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Abstract. Our purpose is to elaborate a theory of planar nets or unfoldings for polyhedra, its generalization and
extension to polytopes and to combinatorial polytopes, in terms of morphisms of geometries and the adjacency
graph of facets.

Keywords: net, polytope, incidence geometry, prepolytope, category
1. Introduction

Planar nets for various polyhedra are familiar both for practical matters and for mathematical
education about age 11-14. They are systematised in two directions. The most developed
of these consists in the drawing of some net for each polyhedron in a given collection
(see for instance [20], [21]). A less developed theme is to enumerate all nets for a given
polyhedron, up to some natural equivalence. Little has apparently been done for polytopes
in dimensiongl > 4 (see however [18], [3]).

We have found few traces of this subject in the literature and we would be grateful for
more references. An interesting reference is [1] where some formalisation takes place in a
topological language. A deeper study can be found in [2]. Let us point out that the subject
is related to the much studied theory of planar graphs (see for instance [11]).

Two papers by Bouzette and Vandamme [4] and Bouzette [5] are closely related to the
present one.

We shall now briefly explain our approach of some theory. As a matter of fact, our starting
point is physical experience dealing with planar drawings for cubes and other familiar
polyhedra. LeP be such a polyhedron. We can think®in terms of various structures.

Here we want to emphasize two different structures. Firstcomesthbinatorial structure
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of P. It consists of three sets of objects called respectively vertices, edges and faces, ordered
by inclusion. Next comes thaetric structureof P, completing the preceding one by the

data of the “envelope” d? and the metric induced on it by the surrounding space. Actually,

it suffices to deal with the metric on each facePof

An unfoldingor net or developmenof P appears as some other geomeR®gytogether
with some kind of morphism fror®?; ontoP. In elementary geometry this goes obviously
along with metrical requirements. One of our main observations is that a great deal of this
study does only require the combinatorial structure. This has the usual benefits: simplifica-
tion, clarity and generalization (both for polytopes and for combinatorial polytopes). The
metrical viewpoint is not overlooked and it leads to interesting open problems.

We want to thank J.-P. Doignon for helpful references and advice as well as G. Valette
who provided, the quite provocative and enlightening example displayed in section 4.6. We
are grateful to M. Parker who participated and contributed to most of our discussions. Our
thanks also to H. Harborth and G. Ziegler who provided further references.

Finally three referees provided more references, comments and improvements.

2. A Combinatorial Approach
2.1. Combinatorial Pre-Polytopes
2.1.1. Definitions and Notation

We could make use of the setting for incidence geometries developed for instance in [6],
[8]. For the convenience of the reader we shall concentrate on a less general viewpoint
close to the position taken in [10]; moreover we shall make all definitions explicit. As a
matter of fact, our formalism could also be expressed in other contexts like lattice theory,
simplicial complexes, etc. Let > 1 be an integer and létbe the sef0, 1, ...,d —1}. We
consider ggraded partially ordered set of rankmamelyl” = (X, <, t) whereX is a set<
is a partial order orX andt is a mapping ofX onto| such that < b impliest(a) < t(b)
and such that for every maximal totally ordered subéetf X, we havet(Y) = |. For
a € X, thetypeof a is the element(a) € |. We call two elementa andb of X incident
and we writea x b if eithera < b orb < a. Anintervalof I' is any of the following.

(0) The set}- oo, oof of all x in X.

(1) For anya < bin X, the set#, b[ of all x in X such that < x < b.

This is a graded patrtially ordered set of rdiik) — t (a) — 1 in which the grade function
mapsx ont(x) —t(a) — 1.

(2) For anya € X, the setd, oo[ of all x in X such thata < x (theupper residuef a)
and likewise the set} oo, af of all x in X such thai < a (thelower residueof a). These
are graded partially ordered sets of respective rankls— t(a) — 1 andt (a), in which the
grade functions mag respectively ori (x), t(X) —t(a) — 1 andt (x). We calll" residually
connectedf each of its intervals of rank 2 is a connected graph for the incidence relation
x. We callT" thin if every interval of rank 1 of” contains exactly two elements.

An elementx of I with t(x) = 0 (resp. 1d — 1,d — 2) is calleda vertex(resp.edge
facet ridge). For anyx € X, the0-shadowof x is the setr (x) consisting of all vertices
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y such thaty < x. For a facetF, we often identifyF with its lower residue } oo, F[in
order to simplify notation. We may also writg- in order to denote this residue.

2.1.2.Thedual of a graded partially ordered set of radlsayl" = (X, <, 1) is the graded
partially ordered set of ranl, I'* = (X, >, t*) wherea > b if and only ifb < a and
t*(a) =d —t(a) — 1 foralla € X. Clearly,'** = T'. If T is residually connected (resp.
thin) then™ is also residually connected (resp. thin).

2.1.3. A combinatorial polytope of rank d for & 1 is a residually connected and thin
graded partially ordered set of radk A combinatorial polytopé has adual P* which is
also a combinatorial polytope.
A combinatorial pre-polytopés a graded partially ordered set of some rahk 2 in
which the residues of all facets are combinatorial polytopes of (drnk 1) and all ridges
are incident to either 1 or 2 facets. In this situation, a ridge degfeel or 2 according to it
being incident with 1 or 2 facets. Observe that a combinatorial pre-polytope does not need
to be residually connected. Also, every combinatorial polytope is of course a pre-polytope.
In the rest of this paper, we deal exclusively with combinatorial pre-polytopes of rank
> 2. LetP be a combinatorial pre-polytope. TFecet graphof P, sayF (P), consists of
the set of facets dP and those pairs of facets that are incident to a given ridge dfor
a combinatorial polytop® the facet graph is the 1-skeletonff. We callP connectedf
F(P) is a connected graph. This is obviously inspired by familiar unfoldings of polyhedra.
Actually we need a stronger property that can also be observed on the examples. We call
P highly connectedf for each elemeny of typet < d — 3, the incidence graph of facets
and ridges incident witly, is connected.
The following example (figure 1) shows thBtmay be connected and not be highly
connected. In that example,= 3, the facets are seven squares with a l&ébor black)
and the vertey has a non-connected upper residue.
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2.1.4.LeEmmA In a combinatorial pre-polytope of rank d let a be an element of type i with
i # 0 (reps.i# d). Then the lower residue— oo, a[ (resp. upper residuga, oo[) is a
combinatorial polytope (resp. pre-polytope) of rank i (resp-d — 1).

Proof. Straightforward. [ ]

2.1.5. THEOREM A combinatorial pre-polytopP is residually connected if and only if it is
highly connected and connected.

Proof. If P is residually connected then it is clearly highly connected. R.ée highly
connected. Fod = 2, there is nothing to prove. We can assutree 3. First we show that
the incidence graph @fis connected. Let, y be elements dP. There exist facets, F’ of
Psuchthak « F andF’xy. Moreover, sinc® is connected there exists a path of ridges and
facets fromF to F’. Therefore, there exists a path frarto y in the incidence graph &. Let
® be an interval oP of rank> 2. First, taked = ]a, b[ with a < b. There is a facef such
thatb < F. Then® isin an interval of the lower residue Bfand since- is a combinatorial
polytope,® is connected. This argument works als@if= ] — oo, a[ for some element
a. Hence, assume thd = ]a, +oo[. Then there is a vertep with p < a, ® is an
interval of the upper residue gfand the latter is a combinatorial pre-polytope of rdnk1
(Lemma2.1.4). Now(p) = 0hence, by the hypothesis it highly connected, the graph
of facets and ridges incident withis connected. This means that the pre-polytgped] is
connected. Itis also obviously highly connected. Therefore inductidmaaly be applied .
]

Let us observe further that a connected rank 2 combinatorial pre-polytope is either iso-
morphic to a usuah-gon (2 < n < oo) or to astring namely a connected graph in which
all vertices but two have degree 2, the two exceptions having degree one.

2.1.6. Property. (0). LetP be a combinatorial pre-polytope. We say tRdtas property
(0) if any two distinct elements, y of P have distinct 0-shadows(x) ando (y) where

o (X) is the set of vertices @ incident tox. This property is always assumed in Section 3.
Then the data o is equivalent with the graded poset of setx) on the set of vertices.

2.2. Combinatorial Unfolding of a Combinatorial Pre-Polytope

Let P be a combinatorial pre-polytope of radloverl ={0,1...,d — 1}.

A combinatorial unfoldingf P is a pair(Q, «) whereQ is a combinatorial pre-polytope
over| anda is a mapping of the set of elements ofQ onto the seX of elements oP
such that:

(1) «istype-preserving, nametyfa(y)) =t(y)forally € Y;
(2) « is one-to-one from the set of facets@fto the set of facets d?,

(3) for any facet~ of Q, « restricted toF is an isomorphism onte(F).
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In view of (3), @ is automatically incidence-preserving. We call the unfoldig «)
connectedresp. highly connected) @ is connected (resghighly connected

These definitions are rather categorical. For instand®.ifv) is an unfolding ofP and
(R, B) is an unfolding ofQ, then(R, ¢B) is an unfolding ofP.

In the same spirit, two combinatorial unfolding®, «) and (Q’, «’) of P are called
equivalentf there is an isomorphism of Q ontoQ’ such thaty'g = «.

We get universal objects as well, in an obvious way. Gifeas earlier, auniversal
unfolding(Q, «) of Pis an unfolding equivalent to all of its own unfoldings. It corresponds
to the physical situation of a polyhedron all of whose faces are separated.

Physical unfoldings push us to look for residually connected combinatorial unfoldings.
If Pis finite and residually connected, therdoes necessarily admitumiversal residually
connected combinatorial unfoldin@®, «) which means thaiQ, «) is equivalent to all of its
own residually connected unfoldings. As an exampl®,ig a cubeP has 11 equivalence
classes of universal residually connected combinatorial unfoldings each one represented by
one of the standard list of nets fBr

Remarks. 1. Classical objects of recreational mathematics such as polyominos provide
examples of pre-polytopes. These can help us realise that a pre-polytope is not necessarily
an unfolding of some polytope.

2. An unfolding ofP induces an unfolding on the upper resid®efor any vertex of P.

3. If (Q, @) is an unfolding of a residually connected pre-polytope a@lig connected
does there follow tha® is residually connected? The answer is negative. ;ore can
take two regular tetrahedra with a common vertex andPfdwo regular tetrahedra with a
common face.

2.3. Combinatorial Unfolding and the Cut Set

2.3.1. Let P be a combinatorial pre-polytope and (€, «) be a combinatorial unfolding
of P. We are interested in the ridges@fof degree one whose image undeis of degree
2. These ridges d@ are calleccut LetC(Q, ) denote thecut setof P namely the set of
ridges ofP that are images underof cut ridges ofQ.

At first view, physical experience may suggest tt@t «) must be determined uniquely
by its cut set ifP. However, this is not quite true as we can see on an easy example.

Example. Let P be the union of two triangles with a common edgeand putC = {C}.
Let Q; be the disjoint union of two triangles and I be the union of two triangles
with one common vertex. Clearly, we get unfoldin@3;, «;) and (Q2, az) of P and
C(Qq, @1) =C =C(Q2, a).

We shall nevertheless develop a satisfactory general theory fqQall) such that
C(Q, o) = C for any given set of ridges of degree two iR.

2.3.2. C-unfolding. Let P be a combinatorial pre-polytope over= {0, ..., d — 1} with
d > 2 and letC be a set of ridges of degree two ih We construct a combinatorial
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pre-polytopeQ = Q(P, C) over |, depending orP andC and we call it theC-unfolding
of P.

1) The facets of) are the facets d®.

2) Each element of P, of typei < d — 2, incident with some ridge not ifi is also an
element ofQ and incidence among these elements and the facets is transferee fodp

3) For each element of P, of typei < d — 2, such that each ridge incident wighis in
C, and for each facef of P, with y x F, we create an elemeny, F) in Q, of typei. If
X xy, with x as in 2), we decide thatx (y, F). We also decide thdly, F) = (y’, F") ifand
only if yxy andF = F’. Finally, (y, F) « F’ ifand only if F = F’.

4) There is an obvious mappirgof Q ontoP, fixing each element common @ andP
and mappindy, F) ontoy for eachy as in 3).

2.3.3. THEOREM For P, C, Q = Q(P, C) anda as above we have:
(Q, @) is a combinatorial unfolding o with C as cut set.

Proof. 1) We show thaQ is a combinatorial pre-polytope. It is obviously a graded poset
of rankd. Moreover the residue of a facet is a combinatorial polytope and ridg@saoé
incident to either one or two facets.

2) We show thatQ, «) is a combinatorial unfolding d®. To this end, we observe that
is indeed a mapping and that it is type-preserving. Moreevés,one-to-one from the set
of facets ofQ to the set of facets d? and for each faceE of Q, the restriction ofr to Qf
is indeed an isomorphism onky,,.

3) It is straightforward tha€ (Q, o) = C as required. ]

2.3.4. LEMMA Let P, C be as above and l€Q, «) be theC-unfolding of P with Q =
Q(P,0).

LetD be a set of ridges d? of degree two, and &R, 8) be theD-unfolding ofP with
R = Q(P, D). Then the two following properties are equivalent.

() ccp

(iiy there exists a unique unfoldin@, v) of Q such thatd = ay.

MoreoverR is isomorphic to QQ, D\C).

Proof. (i) = (ii). If xis an element oR as in 1) or 2) of 2.3.2¢ is an element o and it
is an element of as in 1) or 2). Hence; (x) = x is the only possibility for in that case.
If x is an element oR as in 3) of 2.3.2, thex = (y, F) wherey isin P, F is a facet
of P with y x F and every ridge incident witly is in D. Moreover,8(x) = y. If there
is a ridge ony, notinC, y is also an element @, by 2.3.2 and then we have necessarily
y(X) = y. If each ridge ory isin C, then(y, F) is an element 0@, by 2.3.2 and s¢ (x)
is necessarily this element.
This provides the uniqueness pf its construction as a mapping froRiinto Q and
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B = ay. Hencey is onto. Clearlyy is type-preserving and one-to-one on the set of facets.
SinceB = ay, the restriction ofy to every facet is an isomorphism.

(i) = (i). LetC € C. ThenC is of degree 2 irP and it is incident with facet§,, F,
of P. By 2.3.2,671(C) consists of two ridges, name{g, F1) and(C, F,), each of degree
one, whose inverse images pyare also necessarily of degree one.

Thereforep~1(C) consists of two ridges dR of degree one and 90 € D, hence (i)
holds.

The last statement is rather obvious. ]

2.3.5.THEOREM LetP be a highly connected combinatorial pre-polytope and’Ibe a set
of ridges of degree two iR. Let(Q, «) be theC-unfolding ofP. Assume tha® is highly
connected. Then the following hold.

(i) for any combinatorial unfoldingR, 8) of P with C = C(R, g) there exists a unique
combinatorial unfoldingQ, y) of R such that8y = «;

(i) if (R, B)isasin (i) andR is highly connected, theR, 8) is equivalent tqQ, «).

Proof. (i) We shall show that the relation = 1« is @ mapping. Lex be an element of
Q and assume that, y» are distinct elements @1« (x). Then there are faceE, F, of P
suchthaF; xa(X)* F, y1 % f~1(F1) andy,x B~2(F,). Now, y; is not incident with3—1(F,)
becauses restricted to a facet is an isomorphism and/50#£ F». If x is a ridge,«(X) is

of degree two and not i@, y; is of degree one and singy;) = «a(X), this contradicts
C = C(R, B). Thusx is of type< d — 3 an asQ is highly connected, there is a chain
o 1(F1) % Cy% Ep % Cox Ezx- - - xa1(F,) where theC; (resp.E;) are distinct ridges (resp.
facets) ofQ incident withx. Hence(C;) is not inC andg~! is a mapping on the image
of the above chain under. This givesg=2(Fy) * B~ 1a(Cy) * B ta(Ep) * - - - x B7L(F).
Here,y: * 81« (C,) because of the isomorphic action®f! on the residue of;. Then
y1 * B~ (Ey). Repeating the last argument, we get inductively tak g~1(F»), a
contradiction. Therefore; is a mapping and it is uniquely defined. It is type-preserving.
It is one-to-one from the set of facets @fto the set of facets oR. If F is a facet of
Q it is clear thaty restricted toF is an isomorphism. Therefore, is a combinatorial
unfolding.

(ii) Let y be as in (i). We need only show thgatis an isomorphism. I is one-to-one
theny ! is an isomorphism because its restriction to any facet is the restriction’ef
which is a product of isomorphisms. fis not one-to-one, let, X’ be elements of) with
y(X) = y(X'). Herex is not a ridge since otherwisgx) € C contradictingC = C(R, B).
Thereforex is of type< d — 3.

Thena(X) = a(x’)inP, hencex(x)isasin3)of2.3.2and = (a¢(x), F), X" = (¢(X), F")
whereF, F’ are facets oP incident witha(x). SinceR is highly connected, there is a
chain=Y(F) % Cy % Ep % Cy % Eg % - - - x B~1(F’) where the ridge€; and facetss; are
incident withy (x). All C; may be assumed to be of degree 2 andjg is a unique chain
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a Y (F)xa™1B(Cy) s a 1B(Ey) * - - - x o 1(F’). We get as in the corresponding argument
of (i) that x is incident with each member of that chain, hemxce F’ and sox = x'.
]

2.3.6. The dual cut set.Let P be a combinatorial pre-polytope adda set of ridges of
degree two oP. Then we define thdual C* of C as the set of ridges of degree twoR)f
notinC. If (Q, «) is a combinatorial unfolding d?, thedual cut set C(Q, «) is the dual
of C(Q, ).

2.3.7. THEOREM Let P be a highly connected and connected combinatorial pre-polytope.
Let (Q, @) be a highly connected combinatorial unfoldingPbéind letC* be the dual cut

set of(Q, o). Then(Q, «) is universally connected if and onlydf is a spanning tree on
the set of facets of P.

Proof. Let (Q, «) be universally connected. Then the graph of facets with edgés in
is connected. Assume by way of contradiction that it is not a tree. Then there is a set
D of ridges of degree two, such that C C* andC C D with Q(P, D) connected and
by Lemma 2.3.4 there exists an unfoldio@Q(P, D), y) of Q. Here,Q(P, D) cannot be
equivalent taQ, hence we contradict the fact th@, «) is universally connected.

Next, let us assume th&t" is a spanning tree. TheQ is connected. LetR, 8) be
a connected combinatorial unfolding @. Then (R, aB) is a connected combinatorial
unfolding of P and if D = C(R, aB) we see thaD* gives a connected graph on the set
of facets whileC C D, henceD* C C*. Therefore,D* = C*. Now Q' = Q(P,(C) is
connected and it provides an unfolding®f hence ofQ, by Theorem 2.3.5. Sind® is
highly connected, Theorem 2.3.5 shows tQatR andQ are equivalent. ]

Remark. The example given in 2.1.3 allows to show easily that the condit@mighly
connected” cannot be dispensed with.

2.3.8.COROLLARY LetP be a highly connected and connected combinatorial pre-polytope.
Then the equivalence classes of universal connected highly connected combinatorial un-
foldings ofP are in one-to-one correspondence with the spanning trees of the facet graph
of P.

Proof. It suffices to observe that equivalent unfoldings have the same cutset. =

This resultis a generalisation at the combinatorial level of known facts about the metrical
unfolding of familiar polyhedra.

2.3.9. Let P be a highly connected combinatorial pre-polytope. Then the automorphism
groupG = AutPacts onthe spanning trees of the facet graph and on the universal connected
combinatorial unfoldings o as well. The orbits o5 allow to define a slightly different
equivalence on the unfoldings, namely inclusion in the s@vebit for two equivalence
classes of unfoldings.
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3. A Metrical Approach

3.1. Metrical Polytopes and Pre-Polytopes

3.1.1.Consider the-dimensional euclidean spaE€ and some combinatorial pre-polytope
Poverl ={0,...,d — 1}. We want to express th& “lives” in E". Therefore, distinct
vertices ofP must be distinct points dE". Refusing that distinct vertices be represented by
the same point oE" will raise various problems afterwards but we feel that it is a necessity.
We shall refer to this situation by the expressioertex overlapping

Our next concern is for edges. B is an edge oP incident to the pointa, b we want to
identify E with the closed segmenra[b], which is legitimate provided no two edges have
the same vertices, in particular whenever property (0) (see 2.1.6) hdkdg-irom here on
we shall carefully distinguisthe points of Enamely the elements o] b] andthe vertices
of E namelya andb.

Observe that we do not extend the incidence relation to the poirtes & point other
than a vertex will not be called incident .

We find it convenient to identify any elemextof P, of typei > 2 with the pointset of
E" which is the union of all edges and vertices incident with

We shall now formalize these matters.

3.1.2. Let P be a combinatorial pre-polytope (resp. polytope) with property (0). We call
P a euclidean pre-polytopéresp.polytopg of the euclidean spaci" if P satisfies the
following:

() every vertex ofP is a point ofE" and distinct vertices are distinct points;
(ii) if Eis an edge oP incident with the verticea, b thenE is the segment, b];

(iii) if x is an element oP of typei > 2, thenx is the union of all edges incident with

Observe that on this basis, a projection of a cube on the f#anga euclidean polytope
provided the projection causes no vertex-overlapping.

A euclidean pre-polytopB of EY having rankd is calledstraightif each facet oP spans
a hyperplane oEY and each element of typespans am-dimensional subspace &F. We
call it (d — 1)-dimensionalf it is straight and all facets d? span the same hyperplane.

3.1.3.THEOREM Every finite combinatorial pre-polytog&with property (0) is isomorphic
to some euclidean pre-polytope.

Proof. LetP haven vertices. Then we can identify the verticesRolvith the basis vectors
of R" and everything becomes obvious. ]

Observe that this representationPofives in an affine hyperplane &", hence inE".

Notice that convenient parallel projections allow to p&sto lower dimensions, namely
toE9withl<d<n-1.

If Pis as in the Theorem and of ramk P is not always isomorphic to some straight
euclidean pre-polytope &°. It suffices to consider the vertices, edges and Petrie polygons
of a tetrahedrond = 3).
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3.1.4.1n order to define a metrical pre-polytope we start with a euclidean pre-poli?tope
E" and define a metric on it, in a somewhat unusual way, inspired by the fact that familiar
unfoldings preserve distances of points incident to a given facet but not necessarily any
other distance. Thmetric structureof P attaches to any poings b in some facet oP their
distanced(a, b) in E".

We define ametrical pre-polytopeas a euclidean pre-polytope together with its metric
structure. It would of course be possible to formalize this structure without any embedding
in E".

3.2. Metrical Unfolding of a Metrical Pre-Polytope

3.2.1.Let P be a metrical pre-polytope i". A metrical unfoldingof P is a combinatorial
unfolding (Q, «) of P such that:

(1) Qis a metrical pre-polytope i&";

(2) therestriction of to each faceF of Q is an isometry namelgi(a, b) = d(a(a), a (b))
for any two pointsa, b of F.

Metrical unfoldinggQ, «) and(Q’, «’) of P are calledsometricif there is anisomorphism
B of Q ontoQ’ preserving distances and such thg8 = «. Thenp does not necessarily
extend to an isometry dE" mappingQ onto Q'. It suffices to think of the case wheRre
has exactly two facets with a common ridgeBl€an be extended to an isometryET we
call (Q, o) and(Q’, ') totally isometric

3.2.2. We define auniversal metrical unfoldingQ, «) of P as a metrical unfolding which
is isometric to each of its own metrical unfoldings. A straight pre-polytopE%has an
obvious universal metrical unfolding in some hyperpl&fe?!, just as a cube can be put to
(six) pieces on a plane.

3.3. Metrical Realizability of a Combinatorial Unfolding

3.3.1.LetPbe afinite, straight, metrical pre-polytopeif and let(Q, «) be acombinatorial
unfolding of P. We call(Q, «) metrically realizabldf there is a metrical unfoldingR, )
of Pin EY such thatQ, «) is equivalent tqR, B). Notevery(Q, «) is metrically realizable.
We produce an easy counterexample.

3.3.2.Example. LetP be a cube irE® and letE be an edge dP. Consider the pre-polytope
Q = Q(P, E) constructed in 2.3.2 which amounts to &ibn P. ThenQ is not metrically
realizable.

3.3.3.Problem 1. The preceding observation inspires two different questions.
(Q1). GivenP as in 3.3.1, characterize those combinatorial unfoldingP tiat are
metrically realizable.
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(Q2). In 3.3.2, we are tempted to say that the best approximation to a metrical realization
of Q is P itself. Can we slightly generalize metrical realizability in order to avoid any
counterexamples?

3.3.4. Towards a characterization of metrical realizability. Let us discuss question (§
of 3.3.3. It obviously suffices to deal with connected combinatorial unfoldings of

Thus, letP be afinite, straight, connected pre-polytop&fhand let(Q, o) be a connected
combinatorial unfolding oP. Asin 2.3.1, lelC = C(Q, «) denote the cut set & namely
the set of ridges of degree 2 Bfthat are images under of ridges of degree 1 i@. Let
C* = C*(Q, @) be the set of ridges d? of degree 2, not il€. Let F be the set of facets of
P. We shall have to deal with the gragh, C U C*) and with its subgrapF, C*).

Physical unfoldings tell us that we ought to find ed@gs. . ., E, in (F, C*) such that
for everyC e C with facetsF;, F, andF; * C; % F, there is an edgg; contained in each
path fromF; to F, in (F, C*).

This tells us that th&; arebridgesin (F, C*), a bridge of a graph being an edge whose
removal increases the number of connected components of the graph (see [11], in particular
Theorem 3.2). IB is a bridge of the connected gragh, C*) then the removal oB leaves
two connected components and we say tBageparateswo vertices if these belong to
distinct components.

In the graph(F, C U C*) we define aridging as a set of bridgeB;, ..., B of (F, C*)
such that for anf € C, someB; separates the facets incident wth We now get a partial
answer to question (), that suffices to deal with the universally connected unfoldings of
polytopes.

3.3.5. THEOREM Let P be a finite, connected, straight, metrical pre-polytope thaad
let (Q, ) be a combinatorial unfolding dP. Assume thatF, C U C*) has a bridging
consisting of bridges B. .., By in (F, C*). Then(Q, «) is metrically realizable.

Proof. ConsiderB;, for each. There are facets, F’ of P incident withB; and connected
componentd), U’ of (F, C*) after the removal oB;.

In EY we consider a rotatiop; fixing all points of the ridgeB;. We can choosg; in such
a way thatp; (U’) # U’ and thato; (U’) has no vertex in common withd. Then the union
of all facets inU and inp; (U’) is a metrical unfolding oP that separates facefg, F, on
C e C, whenever one oF;, F; is in U and the other ifJ’. Applying this for alli gives a
metrical realization foQ. [ |

COROLLARY If Pis a finite, straight, connected, metrical pre-polytope fhdhd if (Q, a)
is a combinatorial unfolding oP such that(F, C*) is a tree, then(Q, «) is metrically
realizable.

Proof. In a tree, every edge is a bridge and(s& C U C*) has an obvious bridging.
[ |
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Problem 2. We might expect a converse to the theorem, namely@ad) being metrically
realizable forces a bridging i, C U C*).

Problem 3. LetP be a combinatorial pre-polytope and assume(@atr) is a combinatorial
unfolding of P. Assume furthermore th& is a metrical pre-polytope iE9. Does there
follow that P is metrically realizable irE?? If this was always the case it would prove the
converse mentioned in Problem 2, thanks to the Corollary.

3.3.6. Weak metrical realizability. In order to answer question gfowe start withP and
(Q,a)asin 3.3.1.

A weak metrical realizationf (Q, «) is a metrical unfoldingR, 8) of P such that there
exists a combinatorial unfoldin@, y) of R with 8y = « and such thatR, g8) is universal
for the preceding conditions namely(R’, 8’) is as(R, 8) above ther(R, 8) and(R’, 8)
are isometric.

3.3.7. THEOREM LetP be a finite, straight, metrical pre-polytope irfEand let(Q, ) be

a combinatorial unfolding oP. Then the unfoldingQ, @) has a weak metrical realization
in E9.

Proof. We may assume without loss of generality that C*) is connected. Consider the
nonempty family of set®* such thatC* € D* € C U C* and such tha@Q = Q(P,C U
C*\D*) is metrically realizable. LeD* be a minimal member of the family, with respect to

inclusion. Ther)’ provides a weak metrical realization @, «) thanks to Lemma 2.3.4.
|

Problem 4. Can we show in the above proof that a mininf2i is unique? Also, if
C*CDycCuUCHC* S Dy cCcuUcCtandifQ(P,CuUC*\D;) andQ(P,C UC*\Dj) are
metrically realizable does there follow th@(P, C UC*\ D} UD3) is metrically realizable?
This would imply that there is a unique minimat.

4. The(d — 1)-Unfoldings of Straight Metrical Pre-Polytopes of E¢

In this sectionP is always a finite, connected, straight metrical pre-polytopgdn

4.1. (d — 1)-Realizable Unfoldings

Consider a metrical unfoldingQ, ) of Pin EY. We are now interested in the existence of
a(d — 1)-dimensionalQ’, «’) which is isometric tdQ, «). If (Q’, «’) exists we call it for
short, a(d — 1)-unfoldingof P and we callQ, «) a(d — 1)-realizable unfolding A cube,
one of whose faces is detached on three of its sides, provides an examplg @heyés
not (d — 1)-realizable.
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4.2. (d — 1)-Realizability and Universal Connectedness

In section 2, for instance 2.3.8, we got the idea that a fair combinatorial counterpart to
physicalld—1)-dimensional nets may be the concept of universally connected combinatorial
unfolding, especially because of its relationship with trees.

Therefore, we ask whether(d — 1)-realizable unfoldingQ, «) of P is necessarily a
universally connected combinatorial unfolding. We produce a counterexample.

Example. We display a picture o in E2 (figure 2). It has 16 vertices and all of its faces

are convex quadrangles. The four upper (resp. lower) faces are contained in the same plane.
We display also a picture of a 2-unfolding®(figure 3) which is not universally connected

because it could still be cut along an edge like

Problem 5. Characterizéd — 1)-realizable unfoldings in combinatorial terms.

This example also shows that a universally connected combinatorial unfoldihgesfd
not be(d — 1)-realizable. It suffices to remove the edge The four central quadrangles
of the picture cannot be separatedkatbecause all other configurations would lead to
vertex-overlapping.

4.3. Unambiguous Ridges

The physical unfolding of some polyhedra suggests a role for rotations of some facets
around one of their ridges. To be more specifid; jf’ are facets sharing the ridgs we
are inclined to rotatd-" aroundC to bring it in the hyperplanéF) generated by-. Of
course, this can be done in two ways but for the more regular polyhedra, there is only one
way avoiding the overlapping of vertices. We formalize these ideas.

Let C be aridge of degree 2 &, incident with the facet§ andF’. Assume thaf, F’
span distinct hyperpland§), (F’). There are exactly two rotations, p, of EY (with a
determinant equal to 1) fixinG pointwise and mappingF’) onto (F). They mapF’ on
polytopesp;(F") and po(F’) admittingC as a facet. We call unambiguousf one and
only one ofp;(F’) and p2(F’) has no vertex in common with, except those vertices in
C. We callP unambiguousf each of its ridges of degree two is unambiguous. Typical
examples are the convex polytopes all of whose facets are regular.

4.3.1.PROPOSITION Assume thatQ, «) is a connected metrical unfolding Bfand thatQ
is unambiguous. Thef@, «) has at most onéd — 1)-realization up to isometry.

Proof. Straightforward. [ ]

4.3.2.1f (Q, o) is asin the proposition and it is universally connected it does not necessarily
have a(d — 1)-realization. To get an example, taReaas in the example described in 2.1.3.
Replace the vertexby two verticesy;, y, wherey; is incident to the upper facet containing

y andy, to the lower one. This gives us a pre-polytdpevhich is universally connected,
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Figure 3.

unambiguous and ngd — 1)-realizable because a realization would fosgeand y, to
coincide.

4.3.3. Problem 6. Characterize the universally connected unambiguous metrical pre-
polytopes that aréd — 1)-realizable.

4.3.4. We callP totally realizableif each of its universally connected metrical unfoldings
is unambiguous an@l — 1)-realizable.
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4.3.5. THEOREM LetP be totally realizable and assume that Ais a group of isometries
leavingP invariant. Then the following numbers are equal:

A) the number of orbits of equivalence classes of universally connected combinatorial
unfoldings ofP under Auf;

B) the number of isometry classes of universally connected metrical unfoldiiys of

C) the number of total isometry classeg@+1)-universally connected metrical unfoldings
of P;

D) the number of orbits of spanning trees in the graph of facets and ridgBsuoider
AutP.

Proof. We getA = D by Corollary 2.3.8 and 2.3.9. Equali#x = B follows from the
Corollary in 3.3.5 and Theorem 2.3.7. Final, = C becauseP is totally realizable.
[ |

Using pictures we can easily check that the regular tetrahedron, cube and octahedron are
totally realizable.

Problem 7. |s every convex regular polytope and every deltahedron totally realizable? Are
there any other totally realizable polytopes?

Let us mention here that for abstract polytopes with a flag-transitive group action namely
regular polytopes, a quite detailed study of realizations can be found in [14] and [15].

4.3.6. EnumerationThe number of unfoldings of the regular convex polytopes in dimen-
sion < 4 is studied and determined by Buekenhout and Parker [9]. Earlier results on this
theme are due to Jeger [13], Hippenmeyer [12], Tougne [18], [5] and Bouzette and Van-
damme [4] (see also Reggini [16]). Let us mention here that the stellated reéuBé}r

whose faces are pentagrams is combinatorially isomorphic to the regular dodecahedron and
that it admits therefore the same number of unfoldings as the latter.

4.3.7.BOUZETTE S THEOREM The result obtained by Bouzette [5] goes as follows.

Let P be a convex polyhedron in*&nd let P* be a dual of P. Each edge of P is
identified with an edge of P Assume that a set of edges of P say T is a spanning tree of
the 1-sleleton of P. Then the set @f edges notin T is a spanning tree of the 1-skeleton of
P*. As a consequence there is a natural one-to-one correspondence between the unfoldings
of P and those of P.

4.4. Non-Overlapping

If (Q, @) is a(d — 1)-realization of a metrical unfolding ¢, we callQ non-overlappingf
any two facets of whose residues are combinatorially disjoint are disjoint as sets of points
in E9-1 and if their union has no knots other those of the facets themselves. A splendid
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example due to G. Valette [19] shows a 2-realization of a convex polyhedron (figure 4)
which is not non-overlapping since 3&: 36°.
We also produce a simpler example (figure 5) provided by a referee, having the combi-

natorial type of the cube and giving more insight. It uses an alagle 36° and a length
s COSw—COS 3 .
sin 3y —sin 2x

Problem 8. Does every convex polytope have some non-overlapdng 1)-realization?
Even the casd = 3 is still completely open.

Figure 4.

4.5. Perfect Pre-Polytopes

We callP perfectif it is totally realizable and if each of its universally connected unfoldings
has a non-overlappin@ — 1)-realization.

Some experimentation shows that the regular tetrahedron, the cube and the regular octa-
hedron are perfect.
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! /

Figure 5.
Problem 10. Is every convex regular polytope perfect?

4.6. More Examples
1) We display a polyhedron i&?2 (figure 6) with 12 vertices and 12 faces which is topo-
logically a Klein bottle. We also give a non-overlapping 2-unfolding for it.

2) We also display (figure 7) a well known toroidal polyhedron.

5. Appendix

The concept of unfolding is meaningful for geometries that are not polytopes. We shall
illustrate this with an easy example based on the projective plane of order 2. The picture
shows an unfolding and the corresponding morphism that identifies 1 addrdd 2. The
interested reader may like to compare these morphisms with those discussed in [7].
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Figure 6.
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Figure 7.
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