\
\

HAL

open science

A theory of processes with localities
Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn

» To cite this version:

Gérard Boudol, Ilaria Castellani, Matthew Hennessy, Astrid Kiehn. A theory of processes with local-
ities. [Research Report] RR-1632, INRIA. 1992. inria-00074929

HAL Id: inria-00074929
https://hal.inria.fr /inria-00074929
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00074929
https://hal.archives-ouvertes.fr

RN

UNITE DE RECHERCHE
NRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105
78163 Le Chesnay Cedex
France

Tel:(1)3963 5611

Rapports de Recherche

1992

W niversaire

N° 1632

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

A THEORY OF PROCESSES
WITH LOCALITIES

Gérard BOUDOL
Ilaria CASTELLANI
Matthew HENNESSY

Astrid KIEHN

Mars 1992

*

A Theory of Processes with Localities

G. Boudol, 1. Castellani
INRIA, Sophia-Antipolis,
M. Hennessy
CSAI, University of Sussex,
A. Kiehn
TUM, Munich.

Abstract

We study a notion of observation for concurrent processes which allows the observer to
see the distributed nature of processes, giving explicit names for the location of actions.
A general notion of bisimulation related to this observation of distributed systems is in-
troduced. Our main result is that these bisimulation relations, particularized to a process
algebra extending CCS, are completely axiomatizable. We discuss in details two instances

of location bisimulations, namely the location equivalence and the location preorder.

1 Introduction

A distributed system may be described as a collection of computational activities spread among
different sites or localities, which may be physical or logical. Such activities are viewed as
being essentially independent from each other, although they may require to synchrouize or
communicate at times. It has been argued in previous work [CH89,Cas88,Kie89,BCHK91] that
the standard interleaving approach to the semantics of concurrent systems may not be adequate
to model such distributed computations: more precisely, it may not be able to express naturally
properties of distributed systems which depend on their distribution in space, like e.g. a local
deadlock, that is a deadlock in a specific site of the system.

Most noninterleaving semantics proposed so far in the literature for algebraic languages
such as CCS [Mil80,Mil89] are based on the notion of causality between actions, or on the
complementary notion of causal independence or concurrency. Here we pursue the different
approach of [CH89,Cas88,Kie89,BCHK91], which focusses more specifically on the distributed
aspects of systems. At first sight, the concepts of causality and distribution in space may ap-
pear as dual notions, which should give rise to the same kinds of noninterleaving semantics for
distributed systems. In fact this is not the case, essentially because communication may intro-

duce causal dependencies between activities at different locations. In a distributed view, such

*This work has been supported by the ESPRIT/BRA CEDISYS project.

A Theory of Processes with Localities

Une théorie des processus répartis

Gérard Boudol & llaria Castellani
INRIA Sophia-Antipolis

Matthew Hennessy
CSAI, University of Sussex

Astrid Kiehn
TUM, Munich

Abstract.

We study a notion of observation for concurrent processes which allows the observer to sec the
distributed nature of processes, giving explicit names for the location of actions. A general notion
of bisimulation related to this observation of distributed systems is introduced. Our main result is
that these bisimulation relations, particularized to a process algebra extending CCS, are completely
axiomatizable. We discuss in details two instances of location bisimulations, namely the location
equivalence and the location preorder.

Résumé.

Nous étudions une notion d'observation des processus concurrents dans laquelle 1a structure de
répartition apparait, sous la forme de noms de sites attribués aux actions. Nous introduisons uue
notion générale de bisimulation relative a cette observation des systémes distribués. Notre principal
résultat est que I’on peut donner une axiomatisation compléte de ces bisimulations, appliquées & une
algébre de processus qui contient CCS. Nous discutons deux cas particuliers de telles bisimulations,
que nous appelons équivalence et préordre de répartition.

“cross-causalities” induced by communication are observed as purely temporal dependencies,
while in the causal approach they are assimilated to “local causalities”, that is causalities in-
duced by sequential composition. Let us see give example, using a CCS notation for processes.
Let =, denote a causal equivalence such as the causal bisimulation of [DD89], which turns out
to coincide with the weak version of “history preserving bisimulation” [vGG90] and with an
instance of “NMS equivalence” [DDNM87]. Now, if =4 denotes a distributed bisimulation such
as that of [CH89,Cas88,Kie89] we have, for r = (a.a+b.8 | a.b+ f.a):

r+(ald) =g 1t %4 rT+a.b
#e R
If we add a restriction around 7 to prevent actions a,&,f3,3 from occurring independently,

these absorptions give rise to the following identifications, which are perhaps more suggestive:

alb =4 (a.a+bflab+p.a\a,f =. ab+bua

Of course in both the causal and the distributed approach a | b is distinguished from «. b+ b. a.

In this paper we develop a semantic theory for CCS which takes the distributed nature
of processes into account, along the lines of the above-mentioned works [CH89,Cas88,KicR9].
The first two of these papers do not deal with the restriction operator of CCS, and one may
argue that the treatment of restriction in [Kie89] is not completely satisfactory. Here we use a
different formalisation, similar to that of [BCHK91]: we shall deal with processes with explicit
localities or locations, extending CCS with a construct of location prefiringl :: p, which denotes
the process p residing at location I. Intuitively, locations will serve to distinguish different
parallel components. Let us illustrate our approach with a more concrete example. We may
describe in CCS a simple protocol, transferring data one at a time from one port to another,

as follows:

Sys < (Sender | Receiver)\a,
Sender <« in.a.[B3.Sender

Receiver < a.out. . Receiver

where a represents transmission of a message from the sender to the receiver, and 3 is an
acknowledgement from the receiver to the sender, signalling that the last message has been
processed. In the standard theory of weak bisimulation equivalence, usually noted =, one may

prove that this system is equivalent to the following specification:

Spec <« in.out. Spec

That is to say, Spec ~ Sys. The reader familiar with [DD89] should also be readily convinced
that Spec ~. Sys: intuitively, this is because the synchronizations on «, 3 in Sys create “cross-
causalitics” between its visible actions in and out, constraining them to happen alternately in
sequence. On the other hand Spec will be distinguished from Sys in our theory, because Spec
is completely sequential and thus performs the actions in and out at the same location [, what

can be represented graphically as follows:

.....................

in —— Spec —— out

while Sys is a system distributed among two different localities /; and I, with the actions in

and out occurring at I} and /; respectively. Thus Sys may be represented as:

..

..

Here the unnamed link represents the communication lines a, 3, which are private to the system.
Although Spec and Sys will not be equated in our theory, we will be interested in relatiug them
by a weaker relation, a preorder that orders processes according to their degree of distribution.
A similar “concurrency refinement” preorder, based on causality rather than distribution, was
proposed by L. Aceto in [Ace89] for a subset of CCS.

Consider another example, taken from [BCHK91], describing the solution to a simple mutual
exclusion problem. In this solution, two processes compete for a device, and a semaphore is

used to serialize their accesses to this device:

Proc < 7D.enter.exit.v. Proc
Sem < p.7.S5em
Sys < (Proc| Sem | Proc)\{p,v}

Take now a variant of the system Sys, where one of the processes is faulty and may deadlock
after exiting the critical region (the deadlocked behaviour is modelled here as nil). This system,

FSys, may be defined by:

FProc <« 7P.enter.ezxit.(v. FProc + v. nil)
FSys <« (Proc|Sem| FProc)\{p,v}

In the standard theory of weak bisimulation the two systems Sys and F'Sys are equivalent. In

fact they are both equivalent to the sequential specification:

Spec «< enter.ezxit. Spec

that is Sys &~ Spec = FSys. Note that both Sys and FSys are globally deadlock-free. On the
other hand F'Sys has the possibility of entering a local deadlock in its faulty component, which
has no counterpart in Sys. More precisely, consider the following distributed representation of

Sys:

..

enter

Sem

.

)

'

,

L} .
! — exil
:

L

)

)

..

The faulty system F'Sys has a similar representation, with FProc in place of the second oc-
currence of Proc. In this distributed view Sys and FSys have different behaviours, because
FSys may reach a state in which no more actions can occur at location [, while this is not
possible for Sys. Note that again the causal approach would make no difference between Sys
and FSys: it may be easily checked that Sys =, Spec =, FSys.

In the rest of this introduction, we present our formalisation of distributed systems as CCS
processes with explicit locations. Let us be more precise about the nature of locations, and
the way they are assigned to processes. Since the distributed structure of a system may evolve
dynamically (because of the nesting of parallelism and prefixing in CCS terms), the notion of
location will have to be structured itself. For example a process of the form a. p will be initially
considered as having just one location /. Suppose now that p = ¢ | 7, for some nontrivial
processes ¢ and r. Then the locations of the subprocesses ¢ and r should be distinguished,

to reflect the fact that ¢ and r are independent components; at the same time, they should

be both sublocations of the location I. In our formalisation we will take locations to be words
w,v,... over atomic locations [,/’,..., and define v to be a sublocation of u whenever u is a
prefix of v. Then the subprocesses ¢ and 7 in the above example will have locations [/}, resp.
{15, for some atomic locations [} and [,.

As regards the attribution of locations to CCS processes, there arc at least two possibilities.
The most intuitive approach consists in assigning locations statically to the components of a
process, using the construct u :: p along the lines suggested by the examples above. Such
static assignment has been studied by L. Aceto [Ace91] for the so-called nets of automata, a
subset of CCS where parallelism may only appear at the top level. Here we will adopt the
different approach of [BCHK91], where locations are dynamically generated as the exccution
- or the observation - of a process goes on. The two approaches are in some sense equivalent
(see [Ace91]), though the dynamic view is more convenient for devecloping technical results, as
we shall establish here. In both views, a process with locations is described operationally as
performing location transitions of the form:

a
p—P

u

which differ from the standard transitions of CCS in that any (observable) action a has associ-
ated with it a particular location u. In the dynamic approach adopted here, these locations are
introduced when actions are executed. The essence of our semantics is expressed by the tran-
sition rules for action prefixing a.p and location prefixing u :: p. The rules for the remaining
operators of CCS are formally identical to the standard ones (with —z—' replacing =). The

rule for action prefixing is:

a.p —7—‘ lap for any atomic location [

This says that the process a.p may be observed to perform an action a at any atomic location
1. All subsequent actions of the process will be observed within this location: this is expressed
by the fact that the residual of a.p is [::p, the process p residing at location /. The rule for

the location prefixing operator u:: p is now:

a 7 a
p—pP = uup _——~uup

uv

/

Thus any action of u::p is observed at a sublocation of u. Note that the process u::p retains
the location u throughout its execution, in other words location prefixing is a static construct.
We will mainly be interested in the weak location transition system associated with the

o . a . .
transitions -— . We assume that unobservable r-actions have also unobservable locations:
u

thus T—transitions will have the usual form 5, and simply pass over existing locations without
introducing any new ones.

In a previous paper [BCHK91] we used a similar notion of location transition system to
give a non-interleaving semantics for CCS, by extending the notion of bisimulation. The work
presented here differs from that of [BCHK91] in two respects. First, the transition rule given
here for action prefixing is slightly different, in that it associates with an initial action an
atomic location ! instead of a general location u. We shall see in section 5 that this difference
is significant, and that the semantics proposed here is more in line with our intuition about
spatial distribution. Second, we shall be interested now in a more general notion of bisimulation
on location transition systems, which we call parameterized location bisimulation.

A parameterized location bisimulation (plb) is a relation B(R) on processes with locations,
parameterized on a relation R on locations. Roughly speaking, two processes are related by
B(R) if they can perform the same actions at locations u, v related by R. Our main result is a
complete aziomatisation, over the set of finite CCS processes, of parameterized location bisim-
ulations satisfying some general conditions, which we call sensible. This is achieved by intro-
ducing an auxiliary prefixing construct < @ at uz >.p. Intuitively, the construct <a at uz >.p
prefixes the term ¢ by an “action with locality”. Here u represents the access path to the
component performing the action a, while x is a location variable that is instantiated to some
actual location [when the action is performed. The operational behaviour of such a process is

given by the rule:

<aatuz>.p —:T pll/z]

This prefixing construct is used to define normal forms, which are terms of the form
D <a; at w;z;>.p; + »_7.¢;, and an essential part of our proof system for sensible pib’s
i€l j€J

consists of laws for converting terms into such normal forms. For instance a basic law is the

following, which is used to replace ordinary prefixing by the new prefixing construct:

a.p=<aatz>.z:up

We shall study in some detail two instances of sensible parameterized location bisimulation,
the location equivalence ~¢ and the location preorder L ,. Location equivalence is obtained by
taking the relation R on locations to be the identity: then two processes are equivalent when
they can perform the same actions at the same locations. The equivalence =, formalises the idea
that two processes are bisimilar, in the classical sense, and moreover they have the same parallel

structure. We will compare the relation =, with the earlier version proposed in [BCHK91], and

show that =, is a stronger notion. We shall also compare x¢ with the distributed bisimulation
equivalence x4 of [CH89,Cas88,Kie89] and show that the two notions are very close, in that
they coincide on finite restriction-free processes.

The other example of sensible plb we shall consider, the location preorder T ,, relates two
processes when they are bisimilar but one is possibly less distributed than the other. The
relation § , is weaker than =, in the sense that ~, C §,. For instance, looking back at the
protocol example of p.3, we will have the following relations between the specification Spec and

the protocol Sys:

Spec % Sys but Spec T, Sys

~ ¢

whereas the two systems Sys and FSys in the mutual exclusion example of p.4 are distinguished
by both =, and T ,.

To conclude this introduction, let us say a few words about related work. We already
mentioned the work by L. Aceto [Ace91], which provides static characterisations of the relations
~¢ and gl for a general class of CCS processes, the so-called nets of automata. This is
interesting not only from an intuitive point of view, but also because it yields an effective version
of our theory (the reader could have noticed that the location transition system determined
by the simple process a. nil is infinitely branching). The notion of explicit locality is used
by A. Kiehn in [Kie91] to bring together in the same framework the causal and distributed
views of concurrent systems. A similar idea motivates some recent work by U. Montanari and
D. Yankelevich [MY91}, where the notion of locality is extracted from the proofs of transitions.
Their approach provides another effective version of the location equivalence for behaviourally

finite processes — but not in general for regular systems, such as the nets of automata.

2 Parameterized Location Bisimulations

In this section we introduce a new kind of transition system, called the location transition
system, to specify processes whose actions may occur at different locations. Let us explain the
intuition for the location transition system. The general idea is that processes consist of parallel
components which reside at different locations and thus may be observed independently. Then
instead of assuming a single global observer for a system we assume a set of observers, onc for
each parallel component. At each stage of evolution of the system, an observer — or parallel
component — has a current location, which we represent here as a word u over a set of atomic
locations Loc. This location may be seen as the “access path” to that component. In this
section we are not concerned with the way these access paths are generated; we simply assume

that they exist.

Let us now define our transition system, formalising the notion of process with locations. We
assume an infinite set of atomic locations Loc, ranged over by k,I,m ...; we then define general
locations, ranged over by u,v,w..., to be sequences of Loc*. As usual we denote concatenation
by uv, and the empty word by €. The set of non-empty locations is Loct. Processes will
have transitions p % p', where a is an action and u is the location where it occurs, as well
as unobservable 7-transitions; the locations of 7-transitions are themsclves considered to be

unobservable, so these transitions will have the usual form p 5 p'.
Definition 2.1 A Location Transition System is of the form
(S, A, Loc,{ —Z—~ la€ A, ue Loc*}, 5)

where S is a set of processes with locations, A is a set of actions, Loc is the set of atomic
locations and each -~ , 5 is a subset of (S x §), called an action relation. The union of
u

action relations forms the transition relation over §. 0O

Based on the transitions p -—Z—' p’ and p = p’, we define the weak transitions p = p’ and p%p’
in the standard way: we let &= (5)*, n > 0. We will also use = to denote (5)*, n > 1.

Then the % are given by:

p=p @ar 304 pHq — S

On the resulting (weak) location transition system we define now the notion of parameterized
location bisimulation (plb). A plb is a relation on processes with locations, parameterized on
a relation K on locations. Informally, two processes are related if they can perform the same
actions, at locations u, v related by R. Intuitively, R is a requirement on the way corresponding

transitions should be reached in related processes.

Definition 2.2 Let R C (Loc® x Loc*) be a relation on locations. A relation G C (S x) is
a parameterized location bisimulation (plb) parameterized on R, or R-location bisimulation, iff
G C Cr(G), where (p,q) € Cr(G) iff

(1) p>p implies ¢=>¢ for some ¢’ € S such that (p',¢') €G
(i) ¢=q implies p=p’ for some p’ € § such that (p',¢') € G
(ii2) p=:>p' implies q—%*»q’ for some ¢’ € S and v € Loc*
such that (u,v) € R and (p',¢') € G
(iv) q=:>q’ implies p=z>p’ for some p’ € S and u € Loc™

such that (u,v) € R and (p',¢') € G.

The function Cg is monotonic and therefore, from standard principles, it has a maximal fixpoint
which we denote by B(R). As usual

B(R) = | J{G |G C Cr(G)}

Other properties of B(R) depend on corresponding properties of the underlying relation R. For

instance we have:

Property 2.3 If R is reflexive (resp. symmelric, transitive) then so is B(RR).

Proof. Straightforward. a

It should be clear that if R C R’ then any R-location bisimulation is also an R'-location

bisimulation, therefore:
Property 2.4 RC R = B(R)C B(R"

If for instance we take R to be the universal relation U = Loc™ x Loc™, we obtain an equivalence
relation, B(U), which is the largest parameterized location bisimulation. Intuitively, letting
R = U amounts to ignore the information on locations. In the next section we will see that
indeed for the location transition system associated with the language CCS the relation B(U)
coincides with the standard weak bisimulation equivalence of [Mil89)].

Another important instance of parameterized location bisimulation is B(Id)}, where Id is
the identity relation on locations. Again this is an equivalence relation, which we shall call
location equivalence and denote by =¢. This equivalence, which equates processes with the same
degree of distribution, will be studied in detail in sections 4 and 5. We shall see that in some
sense location equivalence is the strongest “reasonable” parameterized location bisimulation. In
section 6 we will discuss another example of parameterized location bisimulation, the location

preorder G ,, a preorder formalising the idea that a process is less distributed than another.

3 Language and Operational Semantics

We propose now a location transition system semantics for an extension of Milner’s language
CCS, and discuss the resulting parameterized location bisimulations. We should point out that
the semantics presented here is very similar, but not identical, to the one given in [BCHK91].
The reasons for introducing a new, more discriminating semantics are both technical and intu-
itive; they will be explained in the next sections.

The language we consider is essentially CCS, with some additional constructs to deal with
locations. As usual we assume a set of actions of the form Act = AUA, where A is a set of names
ranged over by @, 8,..., A the corresponding set of co-names {& | a € A}, and ~ is a bijection
such that & = «a for all @ € A. The symbol 7, not belonging to Act, denotes the invisible
action. We use a,b,c,... to range over Act and p,v,... to range over Act; = ActU {r}. We
will use p,q,... to denote terms of our language. The set of process variables, ranged over by
P,Q...,is denoted PVar. The operators we consider are all those of CCS, namely nil, action
prefixing p. p, nondeterministic choice +, parallel composition |, relabelling [f], restriction \«
and recursion rec P. p. In addition we shall use the construct of location prefixing w :: p
(already introduced in [BCHK91]) to represent an agent p residing at the location u. We recall
from the previous section that locations u,v,w... are words of Loc™.

Moreover we shall assume, for axiomatization purposes, an infinite set of location variables
LVar, ranged over by z,¥..., and introduce a new form of prefixing, < a at oz >.p, where ¢
is a location word possibly containing variables, that is ¢ € (Loc U LVar)*. Intuitively, the
construct < a at oz >.p prefixes a term by an “action with locality”. The meaning of this
operator will be specified more precisely when we give the formal semantics of our language.
Because of location variables, we will need a more general location construct of the form o::p,
where o0 € (Loc U LVar)*; thus u :: p will be a particular case of ¢ ::p . To sum up, our

language IL is given by:

p = nid | pp | ptp | plp | 2lfl | p\e
| P | recP.p

| oup | <aatozr>.p

Here rec P. p is a binding operator for process variables, which leads to the usual definition
of free and bound occurrences of variables and of substitution [p/P] of terms for process vari-
ables. Similarly, <a at oz >.p is a binding operator for location variables, which binds all
free occurrences of the variable z in p. However, 2 may still occur free in o. Once more,

this leads to standard definitions of free and bound occurrences of location variables and of

10

substitution [u/z] of locations for location variables. We will use the notation p[p] to de-
note an instantiation of both process and location variables in p. Similarly, we shall use
o[p] to represent an instantiation of an “open” location word o. Thus we have for exam-
ple: (<a at ez >.p)[p] = <a at ofp]y >.(p[y/z])[p) where y is a fresh variable. In general
we will be only interested in closed terms, where all occurrences of both kinds of variables arc
bound. We take IP to denote the set of such closed terms, also called processes in the following.
We shall still use p,q... to range over IP, specifying whether we deal with closed or open terms
when this is not clear from the context. Note that if <a at oz >.p is a process then o must
be a word over location names only, i.e. ¢ € Loc*. For any process p, we shall denote by loc(p)
the set of location names [€ Loc occurring in p. The set of finite processes, that is those not
involving the recursion construct, will be denoted IPy.

We define now the location transition system for IP, specifying its operational semantics.
The transition rules are given in Figure 1. As we said in the previous section, the idca is
that actions are observed at particular locations. Initially, some locations may be present in
processes because of the location construct u :: p. Pure CCS processes contain no locations:
one may regard them as having all components at the empty location ¢. Subsequently, when
an action is performed by a component at some location u, an atomic location [is created,
which is appended to u to form the new location ul. The word u may then be understood as
the access path to the component performing the action. For the prefixing operator a.p of CCS

the “access path” is empty, and we have the following transition rule:
a.p —57—* {::p for any atomic location ! € Loc

Here the action @ may be observed at an arbitrary location | € Loc. The only difference with
the semantics given in [BCHK91] is that here the location where the action occurs is atomic,
i.e. it is a letter ! of Loc instead of a word u of Loc*.

For the new prefixing construct < a at uz >.p the access path is given by u, while = is a
variable which is replaced by an arbitrary location ! when a is executed. Thus the rule for this

operator is:
<aatuzr>.p —a—l‘ p[l/z] for any atomic location | € Loc
u

Note that for u = € and p = z:: ¢ the process < a at uz >.p has the same behaviour as «. ¢:
<aatz>.xTig —% l::q for any atomic location { € Loc
The remaining rules of Figure 1 are modelled on the standard ones for CCS. They are exactly

the same as those in [BCHK91]. For example p + ¢ can perform any of the moves of either p or

g while u :: p has all the moves of p with locations prefixed by .

11

For each a € Act let - C (P x IP) be the least binary relation satisfying the following

u
axioms and rules.

(LT1) a.p -% lzp le Loc
(LT2) <aatuzr>.p _:T pli/z] 1€ Loc
(LT3) p —Z» P implies vip ;% viap
(LT4) P -Z—» p’ implies P+q —z~ 74
a /
g+p = p
(LT5) p—p implies Plg = p'lq
glp = qlp
r a . . /(‘1) ,
(LT6) p—p implies Pl = V(]
(LT7) P —:—‘ 7 implies p\a -Z—o P\e, a ¢ {a,a)
(LT8) plrec P. p/ P] -% I implies recP. p —% 7

Figure 1: Location transitions for r

12

For each yu € Act, let & C (IP x IP) be the least binary relation satisfying the following axiom

and rules.

(ST1) pp = p

(ST2) <aatuz>.p5plzy]

(ST3) pSyp implies unpLuny

(ST4) pLp implies p+qlyp
g+p 5

(ST5) poyp implies plasp g
glp>qlp

(ST6) p=p implies Pl p 11

(ST7) pop implies p\a = p'\a, p ¢ {a,a}

(ST8) plrecP. p/P] & p implies recP. p % pf

(ST9) pSp, ¢3¢ implies pleSp|d

Figure 2: Standard Transitions for IP

13

By inspecting the rules one can easily check the following property:
P —:17» p' = Ju€loc(p)® 31 € Loc. v =ul

Thus in what follows we will often write transitions explicitly in the form p _“_l. p’, and refer
u
to u as the “access path”, and to [as the “actual location” of the action a. One may show the

following property, stating that the actual location ! can be chosen arbitrarily at each step:

Property 3.1 For any term p and L such that loc(p) € L C Loc, if p%p’ then Yk ¢
L3p". p%p” and p"[k — 1] = p/, and p%ﬁp"[k — h] for any h € Loc.

The transitions p — p’, whose location is not observable, are defined through a simple
adaptation of the standard transition system for CCS to our extended language, which is
described in Figure 2. The only new rules are the ones for the constructs u :: p and
<a at uz >.p; in these rules the locations are in fact ignored. In particular, for the scc-
ond construct we use the notation p[z./] to represent the term p where all free occurrences
of = have been erased, that is p[zyv] = p[e/z]; for instance (z :: p)[zv] = € :: (p[zv]), and
(<aatzz>.p)[zy] = <aat z>.pbecause the first occurrence of z is free and the second oc-
currence of z binds this variable in p. The weak transitions p=zvp' are then derived as explained
in the previous section.

In the last two sections of the paper, we shall consider specific subsets of IP that consist of
terms representing nets of agents. These terms are built on top of given agents using the static
constructs of the language. More precisely, given a subset Ag of IP, we denote by IN(Ag) the

set of terms given by the following grammar:

ru=p | wxzr | (r|7) | rlf] | r\e

where p is any process of Ag. This syntax extends Milner’s one for flowgraphs (see [Mil79]).
The same syntax is used by Aceto [Ace91] to define what he calls “states”, which include the
nets of automata. Obviously this IN(Ag) is only interesting for a set Ag of agents which is not
closed for the static constructs. For instance if we take the CCS processes as agents, then the
terms a.(u :: p) and p + u :: ¢ are not in IN(CCS). We shall also use the notation IN,(Ag) for
the set of terms built on top of agents of Ag using the static constructs except restriction. It

is easy to see that the static structure of the nets is preserved by transitions, that is:

Lemma 3.2 Let Ag be a subset of IP closed w.r.t. transitions, that is satisfying
(i) if pe Ag and p & p then p' € Ag

(i) ifpe Ag and p —Z—» p' then p' € Ag

Then IN(Ag) is closed w.r.t. transitions.

14

(SL1) rls = s|r

(S12) rl(sle) = (rl9)lq
(SL3) p = €up

(SL4) v(r]s) = uunr|uss
(SL5) vu(vur) = wur
(SL6) (Il = Al slf)
(SLD) (wanlf]l = wa ()
(SL8) (war)\b = u:(r\b)

Figure 3: Some Static Laws

Obviously the same result holds for IN;(Ag). Sometimes it will be useful to abstract to some
extent from the static structure of a net, by considering it up to some reorganization that
preserves transitions. More precisely let = be the congruence over IN(Ag) (regarded as the
algebra of terms generated by Ag using the static constructs) induced by the equations SL1-
SL8 given in Figure 3. Then it is easy to show that = is a “strong (/d-location) bisimulation”
that is:

Lemma 3.3 Let Ag be a subset of IP closed w.r.t. transitions. Then for any p,q € IN(Ag)
(i) if p=q and p 5 p then there erists ¢’ such that ¢ 2 ¢’ and p' = ¢’

(i) ifp=gqand p —:} p' then there ezists ¢’ such that q —3' ¢ andp' = ¢.

The proof is left as an exercise. m]

We establish now a result that will be used in the next section, which relates the location

transitions and the operation of substitution of locations for location variables, denoted p|p].
Lemma 3.4 For any term p:

1) plp) = p' implies 3p" such that p' = p"[p] and V¥p'. plp'] S p'[p']

2) plp) =3 p implies 3o,p". u=0[p], p = p"[p] and Vp'. p[p] p"[p']

;=a:
olp'}l
Proof. We prove the first point by induction on the definition of p[p] = p’. Clearly it is
enough to prove this statement for “strong” arrows. More precisely, we show

plel 59 = 380 = p"ll &V . plp] & Pl

by induction on the definition of the transition. The case of ST2 is the only one deserving some

consideration. If p[p] = < a at uz >.q then there exist o and r such that p = <a at az>.7

15

with « = o[p] and ¢ = r[z/2][p] where = does not occur free in 7, and is not affected by p.
Then ¢ = a and p' = ¢[zy] = (r[zv])[p]- For any p’ we have plp'] = < a at ofp'ly>.r{y/z][p']
for some fresh variable y, and p[p'] = (r[y/z][p'Dlvv] = (r[2v])[P], therefore we may let
p' =rlzv]

Regarding the second point, we have by definition p[p] %f p’ if and only if there exist po
and p; such that p[p] = po — p1 = p’. Then, using the previous point, we only have to

ul
prove the statement for “strong” transitions p{p] —3-' p’. One proceeds by induction on the
inference of this transition. We omit the proofs. Just note that the case of LT2 is very similar
to the case of ST2 in point 1), and that in the case of LT3 we have p[p] = v :: ¢, therefore

p=o:r with v = op] and ¢ = r[p]. O

We may now instantiate definition of parameterized location bisimulation to obtain a family of
relations B(R) over IP. These relations are extended to open terms in the standard way: for
terms p, q involving process and location variables we set p B(R)q if p[p] B(R) ¢ [p] for every
closed instantiation p of both process and location variables.

We already mentioned in the previous section the case where R is U, the universal relation
on locations. In B(U) the locations are completely ignored and therefore one expects it to
coincide with the usual (weak) bisimulation equivalence ~. The bisimulation equivalence % is
defined on our extended language in the standard way, using the weak transitions £ associated

with the transitions - of Figure 2. We may then show the following;

Proposition 3.5 For all processes p,q: (p,q) € B(U) if and only if p = q.

Proof. For any term 7 let pure(r) be the CCS term obtained by removing all locations from
r, for instance pure(< a at oz >.s) = a.pure(s) and pure(o ::s) = pure(s). Let now p,q € IP.
Obviously p & p' implies pure(p) 2 pure(p’), and conversely if pure(p) £ p’, then there exists
p" such that p £ p” and p’ = pure(p”). Therefore p ~ pure(p) and thus it is sufficient to
establish

pure(p) = pure(q) if and only if (p,q) € B(U).

The proof of this fact depends on relating the two different types of transitions = and =%.
u

One can show that
1. if p=:>p' then pure(p) 2 pure(p')

2. if pure(p) = r then there exist u € Loc* and p' € IP such that p%p’ and r = pure(p’)

16

3. p= p' if and only if pure(p) S pure(p').

Now let
G = {(p,q) | pure(p) = pure(q) }.

Using the previous facts one shows that G C Cy(G) and therefore pure(p) = pure(q) implies
(p,q) € B(U). Converscly let

B = {(pure(p), pure(q)) | (p,q) € B(U)}.

Once more facts 1,2,3 can be used to show that B is a standard bisimulation and therefore

(p,q) € B(U) implies p = q. O

We have seen in the previous section that for any R, the relation B(R) is included into B(U).

Therefore:
Corollary 3.6 For any relation R and processes p,q: (p,q) € B(R) implies p = q.

We also mentioned the plb obtained by taking R = Id, the identity relation on locations. This
relation, the location equivalence =,, will be studied in detail in Section 5. By Corollary 3.6 we
know that this equivalence is at least as discriminating as bisimulation equivalence =~. We give
now an example showing that =, is strictly finer that ~. Let p and ¢ denote respectively the
CCS processes (a.a.c | b. @ d)\a and (a.a.d | b. & c)\a. Since in p the actions a and ¢ are in
the same parallel component we have p=—‘11> =Z> =§>p, = u = Il' for some I, whereas this is not
the case for ¢g. Therefore p %, ¢, while it is easy to check that p = q.

Let us consider another example of plb, which is a preorder but not an equivalence. Let < wt
be the plb induced by (the inverse of) the suffix relation on words, defined by: v Rv & Jw
s.t. u = wv, that is v is a suffiz of u. The relation R is obviously a preorder, and thus the
corresponding plb B(R) = S ,ur 1 2lso a preorder. This preorder might be used to express
the intuition that one process is more sequential or less distributed than another: if p is more
sequential than ¢ we expect every move of p to be matched by a move of ¢ from a location
which is less nested in the sequential structure of the process and thus somehow “contained”

in the location of p. We have for example:

a.b.nil +b.a.nil < _ - a.nil | bonil

uf

and more generally

a.(plbg)+b(aplg) S, aplby

17

for any processes p,q. However < is not preserved by location prefixing, and therefore

~ suf
neither by action prefixing. For example if r,s are the processes in one of the above examples
then c.r ﬁsuf c.s because this would require, after one execution step, that [::r < suf l::s,
which is not true. Essentially [::7 £ . 1:s because the underlying relation on locations is
not preserved by concatenation on the left.

The last examples show that if we want B(R) to have a reasonable algebraic theory then It

must enjoy certain properties. For instance we have the following:

Proposition 3.7 If R is reflerive and compatible with concatenation on the left, that is

uRv = wuRwv, then B(R) is preserved by all the operators in the language except +.

Proof. The reflexivity of R is used in showing that B(R) is preserved by the prefixing constructs
a.p and < a at oz >.p. The compatibility of R with concatenation plays a role in proving that
B(R) is preserved by location prefixing u :: p and by the prefixing construct a.p. We examine
thesc two cases, leaving the others, which follow the standard pattern, to the reader.

Let G be the set {(w :: r,w ::), (a.7,a.8) | (r,8) € B(R)}. Then one can check that
G C Cgr(G). For example any possible external move from w :: 7 must be of the form
w rfa:w 7/ where r=Z>r’. Since (r,8) € B(R) there must be a move from s of the form
s=z>s' where u Rv and (7', s’) € B(R). But then the move w:: s=u%w :: ' matches the original
move from w :: v since also wu R wv. This shows that G is an R-location bisimulation, therefore

(p,q) € B(R) = (w:up,w:q)€ B(R). 0

It should be clear that if R is reflexive, then
p=g = pB(R)q

Counsider now the preorder <

Npm

¢ induced by (the inverse of) the prefir relation on words,
defined by: uRv & 3w s.t. u = vw. This relation R is preserved by concatenation on the

left and thus <

~ pref

could be a suitable candidate for our theory. Note that, like the relation
S o discussed above, 5pnf could be viewed as a preorder ordering processes according to
their “degree of distribution”; however we will see in Section 6 that <

~ pref

is not completely

appropriate to formalise this intuition. Moreover the relation < pref lacks another algebraic

property that we would like to ensure, namely:
uRv = wup B(R) vup

We have for instance [::a.nil £ pref & nil. A sufficient condition for this property to hold is

the following:

18

Proposition 3.8 If R is compatible with concatenation on the right, that isu Rv = uw Rvw,

then B(R) satisfies the property: uRv = wu:up B(R) vip

In what follows we shall also make use of properties of plb’s with respect to the operation
of location renaming. A location renaming is determined by a mapping n from Loc to Loc®,
which is extended to words in the obvious way: 7(¢) = ¢ and w(lu) = w({)x(u). Further,
7 is transferred homomorphically to a mapping between processes: for example we have
m(u = p) = wm(u) = 7(p) and 7(<a at uz >.p) = <a at w(u)z >. #(p). For a renaming af-
fecting only one location we will use the notation p[l — u], meaning the result of applying to p

the renaming 7 defined by

ifk=1
n(k) = u i
k otherwise

Then we have:

Lemma 3.9 Let R C Loc™ x Loc™ be a relation on locations compatible with location renaming,
that isu Rv = w(u) Rw(v). Then B(R) is compatible with location renaming on processes,
that is pB(R)q = =(p)B(R)~7(q).

Proof. One shows that the relation { (7(p),7(¢q)) | pB(R)q } is an R-location bisimulation.

To this end one proves the following properties of transitions w.r.t. location renaming:
1. 7(p)Sp = . pSp" &p =n(p")
2.p5p = 7(p) S x(p)

3. W(]})%p’ = 3JuVk ¢ loc(p)3p”. pf}p”, u=m7(v) & p' ='(p") where

) = {1 ifn=k

m(n) otherwise

4, q%:q’ & k & loc(q) = Vrvi. w(q)ﬁw'(q’) where 7’ is defined as in the previous
point.

The details are left to the reader (see [BCHK91]). o

Since Id is obviously compatible with location renaming, we have in particular:

Corollary 3.10 p=,q = w(p) =~ 7(q)

19

In order to develop an equational theory for parameterized location bisimulations, we need to
turn them into substitutive relations, that is relations which are preserved by all the opcrators
of the language. This is done in the standard way. For any plb B(R) we define B°(R) to be

the closure of B(R) w.r.t. all contexts:
Definition 3.11 p B°(R) ¢ if and only if for every term context C[]: C[p] B(R) C[q}. O

It is a standard result that the relation B(R) so defined is the largest relation compatible with
the constructs of the language which is included in B(R). This relation is a precongruence if R
is a preorder, and a congruence if R is an equivalence relation. As usual for weak bisimulations,
when the relation R satisfies the hypotheses of the Proposition 3.7, that is R is reflexive and
compatible with concatenation on the left, sum-contexts are the only relevant ones in the

definition of B°(R), and we have the following characterisation:

Property 3.12 If R is reflexive and compatible with concatenation on the left, then pB°(R)q
iff for any action a not occurring in p,q, p+a B(R) q + a.

On processes of IP, we also have the standard behavioural characterisation for B¢(R):

Property 3.13 Let p,q € IP. If R is reflexive and compatible with concatenation on the lcfl,
then pB°(R)q if and only if

1. p5p' implies ¢ ¢ for some ¢' such that (p',q') € B(R)

2. ¢ q implies p= p' for some p' such that (p',q') € B(R)

3. p —3-' p' implies q=:>q' for some ¢’ and v such that (p',q') € B(R) and u Rv

4. q —Z—» q' implies p=i>p’ for some p’ and u such that (p',¢') € B(R) and u Rv.
We end this section by showing that B°(R) is well-behaved w.r.t. the recursion operator.

Proposition 3.14 If R is a preorder (i.e. reflerive and transitive) and (s,t) € B°(R) then
(rec P. s,rec P. t) € B°(R).

Proof. The proof follows the lines of that of Propositions 7.8 and 4.12 of [Mil89] and therefore
we only give the outline here. Suppose for convenience that s,t contain no free location variables

and no free process variable other than P. Let
G = {(r[rec P. s/ P},r[rec P. t/P]) | r contains at most P free }.

Then one can prove by structural induction on r, as in Proposition 4.12, of [Mil89] that for any
(r9)€G

20

1. p 5 p' implies ¢ = ¢ for some ¢’ and p” such that p' G p" B(R) ¢/
2. p _:.T p’ implies g=%>¢' for some ¢’,v and p” such that p’ Gp” B(R)¢' and u Rv
3. similarly with p and ¢ interchanged.

Since R is transitive this is sufficient to establish that G C B(R) and therefore that if (p,q) € &
then (p,q) € B(R). By virtue of the characterisation of B(R) given above, we have now
(p,q) € BS(R). If we choose r to be simply P, we have then (rec P. s,rec P. t) € B(R). m]

Another property we expect of the recursion construct is that unfolding preserves the semantics.
Since the actions of rec P. p and p[rec P. p/ P] are identical this result is straightforward, but

it does presuppose that R is reflexive.
Proposition 3.15 If R is reflezive then rec P. p BS(R) p[rec P. p/ P].

Finally we show that recursion induction is sound for our semantics when applied to guarded
and sequential recursive definitions. Recall from [Mil89] that P is guarded in a term ¢ if every
occurrence of P in t appears within a guarded subterm, i.e. one of the form a.t’ or <a at gz >. 1.
Also, P is sequentialin t if every subterm of ¢ which contains P, apart from P itself, is guarded

or has the form t; + 5.
Proposition 3.16 If R is reflezive and transitive, P is guarded and sequential in t and !
contains at most the variable P free, then s B°(R) t[s/P) implies s B°(R) rec P. t.
Proof. The proof is based on that of Proposition 7.13 of [Mil89], so we only give an outline
here. Let p, ¢ be any two terms such that p BS(R) t[p/P] and g B°(R) t[q/ P] and let
G = {(t'[p/P),¥[g/P)) | P is sequential in '}

Then one can show, for any (2o,¢1) € G, that

1. 1o 5 t implies 3¢},¢/ such that t; S ¢} and t} B(R) 1/ Gt}

2. to —TT to implies 3¢{ and t{ such that t, =Z>t'1 and t§ B(R) t{ Gt} and v Rv

3. similarly with ¢y and t; interchanged.

As in Proposition 3.14 this is sufficient to establish that if (o,,) € G then o B°(R) t;. Taking
ptobes, t to betand g to be rec P. t it follows that s B(R) rec P. t. 0

21

4 Axiomatisation

We have just seen that some interesting features of parameterized location bisimulations B(R)
depend on specific properties of the underlying relation on locations R, as for example re-
flexivity, transitivity, and compatibility with concatenation. In this section we propose an
axiomatisation, over the set of finite terms of IL, for parameterized location bisimulations B(%)

based on particular relations R that we call sensible, or more accurately for their substitutive
closure B°(R). Formally:

Definition 4.1 A relation R on locations is called sensible if and only if it is of the form

R={(ul,v))]uRv, ! € Loc} for some relation on locations R satisfying:

1. Risa preorder

2. R is compatible with concatenation on the left and on the right:

tRv = wuRwv and uw Rvw

3. R is compatible with location renaming:
wRv = n(u)Rr(v) forany 7: Loc — Loc*

]

Let us briefly comment on this definition. The prerequisite that R should be of the form
{(ul,vl)] uRv,l € Loc} essentially translates into a requirement for the resulting plb B(R),
namely that R-bisimilar processes should mark corresponding actions with the same location
name !. This requirement will be used in our axiomatization. However, it is not strictly
necessary for defining meaningful plb’s: for instance it is possible to show that the location
equivalence ~,; defined as B(/d) on our language could also be obtained as the plb induced by
the relation R = {(ul,uk)|u € Loc*, l,k € Loc}, which is not of the required form. On the
other hand, we will see that the requirement that R relates pairs of locations ending with the
same letter is essential for defining the location preorder L, in section 6.

Properties 1 and 2 for R imply the same properties for R, and we saw in the previous
section that such properties are natural if we want the resulting plb B(R) to be well-behaved.
Property 3 expresses the fact that the particular choice of location names is irrelevant. Note
that if R satisfies property 3 then B(R) is compatible with location renaming, since the proof
of Lemma 3.9 essentially refers to R’s (rather than R’s) compatibility with location renaming.

Let us consider some examples. The identity relation /d on non-empty locations is obviously

sensible, and is the strongest sensible relation. On the other hand (the inverses of)) the suffir and

22

the prefir relations, discussed in the previous section, are not compatible with concatenation,
resp. on the left and on the right, and therefore are not sensible relations (nor may be used as
the B generating sensible relations). As another example, the relation U, given by wU,v &
3l e Loc 3u',v'. v = 'l & v = v/l is also a sensible relation, and in fact the weakest one. One
can show that for processes of IP the equivalence B(U;) coincides with B(U) and thus with the

bisimulation equivalence =:

Lemma 4.2 For all processes p,q: (p,q) € B(Ug) if and only if p=q.

Proof. The “only if” part results from Proposition 3.5 and Property 2.4. For the “if” part we
show that & is an U,-location bisimulation. If p = ¢ and p%p’ then there exist v, k and ¢
such that q%q' and p’ = ¢'. Let h & loc(p)Uloc(g). Then by Property 3.1 there exists ¢” such
that q=ualoq"[h — 1], and ¢’ = ¢"[h — k]. To conclude it is enough to note that ¢’ = ¢"[h — {].
0

Since a sensible relation R is a preorder, the corresponding parameterized location bisimulation
B(R) is also a preorder: it will then be denoted by T , and the associated precongruence by
E;{. However, we shall maintain the notation =, for B(Id). In this section we propose an
axiomatisation for any parameterized location precongruence E; based on a sensible relation
R, over the set IL; of finite terms of IL, i.e. terms built without process variables and recursion.
We should point out however that our axiomatisation also holds for slightly less restricted
relations R, where Property 2 is replaced simply by compatibility with concatenation on the
left.

We show now a property which will be used in the axiomatisation, namely that a relation
E,; induced by a sensible relation R treats free location variables essentially as fresh location
names:

Lemma 4.3 (Generalisation lemma) Let R be a sensible relation, and p, q¢ be two terms with

Lvar(p) U Lvar(q) C {z1,...,2n}. Let ki,...,k, be distinct location names not occurring in p
and q. Then:

plki/1y. . ka/20) © g qlk1/z1,... ka/22) & p & 1 g

Proof. In one direction, namely “<”, this is obvious. Conversely, let G be the relation

on closed terms given by: p[p]Gqlp] if for some ky,...,k, satisfying the hypothesis of the

23

lemma one has p[ki/zy,... ko/25] C g alki/z1,....kn/zn]. We prove that G is an It-
location bisimulation. For this proof we shall abbreviate r [ki/zy,...,k,/2,] to r[k/Z]. If

p[p]%p' then by lemma 3.4 there exist p” and o such that u = op], p’ = p”[p], and
p[k/E) == p"[k/Z]. Then q[l-c’/:i:']%?q’ for some v and ¢ such that o[k/Z)Rv and

o[E/2)
p'k/Z) T, ¢. By lemma 3.4 again, there exist ¢” and o' such that v = o'[k/Z],

¢ = q"[k/Z], and q[p] %?Iq” [p]. Since the k;’s are distinct and do not occur in p and ¢,
o'l

they will not occur in o and o’ either, therefore we have o [p] R o’ [p] because R is compatible

with location renaming. Moreover p” [p] G ¢" [p]. Similarly a move p[p] = p' is matched by a

move of ¢ [p]. This shows that G is an R-location bisimulation. a

For the rest of this section we shall only consider sensible relations 2 C Loc® X Loc®. Our proof
system for p E; g will consist of a set of inequations of the form p C ¢, together with some
inference rules. We will use implicitly some standard axioms and inference rules, namely the
ones expressing reflexivity, transitivity, and compatibility with the constructs. Also, we shall
use equations p = ¢ to stand for the pair of inequations p C ¢ and ¢ C p. For terms involving

location variables, we have an inference rule corresponding to the generalisation lemma:

S1. If Lvar(p) U Lvar(q) C {z1,...,2,} and ky,...,k, are distinct location names not

occurring in p and ¢ then:
p[kl/zlv'-,kn/zn]Eq[kl/xl»---vkn/zn] = p;q

The first step of the axiomatisation consists as usual in reducing processes to normal forms,
which are essentially notations for the transition systems used in the operational semantics.
Here the normal forms will be terms built with + and the prefixing construct < a at oz >.p.

They are in fact a special kind of head normal form. More precisely:

Definition 4.4 A head normal form is a term (defined modulo axioms A1, A2, A3, see Fig. 4)

of the form:
p = Z <a;at o;z;>.p; + Z T.p;
i€l JjeJ
By convention this head normal form is nil if [=@ = J. A normal form is a head normal

forn whose subterms are again normal forms. a

We introduce now the axioms that will allow us to transform terms of IL; into normal forms.

From now on, the laws will be given for closed terms; by virtue of S1, these laws can then be

24

turned into similar statements on open terms. The basic transformation, replacing ordinary

prefixing by the new prefixing construct, is the following:
Ll. ap=<aatz>.zup

We recall that the meaning of < @ at = >. ¢ is that action a occurs at some location [, instan-
tiation of z, giving rise to the process ¢ where z is replaced by . Note that since p is closed,
no variable capture may occur in applying L1.

The law L1 introduces a new location variable in front of the subterm p. We give now a
set of laws to push locations through subterms. In particular we will have an axiom, L2, which
will allow us to remove a location u on top of the prefixing construct

< a at vz >.q, incrementing by u the access path v for the action a.

L2. wuu<aeaatvr>.p = <aatuvz>.uiup
L3. wurt.p=r1.uup
L4. w:xnid = nid
L5. wuxz(p+q) =uup + uiug
Using laws L2, S1, we may infer for instance y::<a at oz >.p = <a at yor>.yup. Note

however that this only holds for y # z, since the variable z is bound in < a at gz >.p. Indeed

we need a kind of a-conversion rule:
S2. <aatuzr>.p = <aatuy>. ply/z], y not frecin p

Note that a-conversion is also involved in the substitution operation, which occurs for instance
in applying rule S1. Let us now see an example of application of the laws L1 and L2 - where

we also use implicitly some congruence laws. For the process a.b.p we obtain:
ag.bhp=<aatz>ru<baty>.yup=<aatz><batzy>.zuy:p

So far we have seen how prefixing < a at oz >.p and location variables are introduced. In order
to obtain normal forms, we also need to get rid of the static operators occurring in terms. The
idea is as usual to eliminate the parallel operator by means of an ezpansion theorem (while the
other static operators will be taken care of by standard laws, listed as R1-R4, U1-U4 in Fig.
4). In our case the expansion theorem will be as follows, where we use the notation p[zy]

introduced previously:

25

Expansion theorem: Let p,q be closed head normal forms:

p = Z<a.~ at u;z; >.p;i + Z T.p; and ¢ = Z <bk at veyr >.qx + Z T.q
i€l jed keK IeL

Then the following law is sound for any parameterized location precongruence:

(EXP) plq = Z< a; at wyz; >.(p; | q) + Z <bg at veyr >.(plaqx) +
el keK
ST ordpilziv]) @ luv]) + Do 1.5 1e) + D 7.(plar)
a;=bx 1€J leL

Note: The proof of soundness is given below, as part of the proof of Proposition 4.5.

Consider now the sets of equations £ and £ in figures 4 and 5. The equations £ are more or
less the standard expansion laws, adapted to account for the new prefixing construct. Together
with the laws L, which express properties of locations, these equations are used to reduce
terms of IL; to (essentially) location transition systems. For instance these equations allow one
to reduce the process (I ::a | @ab)\a to 7. < b at z >. nil, while (I:: (a + b) | @b)\a can be shown
equal to <batly>.nil+ r.<bat z>.nil.

Similarly, the laws 7 in figure 6 are an adaptation of Milner’s 7-laws to our language. To
deal with the particular relation R on which the parameterized location precongruence T <1:2
is based, we have in addition a parametric inequation GEN g; note that this is the only place
where R intervenes in the axiomatisation. This inequation may be seen as an absorption law,
expressing the fact that a location word may be subsumed by another one in the relation R,
where ¢ is said to be absorbed by p w.r.t. a relation G if (p + q¢)Gp. Then an equivalent
formulation of the axiom GENRg is, with the hypothesis u & v:

<aatur>.p L <aatur>.p +<aatvz>.p C <aatvr>.p

Let now Zg be the set of all the laws and rules considered so far, including St, §2. We write
p Cr qif p C qis provable in this proof system, and similarly for p =g ¢. We want to show
that on terms of IL; the parameterized location precongruence g; coincides with Cp. We
start by proving that the laws Ig are sound for L ;,

26

(A1)
(A2)
(A3)
(A1)

(R1)
(R2)

(R3)
(R4)

(U1)
(U2)
(U3)
(U4)

(EXP)
Then:

(L1)
(L2)
(L3)
(L4)
(L5)

pt(g+r) = (p+qg)+r

pPtq = g+p
p+nl = p
p+p = p
nil\a = nil
t .(p\b) ifa#b,b
(<aatuz>.p)\b = <aatuz>.(p\b) ifa#
nil otherwise
(r.p\b = 7.(p\d)
(p+a\e = p\a+q\a
nil{f] = nil
(<aatuz>.p)[f] = < f(a)atuz>.p[f]
(r.plfl = 7.(plf]D
(p+a)lfl = plfl+ql/]
Let p = Z<a,~ at uszi>.pi + Z r.pg and ¢ = Z <bgp at vryk >.qx + Z T. ¢
€] J€J kEK
ple = D <aatwz>(pile) + Y <beatvy>.(pla) +
i€l keK
Yo ripilev] laluv]) + 7.0 1a) + X r.(pld)
a,=bx 1€J lel
Figure 4: Equations £, standard expansion laws.
a.p = <aatzr>.zup
un<aatvr>.p = <aatuvr>.unp
wuuT.p = T.unp
wunid = nil
u{p+q) = wuup + uungq

Figure 5: Equations L, location laws.

27

(T1) p+rT.p = T.p

(T2) <aatur>.p = <aatur>.T.p
(T2) T.p = T.T.D
(T3) <aatuz>.(p+r71.q) = <aatur>.(p+7.9) +<aatuzr>.q

Figure 6: Equations 7, the 7-laws.

(GENp) I (w,v) € R then: <aatuz>.p C <aatvzr>.p

Figure 7: GENRpg, the parametric law.

Proposition 4.5 (Soundness of the laws) The laws Ip are sound for the parameterized loca-

tion precongruence T ;, thatis pCrq = p L} ¢

Proof. The implicit axioms and rules (for reflexivity, transitivity, and so on) are clearly sound.
For the 7-laws, the proof of soundness is the usual one. The soundness of S1 is shown by taking
terms p + @ and ¢ + @ in the Generalisation Lemma 4.3. For the other laws it is enough to
show that they are sound with respect to the strong version of g; (which is a precongruence
satisfying the generalisation lemma 4.3 for any sensible relation R), defined in terms of “strong”
arrows p —:—1» p' and p 5 p’. We omit the proof regarding the standard equations (as well as
S1); also the soundness of GENRg is very easy to check. So we only prove here the soundness
of the expansion theorem. Let G be the relation consisting of the identity pairs (s,s) and the

pairs ((p | q),r) where:

P = Z<a,~ at w;z; >.p; + Z r.p; and ¢ = Z<bk at veyk >.qk + Z T.q]

iel j€J keK leL
and
r = Z< a; at ugx; >.(p,‘ | q) + Z < by at viys >-(p | Qk) +
i€l k€K
Yo ru(pilziv]laluwv]) + Sr.(ile) + > 7.(plq)
a,=by j€J leL

We show that G is a (strong) R-location bisimulation, for any reflexive relation R on locations.
I (plg) & (pilt/zi] | q) then r
and thus (p; | @)[l/z:] = (pll/zi] | @). 1 (p | q) = (pilziv] | arlyav]) with @ = by by the

transition law ST2, we obviously have the corresponding transition r = (pi[ziv'] | gk yxv']) for

aq

2 (pi | ¢)[!/zi] is the matching move of 7 , since ¢ is closed

28

r. The remaining cases are obvious. a

Let us turn now to the proof of completeness, that is p l;; q = p Cr q. We show first that
any term of IL; may be transformed into a head normal form, and then into a normal form,
using the laws £ and L (indeed the reduction to normal forms is independent of the choice of
the relation R). To prove the normalisation result, we will use the notion of norm of a term p,

noted ||p||, defined as follows:

linil]] = 0

la.pll = |[f<eatoz>.p|| = |Ir.p|l = 1 +|pll
lelall = llpll + llqll

lp + ¢ll = maz{|ipll,llqll}

Ip\ell = ll»ll

e AN = lipli

lozpll = lpll

Thus ||p|| is an upper bound on the maximal length of a transition sequence of p. Morcover, it
can easily be shown that if p 5 p’ or p —:‘T p' then ||p']] < ||p]l . We are now ready to prove
the following:

Lemma 4.6 (Head normalisation) For each term p of 1Ly, there erists a head normal form

hnf (p) such that p =g hnf(p) and [hnf(p){| < |||

Proof. First we show that it is enough to prove the statement for p closed. Assume that this
has been done, and let p be an open term. Let y;,...,yn be the location variables occurring
free in p, and let ky,...,k, be distinct location names, not occurring in p. We write 1[1:/1j] for
rlk1/y1,...,kn/yn). Then p[k/7] =R q for some (closed) head normal form q. By a-conversion
we may assume that the y;’s are not bound in ¢q. We let hnf (p) be the term we obtain from
g by replacing the k;’s by the y;’s. Clearly hnf(p) is a head normal form, where the k;’s do
not occur, and g = hnf (p){k/#]. Therefore p =g hnf (p) by S1. Moreover it should be obvious

that ||hnf (p) || < ||pl| since [|hnf (p) | = llql| < l2lE/d1 = lI]-

We prove now the lemma for closed terms, by structural induction (one could check that
we do not need the induction hypothesis on open subterms). The proof makes use of all axioms
in £ and £ - except for the idempotence law A4. As usual, we will use axioms Al, A2, A3

without mentioning them.

1) for p = nil we let hnf (p) = nil.

29

2) p = a.q. We define hnf(p) = <a at z >.z::q. Then we have p =g hnf(p) by law L1,
and |lhof (p)|| = 1 + [Jz=qlf = 1 + |lqll = [Ipll-

3) forp =rT.q or p = <aatuz>.q welet hnf(p) = p.

4) p = u:¢q. By induction there exists hnf (¢) such that ¢ =g hnf(g) and ||hnf(q)| < ll¢l.
Now if hnf(q) = nil, we let hnf(p) = nil. Then we have p =p nil by L4. Otherwise let

hnf(q) = Z <a;atviz;>.¢ + Z 7.q;. We define now
i€l j€J

hnf(p) = Z<a,~ at uvz; >.unq + Z r.u::q;»
i€l J€J

Then using laws L2, L3, L5 we obtain

P =g Z us<a; at v;T;>.q + Z uiT. g

i€l j€J
=R Z<a.~ at uviz; >.uqi + E T.uig; = hnf(p)
1€l J€d
Since ||p|| = ligl] by definition, and it is easy to see that ||hnf(p)|| = ||hnf(¢)]}, we may

conclude that ||hnf (p)|| < ||pl-

5) p = r | ¢g. By induction there exist hnf(r), hnf(g), such that » =p hnf(r) and
¢ =r hnf(q), with |[hnf (r)]] < ||7|| and ||hnf(q)]| < |iqll. If hnf(r), hnf(q) are as follows:

hof(r) = Z<ai at u;z; >.1; + Z r.r;, hnf(q) = Z<b’° at vpye >.qx + Z T.q

i€l J€J keK lel
let:
hnf(p) = Z<a,~ at wiz; >.(r: 1 q) + Z <bgpat vy >.(v | qx) +
1€l k€K
. t(rilziv]lalwv]) + D 7.(la) + 3 r.(rlq))
8, =bx Jj€J lel

Then we have p =r hnf(p) by induction and by the expansion theorem. Note now that

L+ maz {{|mfl + gl Nl + el Ir5it+Iglls il +1lgll 3
< Airlf+llgll = liell

|| hnf (p) ||

6) p = r+ ¢. By induction r,q have head normal forms hnf(r), hnf(g), such that r =p
hnf(r) and ¢ =g hnf(q). Define hnf (p) = hnf(r) + hnf(g). Then hnf(p) is already a head
normal form, since hnf’s are defined modulo axioms A1, A2, A3, and ||hnf (p)|| < ||p]| follows

easily by induction.

30

7) p = ¢\b. By induction there exists hnf(q) such that ¢ =g hnf(q) and ||hnf(g)]| < |l¢||.
If hnf(q) =g nil let hnf(p) = nil. Then p =g hnf(p) by law R1, and it is obvious that

haf(p)l] < |pll. Otherwise, if hnf(q) = Z<a,~ at wz;>.q + Z T.q;, we let
iel jeJ
.(g5\b). Then we obtain p =g hnf(p) by laws

~

haf (p) = Z < a; at uiz; >.(g:\b) + Z
a#bb J€J
R2, R3, R4, and by induction ||hnf(p)|| < ||pll. In particular if there is an ¢ € I such that

a; = b,b then ||hnf(p)|| < ||p||: this is the only case where the norm decreases.

8) The case p = ¢[f] is similar to 7). It makes use of laws U1,U2,U3,U4. a

Proposition 4.7 (Normalisation) For each term p of IL;, there ezists a normal form nf (p)

such that p =p nf (p) and [|nf(p)] < |pl.

Proof. The proof uses the previous lemma, and proceeds by induction on the norm ||p]].
If ||p]| = 0, we have hnf(p) = nil since ||hnf(p)|| < |[p]]. In this case we let nf(p) = nil.
Otherwise, either hnf (p) = nil (e.g. if p = a.nil\a), in which case we let nf(p) = nil, or

haf(p) = Y <aiat oizi>.pi + Y, 7.p;. Here ||pif| < |Ihnf(p)|| < ||p|| for any i € I,
1€l jedJ
and similarly for the p’s, therefore by induction these subterms have normal forms nf (p;) and

nf (pj). We let then nf (p) = E <a; at o;z; >.nf (p;) + E r.nf(p;).
tel j€J
Clearly the norm cannot increase during the normalisation process, since normalisation is

nothing but recursive head normalisation. a

The proof of completeness requires in addition two absorption lemmas, similar to those used

for weak bisimulation in [HM85].

Lemma 4.8 (7-absorption lemma) If p is a closed normal form then:

! implies p+ r.p) =p p

-
p=p
Proof. By induction on the length of p = p'. The proof uses axioms A4 and TI.
Ifp = Z <a;at u;z; >.p; + Z 7.p);, then the transition p = p'is due to the part Z T. P
i€l Jj€J Jjed

of p. Now there are two possibilities:

i) p; = p',forsome j€J. Then p =g p+ 7.9 by Ad.

31

i) p} = p', for some j € J. By induction p;» =p p3~ + 7.p". Then using axiom TI we

obtain: P =R p-}-‘rp; =g p+rp;+p; =R p-{-rp;-f-p;-{-rp' =n p-f-T"T/.
]

Lemma 4.9 (General absorption lemma) If p is a closed normal form then:

p%p' implies 3p". p =p p + <aatuz>.p" and p'[l/z]) =)'

Proof. By induction on the length of p % p’ (or more precisely, on the number of 7's preceding
the observable action). The proof uses axioms A4, T1, T3, as well as the above r-absorption
lemma. If p = Z <a; at w;z; >.p; + Z r.p;- , there are two possibilities for p% r.
el i€t
i) p% p’ because a = @;, u = u; and < a; at u;z; >.p; Tafp; [{/z;] = p’ for some i€ [.
Now if p’ = p;[l/z;], we take p"” = p; and weget p =p p + <a; at u;z; >.p" using law
A4. Otherwise we have p;[l/z;] = p’. Now by Lemma 3.4 there exists p” s.t. p’ = p" [[/2;]
and Vk. p;[k/z;] = p"[k/z;]. Then we have p;[k/z;] =g pi[k/z;] + 7.p"[k/zi] by the
r-absorption lemma. We may thus apply S1 to infer p; =g pi + 7.p”. We now deduce,
using A4, T1, T3:
P =R p + <a;at uz;>.p
=p p + <a;atwiz;>. (pi+7.p")
=p p + <a;atu;z;>. (pi+7.9") +<a; at uiz;>. p”

=p p + <a;at u;z;>.p"

ii) Otherwise p Taf p’ because for some j € J we have p} Tﬂfp'. Then we may apply
induction to get p) =g p; + <aat uz>.p" for some p” s.t. p"[l/z] = p'. We now deduce,
using T1, A4:

p =R p+Tp.,,
=R p+ 7.p; +p; + <aatuz>.p"

=r p + <aatuzr>.p"

We should point out here that it would be possible to show a similar absorption lemma for

our semantics of [BCHK91] — where we allow the actual location of an action (in rules LT1

32

and LT2) to be a word instead of an atomic location. However such a lemma would not be
sufficient for establishing a completeness result. This is a technical justification for considering
the different way of observing localities adopted here.

We may now establish the announced completeness result. In the proof we will use the

following characterisation for T ., an adaptation of a similar characterisation for weak bisim-

~ R’
ulation =:
p % ¢
p Spa e or 7.p £ ¢
or p O 74

Theorem 4.10 (Completeness) For any terms p,q € ILy: p g; g = pLCry

Proof. We show first that it is enough to prove the statement for closed terms. Let p, ¢ be open
terms with free variables zy,...,z,, and let &,...,k, be distinct location names not occurring
in pand g. If p ©7 ¢ then plk/Z] Ch g[k/Z] and thus, assuming that we have proved
completeness for closed terms, we have p[k/Z) Cr q[k/Z], therefore p Cr ¢ by SI.

We prove now the theorem for closed terms. By virtue of the normalisation lemma and the
soundness of the axioms, it is enough to prove the result for normal forms p,q. We will use
implicitly in the proof the fact that terms obtained by transitions from normal forms are again
normal forms. We proceed by induction on the sum of norms of p and ¢. We show p Cr ¢
by proving that p Cr p+ ¢ and p + ¢ T ¢q. We start by proving p + ¢ Egr ¢. Suppose
that p = Z< a; at u;z; >.p; + Z r.p;-. We prove separately:

i€l jed
i) ¢g+r1.p; Er g VjelJ
i) ¢ +<a;atuz;>.p; Cr ¢ Viel

Proof of i). We have p & pj. Correspondingly, since p g; q , there exists ¢’ s.t. ¢ = ¢
and p; T . ¢. We know that ||p}]| < |Ip]| and [l¢|| < ||¢|l. There are now three cases to
consider. Suppose first that 7.p} Q; ¢’. Then by induction 7.p; Cpr ¢ (note that here
it is necessary to use an induction on the sum of norms), and thus, prefixing both terms by 7
and using axiom T2', we obtain 7.p; Cr 7.¢'. We may now use the r-absorption lemma to
get: ¢+ 7.p; Er ¢+ 7.¢ =gr q. For the cases P; E;{ ¢’ and p} C; 7.9 we proceed

~ ~

similarly.

33

Proof of ii). Let | & loc(p) U loc(q). We have p %’7 pi[{/z;]. Since p Cgr 9, there

~ R
Ipil{/z:}|| < llp|l and ||¢’|] < llg]|]- Now by the generalized absorption lemma there exists

must exist v,¢’ s.t. q=ail>q’, with w; Rv and p;[l/z;] T, ¢ . Again we know that
v

q" such that ¢’ = ¢"[l/z;] and ¢ =g q¢ + <a; at vz; >. ¢". Again there are three cases.
Suppose 7.p;[l/z;] T % ¢"[l/z:]. Then by induction 7.p;[l/z;] Er ¢"[l/z;]. Since
I & loc(p)Uloc(q) by S1 wehave 7.p; Cr ¢”. Then prefixing both terms by 7 and applying
T2, weget r.p;, Cr 7.¢"”. We thus obtain, using T2 and the parametric law GENp:

g+<aatuz;>.p; =p q +<a; atvz;>.¢" + <a; at u;z;>.p;
=R ¢ +<a;atvr;>.7.¢" +<a; at u;z;>.T.p;
CrR q +<a;atvr;>.7.¢" +<aq; at viz; >.7.¢"
CrR g +<a;atvz;>.7.¢" =p ¢

For the cases p;[l/z:] T4 ¢ and p;i[l/a;] ©F 7.¢' we proceed similarly. This ends the

proofof p + ¢ Cgr q. The proof of p Cr p + ¢ is symmetric. a

This concludes our axiomatization for parameterized location bisimulations B(R) based on a
sensible relation R. In the next sections we will examine two particular instances of plb’s

axiomatizable in this way, namely the location equivalence =, and the location preorder C ,.

5 Location Equivalence

In this section we discuss the generalized location bisimulation B(R) obtained by instantiating
R as the identity relation Id. We recall that this is an equivalence relation, called location
equivalence and denoted x;. Clearly the identity relation on locations is a sensible relation,
therefore our axiomatization result of the previous section holds for a¢, or more accurately for
the associated congruence =j. Note that the parametric absorption law GENR is trivial in this

case.

We already saw that location equivalence is strictly finer than bisimulation equivalence =.
The example we gave, namely p = (a¢.a.c | b.a.d)\a and ¢ = (a.a.d | b.&.c)\a, also shows
that location equivalence is different from Darondeau and Degano’s (weak) causal bisimulation
[DD89,DDY0]: denoting by = the causal weak bisimulation, we have p =. ¢ since, roughly
speaking, both ¢ and d causally depend on a and b in p and q. However p %, ¢ since in p the d
action is not spatially dependent upon the a action. We can also give examples not involving

the restriction operator to show that the two equivalences =, and =, are incomparable: let

34

r=(a.a+b.B|a.b+p.a). Then

r+(alb) =¢ T %#¢ T4ab
#e R
Note also that
(a|b) =¢ (r\&,f) =c a.b+b.a

These absorption phenomena, resp. of (a | b) in r w.r.t. ¢, and of a.b in r w.r.t. =, clearly
show the difference between the two equivalences: the former equates processes with the same
parallel structure, while the latter equates processes with the same causal structure. However,
for a language without communication (and restriction) the two equivalences coincide, because
in this case causal dependency coincides with spatial dependency. This is formalised in [Kie91],
where the two equivalences are characterised as instantiations of the same general traunsition
system: the two instantiations are equal if the restricted language is considered. We refer to
this paper for a precise study of the relation between causal and location equivalences.

The equivalence = is very similar to what is also called “location equivalence” in [BCHK91]:
in both cases, equivalent processes have to perform the same actions at the same locations. In
fact all motivations and examples given there to justify the introduction of this equivalence
apply to the definition given here as well. In the rest of this section we will show how the two
location equivalences relate to each other, and also give a comparison with another equivalence
based on spatial distribution of processes, distributed bisimulation (see [CH89], [Cas88], [KieB9]).

We start by comparing the location equivalence =, with that of [BCHK91]. While the def-
inition of the two equivalences is formally the same, the underlying location transition systems
are slightly different. Transitions in [BCHK91] are more general in that the location allocated
at cach step is a word u € Loc® instead of an atomic location [€ Loc. To avoid confusion we
will call the transitions of [BCHK91], adapted to our new language, loose location transitions,

noted —%» . For this transition system the rule (LT1) of Figure 1 is replaced by

(LLT1) a.p —i\» up u € Loc*

The rule LT2 for <a at uz >.p is relaxed in the same way. The rules concerning the other
process constructors, the r-transitions and weak transitions are the same for the two transition
systems. We denote the weak loose transitions by p :%t 7. The location equivalence based
on loose transitions will be called here loose location equivalence and denoted ~p. We choose
this name because the loose transition system gives more freedom to relate the behaviours of
processes. In the location equivalence =4, based on atomic allocation (i.e. LT1), we implicitly

require the equality of the last allocated locations, while this is not true for loose location

35

equivalence. The latter can introduce more than one atomic location within one move and
thus is able to fill up “missing locations”. The following example shows that in this way loose
location equivalence ¢ can equate processes which are distinguished by location equivalence
~z¢. Let p and g represent respectively the processes (I :: a | &.b)\e and ([:: (e + b) | @.b)\«c.
Then the move of ¢

(e +b) | @b)\a — (I:k:nil | a.b)\e

which is also a loose move, can only be matched by a loose move of p, introducing the location
[k in one step:
(I:a]ab)\o :’fl%k (L:ndl | 1k 2 nil)\a

Indeed we have p =4 q but p #¢ q. This also shows that the CCS terms (a.a | &.b)\a and
(a.(a+b) | a.b)\a are loosely location equivalent but not location equivalent, and intuitively we
want to distinguish these two processes since in the first the b action is not spatially dependent
upon the a action. From this example we see that the two location equivalences are different for
CCS terms. However the property of filling up “missing locations” only comes into play when
processes containing restrictions are considered. We shall show now that for finite restriction-
free processes the two equivalences coincide.

We show first that location equivalence is finer than loose location equivalence. To this
end we need a few auxiliary assertions on the underlying transition systems that we state here

without proofs (which are easy).

Lemma 5.1 For any term p:
1) p%p' and | ¢ loc(p) implies p =3 p/[l - v] for any v € Loc*
uv
2) Let L be such that loc(p) C L C Loc. Then p =4 p' implies v € loc(p)” Jw. u = vw
u

and Vi ¢ L 3p". p%p" and p'[l - w] =p'

In particular, if p =3 p’ for some u and p’ then there exist v € loc(p)* and p” such that
u

uv=vwand p =3 p".
v

Proposition 5.2 p=;q => p=euq.
Proof. We show that =, is a loose location bisimulation, relative to the identity relation on

Loc. Assume that p =, ¢ and p _—%ﬁ p', and let [¢ loc(p) U loc(g). Then by the previous

lemma there exist v and w such that u = vw and pfafp” with p’ = p”[l — w]. Then there

exists ¢’ such that q%fq" and p” =~ q", therefore by the previous lemma ¢ =3 ¢"[l — w],
u

36

and p"[l —» w] =¢ ¢"[l = w] by Corollary 3.10. O

The converse of this proposition only holds for finite processes without restriction. To establish
this result, we need a “decomposition lemma”, analogous to the Proposition 3.15 of [BCHK91].
To this end, we define the observable length of a finite process p, denoted |p|, to be the maximal

length of a chain of observable actions of p, that is:
VPEIP: |p|=mam{n|pg...gp’}

Lemma 5.3 Let (uw::p|r) and (u:: q|s) be two finite processes satisfying
(i) (loc(p) Uloc(g)) N (loc(r) Uloc(s)) =0
(ii) if r :’%ﬁ " ors :,'%;t s’ then v is not a prefir of u.
Then if (u::p| 1) ~p (w:: q|s) one has
(1) o] = lal and [r] = |9
(2) pee q and v =4 s.

Proof. First we note that |(u ::p| r)| = [(u: ¢ | s)| since (u::p|r)= (u:q]s), therefore
lp| + |7| = lq] + |s] since |u :: p| = |p| and |(¢ |)| = [t| + |r|. Then to show the first point it is
enough to show that [p| = |g|. Let p 2 ... 28 p’. It is easy to see that, due to the assumption

. . al a . .
(i), there exist vy,...,v, such that p =4 .-- =3 p” where v; does not contain any location
v Un

of s. Then one has

(uigqls) 28 - 23 (uznd|s)
The component s cannot be responsible for any a;-move, since otherwise there would exist ¢
and a prefix v of uv; such that s =4 s”. But then, due to the hypothesis (it), v; would contain
a location of loc(s). This shows |pr§ lgl, and a symmetric argument shows |¢| < |p|.

To prove p =4 ¢, let G be the relation given by: pG ¢if and only if therc exist u, p, q, r and s
satisfying the hypotheses required for the point (1) above, and there exists a location renaming
7 such that p = w(p) and § = n(g). We show that G is a (loose) location bisimulation. If
m(p) ::%;t p’ then by the Lemma 3.5 of [BCHK91] there exist a location renaming 7', a location
v’ and a term p” such that p 5%* p"” with '(p) = n(p), #'(v') = v and 7'(p"”) = p’ (and
also 7’(q) = n(q)). Let | € Loc —v(loc(r) U loc(s)). Then by the Lemma 5.1 above there exist
w € loc(p)*, w' € Loc™ and p such that v/ = ww’ and p ::’% p with p” = p[l — w’]. Since
loc(p) C loc(p) U {I} one has loc(p) N (loc(r) U loc(s)) = 0. From (u :: p | 1) :’;%‘ (wzpl|r)
and the hypothesis (u :: p | 7) =g (u :: ¢ | s) we infer that there exist § and 5 such that
(u gl 8) :u/%ﬁ (w2 g| 38 and (uw 2 g | 3) ~¢ (v p| r). The term s cannot be

37

responsible for the transition —9\7 , since this would contradict either (i) or (ii) or [¢ loc(s).
Then loc(g) C loc(q)Uloc(wl) and loc(5) C loc(s), therefore (loc(p)Uloc(§))N(loc(r)Uloc(3)) = B.
Moreover one can sce that 5 satisfies (ii), since otherwise s would not satisfy (ii). Then the pair

of terms (u :: p| r)and (u :: § | 3) satisfies the hypotheses required for the point (1) above, hence

a

|#| = |g| and |r| = |3]. From this we infer that in the transition (u :: ¢ | s) :’&s; (u:q|3)there
uw

cannot be any communication between ¢ and s, since otherwise we would have 3] < |s| = |#].

We conclude that u :: ¢ =2 u: g (and s 5 3), that is ¢ :z,‘%; G. Then by the Lemma 3.5 of
w

wwl
[BCHKOI1] 7(q) = 7'(q) _—5\33 7'(g[l — w']), and p' G 7' (g[l — w']).

By symmetry, if n(q) ﬂi:; ¢’ then there exists p’ such that «(p) :’%} p' and p'G¢. Now
assume that 7(p) = p’. Then by the Lemma 3.5 of [BCHK91] there exists p such that p’ = n(p)
and p = p. Since (u::p|r) S (u:: p|r) there exist § and 3 such that (u::q|s) > (v §|35)
and (u: p|r) =g (u:: G| 3§). It should be clear that the pair of terms (u :: 5| 7) and (u :: § | §)
satisfies the hypotheses required for the point (1) above, hence |p| = |§| and |r] = |5|. Then in
the transition (u :: ¢ | s) = (u :: § | 3) there cannot be any communication between ¢ and s,
therefore ¢ & G (and s S 3), and if we let ¢’ = 7(§) we have p' G ¢’ and 7(q) S ¢’ (Lemma 3.5
of [BCHK91]).

Clearly, by symmetry if 7(q) = ¢’ then there exists p’ such that 7(p) = p’ and p'G ¢’. This
shows that G is a loose location bisimulation (with respect to the identity relation on locations),
thercefore p =y gq.

Now we show r &4 s, by induction on |p|. If |p| = O then p =4 nil ~¢ g, hence r =¢ s
since u :: nil =4 nil and (nil | t) x4 t. Now assume |p| > 0, and let p’ be such that p _—5\,.3» P
where v € loc(p)*. We have (u :: p|r) :é? (u :: p' |), therefore there exist ¢’ and s’ such
that (u::q]s) :5\%. (uqg' | ¢')and (u:p' | r) ~e (u: ¢ |s'). Since s cannot be responsible
for the transition —f;» , it is easy to see that the pair of terms (u :: p' |) and (u == ¢ | §')
satisfies the required hypotheses. Then p’ x4 ¢, and by induction r =4 s'. Moreover |p| = |¢|
and |r| = |s|, therefore in the transition (u :: ¢ | s) :{? (u :: ¢’ | §') there cannot be any
communication between q and s, hence s = s’. A symmetric argument shows that there exists
" such that » > ¢’ and 7' =g 8. From r S 1’ ~p s > s’ =y 7 it is easy to conclude that

T e S. a

Now we show the converse of Proposition 5.2 for processes which are dynamically generated by
executing finite and restriction-free CCS processes. More precisely, let CCS;¢ be the set of finite
restriction-free CCS processes. In Section 3 we defined IN;(Ag) to be the set of terms built

on top of Ag agents using all the static constructs except restriction. We aim at showing that

38

for processes of IN(CCSyg) the loose location equivalence coincides with location equivalence.
Clearly CCSyy is closed by transitions, therefore we can use the results of Section 3.
Using the equations SL1-SL7 given in Figure 3 it is easy to convert a term of IN,.(CCS,¢)
to a parallel form, or parform in short, that is a term of the form Hui ::p; (defined up to the
i€l
laws SL1 and SL2) where p; € CCS;p and i # j = u; # uj. More precisely:

Lemma 5.4 For any p € IN,(CCS,) there exists a parform p = Hui 22 p; such that p = .
el
Proof (sketch). By structural induction: if p is a term of CCSy¢ then we let p =€ :: p, and we

use SL.3. For u :: r one uses the induction hypothesis, and SL4, SL5. For (7 | s), one possibly
uses SL4 (up to SL1 and SL2). For r[f] one uses SL6 and SL7. O

Lemma 5.5 Let p = Hug npand g = ij it q; be two parforms. If p x4 q and pp # nil
i€l j€J
then there exists h such that vy, = v, and py ~¢ qp, and Hu; P N ij ;.
i#k j#h

Proof. First we show that if p, % nil then there exists h such that ¢, % nil and u; = vjw.
Since pi # nil there exists @ and p), such that py =4 Py (recall that py is a CCS term, hence
&
without locations). Let r = Hu,- 2 pi. Then (ug ipe | 7) =4 (uk : p) | 1), therefore there
Uk
itk
exists ¢’ such that ¢ =2 ¢’ and ¢’ ~¢ (ug = pi | 7). Clearly this implies that there exists
ug

h € J such that u, = v,w, and ¢y, is responsible for the action a, that is ¢, % nil.

Now we prove the lemma by induction on the cardinality of Ix = {i|p; % nil & ux = w;v}.
If I, = {k} then, by the previous point, there exists h such that g, % nil and v, = vyw.
By symmetry, there exists ¢ such that p; % nil and vy, = w;w’. Then ux = u;w'w, therefore
w'w = €, hence vy, = ug. Let r = Hu; ip;and s = ij it g;. It is easy to see that the

ik ith
terms (ug i px | r) and (vh = gn | s) satisfy the hypotheses of the decomposition lemma above;
in particular, (i) is satisfied since pi and g, are CCS terms, and (ii) is satisfied, because of the
minimality of ux. Then py =4 ¢4, and Hu,- NP R ij gy,
i#k 5#h

If {k} C I, then there exists n € I such that uy = u,v with v # ¢, that is I, C I;.
Then by induction on the cardinality of I, there exists m such that v, = un, gm ~¢ pa and
Hu; N p; R H v; i g;, and we use again the induction hypothesis regarding I — {n} to
i#n jEm
conclude. a

39

An obvious consequence of this lemma is the following characterization of loose location equiv-

alence on parforms:

Corollary 5.6 Let p = Hu; 2 p; and ¢ = ij :: q; be two parforms. Then
i€l ied

PReq & {ui|pi¥nil}={vj]qg#Enl}andu; =v; = p;=pq;

Now we can prove that for finite restriction free processes the two location equivalences coincide:

Theorem 5.7 For any p,q € IN((CCSyf) p=eq & p=eq.

Proof. The “<«” direction is given by Proposition 5.2. To establish the converse, we show
that =g is a location bisimulation. Let p ~¢ q. Since the transitions ¢ = ¢’ are the same

in the two semantics, we just have to examine the case where p —:T p. let p= Hu; P
1€l
and § = ij : ¢; be two parforms such that p = p and ¢ = §. By the Lemma 3.3 there
j€d
exists p such that p -:T p and p’ = p. This means that 3k s.t. u = u; and py —7—— Pr with
P = (ug = pg | Hu; 2 pi) (up to SL1-SL2). Since pi % nil, by the Lemma 5.5 above there exists
i#k
h such that up = vp, px =¢ qn and Hu; Nop e ij :t gj. Then there exists ¢, such that
£k i#h
a [
qhn :QIS q;, and gj, = pj, but since gx is a CCS term this means qh=7>q;1. Therefore (}T"f q,
where § = (vy, :: g}, | ij :: ;) (up to SL1-SL2), hence § ~¢ p. By the Lemma 3.3 there exists
J#h
q’ such that q%q’ and ¢’ = g, hence ¢’ ~¢ p’ (by the Lemma 3.3 and Proposition 5.2). a

In [BCHK91] we said that “introducing locations adds discriminations between processes only
as far as their distributed aspect is concerned”. This is still true here: let CCSeeq be the set
of sequential processes of CCS, that is processes built without the parallel operator. We show
that on finite sequential processes, all location bisimulations induced by a reflexive relation R

collapse to weak bisimulation:
Corollary 5.8 For any reflezive relation R on locations, and any finite processes p,q € CCSqeq:

pB(R)g & p=gq

Proof. The “=" direction is Corollary 3.6. For the converse, due to the Property 2.4, it is
enough to show that p= ¢ = p=,q. It should be clear that for any finite sequential process

40

r there exists a finite sequential process s written without restriction (i.e. s € CCS;¢) such that
r ~¢ 8. Then we may assume that p and ¢ do not contain the restriction operator, and the

statement reduces to px ¢ = p =y q, which was proved in [BCHK91] (Proposition 3.11). O

Although this result may be derived straightforwardly for finite processes using Theorem 5.7,
it does not depend on the hypothesis that p,q are finite. In fact, an analogous result could
be obtained for arbitrary processes of CCS,eq by adapting the proof of [BCHK91) (Proposition
3.11).
We now turn to the relationship between =2, and distributed bisimulations. Distributed bisim-
ulations are the first attempt of a semantics for CCS taking the distributed nature of processes
into account. They have been introduced in [CH89] and [Cas88] and further studied in [Kie89)].
We shall not elaborate on this notion here, and refer the reader to the above mentioned works for
further information. In [BCHK91] we have shown that the distributed bisimulation equivalence
~,4 coincides with the (loose) location equivalence x4 for finite CCS terms written without
relabelling and restriction (in fact one could allow relabelling without affecting this result). As
a corollary, the three distribution based equivalences =, =g and =4 are the same on this
language. Another corollary is that we gain another axiomatization for location equivalence on
this language, see [Kie89,BCHK91].

In [BCHK91] it was also shown that distributed bisimulation equivalence differs in general
from loose location equivalence. The same argument can be used to distinguish distributed
bisimulation equivalence from location equivalence: the following two processes are distributed

bisimulation equivalent but neither location equivalent nor loose location equivalent.

p=(e(cY at+dJla+ed s+ @D s+e]]s+cd atd [\ e},
g=(e(c.Y atdJla+ed s+d][I @Es+d][o+d D atec o)\ d}

where

Z“ = aj.a.nil+az.a.nil and
H“ = a.nil | ay.nil

Thus ~4 € =~¢ and =y € =. Moreover, the example we gave to distinguish loose location
equivalence from location equivalence also shows that =4 ¢ =4. On the other hand it may be
shown that =, C ~,;. Hence we have the following picture for the relationships of the three
distribution based equivalences: for finite and restriction—free processes they all coincide; on
the whole language CCS, distributed bisimulation equivalence and loose location equivalence

are incomparable, while location equivalence is finer than both of them.

41

6 The Location Preorder

In this section we instantiate the general definition of B(R) to obtain a preorder on processes
which takes into account their degree of parallelism. Roughly speaking, we seek a relation R
such that if p B(R) ¢ then p and ¢ have similar behaviour but p is possibly more sequential or

less distributed than ¢. For example, let p, ¢ be the processes:
p = a.a.a.nil q = a.a.nil | a.nil

Intuitively, pis a sequential shuffle of q. Let us try to relate the behaviours of these two processes
using our location transition semantics. Since we look for a sensible relation R between the
locations of p and q, of the form R = {(ul,vl)| uRv, 1 € Loc}, we will use at each step the
same label to mark corresponding actions of p and ¢, and try to figure out the relation R.

Suppose that ¢ performs the move —Ifl-* from its first component, followed by —la;» from its
second component, to arrive at the state ¢/ = I ::a.nil | I :: nil. The only way for p to mimic
this behaviour is to perform the two actions in sequence, thus becoming p' = I} 1 5 i a.nil.
Now the remaining moves of p’ and ¢’ are respectively I ::1; :: a.nil —“-;l;? 1 :lg ki ndl and
L amnil | 1 il T,a_k' Ly ::k::nil | I 2 nil for some k. Thus the relation R needs to be such
that I3/, R l;, and therefore the inverse of the suffiz relation is not appropriate.

Conversely, assume that ¢ performs the move -;:—~ from its second component. Then after
two steps of execution ¢ comes to the state ¢ = I3 :x a.nil | {; :: nil. The corresponding
state of p is again p’ = Iy 1 I :: a.nil, and the only remaining transitions of p’ and ¢” are
Iy lyanid —11—7;; Lulyekani and b raanid | 1 nal I—Z—k- Iy ik oonil | Iy i nil. Hence R
must satisfy {1, R I, and this excludes the inverse of the prefiz relation.

The above example rules out both (the inverses of) the suffix and the prefix relation as can-
didates for R; we have already seen in Section 4 that these relations are not adequate technically,
in that they are not preserved by concatenation. On the other hand, the superword relation on
locations could be an appropriate relation to choose as R. Intuitively, if p is a sequentialized
version of g, this means that some component of p corresponds to a group of components of ¢;
then, provided at each step the same locations are introduced for corresponding actions, the
location u of a component of p will always be a shuffle of the locations of the corresponding
components of ¢ (and thus a superword of the location of each individual component).

Let >> denote the superword relation on Loc™. This is the inverse of the subword relation,
which we note «. Recall that v is a subword of u, written v €« u , if v = v;...v; and
U = wyVy ... WgVkWkt1, for some collection of words v;, w;. Now it is easy to check that the
relation R generated by R = >, which we denote >, is a sensible relation on locations, and

therefore is a suitable candidate for our theory.

42

Property 6.1 The relation >, = { (ul,vl) | v > v,l € Loc} is sensible in the sense of
Definition 4.1.

Since B(>>¢) is a preorder, we will call it the location preorder and denote it by T ,. By
virtue of the results of the previous section we have a complete axiomatisation of the location
precongruence g: over finite terms. The axiom (or more accurately the axiom schema) which

is specific to C ; is:

(GEN3y,) If u>»v then: <aatur>.p C <aatvr>.p

Let us examine some more examples.
Example 6.2 For any processes p, g

a(p|bq)+blaplq)C ap|bg

Example 6.3

recz. a.P C recz. a.P | recz. a.P

To establish this it is sufficient to note that the relation G, consisting of all pairs
(w:recz. a.P, (uy::recz. a.P | uz::irecz. a.P))

where the word u is a shuffle of the words u; and u,, satisfies G C Cy,(G).

Example 6.4 If « is different from a and does not appear in p, ¢ then

a(p|q) 5, (aap | &.9)\e

Note that, the process (a.a.p | @.¢)\a could also be expressed as a.p{ g, where | is the leftmerge
operator used in papers such as [BK85], [Hen88], [CH89]. So if we were to have [in our

language, the semantic preorder L , would satisfy

afz|y) K azly

However, while in the interleaving theory presented in [BK85] one has the semantic equality

azfy = a(z|y),in our case we would have:

azlyg, a(z|y)

because | is a left-parallel operator, and thus in our semantics it would give precedence to the

left component but assign independent locations to its two components.

43

Example 6.5 We have seen in Section 5 that there are two terms, namely (a.a | & b)\a and
(a.(a+b) | @&.b)\a, that are loosely location equivalent but not location equivalent. These two

processes are related by the location preorder as follows:
(a.(a+b)|ab\al ,(a.a]lab\a and (a.a|a.b\a,(e.(a+b)|a.b)\a

Example 6.6 Let us see why using >, instead of > is important. This will explain why
in the definition of sensible relations R we require that if ¥ Rv then u and v end with the
same location name (this fact was also used in the Completeness Theorem of Section 4). Let
p=a.((b.a|a.c)\a+b.c)and ¢ = (a.a | & b.c)\a. These processes

could also be written as p = a.((bf ¢) + b.c) and ¢ = (af b.c). Then p & , g since the only
possibility for ¢ to match, up to >, the sequence of moves p =(I'° -1—% le(kanid|c\axelc
is ¢ =‘:> ——%r (lunil | ke)\amgk e, and clearly I :: ¢ % k :: ¢ if I # k. On the other hand, ¢
can match the moves of p up to 3>, since ¢ ——‘15 =l;= (I ::nil | 1 :: ¢)\a. Indeed we have pB(>)q,
but intuitively we do not want to regard p as less parallel than ¢ since in p the action ¢ is not

necessarily spatially dependent on b.

Let us now reconsider the protocol example of the previous section. We saw that Spec %, Sys.
On the other hand it is easy to check that the specification is more sequential than the system,

namely that Spec L, Sys. This is done by showing that the relation:

S = { (u:Spec, (v: Sender| w:: Receiver)\a,8 ,
(u:: out. Spec, (v::&.f. Sender | w:: Receiver)\a, 3 ,
(u:: out. Spec, (v::f. Sender| w::out. 3. Receiver)\a, 3 ,
(u:: Spec, (v::B.Sender | w::B. Receiver)\a,B , | u is a shuffle of v and w }

is a >»¢ — location bisimulation.

To our knowledge there are not many notions of preorder expressing that one process is
more sequential than another. An earlier definition of such a preorder was proposed by L.
Aceto in [Ace89] for a subset of CCS. This preorder is based on a pomset transition semantics
for the language: essentially one process is more sequential than another, in notation p L ¢,
when the pomsets labelling the transitions of p are more sequential than those labelling the
transitions of ¢ (this “more sequential than” ordering on pomsets was introduced by Grabowski
and Gischer). Thus the intuition underlying Aceto’s preorder is somewhat different from ours,

in the same way as the causal equivalences mentioned in Section 5, aimed at reflecting causality,

44

are different from the location equivalence a7¢, which is designed to reflect distribution in space.
Indeed we saw in the previous section that equivalences based on causality and equivalences
based on distribution are incomparable in general.

For the preorder we have a similar situation: in fact, the causality-based preorder £ and
the distribution-based preorder T ,, turn out to be different even on the small sublanguage

without communication and restriction. The following is an example, suggested by L. Aceto,
showing that L Z T ,. Let:

p=abc+tcabt(alb]c)
g=p+a.bjc

Then p C ¢ but p £, ¢ (while we have both ¢ L p and ¢ T, p). To see why p £, ¢ consider
the move ¢ ~7—~ [::b] ¢, due to the summand a.b | ¢ of g. Now p has two ways of doing an
a-transition, namely p —';—~ l:b.c and p —%» l::nil | b]| c, but neither of them is appropriate.
It would still be plausible that on the sublanguage, p T ¢ 9 implies p C ¢

Having introduced the preorder [¢» it is natural to consider the associated equivalence,
i.e. the kernel ~p =4 & N 2 ¢+ All the examples given for =, also hold for ~,. In fact it is
clear that =, C ~, since we have both =, C Ql and ~,C J,. On the other hand, as could
be expected, the kernel of the preorder is weaker than location equivalence, that is ~, ¢ =,.

An example is:
a.a.a + (alala) and a.a.a +a.ala+ (alala)

These two processes are obviously not equivalent w.r.t. =,, but they are equivalent w.r.t. ~,
becausc a.a.a G ja.ale§ alala.

We have seen in the previous section that on sequential CCS processes all the plb’s based on
sensible relations collapse to weak bisimulation. For the preorder L , we shall prove a stronger
result, similar to that given in [Ace89] for the causal preorder L, namely that for p C, ¢ to
imply p = ¢ it is enough that the first process p be sequential.

Recall that CCSq.q is the set of sequential processes of CCS, that is processes built with
all the constructs of CCS except the parallel operator, and that = is the congruence over
IP generated by the equations SL1-SL8 given in Figure 3, Section 3. The following lemma
establishes that processes derived from CCSseq are always of the form u :: p, where p € CCSqeq,

up to the congruence = (more precisely up to the laws SL5, SL7, SL8).

45

Lemma 6.7 Let p € CCSseq and u € Loc*. Then:
(1) If uup —:—l' p' then
3r € CCSgeq s.t. P =uluir.

(2) If uzp5p' then 3re CCSseq s.t. P =uuir.

Proof. (1) The transition u :p -57 P’ is inferred from a transition p —7—~ p" such that
p' = u::p”. Thus all we have to show is that there exists 7 € CCSgeq such that p” = l::7,since
then we will have p' = w::l::r = ul::r by SL5. To show that 3r € CCSgeq s.t. p" =11, we
use induction on the proof of p —7—» p” . Note that all the transition rules in Figure 2 preserve
the form of the derivative except for LT1, LT6, LT7. Thus we only have to consider these three
cases, since for the others we have the result immediately by induction.

- Suppose the last rule applied is LT1. Then p is of the form a.q and p” = I::q. Moreover
g € CCSeeq because p € CCSqeq.

- Suppose now the last rule applied is LT7. Here p = ¢[f], and ¢[f) I—(IE) ¢'[f] is inferred from
q -7—» ¢’. By induction 3s € CCSyseq s.t. ¢’ =1::s. Then ¢[f] = (I::8)[f) = {::(s[f]) by SLT.
The case of LT6 is treated similarly, using law SL8.

(2) This is trivial since p & p’ can only be proved using ST3, and obviously CCSseq is closed

w.r.t the transitions %. O

Recall that IN(CCS) was defined in Section 3 to be the set of processes built on top of CCS pro-
cesses using the static constructs. Let Oloc(p) be the set of (immediately) observable locations

of p, defined as follows:
Oloc(p) =qer {u€ Loc™|3p' . p T’}p’}

Note that for any process p € IP we have Oloc(p) C loc(p)*. For example, if p € CCS we have
Oloc(p) C { ¢}, while for p € IN(CCS) we have the following property:

Fact 6.8 If p € IN(CCS) then p%p’ = Oloc(p’) C Oloc(p)U {ul}

For X C Loc*, we will use the notation u > X to mean: Vv € X. u > v. Note that, as a

consequence of the Lemma 3.3, we have =C L - We may now prove our result.

Proposition 6.9 If p € CCS;eq and g € CCS, then p g(g & p=aq.

Proof. The implication p L, ¢ = p = ¢ is true in general. We show that if p is sequential
we also have p~ ¢ = p L, ¢. To this purpose we use the fact that == B(U¢) (c¢f Lemma

46

4.2). We prove that the relation:
S={(uzp,q)| uip B(Ue) q, p € CCSseq ,q € IN(CCS) and u > Oloc(q) }

is a »¢ —location bisimulation up to the equivalence =. More preciscly we show that if
u p%p' then 3Jv,q¢’,p" s.t. q%l:»q’, with © > v and p' = p”"S¢' (and similarly for ¢-
moves). Suppose u::p % p’. Then by Lemma 6.7 3r € CCSgeq such that p’ = ul::r. Since
u i p B(Up) q, there must exist v,q’ such that ¢ .._3[, q , with o B(Ug) ¢, and u > v because
u > Oloc(q). Then also ul::rB(U;) ¢, since =C B(Uy). Now Oloc(q’) C Oloc(q)U{vl} by Fact
6.8 above, and obviously ul > Oloc(q) (since u > Oloc(q)) and ul > vl, thus ul > Oloc(q’)
and therefore p = ul::7 §¢'.

Suppose now u::p = p'. By Lemma 6.7 3r € CCSseq such that p’ = u::r. Then, since
u:p B(Ug) g, we have ¢ = ¢’ with p’ B(Uy) ¢, and thus p’ § ¢'.

In particular for p € CCSsq and ¢ € CCS we have p = ¢ = ¢ :: p § ¢, therefore
p=q = pK,q o

In most of the examples considered so far to illustrate the preorder C , - or at least in the

~ ¢
“concrete” examples — the process on the left in p T ¢ 9 was actually a sequential process. As
a result of the above proposition, proving p L, ¢ in this case reduces to showing p =~ ¢. For
a concrete example where the specification is not a sequential process we refer the reader to

[Ace89).

References

[Ace89] L. Aceto. On relating concurrency and nondeterminism. Report 6/89, Computer

Science, University of Sussex, Brighton, 1989.
[Ace91] L. Aceto. A static view of localities. Report 1483, INRIA, 1991.

[BCHK91] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Report
4/91, Sussex University, and INRIA Res. Rep. 1485, 1991.

[BK85] J. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77-121, 1985.

[Cas88] I. Castellani. Bisimulations for Concurrency. Ph.d. thesis, University of Edin-
burgh, 1988.

47

[CH89)

[DDS9)

[DDY0]

[DDNM87]

[Hen88]

(HMS85]

[Kie89]

[Kie91]

[Mil79]

[Mil80]

[Mil89)

[MY91]

(vGG9I0]

I. Castellani and M. Hennessy. Distributed bisimulations. JACM, 10(4):887-911,
1989.

Ph. Darondeau and P. Degano. Causal trees. In Proc. ICALP 88, volume 372 of
LNCS, pages 234-248, 1989.

Ph. Darondeau and P. Degano. Causal trees: interleaving + causality. In Semantics

of Systems of Concurrent Processes, number 469 in LNCS, pages 239-255, 1990.

P. Degano, R. De Nicola, and U. Montanari. Observational equivalences for con-

currency models. pages 105-129, 1987.

M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal of Comput-

ing, 17(5):997-1017, 1988.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

JACM, 32(1):137-161, 1985.

A. Kiehn. Distributed bisimulations for finite CCS. Report 7/89, University of
Sussex, 1989.

A. Kiehn. Local and global causes. Report, to appear, Technische Universitat

Miinchen, 1991.
R. Milner. Flowgraphs and flow algebra. JACM, 26(4):794-818, 1979.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. 1980.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

U. Montanari and D. Yankelevich. Partial order localities. draft, Universita di
Pisa, 1991.

R. van Glabbeek and U. Goltz. Equivalences and refinement. In Semantics of
Systems of Concurrent Processes, number 469 in LNCS, pages 309-333, 1990.

48

Imprimé en France
par
.I"Institut National de Recherche en Informatique et en Automatique.

o

ISSN 0249-6399

