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Abstract. Our purpose is to elaborate a theory of planar nets or unfoldings for polyhedra, its generalization and
extension to polytopes and to combinatorial polytopes, in terms of morphisms of geometries and the adjacency
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1. Introduction

Planar nets for various polyhedra are familiar both for practical matters and for mathematical
education about age 11–14. They are systematised in two directions. The most developed
of these consists in the drawing of some net for each polyhedron in a given collection
(see for instance [20], [21]). A less developed theme is to enumerate all nets for a given
polyhedron, up to some natural equivalence. Little has apparently been done for polytopes
in dimensionsd ≥ 4 (see however [18], [3]).

We have found few traces of this subject in the literature and we would be grateful for
more references. An interesting reference is [1] where some formalisation takes place in a
topological language. A deeper study can be found in [2]. Let us point out that the subject
is related to the much studied theory of planar graphs (see for instance [11]).

Two papers by Bouzette and Vandamme [4] and Bouzette [5] are closely related to the
present one.

We shall now briefly explain our approach of some theory. As a matter of fact, our starting
point is physical experience dealing with planar drawings for cubes and other familiar
polyhedra. LetP be such a polyhedron. We can think ofP in terms of various structures.
Here we want to emphasize two different structures. First comes thecombinatorial structure
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of P. It consists of three sets of objects called respectively vertices, edges and faces, ordered
by inclusion. Next comes themetric structureof P, completing the preceding one by the
data of the “envelope” ofP and the metric induced on it by the surrounding space. Actually,
it suffices to deal with the metric on each face ofP.

An unfoldingor net or developmentof P appears as some other geometryP1 together
with some kind of morphism fromP1 ontoP. In elementary geometry this goes obviously
along with metrical requirements. One of our main observations is that a great deal of this
study does only require the combinatorial structure. This has the usual benefits: simplifica-
tion, clarity and generalization (both for polytopes and for combinatorial polytopes). The
metrical viewpoint is not overlooked and it leads to interesting open problems.

We want to thank J.-P. Doignon for helpful references and advice as well as G. Valette
who provided, the quite provocative and enlightening example displayed in section 4.6. We
are grateful to M. Parker who participated and contributed to most of our discussions. Our
thanks also to H. Harborth and G. Ziegler who provided further references.

Finally three referees provided more references, comments and improvements.

2. A Combinatorial Approach

2.1. Combinatorial Pre-Polytopes

2.1.1. Definitions and Notation

We could make use of the setting for incidence geometries developed for instance in [6],
[8]. For the convenience of the reader we shall concentrate on a less general viewpoint
close to the position taken in [10]; moreover we shall make all definitions explicit. As a
matter of fact, our formalism could also be expressed in other contexts like lattice theory,
simplicial complexes, etc. Letd ≥ 1 be an integer and letI be the set{0, 1, . . . ,d−1}. We
consider agraded partially ordered set of rank dnamely0 = (X,≤, t) whereX is a set,≤
is a partial order onX andt is a mapping ofX onto I such thata < b impliest (a) < t (b)
and such that for every maximal totally ordered subsetY of X, we havet (Y) = I . For
a ∈ X, thetypeof a is the elementt (a) ∈ I . We call two elementsa andb of X incident
and we writea ∗ b if eithera < b or b ≤ a. An intervalof 0 is any of the following.

(0) The set ]−∞,∞[ of all x in X.
(1) For anya < b in X, the set ]a, b[ of all x in X such thata < x < b.
This is a graded partially ordered set of rankt (b)− t (a)− 1 in which the grade function

mapsx on t (x)− t (a)− 1.
(2) For anya ∈ X, the set ]a,∞[ of all x in X such thata < x (theupper residueof a)

and likewise the set ]−∞,a[ of all x in X such thatx < a (thelower residueof a). These
are graded partially ordered sets of respective ranksd, d− t (a)− 1 andt (a), in which the
grade functions mapx respectively ont (x), t (x)− t (a)− 1 andt (x). We call0 residually
connectedif each of its intervals of rank≥ 2 is a connected graph for the incidence relation
∗. We call0 thin if every interval of rank 1 of0 contains exactly two elements.

An elementx of 0 with t (x) = 0 (resp. 1,d − 1, d − 2) is calleda vertex(resp.edge,
facet, ridge). For anyx ∈ X, the0-shadowof x is the setσ(x) consisting of all vertices
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Figure 1.

y such thaty ≤ x. For a facetF , we often identifyF with its lower residue ]−∞, F [ in
order to simplify notation. We may also write0F in order to denote this residue.

2.1.2.Thedual of a graded partially ordered set of rankd say0 = (X,≤, t) is the graded
partially ordered set of rankd, 0∗ = (X,≥, t∗) wherea ≥ b if and only if b ≤ a and
t∗(a) = d − t (a)− 1 for all a ∈ X. Clearly,0∗∗ = 0. If 0 is residually connected (resp.
thin) then0∗ is also residually connected (resp. thin).

2.1.3. A combinatorial polytope of rank d for d≥ 1 is a residually connected and thin
graded partially ordered set of rankd. A combinatorial polytopeP has adual P∗ which is
also a combinatorial polytope.

A combinatorial pre-polytopeis a graded partially ordered set of some rankd ≥ 2 in
which the residues of all facets are combinatorial polytopes of rank(d − 1) and all ridges
are incident to either 1 or 2 facets. In this situation, a ridge is ofdegree1 or 2 according to it
being incident with 1 or 2 facets. Observe that a combinatorial pre-polytope does not need
to be residually connected. Also, every combinatorial polytope is of course a pre-polytope.

In the rest of this paper, we deal exclusively with combinatorial pre-polytopes of rank
≥ 2. Let P be a combinatorial pre-polytope. Thefacet graphof P, sayF(P), consists of
the set of facets ofP and those pairs of facets that are incident to a given ridge ofP. For
a combinatorial polytopeP the facet graph is the 1-skeleton ofP∗. We callP connectedif
F(P) is a connected graph. This is obviously inspired by familiar unfoldings of polyhedra.
Actually we need a stronger property that can also be observed on the examples. We call
P highly connectedif for each elementy of type t ≤ d − 3, the incidence graph of facets
and ridges incident withy, is connected.

The following example (figure 1) shows thatP may be connected and not be highly
connected. In that example,d = 3, the facets are seven squares with a labelB (for black)
and the vertexy has a non-connected upper residue.
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2.1.4.LEMMA In a combinatorial pre-polytope of rank d let a be an element of type i with
i 6= 0 (reps. i 6= d). Then the lower residue] −∞,a[ (resp. upper residue]a,∞[) is a
combinatorial polytope (resp. pre-polytope) of rank i (resp. d− i − 1).

Proof. Straightforward.

2.1.5.THEOREM A combinatorial pre-polytopeP is residually connected if and only if it is
highly connected and connected.

Proof. If P is residually connected then it is clearly highly connected. LetP be highly
connected. Ford = 2, there is nothing to prove. We can assumed ≥ 3. First we show that
the incidence graph ofP is connected. Letx, y be elements ofP. There exist facetsF, F ′ of
Psuch thatx∗F andF ′ ∗ y. Moreover, sinceP is connected there exists a path of ridges and
facets fromF to F ′. Therefore, there exists a path fromx to y in the incidence graph ofP. Let
8 be an interval ofPof rank≥ 2. First, take8 = ]a, b[ with a < b. There is a facetF such
thatb ≤ F . Then8 is in an interval of the lower residue ofF and sinceF is a combinatorial
polytope,8 is connected. This argument works also if8 = ] −∞,a[ for some element
a. Hence, assume that8 = ]a,+∞[. Then there is a vertexp with p ≤ a, 8 is an
interval of the upper residue ofp and the latter is a combinatorial pre-polytope of rankd−1
(Lemma 2.1.4). Nowt (p) = 0 hence, by the hypothesis thatP is highly connected, the graph
of facets and ridges incident withp is connected. This means that the pre-polytope ]p,∞[ is
connected. It is also obviously highly connected. Therefore induction ond may be applied .

Let us observe further that a connected rank 2 combinatorial pre-polytope is either iso-
morphic to a usualn-gon (2≤ n ≤ ∞) or to astring namely a connected graph in which
all vertices but two have degree 2, the two exceptions having degree one.

2.1.6. Property. (0). LetP be a combinatorial pre-polytope. We say thatP has property
(0) if any two distinct elementsx, y of P have distinct 0-shadowsσ(x) andσ(y) where
σ(x) is the set of vertices ofP incident tox. This property is always assumed in Section 3.
Then the data ofP is equivalent with the graded poset of setsσ(x) on the set of vertices.

2.2. Combinatorial Unfolding of a Combinatorial Pre-Polytope

Let P be a combinatorial pre-polytope of rankd over I = {0, 1 . . . ,d − 1}.
A combinatorial unfoldingof P is a pair(Q, α) whereQ is a combinatorial pre-polytope

over I andα is a mapping of the setY of elements ofQ onto the setX of elements ofP
such that:

(1) α is type-preserving, namelyt (α(y)) = t (y) for all y ∈ Y;

(2) α is one-to-one from the set of facets ofQ to the set of facets ofP;

(3) for any facetF of Q, α restricted toF is an isomorphism ontoα(F).
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In view of (3), α is automatically incidence-preserving. We call the unfolding(Q, α)
connected(resp. highly connected) ifQ is connected (resp.highly connected).

These definitions are rather categorical. For instance, if(Q, α) is an unfolding ofP and
(R, β) is an unfolding ofQ, then(R, αβ) is an unfolding ofP.

In the same spirit, two combinatorial unfoldings(Q, α) and (Q′, α′) of P are called
equivalentif there is an isomorphismβ of Q ontoQ′ such thatα′β = α.

We get universal objects as well, in an obvious way. GivenP as earlier, auniversal
unfolding(Q, α) of P is an unfolding equivalent to all of its own unfoldings. It corresponds
to the physical situation of a polyhedron all of whose faces are separated.

Physical unfoldings push us to look for residually connected combinatorial unfoldings.
If P is finite and residually connected, thenP does necessarily admit auniversal residually
connected combinatorial unfolding(Q, α)which means that(Q, α) is equivalent to all of its
own residually connected unfoldings. As an example, ifP is a cube,P has 11 equivalence
classes of universal residually connected combinatorial unfoldings each one represented by
one of the standard list of nets forP.

Remarks. 1. Classical objects of recreational mathematics such as polyominos provide
examples of pre-polytopes. These can help us realise that a pre-polytope is not necessarily
an unfolding of some polytope.

2. An unfolding ofP induces an unfolding on the upper residuePv, for any vertexv of P.
3. If (Q, α) is an unfolding of a residually connected pre-polytope and ifQ is connected

does there follow thatQ is residually connected? The answer is negative. ForQ, we can
take two regular tetrahedra with a common vertex and forP, two regular tetrahedra with a
common face.

2.3. Combinatorial Unfolding and the Cut Set

2.3.1. Let P be a combinatorial pre-polytope and let(Q, α) be a combinatorial unfolding
of P. We are interested in the ridges ofQ of degree one whose image underα is of degree
2. These ridges ofQ are calledcut. Let C(Q, α) denote thecut setof P namely the set of
ridges ofP that are images underα of cut ridges ofQ.

At first view, physical experience may suggest that(Q, α) must be determined uniquely
by its cut set inP. However, this is not quite true as we can see on an easy example.

Example. Let P be the union of two triangles with a common edgeC and putC = {C}.
Let Q1 be the disjoint union of two triangles and letQ2 be the union of two triangles
with one common vertex. Clearly, we get unfoldings(Q1, α1) and (Q2, α2) of P and
C(Q1, α1) = C = C(Q2, α2).

We shall nevertheless develop a satisfactory general theory for all(Q, α) such that
C(Q, α) = C for any given setC of ridges of degree two inP.

2.3.2. C-unfolding. Let P be a combinatorial pre-polytope overI = {0, . . . ,d − 1} with
d ≥ 2 and letC be a set of ridges of degree two inP. We construct a combinatorial
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pre-polytopeQ = Q(P, C) over I , depending onP andC and we call it theC-unfolding
of P.

1) The facets ofQ are the facets ofP.
2) Each elementx of P, of type i ≤ d − 2, incident with some ridge not inC is also an

element ofQ and incidence among these elements and the facets is transfered fromP to Q.
3) For each elementy of P, of typei ≤ d − 2, such that each ridge incident withy is in
C, and for each facetF of P, with y ∗ F , we create an element(y, F) in Q, of type i . If
x ∗ y, with x as in 2), we decide thatx ∗ (y, F). We also decide that(y, F) ∗ (y′, F ′) if and
only if y ∗ y′ andF = F ′. Finally, (y, F) ∗ F ′ if and only if F = F ′.

4) There is an obvious mappingα of Q ontoP, fixing each element common toQ andP
and mapping(y, F) onto y for eachy as in 3).

2.3.3.THEOREM For P, C,Q = Q(P, C) andα as above we have:
(Q, α) is a combinatorial unfolding ofP with C as cut set.

Proof. 1) We show thatQ is a combinatorial pre-polytope. It is obviously a graded poset
of rankd. Moreover the residue of a facet is a combinatorial polytope and ridges ofQ are
incident to either one or two facets.

2) We show that(Q, α) is a combinatorial unfolding ofP. To this end, we observe thatα
is indeed a mapping and that it is type-preserving. Moreover,α is one-to-one from the set
of facets ofQ to the set of facets ofP and for each facetF of Q, the restriction ofα to QF

is indeed an isomorphism ontoPα(F).
3) It is straightforward thatC(Q, α) = C as required.

2.3.4. LEMMA Let P, C be as above and let(Q, α) be theC-unfolding ofP with Q =
Q(P, C).

LetD be a set of ridges ofP of degree two, and let(R, β) be theD-unfolding ofP with
R = Q(P,D). Then the two following properties are equivalent.

(i) C ⊆ D

(ii) there exists a unique unfolding(R, γ ) of Q such thatβ = αγ .

Moreover,R is isomorphic to Q(Q,D\C).
Proof. (i)⇒ (ii). If x is an element ofR as in 1) or 2) of 2.3.2,x is an element ofP and it
is an element ofQ as in 1) or 2). Hence,γ (x) = x is the only possibility forγ in that case.

If x is an element ofR as in 3) of 2.3.2, thenx = (y, F) wherey is in P, F is a facet
of P with y ∗ F and every ridge incident withy is in D. Moreover,β(x) = y. If there
is a ridge ony, not inC, y is also an element ofQ, by 2.3.2 and then we have necessarily
γ (x) = y. If each ridge ony is in C, then(y, F) is an element ofQ, by 2.3.2 and soγ (x)
is necessarily this element.

This provides the uniqueness ofγ , its construction as a mapping fromR into Q and
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β = αγ . Henceγ is onto. Clearly,γ is type-preserving and one-to-one on the set of facets.
Sinceβ = αγ , the restriction ofγ to every facet is an isomorphism.

(ii) ⇒ (i). Let C ∈ C. ThenC is of degree 2 inP and it is incident with facetsF1, F2

of P. By 2.3.2,α−1(C) consists of two ridges, namely(C, F1) and(C, F2), each of degree
one, whose inverse images byγ are also necessarily of degree one.

Thereforeβ−1(C) consists of two ridges ofR of degree one and soC ∈ D, hence (i)
holds.

The last statement is rather obvious.

2.3.5.THEOREM LetP be a highly connected combinatorial pre-polytope and letC be a set
of ridges of degree two inP. Let (Q, α) be theC-unfolding ofP. Assume thatQ is highly
connected. Then the following hold.

(i) for any combinatorial unfolding(R, β) of P with C = C(R, β) there exists a unique
combinatorial unfolding(Q, γ ) of R such thatβγ = α;

(ii) if (R, β) is as in (i) andR is highly connected, then(R, β) is equivalent to(Q, α).

Proof. (i) We shall show that the relationγ = β−1α is a mapping. Letx be an element of
Q and assume thaty1, y2 are distinct elements ofβ−1α(x). Then there are facetsF1, F2 of P
such thatF1∗α(x)∗F2, y1∗β−1(F1) andy2∗β−1(F2). Now, y1 is not incident withβ−1(F2)

becauseβ restricted to a facet is an isomorphism and soF1 6= F2. If x is a ridge,α(x) is
of degree two and not inC, y1 is of degree one and sinceβ(y1) = α(x), this contradicts
C = C(R, β). Thusx is of type≤ d − 3 an asQ is highly connected, there is a chain
α−1(F1)∗C1∗ E2∗C2∗ E3∗ · · · ∗α−1(F2)where theCi (resp.Ei ) are distinct ridges (resp.
facets) ofQ incident withx. Hence,α(Ci ) is not inC andβ−1 is a mapping on the image
of the above chain underα. This givesβ−1(F1) ∗ β−1α(C1) ∗ β−1α(E2) ∗ · · · ∗ β−1(F2).
Here,y1 ∗ β−1α(C1) because of the isomorphic action ofβ−1 on the residue ofF1. Then
y1 ∗ β−1α(E2). Repeating the last argument, we get inductively thaty1 ∗ β−1(F2), a
contradiction. Therefore,γ is a mapping and it is uniquely defined. It is type-preserving.
It is one-to-one from the set of facets ofQ to the set of facets ofR. If F is a facet of
Q it is clear thatγ restricted toF is an isomorphism. Therefore,γ is a combinatorial
unfolding.

(ii) Let γ be as in (i). We need only show thatγ is an isomorphism. Ifγ is one-to-one
thenγ −1 is an isomorphism because its restriction to any facet is the restriction ofα−1β

which is a product of isomorphisms. Ifγ is not one-to-one, letx, x′ be elements ofQ with
γ (x) = γ (x′). Herex is not a ridge since otherwiseα(x) ∈ C contradictingC = C(R, β).
Thereforex is of type≤ d − 3.

Thenα(x) = α(x′) in P, henceα(x) is as in 3) of 2.3.2 andx = (α(x), F), x′ = (α(x), F ′)
whereF, F ′ are facets ofP incident withα(x). SinceR is highly connected, there is a
chainβ−1(F) ∗ C1 ∗ E2 ∗ C2 ∗ E3 ∗ · · · ∗ β−1(F ′) where the ridgesCi and facetsEi are
incident withγ (x). All Ci may be assumed to be of degree 2 andα−1β is a unique chain
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α−1(F) ∗ α−1β(C1) ∗ α−1β(E2) ∗ · · · ∗ α−1(F ′). We get as in the corresponding argument
of (i) that x is incident with each member of that chain, hencex ∗ F ′ and sox = x′.

2.3.6. The dual cut set.Let P be a combinatorial pre-polytope andC a set of ridges of
degree two ofP. Then we define thedual C∗ of C as the set of ridges of degree two ofP,
not inC. If (Q, α) is a combinatorial unfolding ofP, thedual cut set C∗(Q, α) is the dual
of C(Q, α).

2.3.7. THEOREM Let P be a highly connected and connected combinatorial pre-polytope.
Let (Q, α) be a highly connected combinatorial unfolding ofP and letC∗ be the dual cut
set of(Q, α). Then(Q, α) is universally connected if and only ifC∗ is a spanning tree on
the set of facets of P.

Proof. Let (Q, α) be universally connected. Then the graph of facets with edges inC∗
is connected. Assume by way of contradiction that it is not a tree. Then there is a set
D of ridges of degree two, such thatD∗ ( C∗ andC ( D with Q(P,D) connected and
by Lemma 2.3.4 there exists an unfolding(Q(P,D), γ ) of Q. Here,Q(P,D) cannot be
equivalent toQ, hence we contradict the fact that(Q, α) is universally connected.

Next, let us assume thatC∗ is a spanning tree. ThenQ is connected. Let(R, β) be
a connected combinatorial unfolding ofQ. Then(R, αβ) is a connected combinatorial
unfolding of P and ifD = C(R, αβ) we see thatD∗ gives a connected graph on the set
of facets whileC ⊆ D, henceD∗ ⊆ C∗. Therefore,D∗ = C∗. Now Q′ = Q(P, C) is
connected and it provides an unfolding ofR, hence ofQ, by Theorem 2.3.5. SinceQ is
highly connected, Theorem 2.3.5 shows thatQ′,R andQ are equivalent.

Remark. The example given in 2.1.3 allows to show easily that the condition “Q highly
connected” cannot be dispensed with.

2.3.8.COROLLARY LetPbe a highly connected and connected combinatorial pre-polytope.
Then the equivalence classes of universal connected highly connected combinatorial un-
foldings ofP are in one-to-one correspondence with the spanning trees of the facet graph
of P.

Proof. It suffices to observe that equivalent unfoldings have the same cut set.

This result is a generalisation at the combinatorial level of known facts about the metrical
unfolding of familiar polyhedra.

2.3.9. Let P be a highly connected combinatorial pre-polytope. Then the automorphism
groupG = AutPacts on the spanning trees of the facet graph and on the universal connected
combinatorial unfoldings ofP as well. The orbits ofG allow to define a slightly different
equivalence on the unfoldings, namely inclusion in the sameG-orbit for two equivalence
classes of unfoldings.
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3. A Metrical Approach

3.1. Metrical Polytopes and Pre-Polytopes

3.1.1.Consider then-dimensional euclidean spaceEn and some combinatorial pre-polytope
P over I = {0, . . . ,d − 1}. We want to express thatP “lives” in En. Therefore, distinct
vertices ofP must be distinct points ofEn. Refusing that distinct vertices be represented by
the same point ofEn will raise various problems afterwards but we feel that it is a necessity.
We shall refer to this situation by the expression “vertex overlapping.”

Our next concern is for edges. IfE is an edge ofP incident to the pointsa, b we want to
identify E with the closed segment [a, b], which is legitimate provided no two edges have
the same vertices, in particular whenever property (0) (see 2.1.6) holds inP. From here on
we shall carefully distinguishthe points of Enamely the elements of [a, b] andthe vertices
of E namelya andb.

Observe that we do not extend the incidence relation to the points ofE. A point other
than a vertex will not be called incident toE.

We find it convenient to identify any elementx of P, of type i ≥ 2 with the pointset of
En which is the union of all edges and vertices incident withx.

We shall now formalize these matters.

3.1.2. Let P be a combinatorial pre-polytope (resp. polytope) with property (0). We call
P a euclidean pre-polytope(resp.polytope) of the euclidean spaceEn if P satisfies the
following:

(i) every vertex ofP is a point ofEn and distinct vertices are distinct points;

(ii) if E is an edge ofP incident with the verticesa, b thenE is the segment [a, b];

(iii) if x is an element ofP of type i ≥ 2, thenx is the union of all edges incident withx.

Observe that on this basis, a projection of a cube on the planeE2 is a euclidean polytope
provided the projection causes no vertex-overlapping.

A euclidean pre-polytopeP of Ed having rankd is calledstraightif each facet ofP spans
a hyperplane ofEd and each element of typei spans ani -dimensional subspace ofEd. We
call it (d − 1)-dimensionalif it is straight and all facets ofP span the same hyperplane.

3.1.3.THEOREM Every finite combinatorial pre-polytopeP with property (0) is isomorphic
to some euclidean pre-polytope.

Proof. Let P haven vertices. Then we can identify the vertices ofP with the basis vectors
of Rn and everything becomes obvious.

Observe that this representation ofP lives in an affine hyperplane ofRn, hence inEn−1.
Notice that convenient parallel projections allow to pushP to lower dimensions, namely

to Ed with 1≤ d ≤ n− 1.
If P is as in the Theorem and of rankd, P is not always isomorphic to some straight

euclidean pre-polytope ofEd. It suffices to consider the vertices, edges and Petrie polygons
of a tetrahedron(d = 3).
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3.1.4. In order to define a metrical pre-polytope we start with a euclidean pre-polytopeP of
En and define a metric on it, in a somewhat unusual way, inspired by the fact that familiar
unfoldings preserve distances of points incident to a given facet but not necessarily any
other distance. Themetric structureof P attaches to any pointsa, b in some facet ofP their
distanced(a, b) in En.

We define ametrical pre-polytopeas a euclidean pre-polytope together with its metric
structure. It would of course be possible to formalize this structure without any embedding
in En.

3.2. Metrical Unfolding of a Metrical Pre-Polytope

3.2.1.Let P be a metrical pre-polytope inEn. A metrical unfoldingof P is a combinatorial
unfolding(Q, α) of P such that:

(1) Q is a metrical pre-polytope inEn;

(2) the restriction ofα to each facetF of Q is an isometry namelyd(a, b) = d(α(a), α(b))
for any two pointsa, b of F .

Metrical unfoldings(Q, α)and(Q′, α′)of Pare calledisometricif there is an isomorphism
β of Q ontoQ′ preserving distances and such thatα′β = α. Thenβ does not necessarily
extend to an isometry ofEn mappingQ ontoQ′. It suffices to think of the case whereP
has exactly two facets with a common ridge. Ifβ can be extended to an isometry ofEn we
call (Q, α) and(Q′, α′) totally isometric.

3.2.2.We define auniversal metrical unfolding(Q, α) of P as a metrical unfolding which
is isometric to each of its own metrical unfoldings. A straight pre-polytope ofEd has an
obvious universal metrical unfolding in some hyperplaneEd−1, just as a cube can be put to
(six) pieces on a plane.

3.3. Metrical Realizability of a Combinatorial Unfolding

3.3.1.LetPbe a finite, straight, metrical pre-polytope inEd and let(Q, α)be a combinatorial
unfolding ofP. We call(Q, α)metrically realizableif there is a metrical unfolding(R, β)
of P in Ed such that(Q, α) is equivalent to(R, β). Not every(Q, α) is metrically realizable.
We produce an easy counterexample.

3.3.2.Example. LetPbe a cube inE3 and letE be an edge ofP. Consider the pre-polytope
Q = Q(P, E) constructed in 2.3.2 which amounts to cutE onP. ThenQ is not metrically
realizable.

3.3.3.Problem 1. The preceding observation inspires two different questions.
(Q1). Given P as in 3.3.1, characterize those combinatorial unfoldings ofP that are

metrically realizable.
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(Q2). In 3.3.2, we are tempted to say that the best approximation to a metrical realization
of Q is P itself. Can we slightly generalize metrical realizability in order to avoid any
counterexamples?

3.3.4. Towards a characterization of metrical realizability.Let us discuss question (Q1)
of 3.3.3. It obviously suffices to deal with connected combinatorial unfoldings ofP.

Thus, letPbe a finite, straight, connected pre-polytope inEd and let(Q, α)be a connected
combinatorial unfolding ofP. As in 2.3.1, letC = C(Q, α) denote the cut set ofP namely
the set of ridges of degree 2 ofP that are images underα of ridges of degree 1 inQ. Let
C∗ = C∗(Q, α) be the set of ridges ofP of degree 2, not inC. LetF be the set of facets of
P. We shall have to deal with the graph(F , C ∪ C∗) and with its subgraph(F ,C∗).

Physical unfoldings tell us that we ought to find edgesE1, . . . , En in (F , C∗) such that
for everyC ∈ C with facetsF1, F2 andF1 ∗C1 ∗ F2, there is an edgeEi contained in each
path fromF1 to F2 in (F ,C∗).

This tells us that theEi arebridgesin (F , C∗), a bridge of a graph being an edge whose
removal increases the number of connected components of the graph (see [11], in particular
Theorem 3.2). IfB is a bridge of the connected graph(F , C∗) then the removal ofB leaves
two connected components and we say thatB separatestwo vertices if these belong to
distinct components.

In the graph(F , C ∪ C∗) we define abridging as a set of bridgesB1, . . . , Bk of (F , C∗)
such that for anyC ∈ C, someBi separates the facets incident withC. We now get a partial
answer to question (Q1), that suffices to deal with the universally connected unfoldings of
polytopes.

3.3.5. THEOREM Let P be a finite, connected, straight, metrical pre-polytope in Ed and
let (Q, α) be a combinatorial unfolding ofP. Assume that(F , C ∪ C∗) has a bridging
consisting of bridges B1, . . . , Bk in (F , C∗). Then(Q, α) is metrically realizable.

Proof. ConsiderBi , for eachi . There are facetsF, F ′ of P incident withBi and connected
componentsU,U ′ of (F , C∗) after the removal ofBi .

In Ed we consider a rotationρi fixing all points of the ridgeBi . We can chooseρi in such
a way thatρi (U ′) 6= U ′ and thatρi (U ′) has no vertex in common withU . Then the union
of all facets inU and inρi (U ′) is a metrical unfolding ofP that separates facetsF1, F2 on
C ∈ C, whenever one ofF1, F2 is in U and the other inU ′. Applying this for alli gives a
metrical realization forQ.

COROLLARY If P is a finite, straight, connected, metrical pre-polytope in Ed and if (Q, α)
is a combinatorial unfolding ofP such that(F , C∗) is a tree, then(Q, α) is metrically
realizable.

Proof. In a tree, every edge is a bridge and so(F , C ∪ C∗) has an obvious bridging.
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Problem 2. We might expect a converse to the theorem, namely that(Q, α)being metrically
realizable forces a bridging in(F , C ∪ C∗).

Problem 3. LetPbe a combinatorial pre-polytope and assume that(Q, α) is a combinatorial
unfolding ofP. Assume furthermore thatQ is a metrical pre-polytope inEd. Does there
follow thatP is metrically realizable inEd? If this was always the case it would prove the
converse mentioned in Problem 2, thanks to the Corollary.

3.3.6. Weak metrical realizability. In order to answer question (Q2) we start withP and
(Q, α) as in 3.3.1.

A weak metrical realizationof (Q, α) is a metrical unfolding(R, β) of P such that there
exists a combinatorial unfolding(Q, γ ) of R with βγ = α and such that(R, β) is universal
for the preceding conditions namely, if(R′, β ′) is as(R, β) above then(R, β) and(R′, β ′)
are isometric.

3.3.7. THEOREM Let P be a finite, straight, metrical pre-polytope in Ed and let(Q, α) be
a combinatorial unfolding ofP. Then the unfolding(Q, α) has a weak metrical realization
in Ed.

Proof. We may assume without loss of generality that(F , C∗) is connected. Consider the
nonempty family of setsD∗ such thatC∗ ⊆ D∗ ⊆ C ∪ C∗ and such thatQ′ = Q(P,C ∪
C∗\D∗) is metrically realizable. LetD∗ be a minimal member of the family, with respect to
inclusion. ThenQ′ provides a weak metrical realization of(Q, α) thanks to Lemma 2.3.4.

Problem 4. Can we show in the above proof that a minimalD∗ is unique? Also, if
C∗ ⊆ D∗1 ⊆ C ∪ C∗, C∗ ⊆ D∗2 ⊆ C ∪ C∗ and if Q(P, C ∪ C∗\D∗1) andQ(P, C ∪ C∗\D∗2) are
metrically realizable does there follow thatQ(P,C∪C∗\D∗1∪D∗2) is metrically realizable?
This would imply that there is a unique minimalD∗.

4. The(d − 1)-Unfoldings of Straight Metrical Pre-Polytopes ofEd

In this section,P is always a finite, connected, straight metrical pre-polytope inEd.

4.1. (d − 1)-Realizable Unfoldings

Consider a metrical unfolding(Q, α) of P in Ed. We are now interested in the existence of
a (d− 1)-dimensional(Q′, α′) which is isometric to(Q, α). If (Q′, α′) exists we call it for
short, a(d− 1)-unfoldingof P and we call(Q, α) a (d− 1)-realizable unfolding. A cube,
one of whose faces is detached on three of its sides, provides an example where(Q, α) is
not (d − 1)-realizable.
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Figure 2.
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4.2. (d − 1)-Realizability and Universal Connectedness

In section 2, for instance 2.3.8, we got the idea that a fair combinatorial counterpart to
physical(d−1)-dimensional nets may be the concept of universally connected combinatorial
unfolding, especially because of its relationship with trees.

Therefore, we ask whether a(d − 1)-realizable unfolding(Q, α) of P is necessarily a
universally connected combinatorial unfolding. We produce a counterexample.

Example. We display a picture ofP in E3 (figure 2). It has 16 vertices and all of its faces
are convex quadrangles. The four upper (resp. lower) faces are contained in the same plane.

We display also a picture of a 2-unfolding ofP(figure 3) which is not universally connected
because it could still be cut along an edge likeE.

Problem 5. Characterize(d − 1)-realizable unfoldings in combinatorial terms.
This example also shows that a universally connected combinatorial unfolding ofP need

not be(d − 1)-realizable. It suffices to remove the edgeE. The four central quadrangles
of the picture cannot be separated atE because all other configurations would lead to
vertex-overlapping.

4.3. Unambiguous Ridges

The physical unfolding of some polyhedra suggests a role for rotations of some facets
around one of their ridges. To be more specific, ifF, F ′ are facets sharing the ridgeC, we
are inclined to rotateF ′ aroundC to bring it in the hyperplane〈F〉 generated byF . Of
course, this can be done in two ways but for the more regular polyhedra, there is only one
way avoiding the overlapping of vertices. We formalize these ideas.

Let C be a ridge of degree 2 ofP, incident with the facetsF andF ′. Assume thatF, F ′

span distinct hyperplanes〈F〉, 〈F ′〉. There are exactly two rotationsρ1, ρ2 of Ed (with a
determinant equal to 1) fixingC pointwise and mapping〈F ′〉 onto 〈F〉. They mapF ′ on
polytopesρ1(F ′) andρ2(F ′) admittingC as a facet. We callC unambiguousif one and
only one ofρ1(F ′) andρ2(F ′) has no vertex in common withF , except those vertices in
C. We callP unambiguousif each of its ridges of degree two is unambiguous. Typical
examples are the convex polytopes all of whose facets are regular.

4.3.1.PROPOSITION Assume that(Q, α) is a connected metrical unfolding ofP and thatQ
is unambiguous. Then(Q, α) has at most one(d − 1)-realization up to isometry.

Proof. Straightforward.

4.3.2. If (Q, α) is as in the proposition and it is universally connected it does not necessarily
have a(d− 1)-realization. To get an example, takeP as in the example described in 2.1.3.
Replace the vertexy by two verticesy1, y2 wherey1 is incident to the upper facet containing
y andy2 to the lower one. This gives us a pre-polytopeQ which is universally connected,
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Figure 3.

unambiguous and not(d − 1)-realizable because a realization would forcey1 and y2 to
coincide.

4.3.3. Problem 6. Characterize the universally connected unambiguous metrical pre-
polytopes that are(d − 1)-realizable.

4.3.4. We callP totally realizableif each of its universally connected metrical unfoldings
is unambiguous and(d − 1)-realizable.
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4.3.5.THEOREM LetP be totally realizable and assume that AutP is a group of isometries
leavingP invariant. Then the following numbers are equal:

A) the number of orbits of equivalence classes of universally connected combinatorial
unfoldings ofP under AutP;

B) the number of isometry classes of universally connected metrical unfoldings ofP;

C) the number of total isometry classes of(d−1)-universally connected metrical unfoldings
of P;

D) the number of orbits of spanning trees in the graph of facets and ridges ofP under
AutP.

Proof. We getA = D by Corollary 2.3.8 and 2.3.9. EqualityA = B follows from the
Corollary in 3.3.5 and Theorem 2.3.7. Finally,B = C becauseP is totally realizable.

Using pictures we can easily check that the regular tetrahedron, cube and octahedron are
totally realizable.

Problem 7. Is every convex regular polytope and every deltahedron totally realizable? Are
there any other totally realizable polytopes?

Let us mention here that for abstract polytopes with a flag-transitive group action namely
regular polytopes, a quite detailed study of realizations can be found in [14] and [15].

4.3.6. EnumerationThe number of unfoldings of the regular convex polytopes in dimen-
sion≤ 4 is studied and determined by Buekenhout and Parker [9]. Earlier results on this
theme are due to Jeger [13], Hippenmeyer [12], Tougne [18], [5] and Bouzette and Van-
damme [4] (see also Reggini [16]). Let us mention here that the stellated regular{ 52, 3}
whose faces are pentagrams is combinatorially isomorphic to the regular dodecahedron and
that it admits therefore the same number of unfoldings as the latter.

4.3.7.BOUZETTE’S THEOREM The result obtained by Bouzette [5] goes as follows.
Let P be a convex polyhedron in E3 and let P∗ be a dual of P. Each edge of P is

identified with an edge of P∗. Assume that a set of edges of P say T is a spanning tree of
the 1-sleleton of P. Then the set T∗ of edges not in T is a spanning tree of the 1-skeleton of
P∗. As a consequence there is a natural one-to-one correspondence between the unfoldings
of P and those of P∗.

4.4. Non-Overlapping

If (Q, α) is a(d−1)-realization of a metrical unfolding ofP, we callQ non-overlappingif
any two facets ofQ whose residues are combinatorially disjoint are disjoint as sets of points
in Ed−1 and if their union has no knots other those of the facets themselves. A splendid
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example due to G. Valette [19] shows a 2-realization of a convex polyhedron (figure 4)
which is not non-overlapping since 30◦ < 36◦.

We also produce a simpler example (figure 5) provided by a referee, having the combi-
natorial type of the cube and giving more insight. It uses an angleα < 36◦ and a length
s> cosα−cos 3α

sin 3α−sin 2α .

Problem 8. Does every convex polytope have some non-overlapping(d − 1)-realization?
Even the cased = 3 is still completely open.

Figure 4.

4.5. Perfect Pre-Polytopes

We callP perfectif it is totally realizable and if each of its universally connected unfoldings
has a non-overlapping(d − 1)-realization.

Some experimentation shows that the regular tetrahedron, the cube and the regular octa-
hedron are perfect.
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Figure 5.

Problem 10. Is every convex regular polytope perfect?

4.6. More Examples

1) We display a polyhedron inE3 (figure 6) with 12 vertices and 12 faces which is topo-
logically a Klein bottle. We also give a non-overlapping 2-unfolding for it.

2) We also display (figure 7) a well known toroidal polyhedron.

5. Appendix

The concept of unfolding is meaningful for geometries that are not polytopes. We shall
illustrate this with an easy example based on the projective plane of order 2. The picture
shows an unfolding and the corresponding morphism that identifies 1 and 1′, 2 and 2′. The
interested reader may like to compare these morphisms with those discussed in [7].
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Figure 6.
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Figure 7.
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Figure 8.
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