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Elementary excitations associated with atomic motion in non-crystalline solids and liquids 

are studied with particular attention paid to the dependence of their dispersion on local order. 

In doing this, an attempt is made to obtain an exact formal expression for an effective dy

namical matrix giving the eigenfrequencies of phonons in a non-crystalline solid in terms of 

"effective pair-correlation functions". A brief remark is also given on the moment method 

and sum rules for the dynamic structure factor to study high-frequency collective motion in 

liquids. It is suggested that under certain restrictions the phonon-rotan-like behavior of ex

citations as observed in liquid helium is likely to exist in almost all types of structure or 

topological disorder systems (amorphous and glassy solids, liquids, etc.). To substantiate this, 

a model one-dimensional system is chosen to show how a phonon dispersion curve in a crystal 

lattice is modified, as the partial disorder characterizing a structure disorder system is intro

duced. Such a local disorder is shown to give rise to a frequency gap which decreases with 

increasing local order and eventually vanishes in the case of complete order. This result is 

also in qualitative agreement with the pressure- and the temperature-dependence of the rotan 

minimum energy in liquid helium. Simple numerical calculations are made to compare the 

obtained results with experiments for collective motion in liquid argon and also in liquid 

helium. Fairly good agreement is obtained. 

§ 1. Introduction 

In spite of growing interest in the physical properties of disordered systems, 

little theoretical work has been made on elementary excitations in non-crystalline 

solids such as amorphous and glassy solids. 1
l"'

3
) Recent development of neutron 

scattering measurements has brought attention to collective motion in classical 

liquids.4
),n) It has been suggested that high-frequency collective modes in simple 

liquids are rather similar to phonons in polycrystalline or amorphous solids.6
),

7
) 

Historically, elementary excitations in disordered systems have been studied most 

extensively for quantum liquids or liquid helium. 8
l'

9
l On the other hand, several 

works, both experimentaP 0 ~ 12 l and theoretical, 2
),B),lB)"'

18
) have implied that dispersion 

curves of collective motion in simple liquids bear some resemblance to those of 

phonon-roton-like excitations as observed in liquid helium. It is worthy of note 

in this connection that the general behavior of phonon dispersion curves in solid 

helium, which is a typical quantum crystal, is little different from those in ordinary 

*l Present address: Department of Nuclear Engineering, Ky~to University, Kyoto. 
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A Theory of Phonon-Like Excitations 791 

or classical solids.19
)'

20
) The present authors have occasionally wondered why 

there has been little discussion on the interrelationship of phonon-like excitations 

in crystal lattices, non-crystalline solids and liquids, including quantum solids and 

quantum liquids themselves. 

One of the most important points in studying the properties of phonon-like 

excitations in non-crystalline solids and liquids, being categorized as topological 

or structure disorder systems,21
) is probably the dependence of their dispersion 

on the degree of local ordering. Almost all previous theoretical results for the 

dispersion of collective motion in classical liquids have been obtained by means 

of numerical calculations. 2 ),B),lB)~ls)*) With such numerical results, however, it is 

not always easy to understand the general aspects of physical situations. 

It is the purpose of this paper to study phonon-like elementary excitations 

in non-crytstalline solids and liquids. Generally speaking, two points should be 

taken into account in making a theoretical study of such a problem. One is the 

structural disorder inherent in the systems and the other is atomic vibrations in 

disordered systems in general for which the conventional harmonic approximation 

may not always be guaranteed. (This is particularly so in liquids.) In this 

paper we are concerned with the first point, limiting our discussion to the 

properties of an effective dynamical matrix associated with an averaged phonon 

Greens's function over spatial configurations of atoms and employing the harmonic 

approximation. Particular attention is paid to see how the dispersion of such 

excitation modes depends on local order. An approach to the second point was 

made in a previous paper by the present authors3
) by using the self-consistent 

phonon scheme.19
) In contrast to our previous work,3

) an attempt is made here 

to understand the general properties of elementary excitations which may have 

several things in common in almost all types of structure disorder systems, and 

also their bearing on crystal phonons as a limiting case of complete ordering. 

For this purpose, the formulation of the problem is made which aims at obtaining 

analytical forms for the frequency eigenvalues of excitation modes. 

The outline of this paper is as follows: In the next section a compact self

consistent method is presented to calculate the effective dynamical matrix for the 

evaluation of phonon eigenfrequencies in a non-crystalline solid. In § 3 the notion 

of effective pair-correlation functions is introduced to obtain an exact formal 

expression for the effective dynamical matrix. A brief remark is given in § 4 

on high-frequency collective motion in liquids, classical or quantum, using the 

moment method and sum rules and also on its similarity to phonons in non

crystalline solids. In § 5 a brief discussion is given on the general properties 

of phonon-like elementary excitations in classical structure disorder systems and 

also in liquid helium. In § 6, an analytically tractable one-dimensional model 

*> It does not appear that similar calculations have been done for non-crystalline solids. This 

is probably due to the lack of reliable information on pair-correlation functions in such disordered 

systems. 
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792 S. Takeno and M. Gada 

system IS employed to obtain analytical expressions for dispersion curves of 

excitation modes. Results thus obtained are compared with experiments for liquid 

argon and liquid helium. The last section is devoted to a brief summary of the 

the results contained in this paper. 

§ 2. Effective dynamical matrix for a non-crystalline solid 

We consider a non-crystalline solid composed of atoms of a single species. 

We study phonon-like elementary excitations in the system within the framework 

of the harmonic or the renormalized harmonic approximation. Let Ua ( n) be the 

a-component of the displacement vector u (n) of an atom located at the equilibrium 

position n. Then, the time-independent equation of motion obeyed by the u's can 

be written in the form 

(2·1) 

where {)) is the circular frequency, M is the atomic mass and the K's are bare 

or effective force constants.*> We shall hereafter use a symbolic notation, whenever 

appropriate, to rewrite Eq. (2·1) as 

(Moi-K)u=O or (w 2 -D)u=O, (2·2) 

where 

D=K/M (2·3) 

is the dynamical matrix determining the eigenfrequencies of phonons for a fixed 

spatial configuration of atoms in the system. 

From Eq. (2 · 2), a phonon Green's function g 1s defined by 

(2·4) 

Let A be a quantity which contains the positions of atoms in the system as a 

set of parameters. We are then interested in an average value <A> of A, rather 

than A itself, over. all spatial configurations of the atoms in the systems. We 

define an effective dynamical matrix fD by the equation 

(2·5) 

To set up the self-consistency condition for the determination of this quantity, 

we write down an equation of motion for g as 

g = <u> + <u> CD- fD) g . 

Also defined here are a transition matrix T and a wave matrix Q:22
) 

g = <u> + <u> T <Y> , 
g=SJ<g>. 

(2·6) 

(2·7) 

(2·8) 

*> For a discussion of effective force constants associated with the anharmonicity of atomic 

vibrations and also of the renormalized harmonic approximation, see, for example, Refs. 19) and 37). 
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A Theory of Phonon-Like Excitations 

Equations obeyed by these two quantities are 

T = D- fD + (D - fD) (g) T , 

!2=1 +(g) (D -fD)Q, 

with 

T=(D-fD)Q. 

Then, the condition to be satisfied by T, 

(T)=O 

can be expressed m terms of !2 as follows: 

iD=(DQ) with (!2)=1. 

793 

(2·9) 

(2·10) 

(2·11) 

(2·12) 

(2·13) 

Equations (2 ·10) and (2 ·13) determine the effective dynamical matrix fD (or the 

self-energy of phonons) in a self-consistent manner. 

The lowest order approximation to Eq. (2 ·13) IS 

(2 ·14) 

This is equivalent to setting ( (ui- D)-1
) = (ui- (D) )-1 or (DP) = (D)P (p = 1, 2, 

3, · · ·). We hereafter assume that the distribution of the atoms in the system 

is homogeneous. The quantity fD then becomes diagonal with respect to k (in 

the momentum representation). An explicit form of Eq. (2 ·14) is obtained by 

comparing Eq. (2 · 2) with Eq. (2 ·1). It is given by 

fDa 13 (k) =((1/N):E L; Da 13 (nm) [1-exp{ -ik· (n-m)} ]) , (2·15) 
n m(::f:n) 

where N is the total number of the atoms in the system. Equation (2 ·15) is 

easily calculated to be 28
l 

fDa 13 (k) = (p/M) S dng2(on)Ka 13 (on) {1-exp(ik·n)}. (2·16) 

Here, g2 (on) is the pair correlation function normalized to unity at large lnl,24
l 

and we have taken the origin of the coordinate (denoted by the index "zero") 

to be one of the equilibrium position of the atoms. Also, p =N/V is the number 

density of the atoms in which Vis the total volume of the system. It is of interest 

to note that Eq. (2 ·16) reduces to a conventional expression for the dynamical 

matrix for a crystal lattice if all the atoms in the system are taken to be defi

nitely located at lattice points, namely 

pg2(on)= :E o(m-n). (2 ·17) 
m(::f:O) 

In this sense Eq. (2 ·16) can be called a quasi-crystalline approximation.25
l 

§ 3. Effective pair correlation functions 

Equation (2 ·16) has been derived using the lowest order approximation in which 

effects of higher order correlations other than pair correlations have been neglect-
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794 S. Takeno and M. Gada 

ed. In this section an attempt is made to express Eq. (2 ·13) in terms of effective 

pair correlation functions in which the effects of the higher order correlations 

are exactly taken into account. For this purpose, we first take the k-representation 

of Eq. (2 ·13). It is given by 

«kiD.Qjk)) = <kl QJ lk)=QJ (k) 

=<N-1 L; L; D(nm) {Q(nn') -.Q(mn')}exp{ -ik· (n-n')} ). (3·1) 
nn' m(=f=n) 

For the evaluation of the average we introduce m-body (m>1) probability 

function*) 

with 

S S··· S Pm(n1n2···nm)dn1dn2···dnm=1, (3 ·2) 

which denotes the probability of finding the first atom in the system in the 

volume element dn 1 centered about n1 and at the same time the second atom is 

in dn2 at n 2 and so forth. Also introduced here are the conditional probability 

distribution functions 

(l<m) (3·3) 

A useful relationship between the conditional probabilities is 

p m (nl+lnl+2'. ·nm/nln2· .. nl) = pl+l (nl+llnln2· .. nl) p m (nl+2nl+3' .. nm/nln2·. ·nl+l). 

(3·4) 

Then, the average value of the quantity A=A(n1n2· "nN) IS written explicitly as 

= J J .. · J dn1dn2· .. dnNPN(n1n2· "nN) A(n1n 2 .. ·nN). (3 ·5) 

Similarly, a conditional average <A)n
1
n

2 
... nm of A with one or more atomic positions 

held fixed is defined by 

<A)nlna•"nm 

- S J· .. S dnm+ldnm+2"·dnNPN(nm+lnm+2'"nN/nln2"'nm)A(n 1n 2 .. ·nN). 

(3. 5') 

Conditional probability distributions may be converted to conditional number 

density distributions or correlations by multiplying by the number of atoms: 

*> The probability function PmCn1n2 ... nm) here is connected with the m-body distribution 

functions FmCn1n2 ... nm) defined in Ref. 24) by the relation PmCn1n2 ... nm) = (1/Vm) FmCn1n2 ... nm). 

See also Ref. 25) for a more detailed discussion on the averaging procedure. 
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A Theory of Phonon-Like Excitations 

N 1 (n1) =NP1 (n1) =N/V=p(homogeneous system), 

N2 (n2/n1) = (N -1) P2 (n2/n1) :::::..NP2 (n2/n1), 

Na(na/nln2) = (N-2)Pa(na/nln2):::::..NPa(na/nln2), etc. 

795 

(3 · 6a) 

(3. 6b) 

(3 · 6c) 

We give, in passing, a relationship between the pair correlation function U2 (nm) 

= V 2P2(nm) and the "second-order conditional number density function" N2(njm),*) 

PU2 (nm) =N2 (n/m). (3·7) 

Using Eqs. (3 · 2) rv (3 · 7), we can rewrite Eq. (3 ·1) as 

fiJ (k) = p S dng2(on)D(on) {f(on, k) -f(no, k)exp(ik·n)}, (3·8) 

where 

f(nm, k) = S dlNa(l/mn)<tJ(nl))mnl exp{ -ik· (n-l)}. (3·9) 

Incidentally, an explicit form of the second part of Eqs. (2 ·13) Is given by 

S dlN2(l/n)<tJ(nl))nz exp{ -ik· (n-l)} =1. (3 ·10) 

In view of this, it is convenient to re-express Eq. (3 · 8) in the form 

fiJ (k) = p S dng2* (on) D (on) {1- exp (ik · n)}, (3 ·11) 

where 

U2*(on) =g2(on)j*(n, k). (3 ·12) 

Here, the quantity f* (n, k) is defined by the equation 

f(on, k) - f(no, k) exp (ik · n) =f* (n, k) {1- exp (ik · n)}. (3 ·13) 

Equation (3·11) with g2*(on) replaced by g2(on) has exactly the same form as 

Eq. (2 ·16). The quantity g2* (on) thus defined can be thought of as an effective 
pair carrelation function in which effects of three-body and higher order cor

relation functions have been taken into account. It is seen from Eqs. (3 · 9) and 
(3 ·10) that approximating N 3(l/mn) and <tJ(nl))mnz by N 2(l/n) and <tJ(nl))nz, respec
tively, is equivalent to setting g2*(on) =g2(on). Due to the presence of the 
factor Q-!J(w), the effective pair correlation function g* or each element of the 

effective dynamical matrix fiJ generally becomes complex, thus giving finite life
time to excitation modes.**) 

*> Equation (3·7) is readily obtained by using the relations V2P2(nm) = V2P1 (m)P2(n/m) 
= (VjN)N2(njm). 

**> The imaginary part of 9J appears through the factor !J(w±is) (c-70+) when calculating var
ious quantities of physical interest. 
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796 S. Takeno and M. Gada 

We give a brief comment on the result obtained above. Once the pair-cor

relation function and the pair potential (from which the force constants are 

derived) are known, Eq. (2 ·16) can be used to calculate the eigenfrequencies of 

phonon-like excitation modes in disordered systems with no adjustable parameter. 

This has been done previously for liquid argon, with the result in fair agreement 

with experiment. We can also use Eq. (3 ·11) for the same purpose, but with 9 2* 
taken as an adjustable parameter to get better agreement with experiment. The 

pair-correlation function g2* thus determined then is generally different from the 

pair correlation function Y2 obtainable from the X-ray or the the neutron diffrac

tion. In this sense, for example, the notion of the effective pair-correlation 

function may be used. It may be interesting to examine the difference between 

g2 * and g2 for various types of disordered systems. 

§ 4. Moment method, sum rules and elementary excitations in liquids 

We have shown in the previous paper3
> that Eq. (2 ·16) can also be applied 

to collective motion in simple liquids, provided we look at short-time behavior 

of atomic motion. Underlying fact in using such a physical reasoning is that as 

far as the response to a high-frequency external disturbance is concerned, atoms 

in liquids look something like those in solids.26
> Here, Eq. (2 ·16) is simply 

related to the instantaneous elastic properties of liquids. It is worthy of note 

in this connection that for simple liquids Eq. (2 ·16) or its variant has been 

derived by several workers using various methods, which do not always appear 

to be akin to one another. 27 >' 2 ),S),ls)~ls) In this meaning such a result can be con-

sidered as a fairly general expression for the dispersion of elementary excitations 

in liquids as well as in non-crystalline solids. We do not intend here to dwell 

upon the interrelationship of these methods. We shall merely give a brief 

remark that Eq. (2 ·16) can also be derived from moments or sum rules for the 

dynamical structure factor of liquids. Several points to be touched upon herein 

1s not intended to be original, but they are to be considered rather subsidiary 

to the results obtained in our previous work. 3
> 

We begin the discussion of this section by defining the dynamical structure 

factor S (k, (J)) of a liquid by the equation 

S (k, (J)) = (1/27!) J_
00

00 

dte-imt<P (- k, 0) p (k, t) )T, 

where p(k, t) =exp(iHt)p(k)exp( -iHt),*> in which 

p(k) =~ exp(-ik·n) 
n 

(4·1) 

(4·2) 

Is the Fourier transform of the density of atoms in the system, and the angular 

bracket with subscript T denotes a canonical average at temperature T. De 

*> We use units with li= 1. 
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A Theory of Phonon-Like Excitations 797 

Gennes computed the moments of S(k, w) in the classical approximation. 28>"'30> It 

is to be noticed that the classical limit of S(k, w) yields a function that is sym

metrical in w, so all of its odd moments vanish. The results obtained by him 

can be written in the form 

s:co dww
2
S(k, w) =PksT/M, 

s:co dww
4
S(k, w) = (k

2
ksT/M) 

(4·3) 

X [ (3k 2ksT/M) + (p/M) S dng2 (on)PFv(on){1-exp(ik·n)} l (4·4) 

where ks is the Boltzmann constant, T the absolute temperature and v(on) is 

the interatomic potential. To extract a single elementary excitation, or quasi

particle, of momentum k associated with the density fluctuation, we take S(k, w) 

to be of the form 31
l 

S(k, w) =Z(k, w) {o(w-co*(k)) +o(w+w*(k))} +S(ll(k, w), (4·5) 

where w* (k) is the energy of this quasi-particle mode and s<l) (k, w) is the 

contribution from all the other modes including two and more quasi-particles. 

Inserting Eq. (4·5) into Eqs. (4·3) and (4·4) and neglecting terms involving 

s<l) (k, w)' we obtain*l 

w*(k)2= (3k 2ksT/M) + (p/M) S dng2(on)l717v(on){1-exp(ik·n)}. (4·6) 

The first term of this equation represents the mean thermal energy. Equation 

(4 · 6) without this term has a form similar to Eq. (2 ·16). The force constants 

appearing in Eq. (2 ·16) are generally derived by the second derivatives of an 

interatomic potential. It is shown that if both of the pair correlation function 

and the pair-potential are spherically symmetric, the dynamical matrix {f) becomes 

diagonal_Sl Then, it is seen that one of diagonal elements yielding the squared

eigenfrequencies of longitudinal phonons is equivalent to the second term on the 

right-hand side of Eq. ( 4 · 6). 

Following Miller, Pines and Nozieres,31l we further remark that the Bijl

Feynman formula 32l' 33
> 

E(k) =k2/2MS(k) (4 ·7) 

for the energy E (k) of elementary excitations in liquid helium can also be obtained 

from the !-sum rule31
l for the dynamic structure factor defined by 

Y(kw) = (1/ p) :E I <a I p (k) I O)l 2o (w- w (a)). (w (a) >O) (4·8) 
a(:j:O) 

Here, <alp(k) IO) is the matrix element of the density fluctuation p(k) of the 

*> The result thus obtained using the moment method generally describes the short-time be

havior of liquids or high-frequency collective modes. 
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798 S. Takeno and M. Coda 

liquid at T=0°K taken between the ground state JO) and the excited state Ja), 

to which it is coupled, while w(a) is the corresponding excitation frequency. Two 

moments of Y(k, w) are of interest. These are31
)'

34
)'

35
) 

100 

dw.9(k, w) = S (k), ( 4 · 9) 

ioodww.9(k, w) =k2/2M. (4·10) 

Equation ( 4 ·10) Is a statement of the /-sum rule. As m the previous case, we 

put 

Y(k, w) = Z' (k, w) (](w-E* (k)) + ._9(1) (k, w). ( 4 ·11) 

Inserting this into Eqs. ( 4 · 9) and ( 4 ·10) and neglecting terms involving the factor 

.9<1)(k, w), we obtain Eq. (4·7). 

The interrelationship between the quantities S(k, w) and .9(k, w) defined 

above are seen by observing the fact that Eq. (4·1) for T=0°K, when expressed 

in the form of the so-called Fermi's golden rule, reduces to Eq. ( 4 · 8) (apart from 

unimportant factors). Thus, it is likely that Eqs. (2 ·16) or ( 4 · 6) and ( 4 · 7) 

are of the same nature in the sense that they are derivable from the sum rule 

for the dynamical structure factor and that dispersion curves of excitations 

obtainable from these equations have similar forms. 9
),

2
),S),l

4
)"'

18
) 

§ 5. Qualitative properties of the dispersion of excitation modes 

in structure disorder systems and in liquid helium 

We are concerned here with the qualitative properties of the eigenfrequencies 

of excitation modes given by Eq. (2 ·16) or (3 ·11). We first study the inter

relationship between such phonon-like excitations and crystal phonons. Equation 

(2 ·16), when combined with Eq. (2 ·17), reduces to 

fD (k) = (1/ 1\,f) ~ K(on) [1- exp (ik · n)] =DL(k). (5 ·1) 
n(::j::O) 

This is the conventional expression for the dynamical matrix for a crystal lattice. 

In terms of this quantity, we re-express fD (k) as 

(5·2) 

where 

.JfD (k) = fD (k) -D L(k). (5 ·3) 

As is weli known, the eignvalue of the dynamical matrix DL(k) is a periodic 

function of k. Therefore, it vanishes at reciprocal lattice points. The eigenvalues 

of the matrix JfD (k), however, generally remain finite at, or in the vicinity of, 

a lattice point k = ko in the reciprocal lattice space. Due to this fact, there arises 

a frequency gap which decreases with increasing local ordering and eventually 
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A Theory of Phonon-Like Excitations 799 

vanishes in the limit of complete order corresponding to the crystal lattice. This 

result is to ~e expected from the lack of a kind of selection rule since the 

periodicity of the field is destroyed in our system. Thus, a dispersion curve for 

frequency eigenvalues of, say, longitudinal modes may have a form as depicted 

in Fig. 1. Such a result is reminiscent of phonon-roton-like modes in liquid helium.
36

) 

It may be concluded that a dispersion curve as shown in Fig. 1 is rather common 

to phonon-like elementary excitations in almost all types of non-crystalline solids 

and classical liquids. In fact, such a behavior has been observed experimentally 

for liquid lead.10) Several numerical calculations of Eq. (2 ·16) or its variant2
),s),lS)"'

18) 

and also the results of computer simulation of molecular dynamics in classical 

liquids12) have given similar results. According to the result obtained above, more 

than one minima in the dispersion curve can appear. Such a behavior may exist in 

the case of amorphous solid. In the case of classical liquids, however, the 

effect of single-particle excitations and the other effects giving rise to phonon 

damping become more and more important in the high-wave number region, so 

only the first minimum as shown in Fig. 1 may be well observable. 

Finally, a brief remark is given on elementary excitations in liquid helium. 

We observe that Eq. (2 ·16) has been used previously as a phonons-in-amorphous

solids approach to collective motion in classical liquids.2
),s) In analogy with this 

case, a phonon-in-amorphous-quantum-solids approach may be used for elementary 

excitations in quantum liquids. Here, this· is to replace the force constant K in 

Eq. (2 ·16) by the second derivatives of an effective potentiaP9
)'

37
) in which both 

of the anharmonicity of atomic vibrations and the short-range correlation effect 

resulting from large zero-point motion and strong repulsive part of the interatomic 

potential,38
)'

39
) respectively, have been incorporated. Thus, the main result obtained 

a hove may be considered to hold in the case of amorphous quantum solids or 

quantum liquid. Without detailed numerical calculation, we may conclude that 

the eigenvalues of the dynamical matrix thus obtained, corresponding to longitudinal 

phonons, as a function of k also have a form as shown in Fig. 1. We now make 

an attempt to examine the dependence of the frequency gap or the roton energy 

minimum J on the local order, taking the case of liquid helium as an example. 

Several experiments have shown that in this case the quantity J decreases as an 

external pressure increases40)"'45) and also that it decreases with increasing tem

perature.42)'45) It has also been shown experimentally that the first maximum of 

the radial distribution function in liquid helium becomes sharper and higher as 

w(k) 

Fig. 1. Schematic feature of phonon eigenfrequencies w (k) in a structure disorder system. 
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800 S. Takeno and M. Gada 

temperature as well as external pressure increases.46
l'

47
l These results are in 

qualitative agreement with our result that the quantity J decreases as the local 

order Increases. 

§ 6. An analytically tractable one-dimensional model system 

To substantiate the results obtained in the previous two sections, an analytically 

(rather than numerically) tractable model is required to get more physical insight 

into the problem. Our particular intention here is to obtain an analytically closed 

expression for {)) (k), with attention paid to its dependence on the local order in 

structure disordered systems. For this purpose, we consider a one-dimensional 

(1-D) system. Equation (2 ·16) then reduces to 

iJJ (k) = {)) (k? = (2p/ M) 1"' dxg2 (x) (d2v (x) / dx2
) {1- cos (kx)}. (6·1) 

We want to obtain an approximate simple analytical expression for the quantity 

g2(x)d2v(x)/dx2 which makes the above integral analytically tractable, yet it 

contains an essential feature of the problem. We observe the fact that the product 

g2(x)v(x) or g2(x)d 2v(x)/dx2 Is very sensitive to the value of g2(x) at small 

v(x) 
(b) 

dV(X) (C) 
crx-

g (x) d
2
v(x) 

z dx (e) 

Fig. 2. Illustration of the 

functions g2(x), ·v(x), 

dv(x)/dx, d 2v(x)/ 

dx2, and g2 (x) d 2v (x) 

/ dx2• These curves 

are of qualitative sig

nificance only. 

values of x. In the limit x~O, 

g2 (x) vanishes sufficiently strongly 

that the product vanishes. Thus, 

the peak value of such a quantity 

is obtained for x just a hove Xm, 

when Xm is the smallest value of 

x for which g2 (x)"'--'O. This be

havior is illustrated in Fig. 2. It 

is seen that the range of the product 

is roughly the range of v (x), and 

the long-range behavior of g2 (x) 

F(x) 

h2 ------------------

~d 

L---------~~~-----X 

a 

Fig. 3. Plot of curve (6· 2). 
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A Theory of Phonon-Like Excitations 801 

does not affect it. A dominant contribution to the product g2 (x)d 2v(x)/dx2 

therefore comes from the region around x =a, where a is the average distance 

of nearest neighbour atoms in our model system. 

we put (see Fig. 3) 

With these situations in mind, 

for a-(h/b)<x<a+(h/b), 

otherwise. 

(6 ·2) 

The area S occupied by F(x) IS 

which is taken to be constant. Insertion of Eq. (6 · 2) into Eq. (6 ·1) gives 

oi(k) =2KL [ 1 -~{sin(kd) +cos(kd) sin(kd)}]cos(ka) (6 · 4) 
M 2 kd (kdY (kdY ' 

where 

d=h/b (6·5) 

is the half-width of the curve of F(x). We will take the quantity d as an 

adjustable parameter to specify the local order of the system. 

We are solely interested in the case in which d is much smaller than a, 

namely d<_a. As in the case for Eq. (5 · 2), we rewrite Eq. (6 · 4) as , 

(6·6) 

Here, 

(6·7) 

is the squared-eigenfrequency of phonons when the system constitutes a crystal 

lattice with lattice constant a. The quantity 

L1 (kY =2KL [l- ~ {sin(kd) +cos (kd) _ sin(kd)}]cos (ka) 
w M 2 . kd (kd)2 (kd)B 

(6·8) 

thus defined is called here a frequency gap. It is expanded in powers of kd as 

follows: 

(6·9) 

Thus, the quantity Llw(kY is shown to be directry conneted with the width d. 

Here, an increase of the local order corresponds to a decrease of d and therefore 

of Llw (k). 2 

We now investigate the general behavior of phonon dispersion curves given 

by Eq. (6 · 4) or (6 · 6) as a function of k. In the long wavelength region the 

contribution of Llw (kY to w (kY can be neglected as compared with WL (k), and 
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802 S. Takeno and M. Gada 

therefore (J) (k) is little different from (J)L (k). Such a result is of course to be 

expected from the Debye theory. In this region, where the continuum model 

holds, phonon dispersion curves are generally insensitive to the microscopic structure 

of the system. Of particular interest here is the behavior of (J) (k) near k = 2rc/ a. 

It is seen that the phonon eigenfrequencies remain finite in the vicinity of k = 2rc/ a 

due to the presence of the factor J(J) (k)2
• It is then shown that the function 

(J) (k) has a minimum in this region with a gap which decreases as the local 

order increases. As in the case in § 5, let k0 be the value of k at which such 

a minimum takes place. We then obtain Taylor's series for (J) (k): 

(J)(k)~(J)(ko) + (1/4(J)(ko)) [d 2(J)(k)2/dk2]k-=ko(k-koY+ ... 

=J+ {(k-koY/2/1}, (6·10) 

where 

J = (J) (ko) (6·11) 

IS the frequency gap and 

/-l = 2(}) (ko)/ [d 2(J) (k)2/ dk2]k=ko (6 ·12) 

is an effective mass of the elementary excitations. Equation (6 ·12) is the same 

as the Landau formula for elementary excitations in liquid helium. 36
l 

We now obtain explicit expressions for k0, J and f1 defined above. For this 

purpose, we approximate Eq. (6 · 9) by 

J(J) (k)2 = (2KL/ M) { (1/5) (kd)2- (3/280) (kdY + .. ·}cos (ka) 

~ (2KL/ M) (1/5) (kd)2cos (ka). (6 ·13) 

Inserting this into Eq. (6·4), we obtain an approximate value of k0 and J, correct 

to the first order in (d/ a): 

koa~2rc- (4rc/5)r2/[1- {(4rc2/5) + (2/5)}r2
] 

(6·14) 

and 

(6 ·15) 

where 

r = d/ a and (J)irn = 4KL/ M (6·16) 

is the maximum eigenfrequency of phonons in the case of the crystal lattice. A 

similar procedure yields an approximate result (d 2(J) CkY 1 dk 2
)k=ko~1- c 4n2/5) r 2

• 

From Eq. (6 ·12) we thus obtain 

(6 ·17) 

Eliminating the factor (J)Lm from Eqs. (6·15) and (6·17), we also obtain a relation

ship between f1 and J: 

(6 ·18) 
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A Theory of Phonon-Like Excitations 803 

w(k) 

7I/a 2rrla 

Fig. 4. Phonon eigenfrequencies in a model 1-D 

structure disorder system (Eq. (6·4)) for various 

values of r=d/a; (A): r=O.OO (cryticallattice), 

(B): r=0.02, (C): r=0.05, (D): r=O.lO, (E): 

r=0.20 and (F): r=0.30. 

It is seen that the value of !i de

creases as r decreases or the local 

order increases. 

We are now in a position to 

make a numerical analysis of the 

results obtained above. The results 

of numerical calculations of phonon 

dispersion curves as given by Eq. 

(6 · 4) are plotted in Fig. 4 for 

r = 0.00 (crystal lattice)' 0.02, 0.05, 

0.10, 0.20 and 0.30. The cases of 

r = 0.30 and 0.14 roughly correspond 

to liquid helium48)' 49) and liquid 

argon/0
) respectively. Figure 4 

shows how phonon dispersion curves 

are modified as the local order 

changes. It is seen that an w-versus

k curve for r = 0.3 roughly corres

ponds to the results obtained by 

Henshaw and Woods for liquid 

helium II using neutron diffraction 

measurements.42) Next, we apply 

Eq. (6 ·15) to the case of liquid 

argon by identifying WLm with the 

maximum value Wmax"'-'1013sec- 1 of phonon eigenfrequencies observed expe~imentally. 

Taking r = 0.14 in Eq. (6 ·15), we then obtain 

(6·19) 

which is also in fair agreement with the experimental result of Skold and Larsson11
l 

and that of Rahman. 12
) Finally, an attempt is made to apply Eq. (6 ·18) again 

to the case of liquid helium. Putting a= 3.6 X 10-8cm, r = 0.30 and L1 = 8°K we 

obtain 

tt/M(He)::::::::0.3, (6. 20) 

where M(He) is the atomic mass of helium. In view of the crudeness of our 

model and approximation, the above result may be considered to be fairly satis

factory.42)'51) 

§ 7. Concluding remarks 

The main result obtained in this paper is that the phonon-roton-like behaviour 

of excitations (See Fig. 1) in classical liquids stems from the local disorder 

inherent in structure disorder systems and therefore that it is likely to exist, 
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804 S. Takeno and M. Goda 

within certain restrictions, in almost all non-crystalline solids and simple liquids, 

including liquid helium itself. In advancing such an argument the importance 

of the interrelationship between such excitation modes and phonon modes in 

crystal lattices, classical or quantum is pointed out. We have arrived at the above 

result by expressing the eigenfrequencies of phonon-like excitation modes in 

terms of effective pair correlation functions as well as of the second derivatives 

of pair potentials. Throughout this paper, we have neglected the damping or 

finite lifetime of such excitation modes. We have shown in § 3 that for non

crystalline solids this arises, within the framework of the harmonic approximation, 

from the imaginally part of effective pair correlation functions. There is good 

reason to believe that the damping effect is quite different for different types of 

structure disorder systems. This may be particularly so if we consider two 

contrasting cases, such as quantum liquids and classical liquids, non-crystalline 

solids and liquids, and so on. 

In this paper we have entirely omitted the discussion on the frequency 

spectrum of excitation modes and its effects on the thermodynamical properties 

of structure disorder systems, particularly of non-crystalline solids. The next 

step we should make for this purpose is to obtain the wave-number distribution 

function f(k), which is the number of modes per unit range of k and may be 

called the density of states in the k-space. These problems will be studied in 

a separate paper. 

We have also made an attempt to calculte the dispersion curve of elementary 

excitations in liquid helium. This has been done by merely inserting the value 

of the half-width of the first peak of the pair correlation function, obtainable 

from experimental data, to Eqs. (6 · 4), (6 ·15) and (6 ·18). Although fairly good 

agreement with experiment has been obtained, further analysis of this problem 

along the line with the method developed in this paper is required to see whether 

the above-mentioned agreement with experiment is accidental or not. As mentioned 

in § 5, one of possible approaches is to generalize the concept of phonons in 

quantum crystals to the case of non-crystalline quantum solids and quantum 

liquids. The point here would be to investigate the connection between the 

behavior of phonon-like excitation modes in the vicinity of k = k0 and the concept 

of roton in liquid helium. 36
>•

52
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