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Abstract
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weights on those receiving little inheritance). In contrast to the Atkinson-Stiglitz result,
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1 Introduction

According to the profession�s most popular theoretical models, socially optimal tax rates on

capital should be equal to �K = 0% in the long run�including from the viewpoint of those

individuals or dynasties who own no capital at all. This is a very strong result indeed, especially

since it is supposed to apply to all forms of capital taxation, either on the capital stock or on the

capital income �ow, and either at the time of wealth transmission or during one�s lifetime. That

is, if we were to take this result seriously, then we should be pushing for a 0% inheritance tax

rate, a 0% property tax rate, a 0% corporate pro�t tax rate, a 0% interest and dividend income

tax rate, etc., and transfer the resulting revenue loss onto increased tax rates on labor income

and/or consumption (or lump sum taxes). Few economists however seem to endorse such a

radical policy agenda. Presumably this re�ects a lack of faith in the profession�s most popular

models. This is in our view one of the most important failures of modern public economics.

The objective of this paper is to develop a realistic, tractable, and robust normative theory of

socially optimal capital taxation. By realistic, we mean a theory providing normative conclusions

that are not fully o¤-the-mark with respect to the real world (i.e., positive and signi�cant capital

tax rates). By realistic, we also mean a theory o¤ering such conclusions for reasons that are

consistent with the reasons which - we feel - are at play in the real world. By tractable, we

mean that optimal tax formulas should be expressed in terms of estimable parameters and

should quantify the various trade-o¤s in a simple and plausible way. By robust, we mean that

our results should not be too sensitive to the exact primitives of the model nor depend on strong

homogeneity assumptions for individual preferences. Ideally, formulas should be expressed in

terms of estimable �su¢ cient statistics�such as behavioral elasticities and hence be robust to

changes in the underlying primitives of the model. Such an approach has yielded fruitful results

in the analysis of optimal labor income taxation (see Piketty and Saez, 2011 for a recent survey).

In our view, the two key ingredients for a proper theory of capital taxation are, �rst, the

importance of inheritance, and, next, the imperfection of capital markets. With zero inheritance

(i.e. if life-cycle savings account for the bulk of wealth accumulation), and with perfect capital

markets (i.e. if agents can costlessly and risklessly transfer resources across periods at a �xed

interest rate r), then we believe that the case for zero capital taxation would indeed be very

strong�as in the standard Atkinson-Stiglitz framework. Therefore, our paper proceeds in two

steps.

1



First, we develop a theory of optimal inheritance taxation. We present a dynamic model of

savings and bequests with heterogeneous random tastes for bequests to children and for wealth

accumulation per se. The key feature of our model is that inequality permanently arises from

two dimensions: di¤erences in labor income due to di¤erences in ability, and di¤erences in inher-

itances due to di¤erences in parental wealth accumulation and transmission. Importantly, top

labor earners and top successors are never exactly the same people, implying a non-degenerate

trade-o¤ between labor taxation and inheritance taxation. In that context, in contrast to the

famous Atkinson-Stiglitz result, bequest taxation remains desirable even with optimal labor tax-

ation because, with inheritances, labor income is no longer the unique determinant of life-time

resources. In sum: two-dimensional inequality requires two-dimensional tax policy tools.

We derive formulas for optimal bequest tax rates expressed in terms of estimable parameters

and social preferences. The long run optimal bequest tax rate �B increases with the aggregate

steady-state �ow of bequests to output by, decreases with the elasticity of bequests to the

net-of-tax rate eB, and decreases with the strength of preferences for bequests. For realistic

parameters, the optimal linear inheritance tax rate should be as high as 50% � 60% if the

government has meritocratic preferences (i.e., puts higher welfare weights on those with little

inheritance). Because real world inherited wealth is highly concentrated (basically half of the

population receives close to zero bequest), our results are very robust to reasonable changes in

the social welfare objective. I.e. the optimal tax policy from the viewpoint of those receiving

zero bequest is very close to the welfare optimum for bottom 50% bequest receivers.

For top bequests, the optimal inheritance tax rate �B can be even larger (say, 70%� 80%),

especially if bequest �ows are large, and if the probability of bottom receivers to leave a large

bequest is small. Therefore our normative model can account for the relatively large bequest tax

rates observed in most advanced economies during the past 100 years, especially in Anglo-Saxon

countries between the 1930s and the 1980s (see Figure 1). To our knowledge this is the �rst

time that a model of optimal inheritance taxation delivers simple and tractable formulas that

can be used to analyze this important part of real world tax policies.

Our model also illustrates the critical importance of perceptions and beliefs systems about

wealth inequality and mobility (i.e. individual most preferred tax rates are very sensitive to

expectations about bequests received and left), and about the aggregate magnitude of the

bequest �ow by. When by is small, say around 5% of national income, as was the case in
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Continental Europe during the 1950s-1970s, then bequest taxes should be moderate (new savings

should be encouraged in reconstruction periods). But when by is high and rising, as has been

the case since the 1980s-1990s (by is currently about 15% of national income in a country like

France, and 20%-25% of disposable income, like in the 19th century), then bequest taxes should

be large - so as to reduce the tax burden falling on labor earners.1

Second, we show that if we introduce capital market imperfections and uninsurable idio-

syncratic shocks to rates of return into our setting, then we can turn our positive optimal

inheritance tax results into more general optimal capital tax results.

The basic intuition is the following. From a welfare viewpoint, as well as from an optimal tax

viewpoint, what matters is the capitalized bequest ~bti = btie
rtiH , not the raw value of bequest

bti. received by a given individual i (with H = generation length, typically 30 years, rti = rate

of return)). But at the time of setting the bequest tax rate �B, nobody has any idea about the

future rate of return on a given asset is going to during the following 30 years. I.e. nobody

knows what ertiH is going to be. Rates of return are notoriously di¢ cult to predict, and they

vary enormously over assets and across individuals. E.g. someone who inherited an apartment

in Paris in the 1970s had no idea what the total returns and capitalized value of this asset would

be three decades later. Therefore for simple insurance reasons it makes more sense to split the

tax burden between one-o¤ bequest taxes �B, and lifetime capital taxes �K (annual property

taxes and/or taxes on �ow returns).

We show that if the uninsurable uncertainty about future returns is large, and if the e¤ort

elasticity of rates of return is moderate, then the resulting optimal lifetime capital tax rate �K

can be very high - typically higher than the optimal bequest tax rate �B, and labor tax rate �L.

This can account for the fact that in modern tax systems the bulk of aggregate capital

tax revenues comes from lifetime capital taxes (rather than from inheritance taxes). It is also

interesting to note that the countries which experienced the highest top inheritance tax rates

also applied the largest tax rates on top incomes, and particularly so on tax capital incomes (see

Figures 2-3). This suggests that the policy makers who implemented these policies viewed taxes

on large inheritances and large capital incomes as complementary. To our knowledge this is the

�rst time that a model of optimal capital taxation is able to jointly account for this important

1The historical evolution and theoretical determinants of the aggregate bequest �ow by were recently studied
by Piketty (2011). Here we build upon this work and extend Piketty�s r-vs-g model in order to study normative
issues and optimal tax policy.
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set of facts.

Of course we do not pretend that these highly progressive policies implemented in the U.S.

and the U.K. between the 1930s and 1980s were necessarily optimal. The way we calibrate

our optimal tax formulas in the present paper should be viewed as illustrative and exploratory.

But at least we o¤er a theoretical framework which for some parameter values can rationalize

such policies - and for some alternative parameter values could also rationalize di¤erent policies.

Ideally our approach should contribute to a tax debate based more upon empirical estimates,

and less upon abstract theoretical results and ideology.

The rest of the paper is organized as follows. Section 2 relates our results to the existing

literature. Section 3 presents our basic results on optimal inheritance taxation. Section 4 intro-

duces capital market imperfections and analyzes the consequences for the optimal mix between

one-o¤ inheritance taxation and lifetime capital taxation. Section 5 extends our results in a

number of directions, particularly elastic labor supply, closed economy, life-cycle saving, popu-

lation growth, and intergenerational redistribution. Section 6 o¤ers some concluding comments.

Most proofs are gathered in the appendix.

2 Relation to existing literature

There are two main results in the literature in support of zero capital income taxation: the

Atkinson and Stiglitz (1976) theorem, and the Chamley (1986) and Judd (1985) results. We

discuss each in turn and then discuss the more recent literature introducing capital market

imperfections in the analysis.

Atkinson-Stiglitz. Atkinson-Stiglitz show that there is no need to supplement the optimal

non-linear labor income tax with a capital income tax in a lifecycle model if leisure choice is

(weakly) separable from consumption choices and preferences for consumption are homogeneous.

In that model, the only source of lifetime income inequality is labor skill and hence there is no

reason to redistribute from high savers to low savers (i.e. tax capital income) conditional on labor

earnings.2 This key assumption of the Atkinson-Stiglitz model breaks down in a model with

inheritances where inequality in lifetime income comes from both di¤erences in labor income

2Saez (2002) shows that this result extends to heterogeneous preferences as well as long as time preferences
are orthogonal to labor skills. If time preferences are correlated with labor skills, then taxing saving is a desirable
and indirect way to tax ability.
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and di¤erences in inheritances received. In that context and conditional on labor earnings, a

high level of bequests left is a signal of a high level of inheritances received, which provides a

rationale for taxing bequests.

The simplest way to see this point is to consider a model with inelastic and uniform labor

income but with di¤erences in inheritances due to parental di¤erences in preferences for bequests.

In such a world, labor income taxation is useless for redistribution and taxing inheritances is

desirable for redistribution (as long as inheritances are not in�nitely elastic to taxation).

This important point has been made by Cremer, Pestieau, and Rochet (2003) in a stylized

model with unobservable inherited wealth where they show that taxing capital income becomes

desirable. Our model allows the government to directly observe (and hence tax) wealth. Farhi

and Werning (2010) also propose a related analysis but consider a model from the perspective

of the �rst generation of donors who do not start with any inheritance (so in e¤ect there is

no inequality at all along the inheritance dimension). In this context, bequests should actually

be subsidized as they should be untaxed by Aktinson-Stiglitz (ignoring inheritors) and hence

should be subsidized when taking into account inheritors. As we shall see, this result is not

robust to models where people both receive and leave bequests.

Chamley-Judd. Chamley-Judd show that the optimal capital income tax should be zero

in the long-run. This zero long-run result holds for two reasons.

First, and as originally emphasized by Judd (1985), the zero rate results happens because

social welfare is measured exclusively from the initial period (or dynasty). In that context,

a constant tax rate on capital income creates a tax distortion growing exponentially overtime

which cannot be optimal (see Judd 1999 for a clear intuitive explanation). Such a welfare

criteria can only make sense in a context with homogeneous discount rates. In the context

of inheritance taxation where each period is a generation and where preferences for bequests

are very heterogeneous across the population, this strikes us as a particularly bad de�nition of

social welfare. We will adopt instead a de�nition of social welfare based on long-run equilibrium

steady-state utility.3 We show in appendix how the within generation and across generation

redistribution problems can be disconnected using public debt so that there is e¤ectively no loss

3In models with uncertainty, using the initial period social welfare criteria leads to optimal policies where
inequality grows without bounds (see e.g. Atkeson and Lucas 1992). Obtaining �immiseration�as an optimal
redistributive tax policy is obviously absurd and should be interpreted as a failure of the initial period social
welfare criteria. Farhi and Werning (2007) show that considering such long-run steady-state equilibrium as we
do in this paper eliminates the immiseration results.
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of generality in focusing on steady state welfare.

Second, even adopting a long-run steady-state utility perspective, the optimal capital income

tax rate is still zero in the standard Chamley-Judd model. This is because the supply side

elasticity of capital with respect to the net-of-tax return is in�nite in the in�nite horizon model

with constant discount rate.4 Our theory leaves this key elasticity as a free parameter to be

estimated empirically. Our model naturally nests the Chamley-Judd case when the elasticity is

in�nite. We think this is a much better approach as there is no compelling empirical evidence

for an in�nite elasticity.

We should stress that all these authors were aware of these limitations. The basic ideas here

are not new. What is new is that we put them together in a simple model and re-arrange the

various e¤ects so as to obtain robust, tractable theoretical formulas for optimal tax rates.

Capital Market Imperfections. A number of papers have shown that taxing capital

income can become desirable when capital market imperfections are introduced, even in models

with no inheritance. Typically, it is good to tax capital as a way to redistribute from those

with no credit constraints (the owners of capital) toward those with credit constraints (non-

owners of capital). Aiyagari (1995) and Chamley (2001) make this point formally in a model

with borrowing constrained in�nitely lived- agents facing labor income risk. They show that

capital income taxation is desirable when consumption is positively correlated with savings

(but do not attempt to compute numerical values for optimal capital tax rates).5 There are

numerical computations such as Conesa, Kitao and Krueger (2009) or Cagetti and DeNardi

(2009). Conesa et al. calibrate an optimal tax, OLG model with uninsurable idiosyncratic

labor productivity shocks and borrowing constraints, and �nd �K = 36% and �L = 23% in their

preferred speci�cation. The main e¤ect seems to be that capital income tax is an indirect way

to tax more the old and to tax less the young, so as to alleviate their borrowing constraints.

This is an interesting and potentially important e¤ect. But we do not believe that this is the

most important explanation for �K > 0. If the old vs. young issue was the main issue, then we

would probably �nd other, more direct ways to address it (e.g. age-varying income taxes; some

policies, e.g. pension schemes, do depend on age).

4This follows from the fact that the net-of-tax rate of return needs to be equal to the Golden rule level in the
long run (see appendix B).

5This correlation is always positive in the Aiyagari (1995) model with independent and identically distributed
labor income, but Chamley (2001) shows that the correlation can be negative theoretically.
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Models based upon government time-inconsistency. Yet another way to explain

real-world, positive capital taxes is to assume time inconsistency. Zero capital tax results are

long run results, but never hold in the short run. I.e. it is always tempting for short-sighted

governments to have �K > 0 in the short run, even though optimal long run �K is equal to

0%. We do not believe however that this is an important part of the explanation as to why we

observe positive capital taxes in the real world. E.g. we feel that even long-sighted governments

view positive and substantial inheritance tax rates (say, of the kind we have been observing over

the past 100 years, see Figure 1 above) as part of a fair and e¢ cient permanent tax system. So

in this paper we assume away time inconsistency issues, and we always look at long run optimal

tax policies - assuming full commitment.

3 A Theory of Optimal Inheritance Taxation

3.1 Notations and de�nitions

We consider a small open economy facing an exogenous, instantaneous rate of return on capital

r � 0. To keep notations minimal, we focus upon a simple model with a discrete set of gener-

ations 0; 1; ::; t; :: Each generation has measure one, lives one period (which can be interpreted

as H-year-long, where H = generation length, realistically H ' 30), then dies and is replaced

by the next generation. Total population is stationary and equal to Nt = 1.

Generation t receives average inheritance (pre-tax) bt from generation t� 1 at the beginning

of period t. Inheritances go into the capital stock and are invested either domestically or abroad

for a �generational�rate of return R = erH�1. Production in generation t combines labor from

generation t and capital to produce a single output good. The output produced by generation

t is either consumed by generation t or left as bequest to generation t + 1. We denote by yLt

the average labor income received by generation t. We denote by ct the average consumption of

generation t and bt+1 the average bequest left by generation t to generation t + 1. We assume

that output, labor income and capital income are realized at the end of period. Consumption

ct and bequest left bt+1 also take place at the end of the period.6

6We focus upon this one-period, discrete-time model for notational simplicity only. All results and optimal
inheritance tax formulas can be easily extended to a full-�edged, multi-period, continuous-time model with
overlapping generations and life-cycle savings. See section 5 below.
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Individual i in generation t maximizes utility:

maxVti = Vi(cti; wti;�bt+1i) s:t: cti + wti � eyti = (1� �B)btie
rH + (1� �L)yLti

With: eyti = (1� �B)btierH + (1� �L)yLti = total after-tax lifetime income (combining labor
income yLti, inheritance received bti and the returns on inheritance received Rbti)

cti = consumption

wti = end-of-life wealth = bt+1i = pre-tax raw bequest left to next generation

�bt+1i = (1� �B)bt+1ie
rH = after-tax capitalized bequest left to next generation

�B = bequest tax rate, �L = labor income tax rate

We derive optimal tax formulas holding for large classes of utility functions Vi, using a

su¢ cient-statistics approach. In order to �x ideas, we focus upon the Cobb-Douglas case:

Vi(c; w;�b) = c1�siwswi�bsbi (swi � 0; sbi � 0; si = swi + sbi � 1)

This simple form implies that individual i devotes a fraction si of his lifetime resources to

end-of-life wealth, and a fraction 1 � si to consumption. Our key results - and in particular

our optimal tax formulas - also hold with CES utility functions, and actually with all utility

functions Vi(c; w;�b) that are homogenous of degree one (so as to allow for balanced growth

paths).7 In e¤ect, these more general forms imply that the fraction si can depend on relative

prices (i.e. the inheritance tax rate and the rate of return), rather than being �xed as in the

Cobb-Douglas (or log-log) case, where income and substitution e¤ects exactly o¤set each other.

We use a standard wealth accumulation model with exogenous growth. Output in generation

t is given by a constant return to scale production function Yt = F (Kt; Lt), where Kt is the

physical (non-human) capital input and Lt is the human capital input (e¢ cient labor supply).

Though this is unnecessary for our results, in order to simplify the notations we assume a

Cobb-Douglas production function: Yt = K�
t L

1��
t .

Aggregate human capital is the sum over all individuals of raw labor supply lti times labor

productivity hti : Lt =
R
i2Nt ltihtidi. Average productivity ht is assumed to grow at some

exogenous rate 1 + G = egH per generation (with g � 0): ht = h0e
gHt. With inelastic labor

supply (lti = 1), we simply have: Lt = Ntht = h0e
gHt.

Taking as given the �generational�rate of return R = erH � 1, pro�t maximization implies

that the domestic capital input Kt is chosen so that FK = R, i.e. Kt = �
1

1��Lt (with � =
Kt

Yt
=

7See in particular the proof of proposition 2 below.
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�

R
= domestic generational capital-output ratio).8 It is important to keep in mind that Yt is

domestic output. In an open economy, Yt might di¤er from national income if the domestic

capital stock (used for domestic production) di¤ers from the national wealth.

It follows that output Yt = �
�

1��Lt = �
�

1��h0(1 + G)t also grows at rate 1 + G = egH per

generation. So does aggregate labor income YLt = (1 � �)Yt. And so do per capita output,

capital and labor income yt; kt; yLt (= Yt; Kt; YLt divided by Nt = 1). The aggregate economy

is on a steady-state growth path where everything grows at rate 1 +G = egH per generation.

With g = 1 � 2% per year and H = 30 years, 1 + G = egH ' 1:5 � 2. With r = 3% � 5%

per year and H = 30 years, 1 +R = erH ' 3� 4.

3.2 Steady-state inheritance �ows and distributions

The individual-level transition equation for bequest is the following:

bt+1i = si[(1� �L)yLti + (1� �B)btie
rH ] (1)

In our model�and we believe in the real world�there are three independent factors explaining

why di¤erent individuals receive di¤erent bequests bt+1i within generation t + 1: their parents

received di¤erent bequests bti, and/or earned di¤erent labor income yLti, and/or had di¤erent

tastes for savings si = swi + sbi.9

In particular, an important point in our set-up is that taste parameters vary across individ-

uals. E.g. some individuals might have zero taste for wealth and bequest (swi = sbi = 0), in

which case they save solely for life-cycle purposes and die with zero wealth (�life-cycle savers�).

Others might have taste for wealth but not for bequest (swi > 0; sbi = 0) (�wealth-lovers�),

while others might have no direct taste for wealth but taste for bequest (swi = 0; sbi > 0)

(�bequest-lovers�). The taste for wealth could re�ect direct utility for the prestige or social sta-

tus conferred by wealth. In presence of uninsurable productivity shocks, it could also measure

the security brought by wealth, i.e. its insurance value (so this modeling can be viewed as a

reduced form for precautionary saving). The only di¤erence between wealth- and bequest-lovers

is that the former do not care about bequest taxes while the latter do.

8The annual capital-output ratio is �annual = H � � = �(H=R) = �H=(erH � 1) ' �=r if r is small.
9A fourth important factor in the real world is the existence of idiosyncratic shocks to rates of return ri

(which we introduce explicitly in section 4 below). Pure demographic shocks (such as shocks to the age at death
of parents and children, number of children, etc.) also play an important role.
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In the real world, most individuals are at the same time life-cycle savers, wealth-lovers and

bequest-lovers. But the exact magnitude of these various saving motives does vary a lot across

individuals, just like other tastes.10 We allow for any distribution and random process for taste

parameters (possibly with some intergenerational persistence). In order to ensure the existence

of a unique ergodic steady-state distribution of wealth, we simply require the random process

to be drawn from a full support distribution: whatever your parental taste, you always have a

positive probability to end up with any taste.11 This also implies that in each generation there

is a positive density of �zero receivers�(i.e. individuals who receive zero bequest, because their

parents had zero taste for wealth and bequest).12

Assumption 1 Taste parameters (swi; sbi) are drawn according to a full-support random process:

For all swti; sbti � 0; swt+1i; sbt+1i � 0; g(swt+1i; sbt+1ijswti; sbti) > 0

(where swti; sbti = parental tastes, swt+1i; sbt+1i = children tastes, g(:) = density function).

We denote by g(swi; sbi) the stationary cross-sectional distribution, and by s = E(si).

A special case is no taste memory: for all swti; sbti; g(swt+1i; sbt+1ijswti; sbti) = g(swt+1i; sbt+1i)

In the �no taste memory�case (tastes are drawn i.i.d. for each cohort), then by linearity

the individual transition equation (1) can be easily be aggregated into:

bt+1 = s[(1� �L)yLt + (1� �B)bte
rH ] (2)

Let us denote the aggregate capitalized bequest �ow-domestic output ratio by byt =
erHBt
Yt

=

erHbt
yt

. Dividing both sides of equation (2) by per capita domestic output yt and noting that

bt+1=yt = byt+1e
�(r�g)H , we obtain the following transition equation for byt:

byt+1 = e(r�g)H [s(1� �L)(1� �) + s(1� �B)byt] (3)

In order to ensure convergence towards a non-explosive steady-state, we must assume that the

average taste for wealth and bequest is not too strong:

10For some evidence on the unequal distribution of bequest motives, see Kopczuk and Lupton (2007).
11The random process for tastes could also depend on parental productivity shocks or bequest received,

providing that we make the appropriate full support assumption (so as to ensure ergodicity).
12Another way to obtain the same outcome is to assume that the idiosyncratic shocks to rates of return rti

are such that in each generation there is a positive density of bankrupt individuals (or to assume demographic
or health shocks with similar e¤ects). The important point is that in the real world there is always a large set
of zero (or near zero) receivers, for a variety of reasons.
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Assumption 2 s(1� �B)e
(r�g)H < 1

In case assumption 2 is violated, then the economy will accumulate in�nite wealth as com-

pared to domestic output. At some point it will not be a small open economy any more, and

the world rate of return will have to fall in order to restore assumption 2.13

In case assumption 2 is satis�ed, then byt ! by =
s(1� �L)(1� �)e(r�g)H

1� s(1� �B)e(r�g)H
as t! +1. I.e.

the aggregate inheritance-output ratio converges, and in steady-state all bequests grow at the

same rate at output.

We also need to specify the structure of labor productivity shocks. Individual i in generation

t is characterized by a within-cohort normalized productivity parameter �ti. By de�nition, we

have: yLti = �tiyLt (with E(�i) = 1). Productivity di¤erentials �ti could come from innate

abilities, acquired skills, or sheer luck - and most likely from a complex combination between

the three. We assume that productivity shocks also follow a full support, exogenous random

process.

Assumption 3 Productivity parameters �i are drawn according to a full-support random process

over some interval [�0; �1]: for all �ti; �t+1i; h(�t+1ij�ti) > 0

(where �ti = parental productivity, �t+1i = children productivity, h(:) = density function).

We denote by h(�i) the stationary cross-sectional distribution, with E(�i) = 1.

A special case is no labor productivity memory: for all �ti; �t+1i; h(�t+1ij�ti) = h(�t+1i).

Another special case is no labor productivity inequality: �0 = �1 = 1:

Finally, we note zti the within-cohort normalized bequest (i.e. we write down received

bequest as the product of normalized times average bequest: bti = ztibt), and �t(z) the distrib-

ution of normalized bequest within cohort t . Given some initial distribution �0(z), the random

processes for tastes and productivity g(:) and h(:) and the individual transition equation (2)

entirely determine the low of motion for the distribution of inheritance �t(z) and the joint

distribution of inheritance and labor productivity, which we note  t(z; �).

Proposition 1 (a) Under assumptions 1-3, there exists a unique steady-state for the aggregate

inheritance �ow-output ratio by , the inheritance distribution �(z) and the joint inheritance-

productivity distribution  (z; �). Whatever the initial conditions, as t ! 1; byt ! by, �t ! �

and  t !  .
13Assumption 2 needs to be generalized in order to apply outside the no-taste-memory case. See appendix

proof of Proposition 1.
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(b) Under �no taste memory�special case, by =
s(1� �L)(1� �)e(r�g)H

1� s(1� �B)e(r�g)H

Otherwise, by is also unique but depends on g(:) and h(:) (no closed form formula).

(c) Under �no labor inequality�special case,  (z; �) = �(z) is one-dimensional. Otherwise,

 (z; �) is two-dimensional and has full support.

(d) In all cases, there are �zero bequest receivers� in steady-state: �(0) > 0:

Proof . The steady-state uniqueness result follows from standard ergodic convergence the-

orems (see appendix proof for details). QED

Two points are worth noting here. First, the aggregate magnitude of inheritance �ows rel-

atively to output by is a positive function of r � g. In societies with high returns and low

growth, wealth coming from the past is being capitalized at a faster rate than national income.

Successors simply need to save a small fraction of their asset returns to ensure that their in-

herited wealth grows at least as fast as output. Conversely, with low returns and high growth,

inheritance is dominated by new wealth, and the steady-state aggregate inheritance �ow is a

small fraction of output.

This simple r-vs-g model is able to reproduce remarkably well the observed evolution of

aggregate inheritance �ows over the past two centuries. In particular, it can explain why

inheritance �ows were so large in the 19th and early 20th centuries (20%-25% of national income

in 1820-1910), and why they are becoming large again in the late 20th and early 21st centuries

(about 15% in 2010 in France, up from less than 5% around 1950-1960) (see Figures 4-5).

Typically, with r = 4% � 5% and g = 1% � 2%, simple calibrations of the above formula

show that the annual inheritance �ow by can indeed be as large as 20% � 25% of national

income.14 Available evidence suggests that the French pattern also applies to Continental

European countries that were hit by similar growth and capital shocks. For countries like the

United States and the United Kingdom, the long-run U-shaped pattern of aggregate inheritance

�ows was possibly somewhat less pronounced.

Next, one key feature of our model is that inequality is two-dimensional: in steady-state,

within each cohort, there will always be some individuals with low inheritance z and high labor

productivity �, and conversely. As we shall see, this explains why the Atkinson-Stiglitz result

14E.g. with r � g = 3%, H = 30, � = 30%, s = 10%, �B = �L = 0%, then by = 23%. With r � g = 2%,
then by = 16%. With r � g = 3% and � = 30%, then by = 13%, but by=(1� �) = 19%. For detailed simulations
using a full-�edged, out-of-steady-state version of this model, with life-cycle savings and full demographic and
macroeconomic shocks, see Piketty (2011).
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does not hold, and why we need a two-dimensional tax policy tool (�B; �L) (a redistributive

labor income tax is not enough).

3.3 Basic optimal tax formula

We now de�ne our optimal tax problem. We assume that the government faces an exogenous

revenue requirement: public good spending must satisfyGt = �Yt where � � 0 and Yt is domestic

output. For the time being we assume that the government has only two tax instruments: a

proportional tax on labor income at rate �L � 0, and a proportional tax on inheritance at rate

�B � 0. We impose a period-by-period budget constraint: the government must raise from

labor income YLt and inheritance Bt received by generation t an amount su¢ cient to cover

government spending �Yt for generation t. We assume that government spending happens at

the end of the period (in the same way as private consumption). Hence, the period t government

budget constraint looks as follows:

�LyLt + �Bbte
rH = �yt

i:e: : �L(1� �) + �Bby = � (4)

One can interpret the bequest tax �BbterH in two equivalent ways. It could be that the tax

is raised on the capitalized value of bequest bterH at the end of the period. It could also be

the tax is raised on raw bequest bt at the beginning of the period, and then the tax revenue

is invested by the government at market rate of return r until the end of the period. As long

as capital markets are perfect and everybody gets the same return r, these two ways of raising

the tax are fully equivalent, and the choice of tax instruments is irrelevant. In section 4 we

introduce heterogenous returns and capital market imperfections, which allows us to analyze

the optimal mix between inheritance taxation and lifetime capital taxation.

The question that we now ask is the following: what is the tax policy (�L; �B) maximizing

long-run, steady-state social welfare? That is, we assume that the government can commit

for ever to a tax policy (�Lt = �L; �Bt = �B)t�0 and cares only about the long-run steady-

state distribution of welfare Vti. Under assumptions 1-3, for any tax policy there exists a

unique steady-state ratio by and distribution  (z; �). The government chooses (�L; �B) so as to
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maximize the following, steady-state social welfare function:15

SWF =

ZZ
z�0;�0����1

!z�
V 1��
z�

1� �d	(z; �) (5)

With:Vz� = average utility level Vi attained by individuals i with normalized inheritance zi = z

and productivity �i = �

!z� = social welfare weights as a function of normalized inheritance z and productivity �

� = concavity of the social welfare function (� � 0)16

A key parameter to answer this question is the long-run elasticity eB of aggregate inheritance

ratio by with respect to the net-of-bequest-tax rate 1 � �B (letting �L adjust to keep budget

balance, see equation (4)):

eB =
dby

d(1� �B)

1� �B
by

(6)

In general, one might expect eB > 0: with a higher net-of-tax rate 1 � �B (a lower tax rate

�B), agents may choose to devote a somewhat larger fraction of their resources to inheritance,

in which case the aggregate, steady-state inheritance ratio will be somewhat bigger. But this

could also go the other way, because eB is de�ned along a budget balanced steady-state frontier:

lower bequest taxes imply higher labor taxes, which in turn make it more di¢ cult for high labor

earners to accumulate large bequests.

E.g. with Cobb-Douglas preferences, and in the absence of taste memory, then by substi-

tuting �L(1��) = � � �Bby (equation (4)) into the steady-state formula for by (Proposition 1),

we obtain:

by =
s(1� � � �)e(r�g)H

1� se(r�g)H
(7)

It follows that eB = 0 in the simpli�ed, one-generation equals one-period Cobb-Douglas model.

In the full-�edged overlapping generations and continuous-time model, one can show that if

inheritance tends to occur around mid-life, which is the case in practice, then eB is close to

zero.17 Of course, the Cobb-Douglas form and the no-taste-memory assumption are restrictive,

and for general utility functions and random processes for tastes, then eB could really take any

value. We view eB as a free parameter to be estimated empirically. The important point here

is that there is no reason to expect eB to be in�nitely large, unlike in in�nite-horizon dynastic

models.
15This steady-state maximization problem can also be formulated as the limit solution of a dynamic social

welfare maximization problem (with a social rate of time preference going to zero). See Appendix B.
16If � = 1, then SWF =

RR
z�0;������ !z� log(Vz�)d	(z; �).

17See section 5 below.
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Throughout this paper we are particularly interested in the zero-bequest-receivers social

optimum, i.e. the optimal tax policy from the viewpoint of those who receive zero bequest, and

who must rely entirely on their labor income to make their way in life. This corresponds to the

case with a linear social welfare function (� = 0) and the following welfare weights: !z� = 1

if z = 0, and !z� = 0 if z > 0. Since private preferences Vi() are homogenous of degree one,

� = 0 implies that the government does not want to redistribute income from high productivity

to low productivity individuals - maybe because individuals are viewed as responsible for their

productivity parameter �. In contrast, individuals clearly bear no responsibility at all for their

bequest parameter z. Therefore it seems very appealing from a normative viewpoint to try to

reduce as much as possible the inequality of lifetime welfare opportunities along the inheritance

dimension.18 Indeed, in the political debate about estate taxation, the left insists on taxing idle

wealthy �trust funders�heirs while the right insists on the plight of those who work hard to

accumulate a fortune for their family and children only to see it partly con�scated by �death

taxes�. Hence, it seems reasonable to put more weight on bequest leavers than on bequest

receivers. So we start by characterizing this zero-bequest-receivers optimum, which one might

also call the �meritocratic Rawlsian optimum�:

Proposition 2 (zero-bequest-receivers optimum). Under assumptions 1-3, linear social

welfare (� = 0), and the following welfare weights: !z� = 1 if z = 0, and !z� = 0 if z > 0, then

�B =
1� (1� �� �)sb0=by

1 + eB + sb0
and �L =

� � �Bby
1� �

with sb0 = E(sbijzi = 0) = the average bequest taste of zero bequest receivers.

Proof . Take a given tax policy (�L; �B). Consider a small increase in the bequest tax

rate d�B > 0. Di¤erentiating the government budget constraint, �L(1 � �) + �Bby = � , in

steady-state d�B > 0 allows the government to cut the labor tax rate by:

d�L = �
byd�B
1� �

�
1� eB�B

1� �B

�
(< 0 as long as �B <

1

1 + eB
)

Note that d�L is proportional to the aggregate inheritance-output ratio by: with a larger

aggregate inheritance �ow, a given increase in the bequest tax rate can �nance a larger labor

tax cut.
18Maybe surprisingly, the recent normative literature on fairness, equal opportunity and responsibility has

devoted little attention to the issue of inheritance taxation. E.g. Roemer et al. (2003) and Fleurbaey and
Maniquet (2006) focus on income taxation. See however the interesting discussion in Fleurbaey (2008, pp.146-
148).
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An individual i who receives no inheritance (bti = 0) chooses bt+1i to maximize

Vi(cti; wti; bt+1i) = Vi((1� �L)yLti � bt+1i; bt+1i; (1� �B)(1 +R)bt+1i):

The �rst order condition in bt+1i is Vci = Vwi + (1 � �B)(1 + R)Vbi This leads to bt+1i =

si(1� �L)yLti (with 0 � si � 1) We can de�ne �i = (1� �B)(1 +R)Vbi=Vci the share of bequest

left for bequest loving reasons (1� �i is the share left for wealth loving reasons), and sbi = �isi

the strength of the bequest taste. In the Cobb-Douglas utility case, sbi is simply the �xed

exponent in the utility function. In the general homogeneous utility case, sbi may depend on

�B and 1 +R.

Using the envelope theorem as bt+1i maximizes utility, the utility change dVi created by a

budget balance tax reform d�B; d�L can be written as follows:

dVi = �VciyLtid�L � Vbi(1 +R)bt+1id�B

I.e.: dVi = VciyLtid�B

��
1� eB�B

1� �B

�
by

1� �
� 1� �L
1� �B

sbi

�
The �rst term in the square brackets is the utility gain due to the reduction in the labor

income tax (as noted above, it is proportional to the aggregate inheritance ratio by), while the

second term is the utility loss due to reduced net-of-tax bequest left (it is naturally proportional

to the bequest taste sbi).

By using the fact that 1 � �L = (1 � � � � + �Bby)=(1 � �) (from the government budget

constraint), this can be re-arranged into:

dVi = VciyLtid�B
1� �L
1� �B

�
1� (1 + eB)�B
1� �� � + �Bby

by � sbi

�
:

Summing up over all zero-bequest-receivers, we get:

dSWF � d�B

�
1� (1 + eB)�B
1� �� � + �Bby

by � sb0

�
;with sb0 =

R
zi=0

VciyLtisbid	R
zi=0

VciyLtid	
:

Setting dSWF = 0, we get the formula: �B =
1� (1� �� �)sb0=by

1 + eB + sb0
. QED.

Note 1. The proof works with any utility function that is homogenous of degree one (and

not only in the Cobb-Douglas or CES cases). In the general case, sb0 is the average of sbi

over all zero-bequest-receivers, weighted by the product of their marginal utility Vci and of

their labor income yLti. In case sbi?VciyLti (e.g. in case there is no taste memory, or no labor
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productivity inequality), and in case the utility functions Vi() are Cobb-Douglas, then sb0 is the

simple average of sbi over all zero-bequest-receivers: sb0 = E(sbijzi = 0).

Note 2. The optimal tax formula can be extended to the case � > 0 : one simply needs to

replace sb0 by: sb0 =

R
zi=0

VciyLtisbiV
��
i d	R

zi=0
VciyLtiV

��
i d	

. I.e. the formula for sb0 needs to be reweighted in

order to take into account the lower marginal social utility V ��
i of zero-receivers with high utility

Vi (i.e. zero-receivers with high productivity �i). In case the social welfare function is in�nitely

concave (�! +1 ), then the planner puts in�nite weight on the least productive zero-bequest

receivers, so that sb0 is the average bequest taste within this group: sb0 = E(sbijzi = 0; �i = �0).

This corresponds to what one might call the �radical Rawlsian optimum�.19

The optimal tax formula is simple, intuitive, and can easily be calibrated using empirical

estimates. First, a higher bequest elasticity eB unsurprisingly implies a lower �B. As eB ! +1,

�B ! 0%, i.e. one should never tax an in�nitely elastic tax base.

More interestingly, a higher bequest �ow ratio by implies a higher �B.

Example 1.Assume � = 30%; � = 30%; sb0 = 10%; eB = 0:

If by = 20%, then �B = 73% and �L = 22%:

If by = 15%, then �B = 67% and �L = 29%:

If by = 10%, then �B = 55% and �L = 35%:

If by = 5%, then �B = 18% and �L = 42%:

That is, with high bequest �ow by = 20%, zero receivers want to tax inherited wealth at a

higher rate than labor income (73% vs. 22%); with low bequest �ow by = 5%, they want the

opposite (18% vs. 42%).

The intuition is the following. In societies with low by (typically because of high g), there

is not much tax revenue to gain from taxing bequests. So even zero-receivers do not like

bequest taxes too much: it hurts their children without bringing much bene�t in exchange.

High growth societies care about the future, not about the past. Conversely, in societies with

high by (typically because of low g), it is worth taxing bequests, so as to reduce labor taxation

and to allow people with zero inheritance to live a better life - and in particular to accumulate

wealth and leave a bequest (if they so wish).
19The most appealing welfare optimum is probably in between the meritocratic and the radical Rawlsian

optimum (depending on how much one considers individuals are responsible for their productivity - a complex
ethical issue on which this paper has nothing to say).
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It is worth noting that the impact of by is quantitatively more important than the impact of

eB. That is, behavioral responses matter but not hugely as long as the elasticity is reasonable.20

Example 2.Assume � = 30%; � = 30%; sb0 = 10%; by = 15%:

If eB = 0, then �B = 67% and �L = 29%:

If eB = 0:2, then �B = 56% and �L = 31%:

If eB = 0:5, then �B = 46% and �L = 33%:

If eB = 1, then �B = 35% and �L = 35%:

This is probably the most important lesson of this paper: once one allows the elasticity of

capital supply to be a free parameter and to take moderate values (non-in�nite), then one can

naturally obtain fairly large values for socially optimal bequest tax rates. If we take by = 15%

(current French level), then we �nd that as long as the elasticity eB is less than one the optimal

inheritance tax rate is higher than the optimal labor tax rate. In practice, this bequest elasticity

e¤ect eB is also mitigated by the labor supply elasticity e¤ect eL , which further reinforces this

conclusion (see section 5).

Finally, a higher bequest taste sb0 implies a lower �B. The key trade-o¤ captured by our

theory is that everybody is both a receiver and a giver of bequest (at least potentially). This

is why zero receivers generally do not want to tax bequests at 100%. Of course if sb0 = 0 (zero

receivers have no taste at all for leaving bequests), then we obtain �B = 1=(1 + eB) as a special

case: we are back to the classical revenue maximizing rule, and �B ! 100% as eB ! 0. But as

long as sb0 > 0, we have interior solutions for �B, even if eB = 0. In fact, for very high values

of sb0, and very low values of by, one can even get a negative �B, i.e. a bequest subsidy. For

plausible parameter values, however, the optimal bequest tax rate �B is positive, and generally

much larger than the optimal labor tax rate �L.21

3.4 Alternative social welfare weights

The main limitation of Proposition 2 is that it puts all the weight on the individuals who receive

exactly zero bequest (possibly a very small group). But because real world inheritance is highly

concentrated (basically half of the population receives very close to zero bequest), our optimal

20We leave a proper estimation of eB to future research. Preliminary computations using time and cross
section variations in French inheritance tax rates (e.g. in the French system childless individuals pay a lot more
bequest taxes than individuals with children) suggest that e is relatively small (at most eB = 0:1� 0:2).
21See the discussion on bequest subsidies in appendix A2.
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tax results are actually very robust to reasonable changes in the social welfare objective. We

show this in two steps. First, the above formula can be extended in order to compute the

optimal tax rate from the viewpoint of those inheriting z% of average inheritance:

Proposition 3 (z%-bequest-receivers optimum). Under assumptions 1-3 , linear social

welfare (� = 0), and the following welfare weights: !z� = 1 for a given z � 0, and !z0� = 0 if

z0 6= z, then

(a) �B =
1� (1� �� �)sbz=by � (1 + eB + sbz)z=�z

(1 + eB + sbz)(1� z=�z)
and �L =

� � �Bby
1� �

;

with sbz = E(sbijzi = z) = average bequest taste of z-receivers and �z = E(�ijzi = z) = average

labor productivity of z-receivers (under no labor productivity memory special case: �z = 1).

(b) There is z� > 0 such that �B > 0 if and only if z < z�.

Proof. The proof is essentially the same as for Proposition 2. The formula can be extended

to the case � > 0, and to any combination of welfare weights (!z�): one simply needs to replace

sbz, z and �z by the properly weighted averages sb, z, and �. In case � ! +1, then for

any combination of positive welfare weights (!z�) (in particular for uniform utilitarian weights:

!z� = 1 8z; �) we have: sb ! sb0 = E(sbijzi = 0; �i = �0) and z=� ! 0, i.e. we are back to the

radical Rawlsian optimum. See appendix proof for complete details. QED.

Unsurprisingly, individuals with higher z want lower bequest taxes. People who receive

more than z� do not want any bequest tax at all. If one cares mostly about the welfare of high

receivers, then obviously one should not tax inheritance. Conversely, for individuals with very

low z, the formula delivers optimal tax rates that are very close to the meritocratic Rawlsian

optimum. One simple way to calibrate the formula is the following. The bottom 50% share in

aggregate inherited wealth is typically about 5% (or less), which means that their average z is

about 10%. Their average labor productivity �z is below 100% (bottom 50% inheritors also earn

less than average), but generally not that much below, say at least 50% (which would imply

that they are all fairly close to the minimum wage, i.e. that they almost perfectly coincide with

the bottom 50% labor earners) and more realistically around 70%. As one can see, this has little

impact on optimal tax rates. Inheritance is so concentrated that bottom 50% bequest receivers

and zero bequest receivers have welfare maximizing bequest tax rates which are relatively close.

Example 3.Assume � = 30%; � = 30%; by = 15%; eB = 0:2; sbz = 10%:
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If z = 0%, then �B = 56%and �L = 31%:

If z = 10% and �z = 70%, then �B = 49% and �L = 32%:

If z = 10% and �z = 50%, then �B = 46% and �L = 33%:

Our optimal tax formulas show the importance of distributional parameters for the analysis

of socially e¢ cient capital taxation. They also illuminate the potentially crucial role of per-

ceptions about distributions. If individuals have wrong perceptions about their position in the

various distributions, this can have large impacts on their most preferred tax rate. E.g. with

full information all individuals with inheritance below z� should prefer a positive bequest tax.

Interestingly, z� is generally below one. I.e. people with inheritance above average do not want

to tax inheritance at all. In actual fact, the distribution is so skewed that less than 20% of the

population has inherited wealth above average. But to the extent that many more people believe

to be above average, this might explain why (proportional) bequest taxes can have majorities

against them.

In order to further illustrate the role played by distributional parameters, one can also rewrite

the optimal tax formula entirely in terms of relative distributive positions:

Corollary 1 (z%-bequest-receivers optimum). Under assumptions 1-3, linear social wel-

fare (� = 0), and the following welfare weights: !z� = 1 for a given z � 0, and !z0� = 0 if

z0 6= z, then:

(a) �B =
1� e�(r�g)H�zxz=�z � (1 + eB)z=�z

(1 + eB)(1� z=�z)
and �L =

� � �Bby
1� �

;

with xz =
E(bt+1ijzi = z)

bt+1
= average bequest left by z-receivers/average bequest left

�z = sbz=sz = share of z-receivers wealth accumulation due to bequest motive

(b) If xz ! 0 as z ! 0, then �B ! 1=(1 + eB) as z ! 0, (revenue maximizing tax rate)

Proof. One simply needs to substitute (1��� �)sbz=by by e�(r�g)H�zxz=�z � sbz[�B +(1�

�B)z=�z] in the original formula. See appendix proof for details. QED.

By construction, both formulas are equivalent. Whether one should use one or the other

depends on which empirical parameters are available. The original formula uses the aggregate

inheritance �ow by (a parameter that is relatively easy to estimate, since it relies only on

aggregate data) and the bequest taste sbz (a preference parameter that is relatively di¢ cult to
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estimate).22 The alternative formula is based almost entirely on distributional parameters which

in principle can be estimated empirically - but require pretty demanding microeconomic data

(such as wealth data spanning over two generations).23 Its main advantage is that it illuminates

the key role played by distribution for optimal capital taxation.

In particular, one can see that the optimal tax rate �B depends both on z (i.e. the distribution

of bequests received) and on xz (i.e. the distribution of bequests left). In case both distributions

are in�nitely concentrated, e.g. in case the share of bottom 50% successors in received and given

bequests is vanishingly small, then the tax rate maximizing the welfare of this group converges

towards the revenue maximizing tax rate �B = 1=(1 + eB). This is an obvious but important

point: if capital is in�nitely concentrated, then from the viewpoint of those who own nothing

at all, the only limit to capital taxation is the elasticity e¤ect. If the elasticity eB is close to 0,

then it is in the interest of the poor to tax the rich at a rate �B that is close to 100%.

We leave a proper empirical calibration of our optimal tax formula to future research. Here

we simply illustrate the crucial role played by the distribution of xz. If xz = 10%, i.e. if the

children of bottom 50% successors receive as little as what their parents received (relatively

to the average), then the optimal bequest tax rate is 77% for an elasticity eB = 0:2 (it would

be 95% with a zero elasticity). But if xz = 100%, i.e. if on average they receive as much as

other children, then the optimal bequest tax rate is only 45%. Presumably the real world is in

between, say around xz = 50%.

Example 4.Assume � = 30%; � = 30%; by = 15%; eB = 0:2; z = 10%; �z = 70%; �z =

50%; r = 4%; g = 2%; H = 30, so that e(r�g)H = 1:82

If xz = 10%, then �B = 77% and �L = 26%:

If xz = 50%, then �B = 61% and �L = 30%:

If xz = 100%, then �B = 42% and �L = 34%:

22Due to the relatively low quality of available �scal inheritance data in most countries, it is actually not that
simple to properly estimate by. The best way to proceed is to use national wealth estimates, mortality tables,
age-wealth pro�les and aggregate data on gifts. This is demanding, but this does not require micro data on
wealth distributions. See Piketty (2011).
23High quality micro data on wealth spanning two generations is rarely available - and when it is available it

usually does not include high quality data on labor income (see e.g. the micro data collected in Paris inheritance
archives by Piketty et al. (2006, 2011), which can be used to compute xz, but not �z). One can however
obtain approximate estimates of the distributions xz and �z using available wealth survey data. Note that the
alternative formula also uses the preference parameter �z, which to some extent can be evaluated in surveys
asking explicit questions about saving motives (and/or by comparing saving behavior of individuals with and
without children). Yet another possibility is to set �z equal to one in order to get lower bounds for the optimal
tax rate.
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Note that our framework implicitly double counts welfare arising from bequest planning

as bequests enter the utility of donors and enter the budget constraint of donees. When we

focus on zero-receivers as in Proposition 2, then there is no double counting in social welfare

as inheritances received are never counted. However, for z%-receivers, both bequests received

and bequests left are counted. As discussed in the literature (e.g., Cremer and Pestieau, 2004

and Diamond, 2006), double counting raises issues as it can generate �free utility�devices by

subsidizing giving and taxing back proceeds. This issue arises in our setting when social welfare

weights are heavily tilted toward high z% receivers. Indeed, if z > �z, then �B is no longer well

de�ned as the government would want an in�nite subsidy to bequest: it is always desirable for

very high bequest receivers to decrease �B and increase �L.

In our view, double counting does shape the debate on the proper level of estate taxation:

bequest taxes are opposed by both those receiving bequests and those planning to leave bequests,

and the views of those voters will in part shape the social welfare objective of the government.

In principle, for reasonable welfare criteria that do not put too much weight on high receivers,

this issue should not arise. But there is so much uncertainty about the true parameters (not

to mention the existence of self-serving beliefs) that it would be naive to expect a consensus to

emerge about the proper level of inheritance taxation. Maybe our formulas can at least help to

focus the public debate and future empirical research upon the most important parameters.

3.5 Non-linear inheritance taxes

Our basic optimal tax formula can also be extended to deal with non-linear bequest taxes. We

now assume that the tax rate �B applies only above an exemption b�t > 0. Most estate or

inheritance tax systems adopt such exemptions. The exemption is sometimes very high relative

to average in countries such as the United States where less than 1% of estates are taxable, or

more moderate as in France where a signi�cant fraction of estates are taxable (typically 10%-

20%).24 Naturally b�t = b�egHt grows at rate g to ensure a steady state equilibrium. Denoting

by B�
t aggregate taxable bequests (i.e., the sum of bt � b�t across all bequests above b

�
t ), the

24Note that in any case the fraction of the population paying bequest taxes is generally much less than 50%
- a fact that must naturally be related to the high concentration of inherited wealth (the bottom 50% always
receives barely 5% of aggregate inheritance, while the top 10% receives over 60% in Europe and over 70% in the
U.S.). See Piketty (2011).
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government budget constraint becomes

�L(1� �) + �Bb
�
y = � ; (8)

where b�y = erHB�
t =Yt is capitalized taxable bequests over domestic product.

Let us denote by bmt the average bequest above b�t . That de�nes the Pareto parameter

a = bmt =(b
m
t � b�t ) of the upper tail of the bequest distribution. Let us assume that in steady-

state a fraction p�t = p� of individuals leave a bequest above b�t . We have B
�
t = p� � b�t � a=(a� 1).

As above, we can de�ne the elasticity e�B of taxable bequests with respect to 1� �B

e�B =
db�y

d(1� �B)

1� �B
b�y

= a � e� (9)

where e� is the average elasticity (weighted by bequest size) of individual bequests bti above

b�t . Empirical studies can in principle estimate e
� and a is directly observable from tabulated

statistics by estate size.

With this nonlinear inheritance tax, we will also have a unique ergodic steady-state. The

optimal non linear inheritance tax (for given threshold b�, and from the viewpoint of zero bequest

receivers) can be characterized as follows.

Proposition 4 (nonlinear zero-bequest-receivers optimum). Under adapted ergodicity

assumptions 1-3, and the following welfare weights: !z� = 1 if z = 0, and !z� = 0 if z > 0, then

�B =
1� (1� �� �)s�b0=b

�
y

1 + e� + s�b0
and �L =

� � �Bb
�
y

1� �
;

with s�b0 = E[(sbi=si)(bt+Hi � b�t+H)
+jzi = 0]=E(~ytijzi = 0] = strength and likelihood that non-

receivers will leave taxable bequests.

Proof. The proof is similar to Proposition 2 and can be easily extended to the case of

z-bequests-receivers. See appendix for details. QED.

Three remarks are worth noting. First, if zero-receivers never accumulate a bequest large

enough to be taxable, then s�b0 = 0, and the formula reverts to the revenue maximizing tax rate

�B = 1=(1+e
�
B) = 1=(1+a �e�).25 More generally, if zero-receivers have a very small probability

to leave a taxable bequest (say, if b� is su¢ ciently large), then s�b0 is close to 0, and �B is close the

revenue maximizing tax rate. This can be easily generalized to small z-receivers (say, bottom

25Note that the formula takes the same form as in standard optimal labor income tax theory. See Saez 2001.
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50% receivers). If the elasticity is moderate (say, e�B = 0:2), then this implies the socially

optimal inheritance tax rate on large bequests will be extremely high (say, �B = 70%� 80%).

We believe that this model can help explain why very large top inheritance tax rates were

applied in countries like the U.S. and the U.K. between the 1930s and the 1980s (typically

around 70%-80%; see Figure 1 above). In particular, the fact that the rise of top inheritance

tax rates was less dramatic in Continental Europe (French and German top rates generally

did not exceed 30%-40%) seems qualitatively consistent with the fact these countries probably

su¤ered a larger loss in aggregate inheritance �ow ratios by and b�y following WW1 and WW2

capital shocks.26

Of course there are many cultural and/or political economy factors (and not just pure norma-

tive factors) which have certainly played an important role in order to account for the observed

historical evolution of inheritance taxes. For instance, some political scientists have pointed

out that bequest tax rates were relatively small pretty much everywhere prior to WW1, and

then suddenly rose shortly after the war, which might be due to a �war mobilization�e¤ect.27

Others have stressed the possibility of a speci�c, radical U.S. preference for equal opportunity

and highly progressive inheritance taxation.28 All these factors probably mattered, and we cer-

tainly do not pretend that our optimal tax formulas alone can account for observed patterns. In

particular, our formula point out for the crucial importance of beliefs about wealth inequality

and mobility, and ideally one would need to explain where these beliefs come from and why

they seem to change over time.29 But at least our formula o¤er a theoretical framework which

26Note that the German top rate reached 60% in 1946-1948 when it was set by the Allied Control Council,
and was soon reduced to 38% in 1949 when the Federal Republic of Germany regained sovereignty over its tax
policy. One often stated argument was the need to favor reconstruction and new capital accumulation. See e.g.
Beckert (2008).
27See Scheve and Stasavage (2011). One limitation of this theory is that if anything the war mobilisation

e¤ect should have been bigger in France and Germany than in the US or the UK. A related story would be that
the Bolshevik revolution created a serious threat for wealth holders in western countries (it is safer to pay large
inheritance taxes than to face a revolution; conversely the fall of the Soviet Union might contribute to explain
the ideological shift since 1990). But again a limitation of this theory is that it is unclear why the Soviet threat
should have had a bigger impact in the US and the UK.
28Apparently many U.S. economists and politicians were shocked to learn in the 1910s-1920s that wealth was

almost as concentrated in America as in Old Europe - which might have prompted the rise of con�scatory top
inheritance tax rates. See Beckert (2008). However this does not square with the fact that the rise also occurred
in the UK.
29E.g. the decline in top inheritance tax rates observed in the U.S. and the U.K. since the 1980s might re�ect

the fact that more individuals now believe that they have a large probability to leave a high bequest (i.e. they
believe in large s�b0). The dynamics of beliefs might itself be in�uenced by the evolution of inequality (when the
rich have a higher share of income and wealth, it might be easier for them to spread their view in the media and
via lobbyists and think tanks). This is far beyond the scope of the present paper.
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one can use to think about the pros and cons of large top inheritance tax rates.

Second, from a more theoretical standpoint, as b� grows, there are two options: either s�b0=b
�
y

converges to zero or converges to a positive level. The �rst case corresponds to an aristocratic

society where top bequests always come from past inheritances and never solely from self-made

wealth. In that case again, the optimum �B should be the revenue maximizing rate. The second

case corresponds to a partly meritocratic society where some of the top fortunes are self-made.

In that case, even for very large b�, non-receivers want a tax rate on bequests strictly lower than

the revenue maximizing rate. In reality, it is probable that s�b0=b
�
y declines with b

� as the fraction

of self-made wealth likely declines with the size of wealth accumulated. If the elasticity e� and

a are constant, then this suggests that the optimum �B increases with b�. The countervailing

force is that aristocratic wealth is more elastic as the bequest tax hits those fortunes several

times across several generations, implying that e� might actually grow with b�.30

Third, one can also ask the question of what is the optimal b� from the point of view of

zero-receivers. Solving for the optimal b� is di¢ cult mathematically. If the optimal �B is zero

when b� = 0 (because zero-receivers care a lot of leaving bequests), then it is likely that �B

will become positive when b� grows (if society is relatively aristocratic). Then a combination

�B > 0 and b� > 0 will be better that �B = 0 and b� = 0. The trade-o¤ is the following:

increasing b� reduces the tax base b�y and hence estate tax revenue (with not much of a boost

due to behavioral responses) so this is a negative. The positive is that it reduces s�b0 (probably

at a faster rate than b�y, allowing for a greater optimal �B.

Finally and more generally, real world estate tax systems generally have several progressive

rates, and ideally one would like to solve for the full non-linear optimum. Unfortunately there

is no simple formula for the optimal nonlinear bequest tax schedule. The key di¢ culty is that a

change in the tax rate in any bracket will end up having e¤ects throughout the distribution of

bequests in the long-run ergodic equilibrium. This di¢ culty does not arise only in the simple

case where there is a single taxable bracket. One needs to use numerical methods to solve for

the full optimum. We leave this to future research.

30This is easily seen in a simple model with homogeneous labor income and individuals who value bequests or
do not, and those tastes are iid in the population with no memory. In that case, inheritance level just re�ects
the number of prior generations in a row who were valuing bequests. The distribution of bequests is Pareto but
the elasticity is growing with the size of the estate. See appendix for details.
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4 From Inheritance Taxation to Capital Taxation

4.1 Are Inheritance Taxes and Lifetime Capital Taxes Equivalent?

So far we have focused upon optimal inheritance taxation. We have derived optimal tax formulas

that can justify relatively large bequest tax rates, providing that the aggregate inheritance �ow

is su¢ ciently large. Typically, with inheritance �ows by around 10%-15% of national income (as

observed in today�s developed economies, with a gradual upward trend), our formulas suggest

that socially optimal bequest tax rates �B should be around 40%-60%, or even higher, thereby

raising as much as 5%-8% of national income in annual tax revenues.

In the real world, we do observe total revenues from capital taxes of this order of magnitude,

or even higher: currently about 9% of GDP in capital taxes in the European Union (out of a

total of 39% of GDP in total tax revenues),31 and about 8% of GDP in capital taxes in the U.S.

(out of a total of about 27% of GDP in total tax revenues).32 However only a small part comes

from inheritance taxes - generally less than 1% of GDP. This re�ects the fact that bequest tax

rates are usually relatively small, except for very top (taxable) estates. E.g. in France the top

statutory rate for children successors is currently 45%, but the average e¤ective tax rates on

bequest and gifts is around 5%. In today�s developed economies, typically in the EU and in the

US, the bulk of revenue from capital taxes comes from �lifetime capital taxes�(i.e. capital taxes

paid during one�s lifetime rather than at the time of wealth transmission). In practice, lifetime

capital taxes can fall either on the capital stock (annual property and wealth taxes, with total

revenues generally around 1%-2% of GDP) or on the capital income �ow (taxes on corporate

pro�ts, taxes on rental income, interest, dividend and capital gains, with total revenues typically

about 4%-5% of GDP ). Empirical simulations in Piketty (2011) show that lifetime capital taxes

have had a much larger historical impact than bequest taxes on the magnitude and evolution

of aggregate inheritance �ows.

Why do we observe so small inheritance taxes and so large lifetime capital taxes? In the

simplest version of our model, all forms of capital taxation are equivalent, so the tax mix does

31The exact numbers vary from year to year, especially in recessions (total tax burden fell from 39.6% of EU
GDP in 2006 and 2007 to 39.3% in 2008 and 38.4% in 2009, while capital taxes fell from 9.3% 2006 and 9.4%
in 2007 to 8.9% in 2008 and 7.9% in 2009), but this is secondary here. See Taxation trends in the European
Union, 2011 Edition, Eurostat, p.282 (total taxes) and p.336 (capital taxes), GDP-weighted EU 27 averages.
32Using OECD tax revenue statistics and summing up inheritance and property taxes, corporate taxes, capital

gains taxes and capital income taxes (we attributed 20% of income tax revenues to capital), we �nd the following
numbers for the for the U.S.: total tax revenues fell from 27.8% of GDP in 2006 and 2007 to 26.1% in 2008 and
24.1% in 2009, while capital taxes fell from 9.5% in 2006 and 9.4% in 2007 to 7.7% in 2008 and 7.4% in 2009.
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not matter. First, it is equivalent for the government to tax at rate �B the capitalized value of

bequests tax bterH at the end of the period, or to tax at rate �B the raw value of bequest bt at

the beginning of the period, and then invest the tax revenue at market rate of return r until

the end of the period. Next, and most importantly, rather than taxing bequests bt at rate �B,

it is also equivalent to tax the returns to capital Rbt at rate �K such that:33:

(1� �B)e
rH = 1 + (1� �K)(e

rH � 1) ; i:e: �K =
�Be

rH

erH � 1 =
�B(1 +R)

R

Example 5.Assume r = 4%; H = 30, so that erH = 1 +R = 3:3

If �B = 20% then �K = 29%:

If �B = 40% then �K = 57%:

If �B = 60% then �K = 86%:

That is, it is equivalent to tax bequests at �B = 40% or to tax capital income �ows at

�K = 57% (or �K = 43% if the we take the equivalent instantaneous tax rate).34 More generally,

any intermediate combination will do. I.e. for any tax mix (�B; �K), one can de�ne �B =

�B + (1� �B)�K
R
1+R

. Intuitively, �B is the adjusted bequest tax rate (including the tax on the

return to bequest). It is equivalent to use any tax mix (�B; �K) delivering the same �B.

The reason why we get this general equivalence result between all forms of capital taxes in

our simple model is because each generation lives only one period (which we interpret asH-year-

long), with consumption taking place entirely at the end of the period. Zero-bequest receivers

do save out of their labor income, but their savings go entirely to their children. Therefore

taxing the returns to capital has exactly the same e¤ect as taxing bequests (it has the same

distributive e¤ect, and the same distortionary e¤ect on consumption vs bequest decisions).

33Here it is critical to assume that the utility function Vti = V (cti; wti;�bt+1i) is de�ned over after-tax capitalized
bequest �bt+1i = (1� �B)[1 + (1� �K)R]bt+1i. If Vti were de�ned over after-tax non-capitalized bequest �bt+1i =
(1� �B)bt+1i, then zero-receivers would strictly prefer capital income taxes over bequest taxes (in e¤ect �K > 0
would allow them to tax positive receivers without reducing their utility from giving a bequest to their own
children). However this would amount to tax illusion, so we rule this out.
34In the above equation we model the capital income tax �K as taxing the full generational return Rbt all at

once at the end of the period. Alternatively one could de�ne �K as the equivalent instantaneous capital income
tax rate during the H-year period, in which case the equivalence equation would be: 1 � �B = e��KrH ; i:e:

�K = � log(1��B)
rH . Both formulas perfectly coincide for small tax rates and small returns, but di¤er otherwise.

E.g. in the above example, we would have instantaneous �K = 19%; 43%; 76% (instead of generational �K =
29%; 57%; 86%). Note that it would also be equivalent to have an annual wealth tax or property tax at rate
�W = r�K (with a �xed, exogenous rate of return, annual taxes on capital income �ows and capital stocks are
equivalent). In the above example, we would have instantaneous �W = 0:8%; 1:7%; 3:0%.
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Clearly the conclusion would be di¤erent in a full-�edged, multi-period model with life-

cycle savings.35 Positive capital income taxes �K > 0 would then impose extra distortions

on intertemporal consumption decisions (within a given lifetime, including for individuals who

do not receive and do not leave any bequest). Following the Atkinson-Stiglitz logic, it would

generally be preferable to have �K = 0 and to raise 100% of the capital tax revenue via a

bequest tax �B > 0. Of course, if the intertemporal elasticity of substitution is fairly small

(as available estimates suggest), then this extra distortion would also be small, and both tax

policies would be relatively close to one another. The point, however, is that in the real world

we do observe a strong collective preference in favor of lifetime capital taxes (either stock-based

or �ow-based) over one-o¤ bequest taxes, so there must be some substantial reasons for this

fact. For instance, most individuals seem to prefer to pay an annual property tax equal to 1%

of their property value (or 25% of their 4% annual return) during 30 years rather than to pay

30% of the property value all at once at the time they inherit the asset. Why is it so? More

generally, the question we ask is the following: what are the extra bene�ts brought by lifetime

capital taxes over bequest taxes which can counterbalance this extra intertemporal distortion

and explain why the former are used more heavily than the latter?

There are potentially several factors which can play a role. It could be that real world

individuals do not understand well the economic models at work, and/or are subject to various

forms of tax illusion (e.g. maybe smaller taxes are less visible than big ones; or maybe people

always prefer to pay taxes later in life rather than when they inherit). This can certainly be part

of the explanation, especially in light of the extremely low observed levels of e¤ective bequest

tax rates (which might well be far below socially optimal levels). But we feel that there must

also exist some additional, deeper reasons. One interesting argument put forward by Cremer,

Pestieau and Rochet (2003) is that in case a comprehensive bequest tax is informationally or

administratively impossible, then it is e¢ cient to use capital income taxation. The problem is

that it is not at all obvious that the latter is less informationally demanding than the former.

Here we explore two di¤erent mechanisms explaining why lifetime capital taxes are more

heavily used than one-o¤ inheritance taxes: the existence of a fuzzy frontier between capital

income and labor income �ows; and the existence of uninsurable idiosyncratic shocks to rates

of return. Each mechanism allows us to explore di¤erent aspects of the optimal capital tax

35See section 5 below for such an extension.
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mix. We certainly do not pretend that these are the only important factors. In particular,

other forms of capital market imperfections, such as borrowing constraints, might well play an

important role as well.36

4.2 Fuzzy frontier between capital and labor income �ows

The simplest rationale for taxing capital income is the existence of a fuzzy frontier between

capital and labor income �ows. For instance, self employed individuals can to a large extent

decide which part of their total compensation takes the form of wage income, and which part

takes the form of dividends or capital gains. Opportunities for income shifting also exist for a

large number of top executives (e.g. via stock options and capital gains). If the gap between

the labor income tax rate �L � 0 and the capital income tax rate �K � 0 is substantial, then

it is likely that many taxpayers will re-arrange their business and compensation package so

as to minimize their tax burden. There is extensive empirical evidence that income shifting

is a signi�cant issue, and accounts for a large fraction of observed behavioral responses to

tax changes.37 At some level, this fuzzy-frontier problem can be viewed as the consequence

of capital markets imperfections. With �rst-best markets, full �nancial intermediation and

complete separation of ownership and control, there should be no problem to distinguish the

returns to capital services from the returns to labor services.

For simplicity, here we assume �full fuziness�: individuals can costlessly and limitlessly shift

their labor income �ows into capital income �ows, and vice versa. That is, both income �ows

are informationally undistinguishable for the tax administration, so both tax rates have to be

the same: �L = �K = �Y , where �Y � 0 is the comprehensive income tax rate.38 Under this

assumption, our basic optimal tax formula (Proposition 2) can be easily extended, and the new

�scal optimum can be characterized as follows:

Proposition 5 (comprehensive income tax cum inheritance tax). Under the full-fuziness

assumption, the zero-bequest-receivers optimum involves a bequest tax �B and a comprehensive

36Borrowing constraints can be exacerbated by indivisibility problems and may force successors to quickly sell
their property in order to pay large inheritance taxes. Anecdotal evidence suggests that this is an important
reason why people dislike inheritance taxes (� death taxes �) and prefer to pay small property taxes and other
lifetime capital taxes during 30 years rather than a large bequest tax all at once.
37See the recent survey by Saez, Slemrod, and Giertz (2011) for US evidence and Pirttila and Selin (2011) for

an analysis of the dual income tax system introduced in Finland in 1993.
38Note this rationale for a comprehensive income tax treating equally all forms of income was often mentioned

in the original Haig-Simons literature.
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income tax �L = �K = �Y such that:

�B =
�B(1 +R)� �KR

(1 +R)� �KR
and �L = �K = �Y =

� � �Bby
1� �

;

With : �B =
1� (1� �� �)sb0=by

1 + eB + sb0

Proof . The proof is essentially the same as Proposition 2, except that the steady-state

government budget constraint is now: �L(1 � �) + �Bby + (1 � �B)�Kby
R
1+R

= � . De�ne

�B = �B + (1 � �B)�K
R
1+R

the adjusted bequest tax rate (including the tax on the return to

bequest). so that �L =
� � �Bby
1� �

. After-tax, capitalized bequest left to next generation can be

rewritten as follows: �bt+1i = (1� �B)[1 + (1� �K)R]bt+1i = (1� �B)(1 +R)bt+1i:The elasticity

eB of steady-state by with respect to (1� �B) (for given �K) is the same as the elasticity of by

with respect to (1� �B). To complete the proof, one simply needs to look at small changes in

d�B; d�L rather than d�B; d�L (see appendix proof for details). QED

Example 6.Assume � = 30%; � = 30%; sb0 = 10%; eB = 0, and r = 4%; H = 30, so that

erH = 1 +R = 3:3

If by = 20%, then �B = 73% , so that �L = �K = �Y = 22% and �B = 68%

If by = 15%, then �B = 67% , so that �L = �K = �Y = 29% and �B = 59%

If by = 10%, then �B = 55% , so that �L = �K = �Y = 35% and �B = 41%

If by = 5%, then �B = 18% , so that �L = �K = �Y = 42% and �B = �16%

The impact of comprehensive income taxation is straightforward: it reduces somewhat the

level of socially optimal inheritance tax rates. With plausible inheritance �ows, say by '

10 � 20%, the socially optimal inheritance tax rate is typically much larger than the socially

optimal labor tax rate, so that taxing capital income at the same rate as labor income has a

relatively limited impact. For instance, with by = 15% (which is the level prevailing in France

in 2010), then taxing capital income at rate �L = �K = �Y = 29% implies that the bequest tax

rate can be reduced from �B = 67% to �B = 59% In other words, a comprehensive income tax

system reduces the need for inheritance taxation, but not by that much.

For very small inheritance �ows, say by = 5% (prevailing in the 1950s-1970s in countries

strongly hit by war destructions, such as France and Germany), the e¤ect is much larger. Socially

optimal inheritance tax rates are relatively small to start with, and should actually become
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negative in case we tax capital income at the same rate as labor income. This might explain

the large number of exemptions for capital income that were created during the reconstruction

period, particularly in countries like France or Germany. When inheritance �ows are in�nitely

small, then one should exempt capital income from taxation in order to encourage new capital

accumulation. The problem, however, is that this may lead to income shifting, and that such

exemptions tend to persist over time (or actually to extend during the 1990s-2000s, in the

context of tax competition), even though the reconstruction period is by now well over and

inheritance �ows are back to much higher levels.

Of course, whether income shifting is su¢ ciently massive to justify fully aligned income tax

rates (�L = �K = �Y ) is very much an open empirical issue. Here we assumed full-fuzziness, so

that the tax administration is forced to align rates. In practice, only a fraction of the population

can easily shift capital into labor income (and vice-versa). This has to be weighted against costs

of capital taxation in a model with life-cycle savings. Therefore the resulting optimal tax gap

�� = �L � �K � 0 should depend negatively on the fraction of income shifters and positively

on the intertemporal elasticity of substitution.39 Note also that the administrative capability to

distinguish between capital and labor income �ows and to impose separate tax rates is to some

extent endogenous. E.g. it is easier if for the tax administration to observe or estimate capital

income if taxpayers �le annual wealth declarations in addition to annual income declarations.

4.3 Uninsurable idiosyncratic shocks to rates of return

We now assume away the fuzzy-frontier problem. That is, we assume that the administration

can tax at separate rates capital and labor income �ows, and we analyze the implications of

uninsurable idiosyncratic shocks to rates of return for the optimal tax mix.

The basic intuition is straightforward. From a welfare viewpoint, as well as from an optimal

tax viewpoint, what matters is capitalized bequest ~bti = btie
rtiH , not raw bequest bti. But at the

time of setting the bequest tax rate �B, nobody has any idea about the future rate of return on

a given asset is going to during the following 30 years. I.e. nobody knows what ertiH is going

to be. Rates of return are notoriously di¢ cult to predict, and they vary enormously over assets

and across individuals. So it makes more sense to charge part of the tax burden via bequest

39Alternatively if one assumes a �nite elasticity of income shifting with respect to the gap in tax rates, then
the optimal tax gap will depend negatively on this elasticity (see Piketty, Saez, Stantcheva (2011)). Here we
implicitly assumed an in�nite elasticity, so that tax rates have to be exactly equal.
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taxation �B, and part of the tax burden via lifetime capital taxation �K , - possibly a much

larger part, in case the uncertainty about future returns is very large.

E.g. take someone who inherited a Paris apartment worth 100,000e(in todays euros) in

1972. At that time nobody could have guessed that this asset would worth one or two millions

e by 2012. So instead of charging a very large bequest tax rate at the time of asset transmission,

it might be collectively more e¢ cient to charge a moderate bequest tax in 1972, and then to tax

the asset continuously between 1972 and 2012, via property taxes and/or rental income taxes.

In order to capture this intuition and solve for optimal tax rates, we assume that individual

life-time rates of returns Rti = ertiH�1 vary across individuals. Let us denote by R the aggregate

rate of return across all individuals. We assume that shocks Rti are idiosyncratic so that there

is no risk in aggregate.

In the case where Rti is exogenous to the behavior of individuals, then it is clearly optimal

for the government to set �K = 100% to insure individuals against risky returns. In e¤ect, the

government is replacing risky individual returns Rti by the aggregate return R , thereby provid-

ing social insurance. Standard �nancial models assume that individuals can insure themselves

by diversifying their portfolios but in practice self-insurance is far from complete.

In order to make the problem non trivial (and more realistic), we introduce moral hazard, i.e.

we assume that the individual random return Rti(eti). depends on some individual, unobservable

e¤ort input eti. Importantly, we assume that the return conditional on e¤ort remains stochastic

so that the government cannot infer individual e¤ort eti from observing individual capital income

and the individual stock of wealth. Without loss of generality, assume a simple linear relationship

between the probability Rti to and e¤ort eti:

Rti = �eti + "ti;

where "ti is a purely random iid component with mean R0 � 0. Hence the expected return R

is just equal to the product of e¤ort productivity parameter � and e¤ort eti. One can think of

eti as the e¤ort that one puts into portfolio management: how much time one spends checking

stock market prices, looking for new investment opportunities, monitoring one�s �nancial inter-

mediaries and �nding more performing intermediaries, etc. Parameter � measures the extent

to which rates of return are responsive to e¤ort. When � is close to 0, Rti is almost a pure

noise: returns are determined by luck. Conversely when � is large (as compared to the mean

and variance of "ti), Rti is determined mostly by e¤ort.
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We assume that the e¤ort disutility cost C(eti) is proportional to portfolio size, so that in

e¤ect individuals with di¤erent levels of inherited wealth end up with the same distribution of

returns (and in particular the same average return). That is, we assume C(eti) = (1��B)btic(eti),

where (1� �B)bti is portfolio size (net-of-tax bequest) and c(eti) is a convex, increasing function

of e¤ort.40

To simplify further the derivations, we assume that C(eti) enters the utility function as a

monetary cost, so that the individual maximization programme and budget constraint look as

follows:

maxVti = V (cti; wti;�bt+1i) s:t: cti+wti � eyti = (1��B)[1+(1��K)Rti]bti+(1��L)yLti�(1��B)btic(eti)
It follows that optimal e¤ort eti = e is the same for all individuals and is given by:

eti = e s.t. c0(e) = �(1� �K)

From this, we can de�ne eR the elasticity of the aggregate rate of return R = �e with respect

to the net-of-tax rate 1 � �K .41 We view eR as a free parameter, which can really take any

value, and which in principle can be estimated empirically. So for instance if � is su¢ ciently

small, i.e. if luck matters a lot more than e¤ort in order to get a high return, then eR can be

arbitrarily close to zero. Conversely if � is su¢ ciently large, i.e. if returns are highly responsive

to e¤ort, then eR can be arbitrarily large.42

Unsurprisingly, the optimal capital income tax rate �K . depends negatively upon the elas-

ticity eR. If eR is close to zero, then the government should provide full insurance by taxing

capital income at rate �K = 100%. Conversely, if eR is su¢ ciently large, then the disincentive

e¤ects of taxing capital income are so large that one should have no capital income tax at al

(�K = 0%). Unfortunately, there exists no simple closed-form formula for the intermediate case,

40It would be interesting to introduce scale economies in portfolio management (i.e. by assuming that cost
rises less than proportionally with portfolio size), so as to generate the realistic prediction that higher portfolios
tend to get higher returns (at least over some range). We leave this issue to future research.
41Alternatively, one could assume non-monetary disutility cost C(eti), so that individuals maximize Uti =

Vti � C(eti). If Vti = V (cti; wti;�bt+1i) is homogeneous of degree one, we have V i = �i � ~yti, so that optimal
e¤ort eti is given by: c0(eti) = �i�(1 � �K). So eti varies with individual taste parameters (and also with risk
aversion, which needs to be introduced-otherwise idiosyncratic returns shocks do not matter; see appendix).
This complicates the analysis and brings little additional insight.
42The elasticity eR also depends on the curvature of the e¤ort cost function. E.g. if c(e) = e1+�=(1+ �), then

e = [�(1� �K)]1=�, and R = R0 + �1+1=�(1� �K)1=�.
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so one needs to use numerical solutions methods in order to calibrate the optimal tax rate, as

is illustrated by the example below.

Proposition 6 (optimal capital income tax). With uninsurable idiosyncratic shocks to

rates of return, then the zero-bequest-receivers tax optimum involves a bequest tax �B, a capital

income tax �K and a labor income tax �L such that:

(a) If eR ! 0, then �K ! 100%, �B ! �B0 =
�B(1 +R)� �KR

(1 +R)� �KR
= �B(1 + R) � R < �B

and �L !
� � �Bby
1� �

(with �B =
1� (1� �� �)sb0=by

1 + eB + sb0
)

(b) If eR is su¢ ciently small, then �K > �L

(c) There exists eR > 0 s.t. if eR ! eR, then �K ! 0%��B ! �B and �L !
� � �Bby
1� �

> �K

(d) If eR is su¢ ciently large, then �K < �L

Example 7.Assume � = 30%; � = 30%; s = 10%; eB = 0; z = 0%; �z = 100%; �zxz =

50%; r(�K = 0%) = 4%; g = 2%; H = 30, so that e(r�g)H = 1:82. Those simulations are done

with MATLAB assuming R0 = 0, � = 1 and iso-elastic cost of e¤ort c(R) = R �(R=R)1+1=eR=(1+

1=eR). See appendix for details.

If eR = 0:0 then �K = 100%, �B = 9%, and �L = 34%.

If eR = 0:1 then �K = 78%, �B = 35%, and �L = 35%.

If eR = 0:3 then �K = 40%, �B = 53%, and �L = 36%.

If eR = 0:5 then �K = 17%, �B = 56%, and �L = 37%.

If eR = 1 then �K = 0%, �B = 58%, and �L = 38%.

These simulations rely on simplifying assumptions and should be viewed as illustrative and

exploratory.

In particular, we know very little about what should be considered a reasonable value for the

elasticity eR of the macro rate of return R with respect to the net-of tax rate 1� �K . Available

macroeconomic evidence shows that aggregate rates of return, factor shares and wealth-income

ratios are relatively stable over time and across countries, which -given that taxes vary a lot-

would tend to suggest relatively low elasticities eR (say, eR = 0:1� 0:2 at most).43 This would

43It could be that when some individuals put higher e¤ort eti, then the way they obtain higher returns Rti is
mostly at the expense of others, i.e. the aggregate R is very little a¤ected. In the extreme case where this is a
pure zero-sum game (R �xed), then the relevant elasticity is eR = 0, and the optimal tax rate is �K = 100%.
For a model based upon pure rent-seeking elasticities, see Piketty, Saez and Stantcheva (2011).
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seem to imply that the optimal capital income tax rate is much larger than the optimal labor

income tax rate. E.g. if eR = 0:1 then in our simulations �K = 78% and �L = 35%.

However our simulations also show that the results are very sensitive to the exact value of eR

. E.g. if eR = 0:5 then capital income should be taxed much less than labor income: �K = 17%,

and �L = 37%. This is because in the model a lower return R is not only bad for the capital

income tax base: it also has a negative impact on the aggregate steady-state bequest �ow by.44

In addition, these simulations do not take into account the distortionary impact of �K on

intertemporal consumption allocation along the life-cycle (the magnitude of which depends on

the intertemporal elasticity of substitution). A proper empirical calibration should take this

into account. We leave this to future research.

The main contribution here is simply to provide a simple conceptual framework which can

be used to think about the pros and cons of having �K > �L or �K < �L. In particular, we

clarify the conditions under which it might be optimal to tax capital income at very high rates.

It is interesting to note that the countries which have experienced very large top inheritance

tax rates (particularly the U.S. and in the U.K. between the 1930s and 1980s; see Figure 1

above) also experienced very large top capital income tax rates (see Figures 2-3) In particular,

during the 1970s, both the U.S. and the U.K. applied higher top rates on ordinary unearned

income (such as capital income) than on earned income (i.e. labor income). One plausible way

to account for this fact is to assume that policy makers had in mind a model very close to ours,

with a relatively low elasticity of rates of return eR with respect to e¤ort, and with strongly

meritocratic social preferences.45

More generally, �K > �L was actually the norm in most income tax systems when the

latter were instituted in the early 20th century (generally around 1910-1920). At that time

income tax systems typically involved a progressive surtax on all forms of labor and capital

income (including imputed rent), and a set of schedular taxes taxing wage income less heavily

than interest, dividend, rent or business pro�t. In the more recent period, it has become more

common to have �K < �L, via special tax exemptions for various categories of capital income.

44This explains why the elasticity eR at which the optimal tax rate �K ceases to be positive is �nite. See
appendix.
45Another possible explanation is that U.K. and U.K. policy makers put lower social welfare weights on

individuals with high return shocks (�lucky speculators�) than on individuals with high labor income (strong
meritocratic view). Yet another way to view the problem is to introduce speculative e¤ort into the model (higher
e¤ort brings higher returns, but at the expense of others; see above).
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But we feel that this mostly re�ects a rising concern for international tax competition and tax

evasion and the persistent lack of tax coordination (the view is that it is easier to reallocate one�s

�nancial portfolio abroad than one�s labor income, and that it is harder to apply the residence

principle of taxation for capital income; or at least this is a view that became very in�uential

in a number of small open economies, typically in Nordic countries), rather than considerations

about the global welfare optimum.

5 Extensions

5.1 Elastic Labor Supply

So far we assumed inelastic labor supply. We now show how the optimal labor and bequest tax

rates should be set simultaneously in a model with elastic labor supply.

In order to ensure balanced growth path (and to avoid exploding labor supply), we need to

assume a speci�c functional form for the disutility of labor:

Ui = Vie
�hi(l), or, equivalently: Ui = log Vi � hi(l)

where l is labor supply and hi(:) is increasing and convex (and could di¤er across individuals).

Individual i labor income is yLti = vt�ili where �i is individual productivity (with mean one

across the population) and vt = voe
gHt is the average wage rate of generation t.46 We denote by

vti = (1� �L)vt�i the net-of-tax wage of individual i.

Individual i chooses bt+1i and li to maximize:

log Vi(vtili + (1� �B)(1 +R)bti � bt+1i; bt+1i; bt+1i(1� �B))� h(li)

Because Vi is homogeneous of degree one, we have Vi = � � ~yti and hence

log V i � h(li) = cte+ log(vtili + bti)� h(li);

where bti = (1 � �B)(1 + R)bti is net-of-tax capitalized bequest (i.e. non-labor income). The

�rst order condition for li is:

h0(li) =
vti

vtili + bti

46As discussed above vt = FL = v0(1 +G)t grows at rate 1 +G per generation.
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Hence (uncompensated) labor supply li = l(vti; bti) is a function of the net-wage and non-

labor income homogeneous of degree zero. Hence, uniform growth in the wage rate and non-labor

income leaves labor supply unchanged. Therefore, we can have a balanced growth path. l(vti; bti)

naturally increases with vti and decreases with bti.

The government budget constraint de�nes �L as a function of �B as we had before. Consider

a small reform d�B and let d�L be the required labor tax rate adjustment needed to maintain

budget balance. Di¤erentiating the government budget constraint, we have:

d�LyLt + �LdyLt + d�Bbt + �Bdbt = 0;

which can be rewritten as:

d�LyLt

�
1� �L

1� �L
eL

�
= �d�Bbt

�
1� �B

1� �B
eB

�
;

where

eB =
1� �B
bt

dbt
d(1� �B)

and eL =
1� �L
yLt

dyLt
d(1� �L)

;

are the elasticities of bequests and labor income with respect to their net-of-tax rates. Im-

portantly, note that those elasticities are general equilibrium elasticities where both �L and

�B change together to keep budget balance. d�L > 0 and d�B < 0 discourages labor supply

through a reduction in the wage rate and through income e¤ects as inheritances received are

larger (Carnegie e¤ect). d�B > 0 and d�L < 0 discourages bequests through the price e¤ect but

indirectly encourages bequests as individuals keep a larger fraction of their labor income.

Proposition 7 ( zero-bequest-receivers optimum with elastic labor supply). Under

adapted ergodicity assumptions 1-3, and the following welfare weights: !z� = 1 if z = 0, and

!z� = 0 if z > 0, then

�B =
1� (1� �� � � (1 + eL))sb0=by

1 + eB + sb0 � (1 + eL)
and �L =

� � �Bby
1� �

;

with sb0 = E(sbijzi = 0) = the average bequest taste of zero bequest receivers (weighted by

marginal utility�labor income).

�B increases with eL i¤ �(1 + eB) + sb0(1� �) � by

If eL ! +1 (in�nitely elastic labor supply), then �B ! �=by and �L ! 0

If eB ! +1 (in�nitely elastic bequest �ow), then �B ! 0 and �L ! �=(1� �)
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If sb0 = 0 (zero-receivers have no taste for bequests), then �B = 1=(1 + eB) is the revenue

maximizing rate.

Proof: The proof is similar to that of Proposition 2 (see appendix proof for complete

details). QED

This formula is similar to the inelastic case except that eL shows up both in the numerator

and denominator. The inequality �(1 + eB) + sb0(1� �) � by is very likely to be satis�ed. E.g.

if � = 30% and by = 15%, it is satis�ed even for eB = 0 and sb0 = 0. That is, a higher labor

supply elasticity eL generally implies a higher bequest tax rate �B.

Intuitively, a higher labor supply elasticity makes high labor taxation less desirable, which

for given aggregate revenue requirements makes the optimal tax mix tilt more towards bequest

taxes (and more generally towards capital taxes in presence of capital market imperfections,

which we do not model here in order to illuminate the pure labor supply e¤ect).

If sb0 = 0, then we obtain again the revenue maximizing rate simple formula �B = 1=(1+eB).

The reason is the following: at �B = 1=1(1 + eB), we have d�L = 0 for any small d�B. Hence,

the labor supply response becomes irrelevant.47

The following examples illustrate the quantitative impact of eL. When both bequests and

labor supply are elastic, the planner faces a race between two elasticities. In case labor is more

elastic than bequests, then incentive e¤ects reinforce the case for taxing labor income less than

bequests. With by = 15% (current French level), it is clear that for reasonable elasticity values

one wants to tax labor less than bequests. I.e. one would need very large bequest elasticities -

above one - and zero labor supply elasticity to reverse this conclusion.

Example 8.Assume � = 30%; � = 30%; sb0 = 10%; by = 15%

If eB = 0 and eL = 0, then �B = 67% and �L = 29%:

If eB = 0 and eL = 0:2, then �B = 69% and �L = 28%:

If eB = 0 and eL = 1, then �B = 78% and �L = 26%:

If eB = 0:2 and eL = 0, then �B = 56% and �L = 31%:

If eB = 0:2 and eL = 0:2, then �B = 59% and �L = 30%:

If eB = 0:2 and eL = 1, then �B = 67% and �L = 29%:

47This is analogous to the fact that 1=(1 + eL) in the revenue maximizing rate in optimal linear labor income
taxation even if there are income e¤ects.
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5.2 Closed economy

So far we focused upon the small open economy case. I.e. we took as given the world instanta-

neous rate of return r � 0 (and the corresponding generational return 1 +R = erH).

We now show that our optimal tax formulas also apply to the closed economy case.

In a closed economy, the domestic capital stock Kt is equal to domestic inheritance (i.e.

Kt = Bt), and the generational rate of return 1 +Rt = ertH is endogenously determined by the

marginal product of domestic capital:

Rt = FK =
�

�t

With: �t =
Kt

Yt
= byte

�rtH= domestic capital-output ratio.

This can be rewritten:
Rt

1 +Rt
=

�

byt
. I.e. closed economies with larger levels of capital

accumulation and inheritance �ows have lower rates of return.

The rest of the model is unchanged. Under assumptions 1-3, then for any given tax policy

(�B; �L), we again have a unique long run steady-state: byt ! by, Rt ! R, 	t ! 	 (Proposition

1). This follows from the fact in the open economy case the long run by is an increasing function

of the exogenous rate of return R (i.e. long run capital supply is upward sloping). Since the

demand for capital is downward sloping, there exists a unique long run rate of return R clearing

the capital market:
R

1 +R
=
�

by
.

The only di¤erence with the open economy case is that a small tax change d�B > 0 now

triggers long run changes dR > 0 and dv < 0 (where v = FL is the wage rate). I.e. higher

bequest taxes lead to lower capital accumulation (assuming eB > 0), which raises the marginal

product of capital and reduces the marginal product of labor. However the envelope theorem

implies that these two e¤ects exactly o¤set each other at the margin, so that the optimality

conditions for (�B; �L) are wholly una¤ected as in the standard optimal tax theory of Diamond

and Mirrlees (1971), i.e. we keep the same optimal formulas as before (Proposition 2 and

subsequent propositions). The important point is that the elasticity eB entering the formula

is the pure supply elasticity (i.e. not taking into account the general equilibrium e¤ect), and

similarly for the elasticity eL in the case with elastic labor supply.

Proposition 8 (zero-bequest-receivers optimum with closed economy). Under adapted

ergodicity assumptions 1-3, and the following welfare weights: !z� = 1 if z = 0, and !z� = 0 if
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z > 0, then

�B =
1� (1� �� �)sb0=by

1 + eB + sb0
and �L =

� � �Bby
1� �

;

Proof. See appendix.

5.3 Overlapping generations and lifecycle savings

So far we focused upon a simple discrete time model where each generation lives for only one

period (which we interpreted as H-year long, say H = 30). We assume that consumption took

place entirely at the end of the period, so that in e¤ect there was no lifecycle saving.

We now show that our results and optimal tax formulas can be extended to a full-�edged,

continuous time model with overlapping generations and lifecycle savings. As far as optimal

inheritance taxation is concerned, we keep the same closed-form formulas for optimal tax rates.

Regarding optimal lifetime capital taxation, we keep the same general, qualitative intuitions,

but one needs to use numerical methods in order to compute the full optimum.

We assume the following deterministic, stationary, continuous-time OLG demographic struc-

ture.48 Everybody becomes adult at age a = A, has one kid at age H > A, and dies at age

D > H. So everybody inherits at age a = I = D�H > A. E.g. if A = 20, H = 30 and D = 70,

then I = 40. If D = 80, then I = 50. This is a gender free population.

For simplicity we assume zero population growth (at any time t, the total adult population

Nt includes a mass one of individuals of age a 2 [A;D] and is therefore equal toNt = D�A), and

inelastic labor supply (each adult i supplies one unit of labor lti = 1 each period, so aggregate

raw labor supply Lt = Ntht = (D � A)h0e
gt).

We denote by ~Nt the cohort receiving inheritance at time t (born at time t � I). Each

individual i 2 ~Nt solves the following �nite-horizon maximization program:

maxVti = V (Uti; wtiD;�bt+Hi)

s:c: ~cti + wtiD � ~yti = (1� �B)~bti + (1� �L)~yLti

With: Uti = utility derived from lifetime consumption �ow (ctia)A�a�D
48In order to obtain meaningful theoretical formulas for inheritance �ows (i.e. formulas that can be used with

real numbers), we need a dynamic model with a realistic age structure. Models with in�nitely lived agents or
perpetual youth models will not do, and standard two or three-period OLG models will not do either. Here we
follow the continuous-time OLG model introduced by Piketty (2010, sections 5-7 and appendix E; 2011, section
5).
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wtiD = end-of-life wealth = bt+Hi = pre-tax bequest left to next generation

�bt+Hi = (1� �B)bt+Hie
rH = after-tax capitalized bequest left next generation

~cti =
R a=D
a=A

ctiae
r(D�a)da = end-of-life capitalized value of consumption �ow ctia

~yti = end-of-life capitalized value of total lifetime resources

~bti = btie
r(D�I) = btie

rH = end-of-life capitalized value of received bequest bti

~yLti =
R a=D
a=A

yLtiae
r(D�a)da = end-of-life capitalized value of labor income �ow yLtia

�B = bequest tax rate, �L = labor income tax rate

In the same way as in the discrete-time model, our optimal tax formulas hold for large

classes of utility functions Vti and Uti, using a su¢ cient-statistics approach. Regarding Uti, we

assume that it is proportional to ~cti: Uti = �~cti. This holds if Uti takes a standard discounted

utility form Uti = [
R a=D
a=A

e��(a�A)c 1�tia ]
1

1� , as well as for less standard (but maybe more realistic)

utility speci�cations involving for instance consumption habit formation.49 Regarding Vti, for

notational simplicity we again focus upon the Cobb-Douglas case:

V (U;w;�b) = U1�sbi�swiwswi�bsbi (swi � 0; sbi � 0; si = swi + sbi � 1)

This simple form implies that individual i devotes a fraction si = swi + sbi of his lifetime

resources to end-of-life wealth, and a fraction 1 � si to lifetime consumption. Our results

again hold with CES utility functions, and actually with all utility functions V (U;w;�b) that are

homogenous of degree one

We also need to specify the lifetime structure of labor productivity shocks. To keep notations

simple, we assume that that at any time t the average productivity ht is the same for all cohorts,

and that each individual i keeps the same within-cohort normalized productivity �ia = �i during

his entire lifetime.50 So we have: yLtia = �iyLte
g(a�I). It follows that the end-of-life capitalized

value of labor income �ows ~yLti can be rewritten:

~yLti = �i�(D � A)yLte
rH (10)

with: � =
e(r�g)(I�A) � e�(r�g)(D�I)

(r � g)(D � A)

49See Appendix A, proof of proposition 9.
50In e¤ect we assume a �at, cross-sectional age-productivity pro�le at the aggregate level. The � formula can

easily be extended to non �at pro�les (e.g. with replacement rate � � 1 above age retirement age R � D) and
to more general demographic structures (e.g. with population growth n � 0).
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Intuitively, � corrects for di¤erences between the lifetime pro�les of labor income �ows vs.

inheritance �ows (dollars received earlier in life are worth more). When labor income �ows acrue

earlier in life than inheritance �ows then � > 1 (and � < 1 conversely with early inheritance).

In practice, inheritance tends to happen around mid-life, and � is typically very close to one.51

The individual-level transition equation for bequest is now the following:

bt+Hi = si[(1� �L)eyLti + (1� �B)btie
rH ] (11)

In the �no taste memory�case (tastes are drawn i.i.d. for each cohort), then by linearity

the individual transition equation can be easily be aggregated into:

bt+H = s[(1� �L)�(D � A)yLte
rH + (1� �B)bte

rH ] (12)

The aggregate bequest �ow-domestic output ratio is de�ned by: byt =
Bt
Yt
=

bt
Ntyt

=
bt

(D � A)yt
. Dividing both sides of the previous equation by per capita domestic output yt, we obtain the

following transition equation for byt:

byt+H = e(r�g)H [s(1� �L)�(1� �) + s(1� �B)byt] (13)

In case assumption 2 is satis�ed, then byt ! by =
s(1� �L)�(1� �)e(r�g)H

1� s(1� �B)e(r�g)H
as t! +1.

I.e. we obtain exactly the same steady-state formula as in the discrete-time, one-period

model, except for the correcting factor � (which in practice is close to one).

Note that byt is now de�ned as the cross-sectional, macroeconomic ratio between the aggre-

gate inheritance �ow Bt transmitted at a given time t and domestic output Yt produced at this

same time t. This is approximately the cross-sectional inheritance-national income ratio plotted

on Figures 4-5.52

We impose a cross-sectional government budget constraint:

�LYLt + �BBt = �Yt

i:e: : �L(1� �) + �Bby = � (14)

In the no-taste-memory special case, the steady-state formula for by along a budged-balanced

path can therefore be rewritten as follows:

51For detailed empirical calibrations and theoretical extensions of the � formula, see Piketty (2010, sections
5-7, and appendix E, tables E5-E10).
52See section 3 above. National income is close to domestic output in countries with small net foreign asset

position.
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by =
s�(1� � � �)e(r�g)H

1� s[1 + (�� 1)�B]e(r�g)H
(15)

It follows that the long run elasticity eB of by with respect to 1 � �B is positive if � < 1

(inheritance happens earlier in life than labor income receipts, so cutting bequest taxes is good

for wealth accumulation), and negative if � > 1 . If inheritance happens around mid-life, then

� ' 1 and eB ' 0. Of course, the Cobb-Douglas form and the no-taste-memory assumption are

restrictive, and in general eB could really take any value, just like in the discrete-time model.

Next, one can easily show that we obtain exactly the same optimal bequest tax formula for

the continuous-time model with overlapping generations and lifecycle savings as in the simpli�ed

discrete-time model where each generation leaves only one period:53

Proposition 9 (continuous time model). Under assumptions 1-3, linear social welfare (� =

0), and the following welfare weights: !z� = 1 if z = 0, and !z� = 0 if z > 0, then

�B =
1� (1� �� �)sb0=by

1 + eB + sb0
and �L =

� � �Bby
1� �

with sb0 = E(sbijzi = 0) = the average bequest taste of zero bequest receivers.

Proof. The proof is essentially the same as proposition 2. See appendix for details. QED

Regarding optimal lifetime capital taxation, the key di¤erence is that with lifecycle savings

we now have an extra distortion. That is, positive tax rates on capital income �K > 0 distort

the intertemporal allocation of consumption (ctia)A�a�D within a lifetime. The magnitude of

the associated welfare cost depends on the intertemporal elasticity of substitution � = 1=

(which might well vary across individuals). As long � is relatively small, the impact on our

optimal capital tax results should be moderate. Unfortunately there does not seem to exist any

simple closed-form formula taking these e¤ects into account, so one needs to resort to numerical

solutions. We leave this to future research.

In presence of lifecycle savings, one might also want to think about more imaginative optimal

tax structures than the conventional taxes on inheritance receipts and labor and capital income

�ows that we have been considering so far.

53If we were to adopt a generational government budget constraint rather than a cross-sectional government
budget constraint, then the � correcting factor would enter the formula for the optimal �B . As long as � ' 1
this would make little di¤erence.
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One might �rst think that the ideal tax system should be based upon total capitalized

lifetime resources, i.e. individual i 2 ~Nt should pay tax � ti = �(~yti) (with ~yti = ~bti + ~yLti).

Intertemporal consumption choices would be undistorted. There are three problems with this.

First, one might want to put di¤erent welfare weights !z� on inherited and earned resources

(meritocratic social preferences), in which case it is desirable to have separate tax schedules.

Next, even with uniform welfare weights on all individuals with similar total resources, it might

be desirable to have separate tax schedules because elasticities eB and eL are di¤erent. Finally,

the problem with this solution is that one cannot wait until the end of life in order to compute

individual capitalized resources and tax liabilities.

In the absence of idiosyncratic shocks to rates of returns (and assuming away fuzzy frontier

problems), one should just charge the relevant bequest tax rate �B > 0 at the time of inher-

itance, and have no capital income tax (�K = 0). But with idiosyncratic shocks rit one does

not know the right rate of tax at the time of inheritance. With eR = 0, then one should simply

set �K = 100% and replace rit by the average return rt = E(rit), i.e. the government should

provide safe savings accounts o¤ering the average, macroeconomic rate of return to everybody.

But with eR > 0, one faces a complex trade-o¤ between the eR distortion and the � distortion.

Alternatively, one might want to try tax di¤erently the returns to inherited wealth and the

returns to life-cycle wealth. In a way this is what existing tax systems attempt to do when they

o¤er preferential tax treatment for particular forms of long term savings (pension funds). One

could also try to generalize this by having individual wealth accounts where we recompute the

updated capitalized value of inheritance each period and charge the correct extra tax (whether

the individual saved or consumed the extra income). But this is fairly complicated, so it might

be easier to tax all actual returns, especially if � is small. These are important issues for future

research.

5.4 Population growth

So far we assumed that all individuals had exactly one kid, so that population was stationary:

Nt = 1. All results can be easily extended to a model with population growth.

I.e. assume that all individuals have on average 1+N kids, so that population grows at rate

1 +N = enH per generation: Nt = N0e
nHt. E.g. if everybody has on average 1 +N = 1:5 kids

(i.e. 2(1 +N) = 3 kids per couple), then total population rises by N = 50% by generation, i.e.

44



by n = log(1 +N)=H = 1:4% per year (with H = 30).

The rest of the model is unchanged. Average productivity ht is again assumed to grow

at some exogenous rate 1 + G = egH per generation: ht = h0e
gHt. Aggregate human capital

Lt = Ntht = N0h0e
(n+g)Ht. grows at rate (1 + N)(1 + G) = e(n+g)H per generation. Taking as

given the world, generational rate of return R = erH � 1, pro�t maximization implies that the

domestic capital input Kt is chosen so that FK = R, i.e. Kt = �
1

1��Lt (with � = Kt

Yt
= �

R
).

So output Yt = �
�

1��Lt = �
�

1��N0h0e
(n+g)Ht also grows at rate (1 + N)(1 + G) = e(n+g)H per

generation. So does aggregate labor income YLt = (1 � �)Yt. Per capita output, capital and

labor income yt; kt; yLt (= Yt; Kt; YLt divided by Nt.) grow at rate 1 +G = egH .

Individuals�preferences over wealth accumulation Vti = V (cti; wti;�bt+1i) could well be corre-

lated with their e¤ective number of children 1 + Nit. They could also have unequal tastes for

their various children. As long as ergodicity assumptions 1-3 are satis�ed, Proposition 1 holds,

i.e. there exists a unique steady-state for the aggregate inheritance �ow-output ratio by and

for the joint inheritance-labor distribution  (z; �). In the �no taste memory�special case, one

can easily see that the transition equation for byt = erHBt
Yt
. (where Bt = Ntbt is the aggregate

bequest �ow received by generation t) now looks as follows:

byt+1 = e(r�n�g)H [s(1� �L)(1� �) + s(1� �B)byt] (16)

So that: byt ! by =
s(1� �L)(1� �)e(r�n�g)H

1� s(1� �B)e(r�n�g)H

I.e. one simply needs to replace the productivity growth rate g by the sum of population

and productivity growth rates n + g. In societies with in�nitely large population growth (i.e.

where individuals have an in�nite number of children), inheritance does not get you very far.

Wealth gets divided so much between generations that one should rely on new output and large

saving rates in order to become rich. The formula and intuition also work for countries with

negative population growth (i.e. with N < 0), see Germany, Italy, Spain.

Next, one can see from the proof of Proposition 2 that our basic optimal tax formula, as

well as all subsequent formulas, are wholly una¤ected by the introduction of population growth.

It follows that the impact of population growth on socially optimal tax policies is the same

as the impact of productivity growth and goes through entirely via its impact on by. That is,

high population growth countries should tax capital less, because capital accumulation is less

inheritance-based and more labor-based and forward looking.
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5.5 Dynamic e¢ ciency and intergenerational redistribution

So far we imposed a period-by-period government budget constraint, i.e. we assumed that

the government could not accumulate assets nor liabilities. This implies in particular that the

government could not directly a¤ect the aggregate level of capital accumulation in the economy,

and hence could not address so-called �dynamic e¢ ciency�issues.

In the technical appendix, we show that our results go through even if it can. That is, we

allow the government to accumulate assets or liabilities, and we prove that the issue of the

optimal capital vs. labor tax mix and the issue of dynamic e¢ ciency and optimal aggregate

capital accumulation are to a large extent orthogonal.

More precisely, we prove the following. In the small open economy case, unrestricted ac-

cumulation or borrowing by the government naturally leads to corner solutions. If the world

rate of return r is larger than the Golden rule rate of return r� = � + �g (with � = social

rate of time preference and � = concavity of social welfare function),54 then the government

should accumulate in�nite assets in order to have zero taxes in the long run. Conversely, in case

r < r�, the government should borrow inde�nitely against future tax revenues. In both cases,

the economy would cease to be a small economy at some point. In the closed economy case,

the government will accumulate su¢ cient assets or liabilities to ensure that r = r�, and will

then apply the same optimal bequest and labor tax rates as in the case with a period-by-period

budget constraint (except for the interest receipt or payment term).55

This is an important point, because both issues have sometime been mixed up. I.e. a

standard informal argument in favor of small or zero capital taxation in the public debate is

the view that there is insu¢ cient saving and capital accumulation at the aggregate level.56

This argument is �awed, for a number of reasons. First, there is no general presumption that

there is too much or too little aggregate capital accumulation in the real world (it can go both

ways, depending upon the parameters of the social welfare function). Next, even if we knew for

sure that we are in a situation of excessive or insu¢ cient aggregate capital accumulation, there

54With positive population growth, the Golden rule becomes r� = �+�g+�0n where 0 < �0 < 1 is the extent
to which social welfare takes into account population growth (see appendix).
55See appendix B, proposition B3.
56E.g. it is hard to make sense of the famous Kaldor (1955) progressive consumption tax proposal without

some kind of argument saying that there is too little aggregate saving. Note also that Kaldor proposed to use
at the same time a progressive consumption tax and a progressive inheritance tax (this seems consistent with
meritocratic welfare weights !z�, but this is not made fully explicit by Kaldor).
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would exist other and more e¢ cient policy tools than the capital vs. labor tax mix in order to

cope with this. Namely, the government should accumulate assets or liabilities (depending on

whether there is too little or too much capital accumulation to start with), with little e¤ect on

optimal capital vs. labor tax formulas. Those issues have been addressed by King (1980) in the

standard OLG model.

5.6 Uninsurable aggregate shocks to rates of return

It would be interesting to extend our results to aggregate, uninsurable uncertainty about the

future rate of return (by de�nition, uncertainty at the world level is uninsurable). E.g. assume

that rt can take only two values rt = r1 � 0 and rt = r2 > r1, keeps the same value for

one generation (i.e. during H years), and follows a Markov random process with a switching

probability equal to p between generations (0 < p < 1). We note: er1H = 1+R1 < er2H = 1+R2,

The rest of the model is unchanged.

The �rst consequence is that instead of converging towards a unique steady-state inheritance

ratio by and joint distribution  (z; �) (Proposition 1), the economy now keeps switching between

a continuum of values for byt and  t. E.g. if the rate of return rt has been low for an in�nitely

long time (which happens with an in�nitely small probability), then byt is in�nitely close to

by1 (the steady-state associated to stationary rate rt = r1). Similarly, if rt has been high for

an in�nitely long time, then byt is in�nitely close to by2 > by1. In between these two extreme

values, there is a distribution of byt in between these two values, depending on how much time

the economy has spent with r1 and r2 in the recent past.

The second consequence is that socially optimal tax rates �Lt; �Bt; �Kt should now vary over

time, and in particular should depend on byt and Rt. Intuitively, we expect the optimal tax mix

to rely more on bequest taxes when the inheritance �ow is large, and to rely more on capital

income taxes when the rate of return is high. So the existence of aggregate returns shocks should

in a way reinforce the results found under idiosyncratic returns shocks (see section 4.3). However

it turns out that a complete analytical solution to this problem is relatively complicated. In

particular one needs to specify whether we again have a generation-by-generation government

budget constraint (�Lt(1 � �) + �Btbyt + �Ktbyt
Rt
1+Rt

= �), or whether we allow government

to accumulate assets when returns are high and debts when they are low (which might seem

natural). We leave this interesting extension to future research.
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5.7 Endogenous growth

So far we assumed an exogenous productivity growth rate g � 0, and looked at how g a¤ects

aggregate steady-state bequest �ows by and optimal tax rates �B. One might want to plug

in endogenous growth models into this setting. By doing so, one could generate interesting

two-way interactions between growth and inheritance.

E.g. with credit constraints, high inheritance �ows can have a negative impact on growth-

inducing investments (high-inheritance low-talent agents cannot easily lend money to low-

inheritance high-talent agents). So high inheritance could lead to lower growth, which itself

tends to reinforce high inheritance, as we see below. This two-way process can naturally gen-

erate multiple growth paths (with a high inheritance, high rate of return, low wealth mobility,

low growth steady-state path, and conversely).57 Tax policy could then have an impact on long

run growth rates, e.g. a higher bequest tax rate might be a way to shift the economy towards

a high mobility, high growth path.

The main di¢ culty with such a model would be empirical calibration. I.e. it is not too

di¢ cult to write a theoretical model with borrowing constraints and endogenous growth, but

it is hard to �nd plausible parameters to put in the model. One particular di¢ culty is that

basic cross-country evidence does not seem to bring much support to the view according to

which tax policies entail systematic e¤ects on long run growth rates. I.e. developed countries

have had very di¤erent inheritance tax policies - and more generally very di¤erent aggregate tax

rates and tax mix - over the past 100 years, but long run growth rates have been remarkably

similar (as evidenced by convergence in per capita income and output levels - from Scandinavia

to America). This explains why we chose in this paper to focus upon an exogenous growth

model. Maybe a better way to proceed would be to keep growth exogenous, and to introduce

the impact of borrowing constraints and inheritance on output and income levels. We leave this

to future research.

5.8 Tax competition

Throughout this paper we assumed away tax competition. I.e. in the small open economy

model we implicitly assumed that capital owners cannot or do not physically move to foreign

57See Piketty (1997) for a similar steady-state multiplicity.
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countries, and that each country is able to enforce the residence principle of taxation (i.e. if its

residents move their capital to foreign countries they still pay the same taxes).

Both hypotheses are highly questionable and rely on strong assumptions about international

tax coordination. In particular, in order to properly enforce the residence principle of taxation,

one needs extensive cooperation from other countries. E.g. if Germany or France or the U.S.

want to tax their residents on the basis of the assets they own in Switzerland, then they need

extensive, automatic information transmission from the Swiss tax administration, which they

typically do not get. This clearly can put strong constraints on the capital tax rates that a

given country can choose.

If we instead assume full capital mobility and tax competition between small open economies

(zero international cooperation), then in equilibrium there would be no capital tax at all: �B =

�K = 0%. In the context of the Chamley-Judd or Atkinson-Stiglitz models where the optimal

capital income tax is zero even absent tax competition, the presence of tax competition is not an

issue but rather an additional reason for the government to remove capital taxes. However, in the

context of our model where large capital and bequest taxes are desirable, such an uncoordinated

tax competition equilibrium would be suboptimal in terms of social welfare. That is, the social

welfare in each country would be larger�and, under plausible parameter values, substantially

larger�under tax coordination.

6 Conclusion

In this paper, we have developed a tractable normative theory of socially optimal taxation. Our

results challenge the conventional zero capital tax results, which in our view rely on ill-suited

models. If one assumes from the beginning that there is zero or little inheritance, and that the

bulk of wealth accumulation comes from life-cycle savings, then it is maybe not too surprising if

one concludes that inheritance taxation is a secondary issue. If one assumes from the beginning

that the long run elasticity of saving and capital supply is in�nite, then it is maybe not too

surprising if one concludes that taxing capital is a bad idea in the long run. Our model removes

these assumptions, and shows that the optimal tax mix between labor and capital depends on

the various elasticities at play and on critical distributional parameters.

At a deeper level, one of our main conclusions is that the profession�s emphasis on 1+ r as a

relative price is inappropriate, or at least excessive. We do not deny that capital taxation can
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entail distortions in the intertemporal allocation of consumption. But as long as the intertem-

poral elasticity of substitution is moderate, this e¤ect is likely to be second order as compared

to other e¤ects. In particular, as far as capital taxes are concerned, distributional issues are

likely to be �rst order. We hope our results will contribute to the emergence of more pragmatic

debates about capital taxation, based more upon relevant empirical parameters and less upon

abstract theoretical results.
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A Omitted proofs for the main results

This appendix includes omitted proofs for the formal propositions stated in the main text of

the paper.

A.1 Proof of Proposition 1 (convergence result) (section 3)

The four-dimensional, discrete-time stochastic process Xti = (zti; �ti; swt+1i; sbt+1i) is a Markov-

ian process with a state variable byt. It is governed by the exogenous transition functions

g(swt+1i; sbt+1ijswti; sbti) and h(�t+1ij�wti) and by the following endogenous transition equation

for normalized inheritance:

zt+1i = si(1� �L)(1� �)�ti + si(1� �B)byte
(r�g)Hzti (17)

The law of motion for byt is given by:

byt+1 = s�(1� �L)(1� �)e(r�g)H + sz(1� �B)e
(r�g)Hbyt

where s� = E(si�i) is the average saving taste weighted by normalized productivity, and sz =

E(sizi) is the average saving taste weighted by normalized inheritance. In the no-taste-memory

special case (tastes are drawn iid at each generation), then s� = sz = s is independent from the

distribution.

Assume that the state variable byt converges towards a given by as t ! +1. Thanks to

assumptions 1-3, the Markovian process veri�es the following �concavity property�: for any

relative inheritance positions 0 � z0 < z1 < z2, there exists T � 1 and " > 0 such that

proba(zit+T > z1 j zit = z0) > " and proba(zit+T < z1 j zit = z2) > ". In addition, the

transitions are monotonic (i.e. zt+1i(zti) dominates zt+1i(z
0
ti) in the �rst-order stochastic sense if

zti > z
0
ti). Therefore we can apply standard ergodic convergence theorems to derive the existence

of a unique stationary distribution �(z) towards which �t(z) converges, independently of the

initial distribution �0(z) (see Hopenhayn and Prescott (1992, Theorem 2, p.1397) and Piketty

(1997, Proposition 1, p.186)).

To complete the proof, one then needs to ensure that byt converges towards a unique by as

t ! +1. This is trivial in the no-taste-memory special case. In the general case, one needs

to generalize assumption 2 in order to ensure global convergence. E.g. one can assume that

the taste distribution g(swt+1i; sbt+1ijswti; sbti) puts zero mass on all si = swi + sbi > s (with

51



s(1 � �B)e
(r�g)H = 1). This is a relatively strong assumption. It can probably be relaxed to a

weaker assumption (e.g. with positive but small mass on si > s ). In any case, note that this is

relatively secondary for our purposes in this paper. I.e. even if there are multiple steady-state

values for by , then our optimal tax formulas are valid as long the tax change does not shift the

economy towards another by steady-state.

A.2 Proof of Proposition 2 (basic optimal tax formula) (section 3)

The proof is given in the main text of the paper (section 3). Here we simply discuss and clarify

the conditions under which �B =
1� (1� �� �)sb0=by

1 + eB + sb0
> 0.

We have: �B > 0 i¤by > sb0(1����). Intuitively, if we start from �B = 0 and �L = �=(1��),

then sb0(1 � � � �) = sb0(1 � �)(1 � �L) is the bequest-motive-driven fraction of income that

zero-receivers are going to leave to their children; this measures how much �B is going to hurt

them. On the other hand by measures how much �scal resources the bequest tax is going to

bring them in terms of reduced labor tax. So they want to introduce bequest taxation if and

only if the latter is larger than the former.

In the Cobb-Douglas, no-taste-memory special case, then sb0 = s, and by =
s(1� � � �)e(r�g)H

1� se(r�g)H
,

so that we get the following the condition for �B > 0:

�B > 0 i¤ (1 + s)e(r�g)H > 1

In particular, if r� g > 0, as is generally the case in the real world, then we always have �B > 0

In principle, in case g is su¢ ciently large as compared to r, then one could get a negative

bequest tax, i.e. a bequest subsidy. However, r � g < 0 would violate the transversality

condition, i.e. our steady-state maximization problem could no longer be de�ned as the limit

solution to an intertemporal maximization problem (see Appendix B). So in e¤ect we always

have �B > 0 in the no-taste-memory case. The only robust way to get �B < 0 would be assume

relatively peculiar forms of random processes for taste parameters, e.g. one must assume that

zero-receivers�bequest taste parameter sb0 is larger than the average saving taste s .

Note. The reason why g >> r ! �B < 0 in the no-taste-memory formula follows from the

fact that with a generational budget constraint �LyLt + �Bbte
rH = �Yt, then a bequest subsidy

is equivalent to issuing public debt at the beginning of the period (which is the right thing to

when g >> r). This possibility would disappear if we were to consider the following, alternative
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budget constraint: �LyLt+ �Bbt+1 = �Yt and hence �L(1��) + �Bbye�(r�g)H = � . 58 The basic

optimal tax formula for zero-receivers (Proposition 2) would then be:

� �B =
1� (1� �� �)sb0=(bye

�(r�g)H)

1 + eB + sb0
and � �L =

� � �Bbye
�(r�g)H

1� �
;

The generational budget constraint �LyLt + �Bbte
rH = �Yt is actually better suited for

empirical calibrations, since it is closer to the cross-sectional budget balance constraint in the

continuous time model with inheritance around mid-life (see section 5). I.e. if inheritance �ows

are received on average at the same time as labor income �ows by a given generation, then

the right way to model the budget balance case (zero intergenerational redistribution) is the

generational budget constraint. However for the sake of completeness it is interesting to analyze

the implications of the alternative budget constraint.

First, if r > g then � �B < �B:Intuitively, with r > g, bequests bt+1 = bte
gH left by generation

t are smaller than capitalized bequests bterH received by generation t , so from the viewpoint of

zero-receivers it is less desirable to tax bequest. Conversely, if r < g then � �B > �B:

Next, in the Cobb-Douglas, no-taste-memory special case, then by substituting �L(1��) =

� � �Bbye
�(r�g)H into the steady-state formula for by (Proposition 1), we obtain:

by =
s(1� � � �)e(r�g)H

1� se(r�g)H + s(e(r�g)H � 1)�B
(18)

It follows that eB =
dby

d(1� �B)

1� �B
by

> 0 if r > g, and that eB < 0 if r < g. Intuitively, here

is what is going on. In the initial formulation, we had eB = 0 : with a generational budget

constraint, the �B vs �L tax mix had no impact on the generational transition equation and on

steady-state by. With the alternative formulation, and with r > g, then a higher reliance on

bequest taxes is bad from the viewpoint of the generational budget constraint.

Finally, note that : � �B > 0 i¤ bye
�(r�g)H > (1 � � � �)sb0. In the Cobb-Douglas, no-taste-

memory special case, one can see that we always have � �B > 0, even if g >> r. In particular, in

case g ! +1 and by ! 0 , then � �B ! 0 , but never becomes negative.

A.3 Proof of Proposition 3 (alternative welfare weights) (section 3).

The proof is the same as for Proposition 2 (see section 3), except that we now consider an

individual i who receives positive bequest bti = zibt, and with total after-tax lifetime income

58The same issue arises in optimal Ramsey taxation in a life-cycle model. This issue is discussed very clearly
in King (1980).

53



eyti = (1� �B)(1 +R)bti + (1� �L)yLti . Individual i chooses bt+1i to maximize

Vi(eyti � bt+1i; bt+1i; (1� �B)(1 +R)bt+1i):

The �rst order condition is again Vci = Vwi + (1 � �B)(1 + R)Vbi This leads to bt+1i = sieyti
(with 0 � si � 1) We can again de�ne �i = (1� �B)(1 +R)Vbi=Vci the share of bequest left for

bequest loving reasons, and sbi = �isi the strength of the overall bequest taste.

The di¤erence with the zero-receiver case is that the utility change dVi created by a budget

balance tax reform d�B; d�L now includes an extra term:

dVi = �VciyLtid�L � Vbi(1 +R)bt+1id�B � Vci(1 +R)bti(1 + eB)d�B

The extra term corresponds to the extra tax paid on received bequest bti. This term includes

a multiplicative factor 1 + eB, because steady-state received bequest bti = zibt is reduced by

dbti = �eBzibtd�B=(1� �B) (note that the elasticity is the same at any given normalized level

zi of the inheritance distribution).

Using the fact that (1 +R)bti = zibyyt, this can re-arranged into:

dVi = VciyLtd�B

��
1� eB�B

1� �B

�
�iby
1� �

�
�
1� �L
1� �B

�i +
ziby

(1� �)

�
sbi � (1 + eB)

ziby
(1� �)

�
The �rst term in the square brackets is the utility gain due to the reduction in the labor

income tax, the second term is the utility loss due to reduced net-of-tax bequest left, and the

third term is the utility loss due to reduced net-of-tax bequest received. By using the fact that

1� �L = (1� �� � + �Bby)=(1� �) (from the government budget constraint), this can further

be re-arranged into:

dVi =
VciyLtd�B

(1� �B)(1� �)
[(1� (1 + eB)�B) by�i � (1� �� � + �Bby)sbi�i � (1 + eB + sbi)(1� �B)ziby]

Summing up dVi over all z-bequest-receivers, we get:

dSWF =
Vcz�zyLtd�B

(1� �B)(1� �)

�
(1� (1 + eB)�B) by � (1� �� � + �Bby)sbz �

(1 + eB + sbz)(1� �B)zby
�z

�
with sbz =

R
zi=z

Vci�isbid	R
zi=z

Vci�id	
, �z =

R
zi=z

Vcisbi�id	R
zi=z

Vcisbid	
and Vcz =

R
zi=z

Vci�id	

�z
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Setting dSWF = 0, we get the formula:

�B =
1� (1� �� �)sbz=by � (1 + eB + sbz)z=�z

(1 + eB + sbz)(1� z=�z)

Note 1. This proof is a direct generalization of the proof of proposition 2 and also works

with any utility function that is homogenous of degree one (and not only in the Cobb-Douglas

or CES cases). In the general case, sbz is the average of sbi over all z-bequest-receivers, weighted

by the product of their marginal utility Vci and of their labor productivity �i, and �z is the

average of �i over all z-bequest receivers, weighted by the product of their marginal utility Vci

and of their bequest taste sbi In case sbi?VciyLti (e.g. in case there is no taste memory, or no

labor productivity inequality), and in case the utility functions Vi() are Cobb-Douglas, then sbz

is the simple average of sbi over all z-bequest-receivers, and �z is the simple average of �i over

all z-bequest receivers : sbz = E(sbijzi = z) and �z = E(�ijzi = z).

Note 2. The optimal tax formula can be extended to the case � > 0 , and to any welfare

weights combination (!z�). I.e. summing up dVi over the entire distribution 	(z; �), we have:

dSWF =
V c�yLtd�B

(1� �B)(1� �)

�
(1� (1 + eB)�B) by � (1� �� � + �Bby)sb �

(1 + eB + sb)(1� �B)zby

�

�
with : sb =

R R
z�0;�0����1 !z�Vc�sbV

��d	R R
z�0;�0����1 !z�Vc�V

��d	
, � =

R R
z�0;�0����1 !z�Vc�sbV

��d	R R
z�0;�0����1 !z�VcsbV

��d	
;

z =

R R
z�0;�0����1 !z�VczsbV

��d	R R
z�0;�0����1 !z�VcsbV

��d	
and V c =

R R
z�0;�0����1 Vc�V

��d	

�

Setting dSWF = 0, we get the formula:

�B =
1� (1� �� �)sb=by � (1 + eB + sb)z=�

(1 + eB + sb)(1� z=�)

Note that for any combination of positive welfare weights (!z�) (in particular for uniform util-

itarian weights: !z� = 1 8z; �), then as � ! +1, we have: sb ! sb0 = E(sbijzi = 0; �i = �0)

and z=� ! 0, i.e. we are back to the radical Rawlsian optimum.

Note 3. The derivation of �B presented here and in the proof of Proposition 2 neglects

the fact the steady-state distribution 	(z; �) may also change in response to a small tax change

d�B, which could a¤ect social welfare SWF via an extra term dSWF . However we feel that

this extra term is not justi�ed from a normative viewpoint (it is bizarre to let the planner a¤ect
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the distribution of characteristics used to de�ne social welfare), so we prefer in the general case

to de�ne the welfare weights (!z�) �ex post�(i.e. taking as given the steady-state distribution

	(z; �) induced by the optimal policy) The question of endogenous welfare weights raises

complex conceptual issues and would deserve more attention in future research. In any case,

note that this makes no di¤erence as long as we assume no labor productivity memory (�ti

randomly drawn for each generation t according to some �xed distribution h(�)) and we consider

z-receivers optima (i.e. !z� = 1 for a given z � 0, and !z0� = 0 if z0 6= z) - since the sum dSWF

is computed over a �xed distribution	(z; �) = h(�). More generally, empirical evidence suggests

that endogenous distribution e¤ects are not very large - at least for the bottom segments of the

distribution that are relevant for social welfare computations (i.e. the bottom 50% share in

inherited wealth appears to be less than 5%-10% in every country and time period for which

we have data, irrespective of the wide variations in bequest tax rates), so this extra term seems

unlikely to have a large impact on socially optimal tax rates.

Proof of Corollary 1. The distributional formula can be derived in two alternative ways.

(i) First, starting from the original formula (Proposition 3), one can simply substitute

(1 � � � �)sbz=by by e�(r�g)H�zxz=�z � sbz[�B + (1 � �B)z=�z]. and obtain immediately the

distributional formula:

�B =
1� e�(r�g)H�zxz=�z � (1 + eB)z=�z

(1 + eB)(1� z=�z)

This substitution comes from the following algebra. I.e. consider an individual i receiving

bequest bti = zibt, and leaving bequest bt+1i = xibt+1. So we have:

bt+1i = si[(1� �L)�iyLt + (1� �B)zibte
rH ] = xibt+1

In steady-state we have bt+1 = egHbt = e�(r�g)Hbyyt. Therefore the equation can be re-

arranged into:

sbi[(1� �L)(1� �)�i + (1� �B)ziby] = e�(r�g)H�ixiby

Substituting (1� �L)(1��) = 1��� � + �Bby, multiplying both sides by Vci and summing
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up over all individuals with zi = z , this gives:

(1� �� �)sbz=by = e�(r�g)H�zxz=�z � sbz[�B + (1� �B)z=�z]

with : sbz =

R
zi=z

Vci�isbid	R
zi=z

Vci�id	
, �z =

R
zi=z

Vcisbi�id	R
zi=z

Vcisbid	
;

xz =

R
zi=z

Vci�i�ixid	R
zi=z

Vci�i�id	
and �z =

R
zi=z

Vci�i�id	R
zi=z

Vci�id	

(ii) Alternatively, one can return to the equation dVi = �VciyLtid�L � Vbi(1 +R)bt+1id�B �

Vci(1 + R)bti(1 + eB)d�B. By substituting bt+1i = xibt+1 = xie
gHbt and yLtd�L = �bterH(1 �

eB�B
1��B )d�B, we get:

dVi = Vcibte
rHd�B

��
1� eB�B

1� �B

�
�i � e�(r�g)H

�ixi
1� �B

� (1 + eB)zi
�

Summing up over all individuals with zi = z , this gives:

dSWF = Vczbte
rHd�B

��
1� eB�B

1� �B

�
�z � e�(r�g)H

�zxz
1� �B

� (1 + eB)z
�

i.e. �B =
1� e�(r�g)H�zxz=�z � (1 + eB)z=�z

(1 + eB)(1� z=�z)

(iii) Finally, note that depending on the available parameters, one might prefer to express the

optimal tax formula in yet another equivalent way. Namely, in the original formula (Proposition

3) one can replace sbz by sbz = s�xz ��z=�z.59 In words, the fraction of total resources speci�cally

left for bequest motives sbz by z%-inheritance receivers is equal to the product of fraction of

total aggregate resources left (s), average bequest left by z-receivers/average bequest left (xz),

the share of z-receivers wealth accumulation due to bequest motive (�z), and divided by average

total resources of z-receivers/average total resources (�z).60 We then get the following formula:

�B =

1� s � xz � �z
�zby

(1� �� �)� (1 + eB +
s � xz � �z

�z
)z=�z

(1 + eB +
s � xz � �z

�z
)(1� z=�z)

By construction, all these formulas are fully equivalent.

59With: �z = E(~ytijzi = z)=~yt = average total resources of z-receivers/average total resources; and: s ==
bt+1=~yt = aggregate steady-state saving rate (bequests/lifetime resources).
60s = bt+1=~yt = aggregate steady-state saving rate (bequests/lifetime resources). In the no-taste-memory

special case, �z = E(�ijzi = z) (with �i = ~yti=~yt) = average total resources of z-receivers/average total

resources. In the general case, �z =

R
zi=z

Vci�i�id	R
zi=z

Vci�id	
= average of �i weighted by the product Vci�i.
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A.4 Proof of Proposition 4 (non-linear inheritance taxes) (section
3).

The proof is similar to the proof of Proposition 2.

Consider a small increase in the bequest tax rate d�B > 0 above b�. In steady-state this

allows the government to cut the labor tax rate by:

d�L = �
b�yd�B

1� �

�
1� e��B

1� �B

�
(< 0 as long as �B < 1=(1 + e

�)).

Consider an agent i with zero received bequest (bti = 0) and with total resources ~yti =

(1� �L)~yLti. We have:

d~yti = �~yLtid�L = ~yLti
b�y[1� (1 + e�)�B]

1� �

d�B
1� �B

:

Replacing 1� �L by (1� �� � + �Bb
�
y)=(1� �), we have:

d~yti = ~yti
b�y[1� (1 + e�)�B]
1� �� � + �Bb�y

d�B
1� �B

(> 0 as long as �B < 1=(1 + e
�)).

Agent i divides his lifetime resources ~yti into lifetime consumption ~cti and end-of-life wealth

wti = bt+1i by maximizing Vti = V (cti; wti; bt+1i��B(bt+1i�b�t+1)+). Using the envelope theorem,

a change in d�B keeping ~yti constant leads to a utility loss equal to �Vb(bt+1i� b�t+1)+d�B. The

utility loss naturally is zero if the individual does not leave a bequest greater than b�t+1. The

utility loss coming from d~yti is Vcid~yti.

For individuals leaving bequests above b�t+H , the �rst-order condition is Vci = Vwi + (1 �

�B)(1+R)Vbi, and one can again de�ne si = bt+1=~yti the fraction of life-time resources individual

i devotes to wealth accumulation. Then, we can de�ne: de�ne swi = siVwi=Vci and sbi =

si(1� �B)(1 +R)Vbi=Vci. Hence, we have:

dVi = Vcid~yti � Vbi(bt+1i � b�t+1)
+d�B = Vci

�
d~yti �

sbi
si
(bt+1i � b�t+1)

+ d�B
1� �B

�
;

dVi = Vci
d�B
1� �B

�
~yti
b�y[1� (1 + e�B)�B]
1� �� � + �Bb�y

� sbi
si
(bt+1i � b�t+1)

+

�
:

Summing up over all zero-bequest-receivers, we get:

dSWF =
d�B
1� �B

�
b�y[1� (1 + e�B)�B]
1� �� � + �Bb�y

Z
zi=0

Vci~ytid	�
Z
zi=0

Vci
sbi
si
(bt+1i � b�t+1)

+d	

�
;
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Introducing

s�b0 =

R
zi=0

Vci
sbi
si
(bt+1i � b�t+1)

+d	R
zi=0

Vci~ytid	
;

We have:

dSWF =
d�B
1� �B

Z
zi=0

Vci~ytid	

�
b�y[1� (1 + e�B)�B]
1� �� � + �Bb�y

� s�b0

�
;

Setting dSWF = 0, we get:

�B =
1� (1� �� �)(s�b0=b

�
y)

1 + e�B + s�b0
and �L =

� � �Bb
�
y

1� �
:

A.5 Proof of Proposition 5 (fuzzy capital-labor frontier) (section 4)

Start from a tax mix (�B; �L; �K) satisfying the full-fuzziness constraint: �L = �K = �Y , and

consider a small change d�B > 0 This allows the government to cut the labor tax rate by d�L

s.t.:

d�L = �
byd�B
1� �

�
1� eB�B

1� �B

�
with d�B = d�B(1��K

R

1 +R
)+(1��B)d�K

R

1 +R
and d�K = d�L

An individual i who receives no inheritances (bti = 0) chooses bt+1i to maximize

Vi((1� �L)yLti � bt+1i; bt+1i; (1� �B)(1 +R)bt+1i):

Therefore, using the envelope theorem as bt+1i is optimized, the utility change dVi created by

d�B; d�L is such that

dVi = �VciyLtid�L � Vbibt+1id�B

Utility maximization �rst order condition in bt+1i is Vci = Vwi + (1� �B)(1 +R)Vbi which leads

to bt+1i = si~yti. We can then de�ne sbi = si(1� �B)(1 +R)Vbi=Vci (in the Cobb-Douglas utility,

sbi is a �xed exponent in the utility function, in the general homogeneous utility, sbi depends

on �B). Hence, we have Vbi = (sbi=si)Vci=[(1� �B)(1 +R)] and

dVi = Vci

�
yLti(1� �L)

�d�L
1� �L

� d�B
1� �B

~ytisbi

�
:

Replacing 1��L by (1����+�Bby)=(1��), and�d�L by byd�B(1��B(1+eB))=[(1��)(1��B)],

we have:

dVi =
Vci~ytid�B
1� �B

�
1� (1 + eB)�B
1� �� � + �Bby

by � sbi

�
:
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Summing up over all zero-bequest-receivers, and setting dSWF = 0, we get the formula:

�B =
1� (1� �� �)sb0=by

1 + e+ sb0
. The corrected formula for �B then follows directly from �B =

�B + (1� �B)�K
R
1+R

and �K = �L =
� � �Bby
1� �

.

Note. In the statement and proof of Proposition 5, we assume implicitly that the bequest

tax is raised at the beginning of the period (with tax revenue invested by the government at rate

R), while the capital income tax is raised at the end of the period on the return to net-of-tax

bequest. Alternatively, one could assume that all taxes are raised at the same time (namely, at

the end of the period: the bequest tax is raised at the end of the period on the capitalized value

of bequests, and the capital income tax is an extra tax on the return to bequests). This is closer

in spirit to the continuous time model, but this would be somewhat strange in the fuzzy-frontier

context (since it would amounts to tax the return twice). Anyway, the formula would be changed

as follows. The government budget constraint would be: �L(1��) + �Bby + �Kby R
1+R

= � . The

adjusted bequest tax rate would be de�ned as: �B = �B+�K
R
1+R

, so that �L =
� � �Bby
1� �

. After-

tax, capitalized bequest left to next generation can be rewritten as follows: �bt+1i = [(1��B)(1+

R)� �KR]bt+1i = (1� �B)(1+R)bt+1i: The formula for optimal �B would be the same as before

(�B =
1� (1� �� �)sb0=by

1 + eB + sb0
). Same thing for �K = �L =

� � �Bby
1� �

The only di¤erence would

be that we now have: �B = �B � �K
R
1+R

. As compared to the previous formula, we get lower

bequest tax rates (this is simply because they apply to capitalized bequests rather than to raw

bequests). E.g. in the example given in section 4.2, we would get �B = 58%; 47%; 31%;�11%

(instead of �B = 68%; 59%; 41%;�16% ).

A.6 Proof of Proposition 6 (optimal capital income tax) (section 4)

TO BE COMPLETED

The proof follows immediately from a simple continuity result. I.e. with eR = 0, then

for any positive risk aversion level it is optimal to have full insurance (�K = 100%). So for

eR arbitrarily close to 0, then �K is arbitrarily close to 100%. The same continuity reasoning

applies to eR = eR and �K = 0%. Note that eR is �nite because a lower return R is not only

bad for the capital income tax base: it also has a negative impact on the aggregate steady-state

bequest �ow by

In order to solve the model numerically in the intermediate case, we need to specify the form

of risk aversion. Of course risky returns are detrimental only if individuals are risk averse. A
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simple, albeit extreme, way to capture risk aversion is to posit that bequests leavers consider

the worst possible scenario case where their heir will receive the worst possible return. Let us

assume that the worst possible negative shock for "it is equal to �"0 < 0. We assume "0 to be

exogenous and �nite so that net capitalized bequests left are always positive even in the worst

case scenario. For simplicity we also assume R0 = 0 and � = 1 .

Hence individual i choose bt+1i to maximize

V i[(1��B)[1+("ti+R)(1��K)�c(R)]bti+(1��L)yLti�bt+1i; bt+1i; (1��B)bt+1i(1+(R�"0)(1��K)�c(R))]

Recall that R is such that c0(R) = 1��K . We naturally assume that "ti is already realized when

choosing bt+1i. Assuming the worst possible return R � "0 is a useful short-cut to capture risk

aversion for risky returns. In general, one could have used a concave utility and expectations

and we could have de�ned R � "0 as the certainty equivalent rate of return. However, in that

general case, "0 would depend on the complete structure of the model (including all tax rates),

making the formulas much less tractable.

The �rst order condition for bt+1i is such that

V i
c = V i

w+V
i
�b (1��B)(1+(R�"0)(1��K)�c(R)) hence �i = V i

�b (1��B)(1+(R�"0)(1��K)�c(R))=V
i
c

We also make the Cobb-Douglas utility assumption and assume that si is orthogonal to �i

and zi (no memory case). In that case, the �rst order condition in bt+1i de�nes:

bt+1i = si � [(1� �B)(1 + (1� �K)("ti +R)� c(R))bti + (1� �L)yLti]

which aggregates to

bt+1 = s � [(1� �B)(1 + (1� �K)R� c(R))bt + (1� �L)yLt]

The government budget constraint is

�LyLt + �Bbt � [1 + (1� �K)R� c(R)] + �KbtR = �Yt

where Yt is de�ned such that (1 � �)Yt = yLt. Here, we assume that the bequest tax is raised

on capitalized bequests net of capital income taxes and net of costs to earn return R. As we

shall see, this is the natural assumption to obtain a simple expression for bt as it implies:

bt+1 = s � [(1 +R� c(R))bt + yLt � �Yt] and bt =
s(1� �� �)Yt

1 +G� s(1 +R� c(R))
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which shows that bt does not depend on �B (for �xed �) so that eB = 0 and depends upon �K

only through R. We denote eRB the elasticity of bt with respect to R. In the general case (not

Cobb-Douglas and with potential memory, we still have R a function of �K only but bt now

depends in a complex way on both �K and �B (for a given �), which complicates the formulas.

We derive the optimum for zero receivers. For zero receivers, the utility is:

V i[(1� �L)�iyLt � bt+1i; bt+1i; (1� �B)bt+1i(1 + (R� "0)(1� �K)� c(R))]

Optimum �B. Consider a small reform d�B; d�L that leaves the government budget con-

straint unchanged. As eB = 0 and R depends solely on �K , we have dbt = dR = 0 and hence

�d�LyLt = d�Bbt � [1 + (1� �K)R� c(R)]

For zero receivers, the e¤ect on utility is

dV i = �d�LyLt�i � d�Bxibt+1(1 + (R� "0)(1� �K)� c(R))V i
�b

Using the de�nition of �i = V i
�b
(1� �B)(1 + (R� "0)(1� �K)� c(R))=V i

c , we have

dV i = d�Bbt � [1 + (1� �K)R� c(R)]V i
c

�
�i �

�ixi
1� �B

1 +G

1 + (1� �K)R� c(R)

�
Therefore, the optimum �B for zero-receivers is such that:

�B = 1�
��x
��

1 +G

1 + (1� �K)R� c(R)

This formula is the same as the standard formula in Proposition 2 with eB = 0 but with the

rate of return R replaced with the net-rate of return (1� �K)R� c(R). Naturally, with �K > 0

and costs of getting return R, the net-return is less than the gross return R and hence �B is

smaller relative to proposition 2.

Optimum �K. Consider a small reform d�K ; d�L that leaves the government budget con-

straint unchanged. We have (as c0(R) = 1� �K):

�d�LyLt = �Bdbt � [1 + (1� �K)R� c(R)] + �KdbtR + d�Kbt(1� �B)R + �KbtdR

As bt depends on �K only through R, we have

1� �K
bt

dbt
d(1� �K)

= eRB � eR with eRB =
R

bt

dbt
dR
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which implies that

�d�LyLt = d�KbtR

�
1� �B �

�K
1� �K

eR(1 + e
R
B)�

�BeRe
R
B

(1� �K)R
[1 + (1� �K)R� c(R)]

�
For zero receivers, the e¤ect on utility is

dV i = �V i
c d�LyLt�i � d�K(1� �B)xibt+1(R� "0)V

i
�b

dV i = �V i
c d�LyLt�i � d�KV

i
c

1 +G

1 + (R� "0)(1� �K)� c(R)
(R� "0)�ixibt

dV i

V i
c �id�KbtR

= 1��B�
�KeR(1 + e

R
B)

1� �K
��BeRe

R
B[1 + (1� �K)R� c(R)]

(1� �K)R
�

�ixi
�i
(1 +G)R�"0

R

1 + (R� "0)(1� �K)� c(R)

which leads to the fairly complex optimal tax formula for �K :

�K
1� �K

eR(1 + e
R
B) = 1� �B

�
1 + eRe

R
B

1 + (1� �K)R� c(R)

(1� �K)R

�
�

��x
��
(1 +G)R�"0

R

1 + (R� "0)(1� �K)� c(R)

If eR = 0, then �K = 100% and �B = 1�
��x
��
(1 +G)

If eR > 0, then �K < 100% and �B decreases.

Note: with rent-seeking, if eR is zero sum game, then trivially eR = 0 and �K = 100%. The

optimal tax formula is trivial because zero receivers do not get any extra-return capital income

(hence we do not need to keep track of welfare e¤ects at all). See Piketty, Saez and Stantcheva

(2011).

These formulas can be solved numerically using MATLAB. In the simulation results pre-

sented in section 4.3 we assumed: "0 = 0:6 �R(�K = 0).

A.7 Proof of Proposition 7 (elastic labor supply) (section 5)

With elastic labor supply, the most natural formulation for the government budget constraint

is

�LyLt + �Bbt = � �Yt;

where �Yt is an exogenous reference income (which grows at rate 1+G and independent of �B; �L).

Otherwise the revenue requirements would vary with labor supply, which seems strange.61

61With inelastic labor supply, we could use actual domestic output Yt which was independent of taxes.

63



It is also useful to introduce �� = � �Yt=Yt, the tax to output ratio (which is now endogenous)

to rewrite the government budget constraint as:

�L(1� �) + �Bby = �� ;

We have:

U i = log V i[(1� �L)�ivtli + (1� �B)(1 +R)bti � bt+1i; bt+1i; bt+1i(1� �B)]� h(li)

Hence, using the envelope theorem as li and bt+1i are optimized, we have:

dU i =
V i
c

V i
[�d�LyLti � d�B(1 +R)bti + (1� �B)(1 +R)dbti]�

V i
b

V i
bt+1id�B;

Using that dbti = �eiBbtid�B=(1� �B), V i
b = (sbi=si)V

i
c =(1� �B), and bt+1i = si~yti we have:

dU i =
V i
c

V i(1� �B)

�
�d�LyLti(1� �B)� d�B(1 +R)(1� �B)(1 + eiB)bti � ~ytisbid�B

�
;

dU i =
V i
c d�B

V i(1� �B)

�
�d�L
d�B

1� �B
1� �L

yLti(1� �L)� (1 +R)(1 + eiB)(1� �B)bti � ~ytisbi
�
;

Using the link between d�L and d�B: yLtd�L(1 � �L(1 + eL))=(1 � �L) = �btd�B(1 � �B(1 +

eB))=(1� �B), we have:

dU i =
V i
c d�B

V i(1� �B)

�
bt
yLt

1� (1 + eB)�B
1� (1 + eL)�L

yLti(1� �L)� (1 +R)(1 + eiB)(1� �B)bti � ~ytisbi
�
;

We can use by = bt=Yt = bt(1� �)=yLt and (1� �)�L = �� � �Bby to get:

dU i =
V i
c d�B

V i(1� �B)

�
by[1� (1 + eB)�B]

1� �� (1 + eL)(�� � �Bby)
yLti(1� �L)� (1 +R)(1 + eiB)(1� �B)bti � ~ytisbi

�
;

For zero receivers, we have bti = 0 and hence:

dU i =
V i
c d�B

V i(1� �B)

�
by[1� (1 + eB)�B]

1� �� (1 + eL)(�� � �Bby)
~yti � ~ytisbi

�
;

Setting dSWF = 0 for zero receivers, and de�ning

sb0 =

R
zi=0

(V i
c =V

i)yLtisbid	R
zi=0

(V i
c =V

i)yLtid	
;

we obtain:

0 =
by[1� (1 + eB)�B]

1� �� (1 + eL)(�� � �Bby)
� sb0:

Rearranging, we obtain the formula in the proposition. The second part is straightforward.
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A.8 Proof of Proposition 8 (closed economy) (section 5).

TO BE COMPLETED

With a closed economy, the most natural formulation for the government budget constraint

is again: �LyLt + �Bbt = � �Yt (see proof of Proposition 7).

A.9 Proof of Proposition 9 (continuous-time model) (section 5).

The proof is the same as proposition 2, except that the time subscript t now denotes the time

at which cohort eNt inherits. We simply need to show that Uti = �~cti holds for various utility

speci�cations. We consider two di¤erent possible speci�cations for utility function UCi:

Uti =

�Z a=D

a=A

e��(a�A)c1�tia

� 1
1�

(speci�cation :: 1);

with � = rate of time preference.

 = elasticity of marginal utility of consumption (=coe¢ cient of relative risk aversion)

� = 1= = intertemporal elasticity of substitution

UCi =

�Z a=D

a=A

e��(a�A)(
ctia
qtia
)1�

� 1
1�

(speci�cation 2);

with qtia = individual consumption habit stock

Speci�cation 1 corresponds to the standard discounted utility model. Speci�cation 2 is less

standard but in our view more realistic: it incorporates habit formation into the utility function

(which one can also interpret as a concern for relative status or relative consumption), in the

spirit of Carroll et al. (2000) (more on this below). Our results can also be extended to more

general utility functions, e.g. a mixture of the two.

Speci�cation 1. Under speci�cation 1, standard �rst-order conditions imply that individual

i chooses a consumption path ctia = ctiAe
gc(a�A)growing at rate gc = �(r��) during his lifetime.

The utility value UCi of this consumption path is given by:

Uci =

�Z a=D

a=A

e��(a�A)c1�tia da

� 1
1�

= �cctiA

with �c =

�
1� e�(��(1�)gc)(D�A)

� � (1� )gc

� 1
1�

:
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Note that with gc = �(r � �), we have � � (1� )gc = r � gc. So �c can also be rewritten:

�c =

�
1� e�(r�gc)(D�A)

r � gc

� 1
1�

:

The end-of-life capitalized value of individual i consumption �ow ~cti is given by:

~cti =

Z a=D

a=A

er(D�a)ctiada = ~�ctiA;

with ~� = er(D�A)
1� e�(r�gc)(D�A)

r � gc
:

Therefore we have: Uci = �~cti

with � =
�c
~�
=

�
1� e�(r�gc)(D�A)

r � gc

� 
1�

e�r(D�A) and gc = �(r � �)

So in e¤ect the continuous-time maximization program can be re-written as a two-period

maximization program:

maxVti = V (�~cti; wtiD;�bt+Hi)

s:c: ~cti + wtiD � ~yti = (1� �B)~bti + (1� �L)~yLti:

In the Cobb-Douglas case (V (U;w;�b) = U1�sbi�swiwswi�bsbi), the � term disappears, and we

simply have: ~cti = (1� si)~yti and wtiD = bt+Hi = si~yti (with si = swi + sbi).

In the CES case (V (U;w;�b) = [(1� swi� sbi)U1�� + swiw1�� + sbi�b1��]
1

1�� ), or in the general

case with degree-one-homogeneity (8� � 0; V (�U;�w;��b) = �V (U;w;�b)), the � term does not

disappear, but the point is that it does not depend on tax rates, so in e¤ect it cancels out from

the �rst-order condition for optimal tax rates.

Speci�cation 2. One unrealistic feature of speci�cation 1 (making it ill-suited for empirical

calibrations) is that it implies that countries with faster growth should save less. This is because

the utility-maximizing consumption growth rate gc = �(r��) is independent from the economy�s

growth rate g, so in e¤ect with high g and high expected lifetime income ~yti young agents borrow

a lot against future growth (i.e. they set ctiA far above their current earnings yLtiA). In practice

consumption seems to track down income much more closely. The advantage of speci�cation 2

is precisely that the habit formation term qi(a) provides a simple and plausible way to deliver

consumption growth paths more in line with income growth. For notational simplicity we assume

qi(a) = eqa and consider the two following cases:
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- case 2a: q = �+g�r
1� (so that the utility-maximizing consumption growth rate is always

exactly equal to the economy�s growth rate: gc = g)

- case 2b: q = g
1� (so that: gc = g + �(r � �))

In case 2a, the economy�s saving rate is fully independent of its growth rate and of the rate

of return, and is solely determined by the taste-for-wealth and taste-for-bequest parameters. In

case 2b, utility maximizing consumption paths do react to changes in r, but in a reasonable

way (i.e. with consumption growth rates around the economy�s growth rate). This provides two

useful benchmark points to which the results obtained under speci�cation I can be compared.

Our results could be extended to other intermediate speci�cations, as well as to more elaborate

models with endogenous habit stock dynamics, such as those developed by Caroll et al. (2000),

which can under adequate assumptions lead to the conclusion that countries with high growth

rates save more (if anything, this seems more in line with observed facts than the opposite

conclusion).

One can see that under both speci�cations 2a and 2b, Uci can be written: Uci = �~cti, with

� =
�c
~�
given by the same formulas as before, except that one needs to replace gc = �(r� �) by

gc = g (case 2a) or gc = g + �(r � �)(case 2b).

B Extensions to dynamic e¢ ciency and intergenerational
redistribution

Our optimal tax results can be extended in order to analyze the interaction between optimal

capital taxation and dynamic e¢ ciency issues. These extensions are summarized in the main

text of the paper (see section 5.3). Here we provide the formal statements and proofs.

B.1 Intertemporal social welfare function

We �rst need to properly specify the intertemporal social welfare function. In the main text of

the paper, we solved a steady-state social welfare maximization problem. That is, we assumed

that the government attempts to maximize the following, steady-state social welfare function

(see section 3):

SWF =

Z Z
z�0;������

!z�
V 1��
z�

1� �d	(z; �) (19)

With:
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Vz� = utility level Vi attained by individuals with normalized inheritance z and productivity

�

!z� = social welfare weights as a function of normalized inheritance z and productivity �62

� = concavity of social welfare function (� � 0)63

	(z; �) = steady-state joint distribution of normalized inheritance z and productivity �

We now consider the following intertemporal, in�nite-horizon social welfare function:

SWF =
X

t=0;1;::;+1

~Vt
(1 + �)t

=
X

t=0;1;:::;+1

eVte��Ht
With: 1 + � = e�H = social rate of time preference64

~Vt = social welfare of generation t , which can be written as follows:

~Vt =

Z Z
z�0;������

!tz�
V 1��
tz�

1� �d	t(z; �)

This intertemporal social welfare function might not be well de�ned (i.e. the intertemporal

sum might be in�nite). In order to ensure that it is well de�ned, we need to put constraints

on parameters. First, note that the utility level Vtz� attained by generation-t individuals with

normalized inheritance z and productivity � grows at the same rate as per capita output (for

any z; �). To see this, note that Vtz� is given by the following maximization programme:

Vtz� = maxV (ctz�; wtz�;�bt+1z�) s:t: ctz� + wtz� � eytz� = (1� �B)zbte
rH + (1� �L)�yLt

As t ! +1, and under assumptions 1-3, byt = Bte
rH=Yt = bte

rH=yt ! by, so that after-tax

income eytz� ! [(1� �B)zby + (1� �L)�(1� �)]yt . I.e. eytz� grows proportionally to per capita
output yt = Yt=Nt = y0e

gHt. Since the utility function V (c; w;�b) is homogenous of degree one,

it follows that all utility levels Vtz� also grow at instantaneous rate g (i.e. at generational rate

1 + G = egH): as t ! +1, Vtz� = �eytz� ! �z�yt. So � � 0 can be viewed as a parameter

measuring the concavity of the social planner�s preferences with respect to income.

62More generally, the welfare weights !z� could depend not only on normalized inheritance z and productivity
�, but also on other individual characteristics, such as taste parameters. This would complicate the notations
without a¤ecting any of the results.
63If � = 1, then SWF =

RR
z�0;������ !z� log(Vz�)d	(z; �).

64In the same way as for growth rates 1 + G = egH , population growth rates 1 + N = enH , rates of return
1 + R = erH , we use capital letters for generational rates and small letters for instantaneous rates: we note
1 + � = e�H the generational social rate of time preference, and � the corresponding instantaneous social rate
of time preference. E.g. if � = 1% and H = 30 years, then � = 35%, i.e. from the social planner�s viewpoint
the welfare of next generation matters 35% less than the welfare of the current generation.

68



Next, a natural constraint to put on welfare weights !tz� is that their sum grows at rate

(1 � �0)n, where n is the instantaneous population growth rate (possibly zero), and �0 2 [0; 1]

can be thought of as a parameter measuring the concavity of the social planner�s preferences

with respect to population size:Z Z
z�0;������

!tz�d	t(z; �) = N1��0
t = N0e

(1��0)nHt

In case �0 = 0, then this means that the sum of welfare weights grows at the same rate as

population, so that in a sense the planner puts equal weight on each individual - whether they

belong to small or large cohorts - so that larger cohorts matter more in terms of social impact.

This is sometime called the �Benthamite�case in the literature: the planner cares about the

total quantity of welfare, supposedly like Jeremy Bentham. Conversely, in case �0 = 1, the sum

of welfare weights is constant over time, i.e. the planner does not care about population size

per se: he only cares about average welfare of each cohort (or on the normalized distribution of

welfare within each cohort), and puts equal total weight on each cohort - irrespective of their

size. This is the so-called �non-Benthamite�case.65 Both approaches do have some merit - and

so does the intermediate formulation with �0 2 [0; 1]. In this paper, we do not take a strong

stand on this complex ethical issue. Nor do we take a strong stand about the income concavity

parameter � � 0 (we later return to this normative discussion).

Our point here is simply that intertemporal social welfare SWF is well de�ned (non-in�nite)

if and only if:

Assumption 4 � + �g + �0n > g + n

So for instance in case � � 1 (i.e. if the social welfare function is at least as concave as the

log function), and �0 = 1 (or n = 0), then this condition is satis�ed for any � > 0, including for

in�nitely small rates of time preference (� ! 0). In our view, this is a desirable property for a

social welfare function. We see no strong normative reason why � should be strictly positive,

i.e. why the social planner should put higher welfare weight on the present or nearby generation

than on future or distant generations. As � ! 0, the social planner cares almost exclusively

about the long-run, steady-state social welfare, which implicitly is the only case we considered

so far.
65On Benthamite vs. non-Benthamite social welfare functions, see e.g. Blanchard and Fischer (1989, Chapter

2, pp. 39-45, notes 4 and 13).
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B.2 Period-by-period government budget constraint

In the main text of the paper, we assumed the following period-by-period budget constraint:

�LtYLt + �BtBte
rH = �Yt i:e: : �Lt(1� �) + �Btbyt = �

In Proposition 2 (and subsequent propositions), we solved for the stationary tax policy

(�Lt = �L; �Bt = �B)t�0 maximizing steady-state social welfare. If we maintain the period-

by-period budget constraint, but now consider intertemporal social welfare maximization, our

results can be extended as follows.

First, if we allow for non-stationary tax policies (�Lt; �Bt)t�0, then unsurprisingly it will

generally be desirable to have higher bequest tax rates �Bt early on and then to let �Bt decline

over time. This simply comes from the fact that the short run elasticity of the bequest �ow is

smaller than the long run elasticity. Indeed the elasticity of the initial bequest �ow b0 is equal

to zero: capital in on the table and can be taxed at no e¢ ciency cost.

Next, and more interestingly, as t ! +1, then �Bt ! �B(�), and �Lt ! �L(�), and as

� ! 0, these limit tax rates converge towards the steady-state welfare optimum.

Proposition 10 . With a period-by-period government budget constraint, and in�nitely small

rates of time preference (� ! 0), then the tax policy sequence (�Lt; �Bt)t�0 maximizing intertem-

poral social welfare converges towards the steady-state welfare optimum:

(1) As t! +1, then �Bt ! �B(�), and �Lt ! �L(�)

(2) As � ! 0, then �B(�)! �B =
1� (1� �� �)sb0=by

1 + eB + sb0
and �L(�)! �L =

� � �Bby
1� �

Proof. The proof is the same as Proposition 2. The formula for sbo with � > 0 is given

in proof of Proposition 2 (see appendix A2 above). If the social rate of time preference is

vanishingly small (� ! 0), then the intertemporal maximization programme is equivalent to

the steady-state maximization programme (in e¤ect the planner puts in�nite weight on the long

run). QED.

B.3 Intertemporal government budget constraint

We now introduce the intertemporal government budget constraint. We start with the open

economy case. The government can freely accumulate assets or liabilities at a given world rate
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of return 1 + R = erH We again assume an exogenous public good requirement Gt = �Yt each

period (with � � 0). We assume zero initial government assets (A0 = 0). The intertemporal

government budget constraint can be written as follows:66

X
t=0;1;::;+1

(�LtYLt + �BtBte
rH)e�rHt =

X
t=0;1;:::;+1

�Yte
�rHt

Noting � t = �Lt(1� �) + �Btbyt the average e¤ective tax rate imposed on generation t total

resources (with � t � 0), this can be rewritten as follows:

X
t=0;1;::;+1

� tYte
�rHt =

X
t=0;1;:::;+1

�Yte
�rHt

This budget constraint might not be well de�ned (i.e. the intertemporal sum might be

in�nite). For the sum to be well-de�ned, we must assume the standard transversality condition,

according to which the rate of return r should be larger than the economy�s growth rate g + n:

Assumption 5 r > g + n

In case this assumption is not satis�ed, i.e. in case r < g + n, then the net present value

of future domestic output and tax revenue �ows is in�nite, so that the government would like

to borrow inde�nitely against future resources in order to �nance current consumption. In

principle, this should make the world net asset position decline in the long run (i.e. at some

point the domestic economy would cease to be small), so that ultimately the world rate of return

(the world marginal product of capital) should rise so as to restore r > g + n.

Given a tax policy sequence (�Bt; �Lt)t�0, the net asset position At of the government at

time t is equal to the capitalized value of previous primary surpluses or de�cits: At+1 = (1 +

R)At + (� t � �)Yt. The ratio between net government assets and domestic output at = At=Yt

can be written as follows:

at+1 = e(r�g�n)Hat + (� t � �)e�(g+n)H i.e. at =
X

s=0;1;::;t

(� s � �)e(r�g�n)H(t�s)

66Here we assume a constant r. When r varies over time, one needs to replace e�rt by e�
R t
s=0

rsds. Note that
the intertemporal budget constraint integral converges i¤ r > n + g (if r < n + g then the net present value of
future output �ows and government spending is in�nite). More on this below.
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Take any tax policy sequence (�Bt; �Lt)t�0 satisfying the budget constraint and converging

towards some asymptotic tax policy (�B; �L) as t ! +1. Under assumptions 1-3, byt ! by,

and � t ! � = �L(1� �) + �Bby Then two cases can happen:67

(i) Either the government runs a long run primary de�cit: �� � � . This de�cit is �nanced

by the returns to the government assets accumulated through initial primary surpluses: as

t! +1, at ! a � 0

(ii) Or the government runs a long run primary surplus: �� � � . This surplus is used to

�nance the interest payments on the government debt accumulated through initial primary

de�cits: as t! +1, at ! a � 0.

In both cases, the long run government budget constraint and net government asset position

can be written as follows:

�L(1� �) + �Bby + �Ra = � +Ra = �

I.e. a =
� � ��
�R

Where �R = erH � e(g+n)H = 1 +R� (1 +G)(1 +N) = R�G�N �GN

Intuitively, �R is the rate at which the government can consume its asset returns while insuring

that assets keep up with economic growth (or equivalently the rate at which the government

should reimburse its debt to avoid exploding debt).68

B.4 Open economy

The key question is the following: in the long run, will the government choose to accumulate

positive assets or debt? In the open economy case, the answer depends entirely on the level of

the world rate of return r � 0 In case r is su¢ ciently large (as compared to the planner�s rate

of time preference and concavity parameters), then intertemporal social welfare is maximized

by accumulating positive assets. In case r is su¢ ciently small, then intertemporal social welfare

is maximized by accumulating debt. More precisely, it all depends upon whether r is larger

or smaller than the so-called modi�ed Golden rule rate of return r� = � + �0n + �g. I.e. the

optimal policy sequence (�Bt; �Lt)t�0 can be characterized as follows:

67Here we neglect exploding asset accumulation paths (at ! +1 or at ! �1), which in e¤ect are ruled out
by the assumptions � t � 0 and � t � 1 (see below).
68In a continuous time model, this rate would simply be r = r � g � n.
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Proposition 11 (Open economy intertemporal optimum). De�ne the modi�ed Golden

rule rate of return r� as follows: r� = � + �0n+ �g. Three cases can happen:

(1) If r > r�, then the social planner chooses to have all tax payments in the short run

(current or nearby generations). I.e. the planner chooses to impose high taxes in the short run,

zero taxes in the long run (�Bt ! 0 and �Lt ! 0) and to accumulate su¢ ciently large positive

assets to �nance public good provision: at ! a =
�

R
> 0

(2) If r < r�, then the social planner chooses to postpone tax payments to the long run

(distant generations). I.e. the planner chooses to impose low taxes in the short run, revenue-

maximizing taxes in the long run (�Bt ! ��B and �Lt ! ��L) and to accumulate maximal debt

compatible with �nancing public good provision: at ! a0 =
� � ��
R

< 0

(3) If r = r�, then any positive or negative government asset position can be a social optimum

(depending on the initial condition and the parameters). For any given optimum a � 0 or

a � 0, then for in�nitely small rates of time preference, the tax policy sequence (�Lt; �Bt)t�0

maximizing intertemporal social welfare converges towards the steady-state welfare optimum. I.e.

as t! +1, �Bt ! �B(�), and �Lt ! �L(�), and as � ! 0, �B(�)! �B =
1� (1� �� �)sb0=by

1 + eB + sb0

and �L(�)! �L =
� � �Bby � a=R

1� �
.

Proof. Consider the case r > r�, and assume that � t = �Lt(1 � �) + �Btbyt ! � > 0.

Consider a small change whereby the planner raises the tax rate at time t to � t = � + d�

and reduces the tax rate at some future time s > t to � s = � � d�
0
Budget balance requires:

erH(s�t)d� = egh(s�t)d�
0
. If r > r�, one can immediately see that the induce change in social

welfare dSWF is positive.

TO BE COMPLETED

Note that the only reason why we get �nite asset accumulation is because we constrain the

government to use very simple policy instruments. I.e. once the government has accumulated

enough assets to �nance public good provision, there is no point accumulating additional assets,

since the government cannot distribute negative taxes (i.e. we assume � t � 0, and we also

assume away lump sum transfers). Otherwise in case r > r�, the planner would accumulate

in�nite assets (at ! +1). In e¤ect, the economy would cease to be a small open economy any

more. So if we are interested in the full social optimum, it makes more sense to look the closed

economy case.
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B.5 Closed economy

In the closed economy case, the domestic capital stock Kt is equal to the sum of private and

government assets (i.e. Kt = Bt+At), and the generational rate of return 1+Rt = ertH is equal

to the marginal product of capital:

Rt = FK =
�

�t

with: �t =
Kt

Yt
= byte

�rtH + at = domestic capital-ouput ratio

One can show that the government will accumulate assets until the point where the modi�ed

Golden Rule condition is satis�ed: rt = r� = � + �0n + �g. (or, equivalently, 1 + Rt = ertH =

1 + R� = er
�H = (1 + �)(1 + N)�

0
(1 + G)�). That is, the government will accumulate assets

until the point where �t = �� =
�

R�
. Will this involve the accumulation of positive government

assets or the accumulation of public debt? Both cases can happen, depending on parameters.

The important point is that the socially optimal level of capital accumulation and the market

equilibrium level of capital accumulation depend on completely independent parameters, so this

can really go both ways. T

On the one hand the socially optimal level �� depends on the parameters of the social welfare

function �;�0;� . A more patient planner will accumulate more capital. A more concave planner

will accumulate less capital (in�nite concavity = intergenerational Rawlsian = no need to leave

any capital to next generations since they will be richer than us; of course one problem if we do

that is that growth might itself disappear).69

On the other hand, the market equilibrium depends on the parameters of private preferences.

If the taste for bequest and wealth is very small, then there will little capital accumulation.

Conversely, if the taste for bequest and wealth is very large, then there will be a lot of capital

accumulation. In a full �edged life cycle model, demographic parameters would also matter

69In the famous Stern (2007) vs. Nordhaus (2007a, 2007b) controversy about the proper social discount rate
r�, both parties agreed about � = 0:1% (Stern views this as an upper bound of the probability of earth crash;
Nordhaus is unenthusiastic about what he views as an excessively low and �prescriptive� value, but does not
seriously attempt to put forward ethical argument for a bigger �) and g = 1:3% (on the basis of observed per
capita growth rates in the long run), but strongly disagreed about �: Stern picked � = 1, so that r� = 1:4%,
implying a very large net present value of future environmental damages and an urgent need for immediate
action; Nordhaus picked � = 3, so that r� = 4:0%, implying a more laissez-faire attitude. As argued by Sterner
and Persson (2008), a surprising feature of this debate is that from a cross-sectional redistribution perspective,
� = 1 implies relatively low inequality aversion and government intervention (probably less than Stern would
support), while � = 3 implies relatively large inequality aversion and government intervention (which Nordhaus
would probably not support). One way to make the various positions internally consistent would be to introduce
one supplementary parameter, namely the long run relative price of the environment in a two-good growth model
(see Guesnerie 2004).
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(Modigliani triangle formula), and one could end up with very small or very large capital

accumulation, depending on the speci�cs. The general point is that there is really no reason in

general to expect the market equilibrium to deliver more or less capital accumulation than the

social optimum: it could really go both ways.70

But wherever it goes, the point is that this is essentially orthogonal to the issue of optimal

tax policy:

Proposition 12 (Closed economy intertemporal optimum). The optimal government

policy looks as follows:

(i) First, the optimal government asset and debt policy is chosen so as to satisfy the mod-

i�ed Golden rule: rt ! r� = � + �0n + �g. The capital-output ratio converges towards the

corresponding level: �t = byte
�rtH + at ! �� =

�

R�
=

�

er�H � 1 .This will involve government

assets (at ! a > 0) in case private agents tend to under-accumulate capital in this economy

(bye�rH < ��), and government debt (at ! a < 0) in case they tend over-accumulate assets

(bye�rH > ��). Both cases can happen, depending on parameter values for private preferences

and social welfare function.

(ii) Next, for in�nitely small rates of time preference, the tax policy sequence (�Lt; �Bt)t�0

maximizing intertemporal social welfare converges towards the steady-state welfare optimum. I.e.

as t! +1, �Bt ! �B(�), and �Lt ! �L(�), and as � ! 0, �B(�)! �B =
1� (1� �� �)sb0=by

1 + eB + sb0

and �L(�)! �L =
� � �Bby � a=R

1� �
.

Proof. The proof is essentially the same as proposition 2.

TO BE COMPLETED

70The central point made by Diamond (1965) was exactly this: in a general OLG model, one could very well
get over-accumulation or under-accumulation of capital.
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Figure 1: Top Inheritance Tax Rates 1900-2011 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

U.S.

U.K.

France

Germany



Figure 2: Top Income Tax Rates 1900-2011 
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Figure 3: Top Income Tax Rates: Earned (Labor) vs Unearned (Capital) 
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Figure 4: Annual inheritance flow as a fraction of national 
income, France 1820-2008 
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Figure 5: Annual inheritance flow as a fraction of 
disposable income, France 1820-2008 
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