”, in the sense that if one wishes to fill a ball1230

of any given radius within the subspace with a cloud of points at a fixed density, the requisite number of1231

points would have to scale exponentially with D. This phenomenon is one manifestation of the curse of1232

dimensionality; adequate exploration through sampling of a space of dimension D, without missing any1233

regions, requires a number of samples that grows exponentially with D. However, despite this curse of1234

dimensionality, the number of random projections M required to preserve the geometry of all pairs of points1235

within a subspace of dimension D at some fixed distortion ǫ, need only scale linearly with D. Roughly,1236

the subspace JL lemma follows from the pointwise JL lemma by making the replacements P → eD and1237

logP → D. In this sense they are consistent with each other.1238

A similar extension considers data points sampled from a low K-dimensional non-linear manifold with1239

a finite volume V embedded in an N -dimensional space [Baraniuk and Wakin, 2007]. The sufficient con-1240

dition to preserve the geometric structure of the data to within fractional distortion ǫ requires the subspace1241

dimension M to scale as,1242

M ∼ O
(

1

ǫ2
log

1

ρ

(

log V +K logN +K log
R

τǫ

))

.

This scaling is similar to the linear subspace case, as it grows logarithmically with the volume of the man-1243

ifold. Given that the volume of a manifold grows exponentially with the intrinsic dimension (log V ∝ K),1244

the scaling of M is, in fact, linear in the dataset’s intrinsic dimension K. Different from the previous two1245

cases, however, the random projection of manifolds includes an addition dependency on the embedding di-1246

mensionality, N , which we will check in the next section with simulations. The condition number τ and1247

geodesic covering regularity R characterizes the curvature of the nonlinear manifold, which are properties1248

of the manifold’s geometry.1249

These theoretical results all suggest that random projections yield extremely efficient representations of1250

high-dimensional data, as long as the number of coefficients in the reduced representation grows logarithmi-1251

cally with the amount of data. With different theorems, this amount of data is measured in different ways: by1252
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the number of data points in the JL lemma, by the exponentiated subspace dimension for linear subspaces,1253

and by the volume of a nonlinear manifold.1254

In the main paper, we argue that, in many scenarios, random projection theory constitutes a good model1255

of the process of neural measurement of a random subset of M neurons. Conceptually, the process of1256

projecting high-dimensional data points into a randomly generated low-dimensional subspace in a random1257

and data-blind way is similar to the random sampling of the high-dimensional patterns of neural activity1258

across all N neurons in a circuit, down to a random subset of M neurons that happen to be measured in a1259

single experiment. Indeed, when the full N -dimensional neural activity patterns are randomly oriented with1260

respect to the single neuron axes, the neuroscientists’ act of random sampling is exactly equivalent to the1261

mathematical procedure of a random projection.1262

To see this equivalence, consider a full-dimensional dataset denoted as the N -by-NT data matrix X.1263

If we force the data to be randomly oriented by applying a random orthogonal rotation to obtain a rotated1264

dataset, UX, the random sampling of its rows is mathematically equivalent to the random projection of1265

the original data with the sampled rows of U as the projection’s basis. Consequently, the attractive scaling1266

laws governing the requisite number of random projections M to achieve a desired distortion ǫ can be1267

directly translated into scaling laws governing the required number of neurons to record in order to achieve a1268

given desired accuracy of the resultant dynamic portraits of circuit computation obtained via dimensionality1269

reduction. Of course, this equivalence comes with the caveat that neural activity patterns should be randomly1270

oriented with respect to the single neuron axes. In such a scenario, neural activity patterns are distributed,1271

or exhibit mixed selectivity in which many neurons code for many task parameters. A major departure from1272

this assumption is a high degree of sparsity, and we will investigate the effects of sparsity using simulations1273

below.1274

V.II Numerical analysis of scaling behavior a random projection theory of measurement1275

Since, as nonlinear representations of stimulus or behaviorial variables, trial-averaged neural data can be1276

best described as nonlinear manifolds embedded in the full N -dimensional firing rate space of all neurons1277

in the circuit, we verify the scaling laws of the random projection of smooth manifolds in this section using1278

simulations. We further aim to make the proportionality constants concrete in the sufficient condition for1279

accurate recovery,1280

M =
1

ǫ2
(c1 logNTC + c2K logN + c3K) , (27)

where we replaced the manifold volume, V , with NTC, since they are scaled versions of each other. Because1281

NTC scales exponentially with the intrinsic dimensionality, K, this sufficient target dimension M is still1282

linearly proportional to K.1283

We first check the scaling against logNTC using simulated data from one- and two-dimensional smooth1284

manifolds generated using Gaussian processes. With the kernel’s characteristic time scale fixed at, τ = 12,1285

the NTCs for the 1D and the 2D cases are simply

√

2
π

T
τ and 2

π
T 2

τ2 (the 2D Gaussian process has a factored1286

kernel), where T is the range of the task parameters. In both cases, we embedded the generated random1287

manifold in a 1,000-dimensional space, and computed the maximal pairwise distortions, maxt1,2 dt1,2 , for1288

all possible pairwise distances under random projections of different Ms and of different NTCs (by varying1289

T from 4 to 100). For each combinations of M and NTC, we computed the maximal distortion over 1001290

trials, and used the 95 percentile (ρ = 0.05) of all the maximal distortions as the value for ǫ.1291

With the distortion, ǫ, plotted in the M -vs-logNTC plane, we highlighted values of M for three different1292

distortion levels, ǫ = 0.2, 0.3, 0.4, at different NTCs, and obtained excellent linear fits of the corresponding1293

constant-distortion contours as predicted (Supplementary Fig. 12A). Furthermore, with a renormalization of1294
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Supplementary Figure 12: Random projections of simulated smooth manifold. A. Simulated distortions, ǫ with ρ =
0.05, of smooth random manifolds generated using 1D and 2D (factored kernel) Gaussian processes. Distortions are

plotted in the plane of the number of recorded neuron, M , versus the logarithm of the NTC. Locations of exemplar

distortions, ǫ = 0.2, 0.3, 0.4 are highlighted and fitted with linear functions of logNTC. B. Fitted constant-distortion

contours on rescaled x and y axes to extract the parameter c1. C. Distortion’s saturation as a function of the embedding

dimension, N , for 1D and 2D manifolds with M = 50, 100, 150. D. Offset and rescaled distortions as a function of M
in the limit of large N = 100, 000.

the highlighted M values by K/ǫ2, the fitted linear functions of logNTC/K under different parameter com-1295

binations have similar slopes, or c1 (Supplementary Fig. 12B). Indeed, the slopes fitted using 1D manifolds1296

have an average of 1.07± 0.07, which is within the region of uncertainty for the average slopes fitted using1297

2D manifolds, 1.05± 0.11.1298

Next, we check the scaling of M with the dimension of the embedding space, N . Since simulations be-1299

come very expensive for high embedding dimensions, we compute the distortions under just three values of1300

M = 50, 100, 150 for embedding dimensions ranging logarithmically from 200 to 100,000 (Supplementary1301

Fig. 12C). While the simulated distortions seem to increase linearly with logN initially, as the embedding1302

dimension becomes large (N ∼ 10, 000), the distortion ǫ derived from simulations saturate to a constant1303

in each case. While seemingly contradictory, the theory isn’t falsified since it provides only a sufficient1304

condition on the scaling of M , and would be consistent with any scaling that is better than logN (Eq 27).1305

So what happens at large N? Can we tighten the published sufficient condition to better describe our1306

simulations of the random projection of smooth manifolds? Given our observation of the saturating behavior,1307

a simple modification of the scaling law is to simple replace the logN term with a constant, which we1308

combine with c3 to obtain the following simplified scaling law,1309

M =
1

ǫ2
(logNTC + c0K) . (28)

In this new formula, we have also replaced the c1 term with our fitted value of 1. Given this hypothetical1310

relation, the constant c0 must then equal to 1
K

(

ǫ2M − logNTC
)

for large N . To check its validity, we1311
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simulated additional 1D and 2D manifolds in 100,000-dimensional embedding spaces with values of M1312

varies more densely from 10 to 150 (Supplementary Fig. 12D). Remarkably, for combinations of different1313

M and K values, the resulting values of c0 remain extremely steady around a value of 3.5± 0.2, consistent1314

with our simplified scaling law.1315

V.III Scaling of distortion with neural sparsity1316

While random projection and random sampling are mathematically equivalent when the neural activities are1317

randomly oriented with respect to the neuronal axes, actual neural data may be more sparse and preferentially1318

oriented along the neuronal axes. To quantify how distributed or sparse a set of M -dimensional population1319

activities are, we use a measure called data coherence, which, for the M -by-NT data matrix X, is defined1320

as,1321
〈

maxi |Xit|
‖X∗t‖2

〉

t

, (29)

where X∗t denotes the tth column vector of the data matrix. Algebraically, the data coherence measure1322

averages the individual column vectors’ sparsity, which is defined as the ratio of the vector’s coordinate with1323

the maximal magnitude to its norm. Conceptually, the data coherence measure quantifies a dataset’s sparsity1324

by computing its mutual coherence–a concept widely utilized in the compressive sensing literature–with1325

respect to the neuronal basis. Numerically, this measure of sparsity varies from 1 for a perfectly sparse1326

dataset, where only a single neuron is active in any recorded population activity pattern, to 1/
√
M for a1327

distributed dataset, where components of the population activity are evenly distributed across neurons. The1328

chance level coherence of a zero mean unit variance random gaussian dataset is roughly
√
2 logM , which1329

is the expected maximum for the absolute values of M zero mean unit-variance gaussian random variables.1330

Note that for the same underlying network size, N , the data coherence measure may change depending on1331

the number of recorded neurons.1332

To investigate how sparsity affects the number of required neurons for the accurate recovery of dynami-1333

cal portraits under subsampling, we use simulations of nonlinear neural networks whose activities patterns’1334

sparsity can be controlled. The simulated recurrent nonlinear neural networks evolve according to the fol-1335

lowing differential equation,1336

dxt

dt
= −xt + gWf(xt) + ηηηt, (30)

where the state of the N neurons in the network at time t is represented by the vector xt. Neuronal dynamics1337

is modeled using the soft-thresholding nonlinearity,1338

f(x) = log
(

1 + ex−1
)

,

and produces outputs which are then fed through the connectivity matrix W with some gain factor g into

the rest of the network. The network is driven by random N -dimensional pink noise, ηηηt, smoothed with a

gaussian kernel of a width of 5ms. For the network dynamics to dominate the neuronal dynamics, we fix g
at 0.99 for our simulations. To control the sparsity of the simulated activities, we manipulate the sparsity of

the connectivity matrix using the following formula,

W = V ΛαV †, 0 ≤ α ≤ 1,

where the product of V ΛV † is the eigen-decomposition of a randomly generated orthogonal matrix obtained1339

from applying the Gram-Schmidt procedure to a random gaussian matrix. The parameter α corresponds to1340

an element-wise exponentiation of the decomposition’s eigenvalues, which are pure imaginary numbers.1341
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As α varies from 0 to 1, W transitions smoothly from the sparse identity matrix to a distributed random1342

orthogonal matrix, generating neural activity patterns of varying sparsity.1343
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Supplementary Figure 13: Relation between the parameter α and the resulting data coherence measured with a subset

of 109 neurons for different network sizes.

We empirically mapped the relation between the parameter α to the simulated activities’ data coherence1344

with networks of different sizes 109, 738, and 5000 run with values α varied logarithmically from 0.011345

to 1 (Supplementary Fig. 13). When measured with a fixed 109 number of neurons (same as monkey H),1346

the measured coherences of samples activities depended only on the parameter α but not the network size,1347

suggesting that modifying the value of α is a controlled way of exploring data coherence without affecting1348

other properties of the simulated neural activity patterns. For the rest of this section, we compare random1349

samplings of simulated activities with coherences of either 0.27 or 0.55 inclusive of observed coherence in1350

data (0.34 for monkey H and 0.43 for monkey G).1351

Applying both random samplings and random projections to the simulated dataset, we explored their1352

resulting distortions in the M -by-log T plane, and fitted to them constant distortion contours of the same1353

three levels (Figure 4B,C). The excellent linear fits of M against log T across data coherences for both1354

random projections and random sampling reaffirms that the logarithmic scaling of the requisite number of1355

neurons is a robust phenomenon that persists across a large range of sparsity levels of neural activity patterns.1356

Furthermore, comparing results in the case where simulated neural activity patterns are randomly dis-1357

tributed (data coherence = 0.27, leftmost panels, Figure 4A,B,C,D), we see no difference between the req-1358

uisite number of neurons for random sampling and the requisite subspace dimension for random projection,1359

verifying the intuitive connection we’ve made between the two for randomly oriented activity patterns. The1360

increase in the number of requisite neurons relative to the number of random projections only starts to ap-1361

pear as simulated neural activity patterns become more sparse, in agreement with the small discrepancy1362

observed in the motor cortical data (Figure 3H) where neural activities have less-than-random orientations1363

with respect to the neuronal axes as reflected by their higher data coherence (0.32 > 0.27).1364

More quantitatively, we compared, for the distortion value of 0.3, the slopes (increase in the requisite1365

number of neurons or random subspace dimension for every 10-fold increase in volume) and intercepts1366

(the minimal number of neuron or subspace dimension) of the M versus log T fits as functions of data1367

coherence for random sampling and random projection. We see that the slopes and intercepts in the case of1368

random sampling increased systematically with data coherence, or sparsity, reflecting the increased chance1369

of missing “important” neurons as trajectories become sparser (Figures 3A,B). However, at data coherence1370

levels around the value observed in our motor cortical dataset, the increases in both the fitted slope and1371

intercept are quite small, suggesting that the motor cortical data are not far from being randomly oriented.1372

On the other hand, because random projection always results in subspaces that are, by definition, randomly1373

oriented with respect to any chosen basis of the firing-rate space, neither the fitted slopes nor the intercepts1374

have a dependency on the simulated activities’ data coherence. This behavior is consistent with the fact that1375
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Figure 14: Effect of sparsity A. Example firing rates of simulated networks with different levels of sparsity; B. Constant

distortion contours for the simulated activities under random projection; C. Constant distortion contours for simulated

activities under random sampling; D. Comparisons of the requisite number of neurons under random projections and

random samplings. E. Fitted slopes and intercepts of constant distortion contours as functions of data coherence. Error

bars correspond to standard errors of the fitted parameters.

properties other than sparsity are well controlled in our simulations.1376

Overall, analysis of simulated data suggests that the optimistic result that the number of recorded neu-1377

rons need only scale logarthmically with the neural task complexity to achieve a fixed distortion in neural1378

state space dynamics, holds true for a broad range of sparsities of neural activity patterns. The actual req-1379

uisite number of neurons grows with increasing sparsity, but the linear relation between M and logNTC1380

is preserved. While we support this conclusion using simulation results, it is a highly plausible theoretical1381

conjecture as well. In fact, recent theoretical progress has been made to extend the basic JL lemma beyond1382
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random projections into cases where the projection vectors are sparse [Achlioptas, 2003, Li et al., 2006],1383

including random sampling.1384
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Appendix1498

Analytical expressions for fraction of variance explained1499

For the exponential correlation function, f̂(ω) evaluates to,

f̂(ω) =
t=∞
∑

t=∞

e−|t|/τeiωt

=
1− e−

2

τ

1− 2 cos (ω) e−
1

τ + e−
2

τ

Taking advantage of f̂(ω)’s ordering, we evaluate the integral,

∫ ω∗

−ω∗

dωf̂(ω) = 4 arctan

(

tan(ω∗/2)

tanh(1/2τ)

)

.

The minimum ω∗ given the fraction parameter r is then,

ω∗ = 2arctan
[

tanh(1/2τ) tan
(πr

2

)]

With the τ ≫ 1, we ignore terms beyond O(1/τ) to obtain the clean, final expression,

D(r) =
1

π
arctan

[

tanh(1/2τ) tan
(πr

2

)]

≈ tan
(πr

2

) 1

π

T

τ
(keeping O( 1τ ))

For the gaussian temporal correlation function, we state without showing that the Fourier transform is in

fact nicely ordered. To compute the fraction of variance explained, we switch the order of the summation

over t and the integration of ω to obtain,

∫ ω∗

−ω∗

dωf̂(ω) =
∞
∑

t=−∞

e−t2/τ2

∫ π

−π

dωeiωt

=
∞
∑

t=−∞

e−t2/τ2 2 sin(ω∗t)

t

≈ 2π erf(ω∗τ/2) (τ ≫ 1, Summation by integration)
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With the optimal ω∗ ≈ 2 inverf(r)/τ , we then have the final expression,

D(r) ≈ inverf(r)
2

π

T

τ
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