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Abstract. This report describes a new approach to nonlinear RLC-networks which
is based on the fact that the system of differential equations for such networks has the
special form
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The function, P(Z, v), called the mixed potential function, can be used to construct
Liapounov-type functions to prove stability under certain conditions. Several theorems
on the stability of circuits are derived and examples are given to illustrate the results.
A procedure is given to construct the mixed potential function directly from the circuit.
The concepts of a complete set of mixed variables and a complete circuit are defined.

Introduction. A. In the extensive theory of electrical circuits many impressive
advances have led to a powerful tool for the engineer and the designer. For a wide class
of problems one is able to construct a circuit with required properties using a rather
complete theory which is available in several textbooks (see, e.g., [1], [2]). Most of these
theories are based on the linear differential equations of electrical circuits. However, in
recent times many engineering problems have led to the study of nonlinear networks
which cannot appropriately be approximated by linear equations. Typical examples in
this direction are the so-called flip-flop circuits which have several equilibrium states.
Since a linear circuit obviously admits only one equilibrium, a flip-flop circuit can only
be described by nonlinear differential equations. The main difference between such circuits
and linear ones lies in the nonmonotone character of the voltage-current relations for
the resistors. It will be a main point in the following to admit such “negative resistors’.

B. The electrical circuits considered in this paper are general RLC-circuits in which
any or all of the elements may be nonlinear. One of the purposes of this paper is to show
that the differential equations of such electrical circuits have a special form which has
its ultimate basis in the conservation laws of Kirchhoff. It will be derived that under
very general assumptions the differential equations have the form

di P
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where the 7, represent the currents in the inductors and », the voltages across the ca-
pacitors. The function P(z, v) describes the physical properties of the resistive part of
the circuit. Since it has the dimension of voltage times current, it will be called a po-
tential function. This function can be formed additively from potential functions of the
single elements similar to the way that the Hamiltonian is formed in particle dynamics
from the potential energy and the kinetic energy of the different particles. However, it
should be observed that equations (1) do not represent a Hamiltonian system since the
latter describes nondissipative motion while in equations (1) the potential P contains
dissipative terms. Also, the transformation properties of the above equations are dif-
ferent from Hamiltonian equations in that equations (1) preserve their form under co-
ordinate transformations which leave the indefinite metric

s+r

- Z; L,di,)” + 2. C.(dv,)’ )

o=1+r

invariant.

C. A geometrical interpretation of the special form of equations (1) is the following.
We consider a box containing an electrical circuit with only resistive elements. There are
n pairs of terminals on the box which are connected internally to the electrical eircuit.
To measure the external electrical properties of this box we connect each terminal to
either a current source of prescribed current 7, (p = 1, --- , r) or a voltage source of
prescribed voltage v, (¢ = r + 1, --- , r -+ s = n). Under natural compatibility assump-
tions for the arrangement of these sources, an equilibrium state (¢, ,9,) w = 1, -+« , n)
will be attained, i.e., the missing quantitiesv, (p = 1,--+,r)and 4, (c = r + 1,---,r + 8)
will be determined. In other words the 2n voltages and eurrents satisfy » relations which
define an n-dimensional surface in 2n-dimensional space. We call this surface the charac-
teristic surface 2 of the box. In fact, if » = 1, = is a curve usually called the voltage-
current characteristic for an element or a circuit. The result that the equations have
the form (1) can be expressed compactly by the identity,

> di, A dv, = 0, &)
y=]
i.e., this two-dimensional differential form in the sense of Cartan [3] vanishes identically
on the surface Z. This fact will be explained and proved in section 13, part II.

D. It is also the purpose of this study to draw some conclusions concerning the
solutions of the differential equations (1) from their special form. To show that such
implications can be expected, consider, for instance, an RC-circuit (i.e., a circuit without
inductors or r = 0 in (1)). In this case, the quadratic form (2) is positive definite and
can be used as a metric

ds)? = 3 Culdv).

One verifies immediately that in this case P(7, v) decreases along solutions of (1) since

dP _ 0P dv, (d_s>2
dt

dt T =, dt

which is negative except at the equilibrium points. This implies that all solutions of an
RC-circuit approach equilibrium states for ¢ — « even if the resistors are negative in




1964] THEORY OF NONLINEAR NETWORKS 3

some regions. Of course, some natural assumptions have to be added and these will be
found in section 8.

Especially in case a circuit contains negative resistors is it of interest to find criteria
which guarantee that the solutions approach the equilibria as time increases and there-
fore do not oscillate. We saw that this is generally the case for RC-circuits and similarly
for RL-circuits. On the other hand, RLC-circuits certainly will admit oscillations in
general even in the linear case. But one would expect a nonoscillatory behavior of circuits
in which the inductance—or a quantity of the dimension L/R*C—is sufficiently small.
Such criteria for nonoscillation will be derived in section 8. The main idea is to associate
with the differential equation another metric which is positive and so find a function
P* which decreases along the solutions.

Such criteria are especially valuable for large circuits which contain many loops.
It is usually hard to judge intuitively whether the presence of many loops may lead to
oscillatory behavior. In section 9 we discuss an example of an arbitrarily large ladder
network containing nonlinear elements, which demonstrates that our criteria are the
best possible in general.

In section 20, part II, similar methods are used to establish the existence of periodic
solutions for periodically excited nonlinear circuits. This result can be considered as an
extension of a theorem of R. Dutffin [4].

This paper is divided into two parts. The more important part is the first which leads
to the main results rather directly without containing all the detailed proofs and re-
finements. The second part contains several additional results as well as detailed proofs
complementing part I.

Originally, this work started with the study of some nonlinear circuits proposed by
Goto and others [5]. Some preliminary investigations in this direction have been published
earlier (see [6, 7]). In this paper, we present these ideas in a more systematic fashion in
the hope that it will be useful to the theoretically inclined electrical engineers as well
as mathematicians.

1. Complete sets of variables for a network. A network is an idealized concept
in circuit theory which can be defined as a set of points, called nodes, and a set of con-
necting lines, called branches. It is irrelevant whether nodes and branches lie in a plane
or whether the branches can be realized by straight lines. It is essential, however, that
every branch connect exactly two nodes. Such a network is frequently called a graph.
Actually, for applications other natural restrictions—like connectedness of the graph—
could be imposed which, however, we will not need.

In each branch labeled by p = 1, --- , b we specify a direction arbitrarily, indicating
it by an arrow (‘“directed” graph). Accordingly, we distinguish the two connected nodes
as initial and end nodes. The current flow in such a network is completely deseribed by
giving the amount of current ¢, flowing in the direction of the arrow; that means <,
is negative if the flow is against the specified direction and positive otherwise. Similarly,
we associate with each branch a voltage v, with a specified sign by taking the voltage
level at the end node minus the voltage level at the initial node of the branch.

The 2b variables ¢, , v, (0 = 1, -+, b) are restricted by the well-known Kirchhoff
laws. The node law expresses that the currents arriving at any node (taken with proper
sign) add up to zero which we write symbolically in the form

> 414, =0. (1.1)

node
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Kirchhoff’s loop law expresses that the voltage drop over any loop (closed chain of
branches) is zero, or
> v, =0. (1.2)
loop
Another way of deseribing this loop law is that to every node one can assign a voltage
level such that », equals the difference of the defined voltage levels between the end
node and initial node.*

In the investigation of the circuit dynamics it will be of first importance to know
how restrictive Kirchhoff’s laws are. They form a set of linear equations, and we study
first which of the currents and voltages can be chosen independently. More precisely,
we call a set of variables 7, , -+ , %, , Vyu1, * =, U,4.%* “complete” if they can be chosen
independently without leading to a violation of Kirchhoff’s laws and if they determine
in each branch af least one of the two variables, the current or the voltage. The problem
is to describe a complete set of variables for a given graph.

This can be done in several ways. For instance, for r = 0 the answer is well-known.
Choose in the graph a maximal tree 7, i.e., a subgraph which does not contain any loops
and cannot be enlarged as a tree. It is clear that the ¢ voltages, »,, --- , v, , on this tree
can be assigned arbitrarily without interfering with Kirchhoff’s loop law since the tree
does not contain any loops. The branches not contained in the tree are called ‘links”,
and it remains to determine the voltages in the links. Since 7 is maximal, such a link
added to 7 forms a loop, and therefore the link voltage is expressible in terms of the
tree voltages v, , -+ , v, by (1.2). This proves that the voliages in a maximal tree form
a complete set of variables, (r = 0, s = ).

Similarly, it is well-known how to choose a complete set of currents. Let 7 be a maxi-
mal tree and £ its I links. Decomposing the graph into independent loops, one finds
readily that the link currents of a maximal tree form a complele set of variables, (r = 1, s = 0).
See Guillemin [2].

Finally, we construct a complete set of variables 4, , =<+ , %, , Vss1, * - , Ur4, in the
“mixed” case where rs > 0. For this purpose we begin with a maximal tree = (with a
corresponding set of links £) and choose a subtree 7’ in 7. With £’ (links of 7’) we denote
all branches which connect two nodes of ' and make a loop with branches of 7’ only.}
Thus £’ is contained in £ and 7’ is a maximal tree of the graph 7 + £’. The number of
branches in 7/, £’ will be denoted by ¢, I’ respectively. Then, the currents ¢, , --- , 2.

in the branches of £ — £’ together with the voltages v.4y , * -+ , V.4, tn 7’ form a complete
set of variables, r =1 — I', s = t').
This is easily seen. Since 7' is a maximal tree of 7 + £, the voltages v,41, -+, ¥,

are independent and determine all voltages in 7' + &£’. Also, the currents 2, , -+ , ¢,—
being link currents—are independent, and it remains to be shown that the currents in
all branches outside v + £’ are determined too. We form the r loops through the links
£ — £’ whose loop currents are ¢, , - - - , 7, . Recalling that all [ loop currents determine
all branch currents and the fact that the loops through the !’ links of £’ belong entirely

*A more analytic description of these laws with a connection matrix of the graph will be found
in section 12, part II.

**We always reserve the freedom to relabel the branches and choose here the branches corresponding
to the given set of variables as the first ones.

1It could happen that ' is not connected and a branch connecting two nodes in different compo-
nents of 7’ would not form a loop within 7. These branches are to be excluded from £’.
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to 7 + &£, it follows that all branch currents outside v’ + £’ are independent of the I
loop currents and hence are already determined by the r = I — I’ loop currents ¢, , ««+ , ¢, .

One sees that the mixed case of a complete set contains, in particular, the “pure”
cases. If 7/ is empty, one has s = 0 and r = [, i.e,, the case of a pure set of currents;
if =7,onehasr =1 —I' =0, s = ¢, which gives a pure set of ¢ voltages.

We remark that the link currents in £’ and the voltages in + — 7’ give rise to another
complete set of variables.

In the mixed case the whole graph 9t is broken up into 9, = 7' + £, those branches
in which the voltages can be determined from v,,,, - -+, v,., by Kirchhoff’s loop law,
and the remaining branches 97; in which the currents can be determined from ¢, , --- , %,
by Kirchhoff’s node law.

2. Network theorems. The two theorems in this section are derived using only
the geometry of the network and Kirchhoff’s laws. They do not depend on the types of
elements in the branches. Theorem 1 is known as Tellegen’s theorem [8], but it is stated
here in a form which has a geometrical interpretation.

We consider a directed network with b branches and n nodes. The set of branch cur-
rents ¢ = (4;, - -+, 4,) and the set of branch voltagesv = (v,, - -+, v,) are vectors in the
b-dimensional Euclidean vector space &, . The inner product is defined for two vectors
z,y €8 as (2,¥) = Do, Ty, . Let g be the set of all vectors in &, such that if z ¢ g
and the components of = are taken as the branch currents of the directed network, then
Kirchhoff’s node law, Y ..., = 2, = 0, must hold at every node. Similarly, we let U
denote the set of all vectors in &, such that if z € U and the components of z are taken
as the branch voltages, then Kirchhoff’s loop law, 2 ..., == =, = 0, should be satisfied
for every loop. It is obvious that § and U are subspaces of &, since they are defined
through linear equations.

Theorem 1. Ifie gandv eV, then (7, v) = 0, ie., g and U are orthogonal subspaces
of & .

Proof. Since v satisfies Kirchhoff’s loop law, there exists a set of node voltages
Vi, + -+, V,) such that v, is the difference between the voltages of the end node and the
initial node (see previous section). Let the current flowing from node % to node I be
denoted by 7., which is taken to be zero if there is no connecting branch. Thus, if the
pth branch connects nodes k and I, we have

Vil = (Vi — V)i = (Vl - Vi,

and because of this symmetry in & and I, we can express the inner product (¢, v) as a
free sum, i.e.,

G = D=1 X (Vs — Vi,
or "~ -
@ 0) = 320 V(2 i) — 20 V(X d).
However,

D=2, +4,=0 and D iu= P £i=0
1 k

node k node 1

so that (z, v) = 0.

*There is no restriction in assuming that at most one branch connects the same two nodes.
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We remark that g and U are not only orthogonal subspaces, but that they even span
&, . The simple proof of this fact is found in section 12, part II, although it is used in the
next theorem.

The next theorem is similar but not equivalent to the first theorem and leads directly
to one of the main results of this paper. Let T' denote a one-dimensional curve in &, with
projections on § and U denoted by ¢ and », respectively.

Theorem 2.

b b
f Sodi, = [ Xids = 0.
T up=1 T u=1

Proof. Since di = (di,, + -+ , di,) is the limit of the difference of two vectors in g
and since g is a subspace, then di € § and by theorem 1

b
@, di) = > v, di, = 0.

=l

Integrating along I' we obtain
b
f Z v di, = 0,
T u=1

and integration by parts yields

Lim%=@m

p=1

b
> i, dv, .

T I' u=1

Since (7, v) = 0 by theorem 1, we have

b
[ i =o.
T u=1

3. Nonlinear elements. So far we have only discussed facts which depend on net-
work concepts, and we have seen that Kirchhoff’s laws impose certain restrictions among
the branch voltages and among the branch currents. On the other hand, physical proper-
ties of the elements in the branches lead to further restrictions which relate branch cur-
rents to branch voltages, and it is our purpose here to discuss the nature of these relations.

We consider elements which are two terminal devices and restrict our discussion to
purely resistive, inductive or capacitive elements.

The name “resistor’” usually refers to a linear passive device which has a resistance
R such that the current and voltage at its terminals are related by v = —R:¢.* A more
general concept is obtained by considering a resistor as a continuous function such that
the relation f(z, v) = 0 holds. This defines a continuous curve in the (¢, v)-plane which
we will call the characteristic of the resistor. From (7, v) = 0 we could solve for ¢ or »
as a function of the other. It is not necessary to require that either such function be
single valued, and, in fact, the more interesting cases are when this is not true. For
example, the tunnel diode [9] is a nonlinear resistor which has the characteristic shown
in figure 1, and clearly v as a function of ¢ is not single valued.

It will also not be necessary to require that the characteristic pass through the origin,

*The negative sign is chosen here in order to be consistent with the convention adopted in Section 1
on the direction of positive current and positive voltage.
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F1e. 1. Voltage-Current Characteristic for a Tunnel Diode

i.e., that the element be passive. A generator (voltage or current) is therefore a special
type of resistor for which the characteristic is parallel to one of the axes.

There are some assumptions which will be made about resistors. It will be assumed
that there exists B > 0 such that for | ¢ |, | v | > B the characteristic of the resistor lies
in the first and third quadrants and is monotone increasing there. We make this assump-
tion in order to guarantee that the equilibrium problem can be solved, i.e., that we can
solve the circuit equations under steady state conditions. A proof of this statement under
less stringent assumptions will be found in section 14, part II.

For completeness we discuss the well-known laws for inductors and capacitors which
we also allow to be nonlinear. An inductor is a function relating the magnetic flux link-
ages to the current, i.e.,

¢ = —f@).

In terms of voltage and current

- 912 - — y &
where L(z) is the inductance and is non-negative. Similarly, a capacitor is a function
relating the charge and the voltage, i.e.,

q = —f@).
Differentiating, we obtain

i=l- %= —c0 P,

where C(v) is the capacitance and is non-negative.

We remark that mutual inductance can be handled by simply changing to vector
notation where L(z) would be a symmetric matrix.

4. The form of the equations. The general RLC circuit can be thought of as a
resistive circuit (R-circuit) with » ports to which either an inductor or a capacitor is
attached (Fig. 2). We want to derive the differential equations describing the dynamical
behavior of such a circuit.

We assume that the resistors are of the type discussed in the previous section so that
the equilibrium problem can be solved. This means that if we know the currents denoted
by ¢* = (41, -+ - , %,) in all the inductors and the voltages denoted by v* = (v,4+1, *+ , ¥,2.)
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1

£ —

‘ L

é =y
R-CIRCUIT

—_

¢ E

F1a. 2. General RLC Circuit

across all the capacitors, the problem of determining the voltage and current in any
branch of the circuit can be solved from some implicit equations, i.e.,

= .* * —4 LN )
v“ f“(z ? v )’ l‘ 1’ ? b, (4.1)
iﬂ = gu(i*»v*)r p=1.., b.

In general, there may be several solutions for v, , 7, leading to multiple-valued functions
f. , g. with branch points, cusps, ete.

Of particular interest is the voltage across any inductor and the current through any
capacitor given by

v, = 1,(*, v%), p=1,--- 7,
Q= g* %), o=r+1, - ,r+s

On the other hand, the dynamical laws of inductors and capacitors, as discussed in
section 3, require

4.2)

vp=—Lp(1:p)%£v p=1,"',7',
4.3)
2, = —C,l %, co=r+1,---,r+s
Combining (4.2) and (4.3), we obtain the desired differential equations,
Lp(ip) % = _fp(i*v U*), P = 11 the LT,
(4.4
dv, ]
CV(vv)'E= —g,(z*,v*), 0’=7‘+1,"' ,7‘+S

which give d¢*/dt and dv*/dt explicitly in terms of ¢* and v*.

It is our aim to show that the functions on the right-hand side of (4.4) can be derived
from one function.

For this purpose we make use of theorem 2

[ S =0, .

p=l

where u ranges over all branches. For T we will now choose any curve from a fixed state
to a variable one in such a manner that along T the voltages and currents satisfy the
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relations characteristic for the resistors. This means we choose *(s), v*(s) arbitrarily-
as continuous functions and determine the remaining components %, , v, for p > r + &
andv,,%,(p=1,---,r;0 =r+ 1, ---,r + s) from the relations (4.1). Although the-
f. » g. are possibly multiple-valued, we make, by a particular choice, the v,(s), Z.(s),.
v,(s), %,(s) single-valued and continuous functions of s. This is, in general, possible if’
one excludes pathological functions, but we do not try to give a precise discussion of
necessary restrictions and simply assume that such a choice of continuous functions:
exists. Since g and U span §, , this defines a curve T in &, from a fixed point to a variable:
point determined by %, , +** , %, Ve, *** , Vrs, Only.

With T chosen in the manner specified, we now make the obvious but important
observation that the integral,

[ T v,
r

u>r+e

taken not over all branches as in (4.5) but only over all resistor branches, depends only
on the end points of I'. This simply follows from the fact that in a resistor v, depends on:
1, only, i.e., that a resistor relates the current and voltage in one and the same branch:
only.

We write (4.5) in the form

[ Sod+ [ Sodi+ [ X udi=0 @8

p=1 o=r+] u>r+s

or, integrating the second line integral by parts,

va,di,,—f S i dv, + P =0, @7
T p=1 T o=r+1
where
P = > v.di, + D i, 4.8
T u>r+s o=r+1 r

is a function depending only on the end points of I'. In other words, P is a function of
the variable end point of T' which, in turn, depends only on the variables ¢, , -+ , %, ,
Vpr1,y * 5 Urss , 184, P = P(2*, v*). It is also only defined up to a constant which depends
on the choice of the fixed initial point of T'. From (4.7) we read off

oP
l)p—_—'_'gz_.‘, P=1;"'vr1
’ 4.9)
. P
z,——l—av,, c=r+1,---,7r4+s
which, with (4.2) and (4.4), gives the desired differential equations
.\ dz P
Lp(zp)ﬁ—_-gz—y p=1,"',1',
. (4.10)
C,(va)%=—g—i, o=r+1,-,r+s

These equations put into evidence that the right-hand sides are derived from one
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single function P. The computation of P required solving implicit equations and there-
fore is still complicated. But, we will show in the next section how to construct and
interpret P in simple cases.

An immediate consequence of the equation (4.10) is that for linear circuits the equilib-
rium equations can be written with a symmetric R (resistance) matrix. This fact is dis-
cussed in section 15, part II, and is closely related to the reciprocity theorem.

5. Construction of P. We want to describe in some detail how the function P,
which we will call the mized potential, can be constructed directly from the circuit. For
this purpose, we use the definition of P according to (4.8),

rt+s

P@*, v*) = S ovadi, + D e,

T u>r+s o=r+l

’ (5.1)

T

where *= (i, ,- - -, ©,) is the set of currents through the inductors and v* = (v,.41, * *, Vy4,)
is the set of voltages across the capacitors. Since v, depends only on 2, for u > r + s,
P can be written as

Pa*, v = 3 f i, 4+ 3 i
r

p>r+s g=r+l

(5.2)
r
The integral [r v, di, is, of course, well-defined as a line integral even if v, cannot be
written as a single-valued function of 7, . Taken as a line integral, the path of integration
is along the characteristic of the resistor, as can be easily seen from the definition of T
We give this integral a special name, the current potential of the element in the branch
labeled by . Similarly, the line integral [r 7, dv, will be called the voltage potential, and
it is easily seen that

*

5.3

f 3, dv, + f v, di, = 10,
T T

The current or voltage potential has a simple interpretation if the graph of a resistor
can be expressed as a single-valued function of one of the variables. For example, if 2,
is a single-valued function of », , then the voltage potential is an ordinary integral and
consequently is the shaded area shown in figure 3 assuming that the initial fixed point
of the path was at v, = 0.

N (i)

A\

Fia. 3. Voltage Potential

*The current and voltage potential have been defined by W. Millar [10] and C. Cherry [11] who
call them the contents and cocontents respectively.
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We shall speak of the current (voltage) potential of a network as the sum of the cur-
rent (voltage) potentials of its resistors.

It is useful to make some remarks about the sign of a resistor characteristic. The
current induced through a linear resistor R is in the direction of the voltage drop, i.e.,
the induced current flows from + to — (Fig. 4). Now suppose that the direction assigned

+E

DIRECTION OF |
INDUCED CURRENT

F1a. 4. Direction of Induced Current Through a Resistor

to this branch of the directed network is from E to ground. Then, according to the
convention adopted in section 1 on the direction of positive current and voltage, the
branch current 7, is equal to ¢, the induced current, whereas the branch voltage v, = —E.
We find that v, = — R4, and the current potential is —3R:; . We obtain this even if
the opposite direction were assigned to this branch because then v, = E, 7, = —1,
and again v, = —R3, . For similar reasons, the current potential of a battery E is +E4, .

Now we may state the procedure for constructing the mixed potential directly from
the circuit:

(1) determine the current potential for each resistor;

(2) determine the product 7,v, for each capacitor;

(3) form the sum of these terms and express it in terms of #*, v*.

We show now that the concept of a mixed potential contains the voltage potential
and the current potential as special cases. If the circuit contains no capacitors, the second
sum in the mixed potential is absent, and hence the mixed potential reduces to

P = | X v.di,,
P pu>r+s
which is the current potential. In this case, the differential equations take the simple
form
di, _ oP _
vat ~a, P Loom

Similarly, if the circuit contains no inductors, the mixed potential contains a term for
each branch, and by theorem 1, we have

P = —fr Z;i,,dv,,,

i.e., —P(v*) is the voltage potential. The differential equations are

do, _ _oP _
C,dt— 2, o=r-+1, , 7+ s.
To illustrate the procedure for constructing the mixed potential, we consider a few

examples.
Ezample 1. We consider the circuit shown in Fig. 5. The current potential of R is

f (—Ri) di = —1R2,
0
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Fia. 5. Series RL Circuit
and the current potential of the battery is
[ EBdi =B
0
Since no capacitors are present, we have
P(i) = Ei — 3R:,
which gives the desired differential equations by (4.10)

di _ oP

a= e LB

Ezample 2. Next we consider the tunnel diode circuit shown in Fig. 6. The current

L
—
i

it

+

1
f(v) v C

]

Fia. 6. Tunnel-Diode Circuit

through the box in the direction shown is given by the nonlinear function f(») shown
in Fig. 1. According to (5.3) the current potential of the resistor is

- fr v d(f@) = —ovf@) + fo ’ f@©) dv.

The current through the capacitor is 2 — f(v) and, since it is in the opposite direction of v,
the 7,0, produet is — (¢ — f(»))v. Thus, the mixed potential is

P(i,v) = E7 + f. f@) dv — v,

which gives the differential equations
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Of course, these examples are very simple, and, in general, it may be difficult although
not impossible to express v, , ¢, in terms of the desired variables ¢, ,- -+, %, , ¥o41,°**, rss .
However, if these variables are complete, we know according to the discussion of section 1
that v, , 7, can be simply expressed. Then the mixed potential function has a particularly
simple and useful form which we discuss in the next section.

6. The mixed potential for complete circuits. We call a circuit complete if the set
of variables ¢, , *** , %, U;41, * ** , Urs, i complete, where ¢, , - - - , 7, denote the currents
through the inductors and v,., , - -+ , v,., denote the voltages across the capacitors. It
is our purpose here to discuss the form that the mixed potential takes for the class of
complete circuits and to give a simple procedure for its construction.

Recall (Section 1) that a complete circuit could be split into two subnetworks 91,
and 91, such that the branch currents of 9¢; and the branch voltages of 91, are known
from the complete set of variables. In particular, 9%, contains all the capacitors and 9,
the inductors. According to (4.8), the mixed potential is*

>‘fvdz+2v,z,

o=r+l

fvdz fvdz,,+ Zv,z,
u>t,9 u>t, Ny

omr+l

P(z*, v*)

(6.1)

The first term is simply the current potential of 9; and, since z* determines all the
branch currents in 97; , we can express this term as a function of ¢*, which we denote
by F(¢*). According to (5.3), the second term is

= [ dv,.:l,
r

fv di, = > I:vz
a>1, Ny B>t , Ny

and therefore we have
. %%
- E f Tu dll,, .
r >t ,Ne /T

The last term is simply the voltage potential of 91, and, since v* determines all branch
voltages of 91, , we denote this by G(v*) and we have

P@*, v¥) = F@G*) — Qo*) + ; v, |r . (6.2)

P@*,v%) = FG*) + 2 v,
Ry

It remains to be shown that the last term of (6.2) can be expressed in terms of the com-
plete set of variables 4, , -++ , %, , %41, *** , .., alone, which is not obvious since in
every branch only one of the variables 7, , v, is known.

Lemma. There exists an r X s matrix y = (y,,) with v,, = +1, —1, 0 such that

T8

Z 1),‘1:,, = Z 'Yﬂvipvwa = (":*, 'Yv*)- (63)
e p=1,0=1

Proof. We draw attention to the set 9, of n, nodes at which branches of 9; and 9t,

come together. Since the currents in 9%, can be expressed in termsof 4, , --+ , 2, , we can

determine the currents 4, , (# = 1, --- , n,), at the nodes of 3, flowing from N, to I, .

*For brevity we denote r + s by &.
**Qince the branches labeled by ¢ =r 4+ 1, --+, r 4+ s containing the capacitors belong to 91, , the

second term contains the last sum of (6.1).
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From Kirchhoff’s node law it follows that

> i, =0. (6.4)

Similarly, since we can express the voltage difference between any two nodes of 9,
in terms of v,,, , - *+ , ¥,+., , We can assign a voltage level w, to every node in 9%, . It is
clear that the sum

2w,

y=1
can be expressed in terms of 4, , -+, %, Uss1, ", ¥4, . The proof will be complete
if we identify this sum with the given one (up to the sign). For this purpose we dissect
the graph 90 at the nodes 9%, and replace 9%, by artificial branches from the first node to
the »thnode (v = 2, -- -, o) (figure 7). We assign the currents j, and voltages w, — w,

€|

7zi b i K 72\/

i

Fi16. 7. The Network 9T Dissected at the Nodes 3,

(v = 2, -+, no) to these artificial branches. For the new graph consisting of the new
branches and 9%, , we have by theorem 1

2w+ Z; Jw, — w) =0 6.5)

or, by (6.4),
WZ' Lo, = — Z_; i, . (6.6)
This shows that the sum on the left is expressed in terms of 7, , -+ |, fuo , W1, =+ , Wa,

which are in turn expressible in terms of 7*, v*. In fact, the j, depend linearly on 7* and
the w, depend linearly on v*. Hence, with some constants v,, we have

; Wy = Z Yocblrio
N

This proves the lemma except for the verification that v,, = z£1, 0 which is left to
section 13, part II.

Moreover, we have found an interpretation of the term Y ., 4,0, ; it is the sum of
the product of the current j, passing from 97; to 97, and the voltage level w, of the node
summed over the nodes of 9%, .

Combining (6.2) and (6.3) gives us the final form for the mixed potential in terms
of the variables 7*, v* only, i.e.,

P@*, v*) = F@*) — G@*) + @*, w*). 6.7)

The above formula already gives us a procedure for constructing the mixed potential
from a complete circuit; the mixed potential is the sum of the current potential for I, ,
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the voltage potential for N, , and a term (t*, vw*) which is constructed as outlined in the
lemma. We remark that our reason for calling P(z*, v*) the mized potential is a conse-
quence of the form of (6.7).

There is a more direct and simpler method for constructing the cross-product term
(#*, vv*) and we state this without proof. Take any link p ¢ £ — £’ and consider the
loop A, which it determines. The branches of A, other than the link branch are branches
of the maximal tree 7 of which some may be branches of /. The desired term is the sum
of products of the loop current 7, and the voltage v, of the branches of 7’ in A, summed
over all links of £ — £/, ie,,

@t = Xi, T, xo,.
p=1 Apnr®

Now we consider a fairly complicated example of a complete circuit to illustrate the
the procedure for constructing the mixed potential.

Exzample 3. Considered only as a graph, the circuit in Fig. 8 becomes the graph
shown in Fig. 9, where the dots represent nodes. The maximal tree r consists of branches
{4,5,6,9,10, 11,12, 13}, 7 = {4, 5,6}, £ = {7,8}, £ — &' = {1, 2, 3} and we see

L R
T ———— AN\,
—
1 ¥
1
E|? f(‘/4) Vg Cl
L3 R3 _J .
q 1/3' +V6

Cs + l
Ezg f2(V5) Vs CZ

iz

<2
IO 4'A'AY;
Lz R,

Fi1c. 8. Twin Tunnel-Diode Circuit

F1a. 9. The Graph of the Circuit of Figure 8

that ¢, , %2, %, ¥1, ¥5 , Us form a complete set of mixed variables. We construct the cur-
rent potential of 9, = {1, 2, 3, 9, 10, 11, 12, 13} where terms come only from the re-
sistive branches {9, 10, 11, 12, 13} and are listed in order:

F(il y T2y is) = _%Rzig + B, — %Rsig + Elil - %R{I:? . (6.8)
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Similarly, the current potential of 9%, = {4, 5, 6, 7, 8} is due to the resistive branches
{7, 8} and is

G, ,vs ,0g) = ——-fo“ f1) dv — ‘/;“ f2@) dv. (6.9)

It remains to determine (¢*, y2*) which we do by considering the loops A, =
{1,13,4, 6, 12}, A, = {2,10,6,5,9} and A; = {3, 11, 6} and their intersections with 7’.
We obtain the correct sign by determining which way the loop currents 7, (o = 1, 2, 3)
flow through the voltages v, (o = 4, 5, 6) of ' which gives us

@*, w*) = G(—vs + ve) + 1(—ve — v5) + 5(ve). (6.10)

Combining (6.8), (6.9), and (6.10) according to (6.7), we obtain the mixed potential
for this circuit, i.e.,

P(@*,v*) = Eui, + Eyj, — iR — iRyt — iRy
+ f fl(v) dv + f f2(v) dv - 7"1”4 + ilvﬁ - izve - i2v5 + ’iave .
0 [}

It is easily verified that the equations

L1%=E1—R,il—v4+vo=%,
L2%=E2——R2i2—ve—v5=g—§,
L3%= —R3i3+vﬂ=g—£,
%~ i~ pe) = -2,

% — i~ 100 =~

e B — ity = =

are the correct ones.

7. Limit situations. Although a complete circuit can, in some sense, be considered
as typical, nevertheless it is sometimes more appropriate to neglect inductances or
capacitances which are of minor importance. However, this may lead to circuits which
are not complete. To see this we consider the complete circuit shown in Fig. 10. This

F16. 10. A Complete Circuit When Lo = 0
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circuit is obviously complete since the currents of the lower branches determine the
current 7; = (%, + %,) in the upper branch. The mixed potential is easily computed to be

PGo s ,0) = —3Roit — | " di + ! I”% + sl + 1), (7.1)
which leads to the following differential equations.
Lo B8 = o, — flio + 4) — Rao = g—?
L = iy + i) + 0, = g
0% = —Got+ i) — = -2,

However, if we let L, — 0, then %, is no longer an independent variable and must be
eliminated using 8P/d%, = 0 or

v = f(iy + 41) + Rty .
This leads to
vy + Roty = f(is + %) + Ro(30 + 70,
or
%o + 4 = h{v: + Roty),

and substituting this into the mixed potential, we obtain the new mixed potential in
terms of the independent variables, ¢, , v,

h(pa+Roiy) 1 1)2
Q(il ) 02) = —%Ro(h(vz + Ro'l:l) - il)z - ‘/; f(i) di + 5 RJ; + vzh(vg + Ro’il)- (7-2)

This shows that the concept of a mixed potential is still meaningful,* but cannot be
interpreted as easily as in the complete case.

It is obvious that one can add inductors in series and capacitors in parallel to a circuit
to make it complete and then consider the original circuit as a limiting case of the new
circuit so obtained. This procedure can be justified on physical grounds since these
reactances are present anyway as parasitic elements.

Of course, the mixed potential of a noncomplete circuit is not necessarily so compli-
cated as in our example. In determining stability criteria in the next section we will
only require that the mixed potential have the form

P@*,v*) = —A@E*) + B0*) + @*, Dv¥), (7.3)

where D is a constant matrix whose elements need not be =1, 0. Obviously this is the
case for a complete circuit, and it is for this reason and the fact that all other circuits
can be considered as limit cases of complete circuits that we have considered complete

*It is remarkable that the derivatives (e.g. with respect to »;) of @ and P agree where 9P /di; = 0.
This follows from the identity 0Q/dvs = dP/dvs + 0P /8iy 3i0/dv: and the observation that the last
term vanishes for dP/3iy = 0. In other words instead of eliminating 7, from the differential equations
one can eliminate it from the potential function.
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circuits in such detail. We emphasize, however, that completeness is certainly not neces-
sary for the mixed potential to have the form of (7.3).

8. Nonoscillating circuits. We wish to consider circuits without time-varying ele-
ments and to establish criteria which rule out the existence of self-sustained oscillations.
For a linear circuit with only positive resistors, no oscillations can occur if there is dis-
sipation, but this is not true of nonlinear circuits as, for example, the van der Pol circuit.
This question has practical significance in the design of computer circuits, control
systems, ete., in which are utilized nonlinear elements and, in such cases, one wants to
establish overall stability requirements. We shall see in this section how one can use the
mixed potential to fulfill such requirements.

We have a system of differential equations which we write in vector form*

—Jz' = dP(x)/dz, (8.1)
where
1
T= (v)’
[
0 ¢

which is, in general**, an indefinite symmetric matrix, and 0P/dz denotes the gradient
of P. We note that the stationary points of P(z), i.e., where 0P(x)/dz = 0, are exactly
the equilibria of (8.1) and we want to discuss conditions under which all solutions ap-
proach these equilibria as ¢ — . In particular, this would exclude the existence of
periodic solutions if there are only a finite number of equilibria.

For this purpose, we differentiate P(x) along the solutions of (8.1) and find

dP(z)
dt

If the circuit does not contain any inductors, then we have

d_P___ ! 4
= —@,C)

= (', P) = —(@', Jz'). 8.2)

since J = C and obviously P decreases along solutions except at equilibria. Following
Liapounov’s ideas, one could derive from this, assuming, in addition, that P(z) — o«
as | z | — =, that every solution tends to one of the equilibrium points as ¢ — . Sim-
ilarly, if there are no capacitors in the circuit, then

ﬂ%ﬁ = —@, La),

and assuming that —P(z) — « as | x | — «, we have asymptotic stability again.
It is intuitively clear that if L or C is sufficiently small, then a similar result should
hold also. Just how large L or C can become without causing oscillations will be answered
in the following investigation.
We first ask whether one can describe the system (8.1) by another pair J*, P*{ in
*Here z' denotes dx/dt.

**If no inductors are present, J is, of course, positive definite.
1The notation J* should not be confused with the adjoint of the matrix J.
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place of J, P such that
—J*x' = P*(x), (8.3)
and such that J* is positive definite. Since —2’ = J 'P,(z), a necessary and sufficient
condition for a new pair J*, P* describing the differential equations in the form (8.3) is
J*JTP, = P% . (8.4)
Our aim is to find a pair J*, P* such that (z/, J*z') is positive definite and P*(x) — «

for |z | — =.
We note first if (J,, Py), (J., P;) are two pairs describing (8.1), then so are

(e, + BJ» , aP; + BP,), (8.5)
which gives considerable freedom in constructing other pairs.
To find one nontrivial pair other than (J, P) we observe that if M is any constant
symmetric matrix, then the pair
J¥*¥ =P MJ, P*=3iP,,MP,),
is a possible choice. This is easily seen since
= (P..M)P,
and therefore
J*J'P, = P,.MJJ'P, = P*
which by (8.4) implies (8.3). By superposition we obtain the more general pairs
=\ + P.M)J, P*=\P+ 3(P.,MP,) (8.6)

where M ranges over all constant symmetric matrices and A is an arbitrary constant.
Having made these observations, we shall now prove some theorems which depend
on the mixed potential having the form
P@,v) = —A@G) + B@ + G, w), (8.7)
where v is a constant matrix notf necessarily with elements =1, 0
We first consider a “semilinear’ case, i.e.,
P(i,v) = —1(i, A7) + B@) + @, v — a), (8.8)

where A is a constant symmetric matrix and a is a constant vector so that the first r
equations in (4.10) are linear. In case the circuit is complete, this means that all the
nonlinear resistors are in the subnetwork 9, . In theorems 3 and 4 which follow, we can
allow nonlinear inductors, i.e.,

L = L@),
and nonlinear capacitors, i.e.,

C = Cb.

However, it is necessary to assume that L(z) and C(v) are symmetrie, positive definite,
and their least eigenvalues are bounded away from zero.
Theorem 3. If A is positive definite, B() + |y | — ® as|v| — =, and

|| L*@ACT20) || S 1 — 8, 8> 0% (8.9)

*The notation || K [|? of a matrix K denotes max, ., ., (Kz, Kz).
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for all 7, v, then all solutions of (8.1) tend to the set of equilibrium points as ¢t — .
Proof. We choose M and \ in (8.6) as follows:

-1
M= {2"1 0], A= 1.

0 0
Then
*
Jt=J 4+ P.MJ = L 0},
—-2%9TAT'L C
and
@, J*z') = (y,y) — 20, C"V¥TA7 LY’y + (2, 2),
where
_ 1/2‘& V] Clz_)
y=1L T and z=C T

With K = L'?A7'yC™"?, we have
@', J*z') = (y — Kz, y — Ko) + (2,2 — (Kz, Kz),
and since || K || < 1 — 3, then
@, *a) 2 |ly— Kz’ + 6 |z]" 20,
which is zero if and only if di/dt = dv/dt = 0. Thus
P*=pP+ (P,,A7'P)

is monotone decreasing except at equilibria and it remains to be proved that P*(z) — «
as|z|— .
To show this we rewrite P in the form

Pla,v) = —3(a, A7) + UQ),
where « = P, = —A1 + y — a and (
Uw) = 3l — ), A7 — w)] + BW). (8.10)
Then P* becomes
P*(a, 1) = §(a, A7) + UG).

Since A is positive definite and B(r) + | yv | = « as | v | = o, it is clear also that
U(v) — = as|v|— . It remainsto be shownthat |a |+ |v|— o as|¢| + |v | > .
For this purpose we consider the matrix

S = [‘A v
0 I
which is nonsingular and gives rise to the transformation

[a+a]= —4 1,]
w 0 I v)

’

*The notation y7 denotes the transpose of the matrix .
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or
y = Szx.

Hence (y, y) = (Sz, Sz) > 0. However, S is nonsingular and its least eigenvalue is
bounded away from zero so that (Sz, Sz) > 0 for x 5 0. Since (Sz, Sz) > M (z, x) where
A; is the smallest eigenvalue of S”S, then we have

(v, ) = (8=, §7) = M(z, @),
where A; > 0. This gives
lat+alP+]lelP>M]e P+ ]2,
which implies |a| + |v| — » for | 7| + | v | = «. By applying a well-known theorem
of Liapounov (see LaSalle and Lefschetz [12]), we conclude that every solution of (8.1)
approaches the set of equilibrium points as t — .
Next we consider the other semilinear case, i.e.,
P(,0) = —A(@) + 30, B) + @, v" + b), (8.11)

where B is a constant symmetric matrix and b is a constant vector so that the last s
equations of (4.10) are linear. In case the circuit is complete, this means that all the
nonlinear resistors are in the subnetwork 9, .

Theorem 4. If B is positive definite, A() + |y¥"4| — » as|i]| — =, and

| CV2 B L G) || < 1 — 8, 8> 0, 8.12)

for all 7, v, then all solutions of (8.1) tend to the set of equilibrium points as { — .
Proof. Since the proof is similar to the proof of theorem 3, we will only indicate it.
We choose M and X in (8.6) as follows:

0 O
0 2B7!

Then it is easy to show that P* = —P + (P, , B™'P,) is monotone decreasing along
solutions of (8.1). To show that P*(z,v) — « as|¢ |+ |v| — =, we write P* in the form

P*@i,v) = 3P, ,B7'P,) + W(),

M= , A= —1.

where
W@E) = 3 + %), B® + ") + AQ), (8.13)

and proceed as in the proof of theorem 3.

We remark that it is not obvious, in general, when the first two conditions of theorems
3 and 4 hold. In section 19, part II, conditions on the network and the resistors are given
which are equivalent to these conditions if the circuit is complete.

The next theorem does not require semilinearity but does require that the matrices
L and C are constant symmetric and positive definite. The mixed potential has the form
(8.7) where nonlinearities may occur in both A (z) and B(v). For this theorem we construct
the function

P60 = (B55)P6, 0 + 3., TP + 4P, CTP), 819

2
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where g, is the smallest eigenvalue of the matrix L™'?4,;(Z)L™"2 for all ¢ and g, is the
smallest eigenvalue of C™*?B,,(»)C~"/* for all v. We shall use u(M) to denote the smallest
eigenvalue of a symmetric matrix M.

Theorem 5. 1If

L7PALGLTY) + w(C B, CTV) > 8, 8> 0, (8.15)
for all 7, v and
P*G,0) > o as [i|+ |v]|—> =, (8.16)
where P*(z, v) is given by (8.14), then all solutions of (8.1) approach the equilibrium
solutions as £ — .
It is difficult, in general, to replace (8.16) by simple conditions on P(z, v). We leave

it therefore in the form given since it can be checked directly.
Proof. For M and X in (8.6) we choose

1 _
M = {L 0 and \ =& " F2,
0o ¢ 2
Then
Je= |45 7] LT L o]‘
—71' Bw 0 c

With z = L' (di/df) and w = C** (dv/dt) we have

@, J*2') = (z, L7*AuL7%) + (w, C7°B,.C7""w) + M, w) — (2, 2))
(1 — N, 2) + (w2 + Nw, w)
2 3 + w2 + (w, w)] 2 0.

Since u; + p2 > 8 > 0 by assumption, then (z/, J*z') is positive definite and equal
to zero if and only if di/dt = dv/dt = 0. Thus, P*(z, v), given by (8.14), is monotone
decreasing except at the equilibria.

In summary, we have three theorems which give sufficient conditions for asymptotic
stability in the large. Theorems 3 and 4 give conditions which depend on the graph of
the network as given by the matrix v but are independent of the nonlinearities. On the
other hand, theorem 5 gives conditions which depend on the nonlinearities but are
independent of the graph + of the network.

9. Example. In this section we consider a large ladder network shown in the fol-
lowing figure, and we wish to apply theorem 3 to find conditions for nonoscillation.
Then, in order to demonstrate that these criteria are sharp, we will choose a particular
nonlinear element for this circuit and exhibit an exact periodic solution.

We will see that the conditions which cause this oscillation can be chosen very close
to the nonoscillatory conditions and also, in one case, that the point separating oscilla-
tion and nonoscillation approaches zero as the number of loops in the circuit becomes
large.

The circuit considered is shown in Fig. 11. The nonlinear element is given by g(»)
which is the current through the element in the direction shown.

v
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Fia. 11. Large Nonlinear Ladder Circuit

Assuming that v,,, = E and 4, = 0, the mixed potential for the circuit is
P60 = ~3RE+ 3 [ 3R = BB — i) o =00+ [ g0 ],
k=1 1]

or written in vector notation
P(,v) = —3R@, 1) — $R'(«d, v) + (2, v) + B@) — (a, 9),

where « is an n 4+ 1 by n matrix and v is an n by n matrix given by

[ ) T 0 ' . ’
. =1 1 Qeeeeeeneenn 0 0
1 —1 . .
0—-1 1° .
0 1-1 .
. -1 1 .
o= 1 1, 4= : P
. : .0
-1 .0 .
. "1 0
1 -1 . .
O vvveenrennnnns 0 —1] |—E]
L Qevevvnennenen0 1

and
B() = kz fo " 00) o

In applying theorem 3 we shall consider two cases separately: B = 0 and B = 0.
With R’ = 0, we want to show first that the circuit has only a finite number of equilib-

rium solutions. The equilibrium equations are

Up—1 — 2£Ic +vk+1 — g(vk), k — 2, e ’n,

Vo — 1
R
where v,,, = E. The solution is found graphically as shown in Fig. 12, where, for example,
we have chosen g(v) to be the characteristic for a tunnel diode. We see that there are at
most three intersections and hence the number of equilibria is at most 3.

= g(v),
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1/72(v) _ 4V )V

) /‘ s I72R

—— i=glv)

1720V v, ) v

Fia. 12. Equilibrium Solutions for the k* Circuit

In checking the conditions of theorem 3, it is clear that B(») — « as|v | — o« and
since A = RI,* then A is positive definite. We now compute the norm of the matrix
K = LA™ C ' or in this case K = (I'*/RC"*)y. Computing the norm of v, we
find {| v ||* < 4 and therefore

2 4L

Hence, from theorem 3, || K ||* < 1 for nonoscillation is satisfied if
L 1
ch < Z' (91)
For the case B = 0, the equilibrium equations are of the form

E—-R X 4 —u
1#k
2R’
and it is clear again that there are at most 3" equilibrium solutions. In this case the
matrix 4 is

=g(vk)y k=11"'1n1

r

2 —1 Qicvevnnnnnns 0
-1 2 -1 :
0. .

A =Ro"a =R :,

-1 2 -1
() J 0 —1 2

which is positive definite since « has full rank. One computes

* I denotes the identity matrix.
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R(—y"4)" = —R'A™

S -1
n—1n—1 i i e _2'

N—2 =2 N —2 —3eetiteereaannn. -3

_ ) . . . .

n+1)

S 3 2—n 2 —n

2 P 2 1 —-n

| 1 ]

In order to estimate the norm of K = LY?A™'yC™'/ it is necessary to estimate the
norm of —R’A™"y. We compute

n n ! 2
(—R'A-I‘YSD, _ R'A—I’Yx) — (n__._: 1)2 Z [—lk-; T + (n -1+ 1) ; xk:l

sotm|Sa- e o]

k=1+1

_(n+1)2 l+1>2+l21§1x:

-1
n n 2
S (;xk) @+
< n’(z, 2).
Thus || —R'A7'y || < »’.
According to theorem 3, we are forced to require

to ensure || K ||* < 1, which is sufficient for nonoscillation. In contrast to the previous
criterion for B’ = 0, this condition is more and more stringent as n increases. That this
is not only due to our estimates will be seen from the following consideration.

We now consider a particular nonlinearity for g(v) which is the piecewise linear fune-
tion shown in Fig. 13. Our purpose is to find a periodic solution such that the magnitude

< fb—— -
°<
y

=

Fia. 13. A Special Choice for g(v)
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of the voltage across any diode is less than v, . Then we can replace g(v) by —Gv for
| v| < v, where @ is a positive constant, and we have the following differential equations
to solve:

di . . . .
Lzztﬁ = —Ri + R'(Ghs1 — 26 + %er) — @k — Viia),
dv,,, . .
CTi?= — (s — @) + Gy, k=1, ,n, (9.3)

with the boundary conditions v,.; = E = 0, ¢y = 7,4, = 0.
Assuming the solution is of the form

% = ae”'sin kA,
v, = be® cos (k — DA, 9.4)
we find from the boundary conditions that
cosin+ $HA=0

or

+l
A=A = (:T;)r, v=20,:--,n—1. (9.5)

Note that » = = is excluded because this corresponds to the identically zero solution.
We denote 2 sin A,/2 by A, and substituting (9.4) into (9.3) we find the following simul-
taneous equations for @ and b:

Laa = —Ra — X’R’a + b:, ,
Cba = —M\a + Gb.

(9.6)

This has a nontrivial solution if and only if the determinant of the coefficients of @ and b
is zero, i.e.,

2 1_2 _R;’2_Q _1_ 2 " =
a+[L+L>\. C:I“+LCD" GR 4+ RN\)]=0. .

Oscillations occur if « is purely imaginary and nonzero, which means

E R, _G
and

A2 > GR + R')). 9.8)
Eliminating G, these conditions become

LN L

x + R\, < C (9.9)

The left-hand side is plotted as a function of A in Fig. 14.
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R/A+R'A

I v R/R A

F16. 14. R/\ + R’ versus A

We also see that the condition | v | < | v, | is easily satisfied; for purely imaginary a,
this becomes | b | < v, , and we are at liberty to choose b since equation (9.6) is homo-

geneous.
For R’ = 0 condition (9.9) becomes

L 1
RC 7N
and, for the purposes of this example, we want to choose » such that A, is maximum.
This leads to the choice » = n — 1 so that

9.10)

47°

2 _ .2 N - 0.5 1_r ~ _
A._1 = 4sin nF 053~ 4 —(2n F° for large n,
and (9.10) becomes
L 1 ? -t
20> 1 ':1 ~@n T 1)2:| for large n. (9.11)

Thus, under this condition, an oscillatory solution exists and is given by (9.4).
In the case B = 0 equation (9.9) becomes

1% > A%, (9.12)
and we make A} a minimum by choosing » = 0. Then
2

@n + 1) \2/ ™ @n + 17 O AEE™

A = 45in’
and condition (9.12) becomes
L S L
R*C ~ @2n+ 1)°
Thus, under this condition, an oscillatory solution exists and is given by (9.4).
In summary, we have shown in the case B’ = 0 that under the condition

L
RC

for n large. (9.13)

<Z'

no oscillations can exist, but if

2 -1
L > 1 [1 — (2n—7_r'_1?:| for large n,

R*C
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and if we choose g(v) appropriately, then a periodic solution actually does exist. This
shows that the criterion of theorem 3 is fairly sharp, and, in fact, it is the best possible

in general.
In the case B = 0, no oscillations can occur if
L 1
R <
but if
L z

R0 > @n + 17 for large n,

and if g(v) is chosen appropriately, then a periodic solution exists. We also see in this
case that the tendency for this circuit to oscillate increases as the number of loops

increases.

This discussion suggests the investigation of the continuous analog of (9.3) which
corresponds to a nonlinear transmission line. If z in 0 < 2z < 1 is a variable along the
line, the equations take the form

L% = —Rit RS 2+—

C— = _+ g(v)v

with the boundary conditions
i(t,00 =0, (1) =E

Here R, R', L, C represent some appropriate densities of resistance, inductance, and
capacitance. For B = R’ = 0 = g(v), one obtains the equations for a lossless transmission
line. As in the discrete case, one can attempt to describe the solutions for large values
of t. For instance, the function P would become an integral

1 v
f [—1—; & + R’ + i, + GO, x))] dz, G@) = f g0) dv.
[1] 0
However, the detailed discussion is out of place here. We just mention that for B =

and appropriate g(v), E, there is a continuum of equilibrium solutions, namely any func-
tion v(z), for which

—1% + g() = constant = ——/ + g(B)

holds, gives rise to an equilibrium solution. If —v/R’ + ¢(v) = constant has several
roots, v can be a step function taking on these roots in arbitrary intervals.

10. Solutions near an equilibrium. The question of the stability of an equilibrium
solution can be studied by two methods. One is the standard method of investigating
the structure of the variational equations, and the other is a method which uses the
functions P* of section 8. In this section we discuss both of these methods separately.

A. We study the solutions of the system
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di _ oP
dit D) (10.1)
dy oP

Ca™ "

near an equilibrium 7 = %, , ¥ = v, . For this purpose, we replace the above equations by
the linearized system (variational equations). This system will be simplified by in-
troducing

z = [LG)’G — i) ¥y = [Co)I"*0 ~ v0).
Then

t-id—a; = Az — By,
(10.2)

Y _ pr
T, B’y 4+ Dy,

where
A = L—1/2P“L—1/2 B — _L—l/2P‘ C—l/ﬂ D — _0-1/2P 0-1/2

at ¢ = 1, ,v = v, . Here, A and D are symmetric matrices.
The properties of the matrix

M =

4 "B] (10.3)

BT D
are most easily discussed in terms of the indefinite bilinear form
—(@,z) + (v, ¥). (10.4)

Combining z, y into one vector

(10.4) can be written as
(e, J2) = —(z,2") + (v, ¥, (10.5)

where

J=[—10
0 I

The matrix M of (10.3) is then symmetric with respect to the form (z, J2'), i.e.,

Mz, J2') = (Ar — By, —2’') + (Bx + Dy, y")
= —(Az, ') + By, ') + (Bz, v") + (Dy, y")
= (Mz', J?).
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It is well-known that the behavior of the solutions of the system (10.2) is described
by the eigenvalues of the matrix M. For instance, the stability of the equilibrium is
ensured if all the eigenvalues of M have negative real parts. We wish to study which
restrictions the symmetry properties of M impose on its eigenvalues. A matrix which is
symmetric with respect to a definite form has only real eigenvalues. Since the form (10.5)
is indefinite, such a statement does not hold for M. However, we will prove the fol-
lowing lemma.

Lemma. If zis a (complex) eigenvector of M corresponding to a nonreal eigenvalue
A, then

e, J5)=—|z>+ |y |*=0.
Proof. From Mz = Az follows
Mz, J2) = Nz, J2) = M|y [ — |z [),
and since M is symmetric with respect to (10.5), this expression must be real. Hence,

(ImN(=|z "+ |y ) =0,

which proves the lemma.
For such matrices as (10.3) the condition of section 8, theorem 3,
K|l <1,
takes the form
i|A7B | < 1. (10.6)
We want to investigate the restrictions on the eigenvalues of M imposed by condition
(10.6).

Theorem 6. 1If in the matrix M of (10.3) the matrices A, D are symmetric, —A4 is
positive definite and (10.6) holds, then the eigenvalues of M lie either in the left-half
plane or on the real line.

Remark. Note that D can be negative definite since the only restriction on D is
symmetry. Therefore, one cannot expect that the equilibrium is stable, in general. In
fact, in case the nonlinear differential equations have several equilibria, some of them
must be unstable and give rise to matrices M with positive eigenvalues.

Since the eigenvalues are not purely imaginary, periodic solutions are excluded.

Moreover, the solutions escaping from the unstable equilibria are not oscillatory.
Proof. 1If X is not real and if
z = (x) # 0,
Y

is the corresponding complex eigenvector, then according to the lemma

lz|=1yl
and from Mz = Az follows

(A = M)z = By,

or

(I — Az = A7'By.
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If we normalize [z | = |y | = 1, we have
=MDz |P=6<1,

where 6 = || A'B ||°. This gives

[z | — 2ReN@E, A7) + | A * | A7z > = 9,
or

N[ A7 P — 2(Re V@&, A72) = 6 — 1 < 0. (10.7)
Dropping the first term, one finds

(Re M) <0,

since (£, A™'z) is negative by assumption.

More precisely, for each eigenvector of M, (10.7) defines a circle in the left-half
A-plane, and the corresponding eigenvalue must lie on this circle or on the real axis.
(See Fig. 15).

ImA

Re A

2
\_/

Fia. 15. Circle Containing Eigenvalues of M

The condition of theorem 4 leads to a similar restriction on the eigenvalues.
Theorem 7. If p(A) and u(D) denote the maximal eigenvalues of the symmetric
matrices 4, D and if

w(4) + u(D) <0,

then all nonreal eigenvalues of M lie in Re A < 0.
Proof. With the above notation we have

Az — By = Mz,
B'¢ 4+ Dj = g,

if N is a nonreal eigenvalue. Multiplying the first equation by £ and the second by y
and adding, we find

@ Az) + @, D) =N |z "+ X |y "
From the lemma | z | = | y | and normalizing |z | = | ¥ | = 1, we have

&, Az) + (y, Dj) = 2 Re .
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By assumption, the left-hand side remains negative, namely,
0 > p(A) + p(D) = 2 Re,

which proves the theorem.

The linearized equations also show that the conditions of theorems 3, 4, and 5 are
sharp. For instance, suppose that x and y in equations (10.2) are scalar. Then M has
two eigenvalues which under the condition

trace M = A+ D=0,

are both imaginary, and hence the equations have only oscillatory solutions. The con-
dition of theorem 5 for nonoscillation is simply

44+ D<O.

B. The stability of an equilibrium can also be decided by studying one of the func-
tions P* of section 8. It is easily verified that in all cases the stationary points of P*
coincide with the equilibrium solutions.

From a well-known theorem due to Dirichlet and Lagrange (and later exploited by
Liapounov), if a function exists which decreases with time along the solutions except
the equilibrium solutions, then an equilibrium solution is stable if and only if the func-
tion has a local minimum there. For a precise formulation of this statement and its
proof we refer to the book of Chetayev [13]. Thus, we have

Theorem 8. Under the conditions of theorem 3, 4, or 5, the equilibria coincide with
the stationary points of P* and the local minima of P* coincide with the stable equilib-
rium solutions.

In the semilinear case we can discuss the stability of the equilibrium solutions in
terms of a function of the voltages only or of the currents only. For instance, in theorem 3
we had by (8.10)

P*@i,v) = 3(P:, A7'P,) + UQ),
and it is obvious that the stationary points are given by
P;,=0 and U, =0.

Since the first relation is linear and hence trivial, the equilibrium solutions can be ob-
tained as stationary points of U(v). Moreover, since A is positive definite, the local
minima of U(v) are the stable equilibria. '

The advantage of this approach is that frequently it is much easier to determine the
minima of a function than it is to determine the eigenvalues of the linearized equations.
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