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ABSTRACT
Our goal is to understand redo recovery. We define an installa-
tion graph of operations in an execution, an ordering significantly
weaker than conflict ordering from concurrency control. The in-
stallation graph explains recoverable system state in terms of which
operations are considered installed. This explanation and the set of
operations replayed during recovery form an invariant that is the
contract between normal operation and recovery. It prescribes how
to coordinate changes to system components such as the state, the
log, and the cache. We also describe how widely used recovery
techniques are modeled in our theory, and why they succeed in pro-
viding redo recovery.

1. INTRODUCTION
After a system crash, redo recovery tries to reconstruct the state

of the database at the time of the crash by redoing some subset of
the logged operations in some order. There are many techniques for
doing this [2, 3, 4, 14], and there has been some work on classifying
them [1, 7] and explaining specific techniques [9]. But what are the
general principles underlying redo recovery? For redo recovery to
work, the state update and recovery processes must cooperate in
some fashion. The goal of this paper is to characterize the nature
of this cooperation as precisely as possible.

1.1 State Update
Database operations change the state of the database, and state

update puts these changes into the stable state. The order in which
these updates are made is crucial to the success of redo recovery.
Consider the operations

A : x ← y + 1 and B : y ← 2

that read and write variables x and y, both initially 0. Consider
Scenario 1 illustrated in Figure 1, in which the operations are in-
voked in the order A followed by B, and B’s changes update the
state before the crash, but not A’s. Now there is no way for redo
recovery reconstruct the value 1 for x simply by redoing one of A
or B or both.

The problem is that there is a read-write conflict from A to B
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Figure 1: Read-write edges are important.

stable state

x = 0
y = 0

x = 0
y = 0

x = 1
y = 0

x = 1
y = 2

x = 1
y = 2

crash
y ← 2

x ← y + 1

install x

redo

y ← 2

Figure 2: Write-read edges are unimportant.

in the conflict graph, and updating the state with B’s changes be-
fore A’s violates this ordering. The problem is that B’s update of y
makes it impossible to redo A to regenerate the value of x. One
way to ensure that redo recovery is always possible is to use the
conflict graph. If state updates are made in conflict graph order,
then redo recovery can replay the remaining operations in conflict
graph order and recover the state.

But state update has more flexibility than this. Consider Sce-
nario 2 illustrated in Figure 2, in which the operations are invoked
in the order B followed by A, and A’s changes update the state be-
fore the crash, but not B’s. Now the state can be recovered by redo-
ing B, in spite of the fact that updating the state with A’s changes
violated the write-read edge from B to A in the conflict graph. A’s
update to x (which required reading y) does not interfere with B’s
ability to update y. Hence, the state update order does not need to
respect the write-read edges in the conflict graph.

To capture this, we define the installation graph to be the conflict
graph with the write-read edges removed, and we use this graph to
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Figure 3: Only exposed variables matter.

guide the state update procedure. We can prove that if state update
writes the changes made by operations in an order consistent with
installation graph order, then redo recovery can replay the remain-
ing operations in conflict graph order and recover the state. These
“installed” operations form a prefix of the installation graph. As
long as the stable state can be understood or explained as the result
of changes made by the operations in a prefix of the installation
graph, redo recovery can recover the state after a crash.

Again, however, state update has more flexibility than this. Con-
sider the operations

C : 〈x ← x + 1; y ← y + 1〉 and D : x ← y + 1

that read and write variables x and y, both initially 0. Consider Sce-
nario 3 illustrated in Figure 3, in which the operations are invoked
in the order C followed by D, but only C’s change to y updates the
stable state before the crash, and not x. Notice that redo recovery
can recover the state by simply replaying D. There is a read-write
edge from C to D due to the variable x, so the installation graph
demands that C’s changes are made before D’s, but there is really
only one change made by C that is visible to later operations, and
it isn’t the value of x. C’s change to y is exposed to D because D
reads y, but C’s change to x is not exposed to any following op-
eration because D overwrites x before any other operation has a
chance to read it.

To capture this, we define the notion of an exposed variable.
Given a set I of operations that have been installed into the stable
state and its complement U of uninstalled operations, we say that a
variable x is exposed if no operation in U reads or writes x (mean-
ing that x already has its final value), or if some operation in U
accesses x and the first such operation reads x (meaning x has to
have the right value if the system crashes now). We can prove that
to install an operation, one need only update its exposed variables.
We say that a prefix of the installation graph explains the state if
each variable x left exposed by the operations in the prefix has the
value written by the last operation writing x in the prefix. Our first
main result is that if the stable state can be explained by a prefix
of the installation graph, then recovery can replay the remaining
operations in conflict graph order and recover the state.

1.2 Recovery
Informally, the preceding result says that if a prefix of the instal-

lation graph explains the values of the exposed variables, then re-
covery can recover the state by replaying the remaining operations
in conflict graph order. Conversely, if recovery chooses to replay a
set of operations, then the remaining operations must form a pre-
fix of the installation graph explaining the values of the exposed
variables in order for recovery to succeed. This is our second main
result. We capture this requirement with a recovery invariant. This

invariant says that if, at any time, the recovery procedure would
choose to redo some set of operations, then the set of remaining
operations form a prefix of the installation graph explaining the
state. This is the sense in which state update and recovery must
cooperate.

The point of this paper is that the recovery invariant serves as
contract between state update and recovery that ensures recover-
ability. We end this paper with a discussion of how our framework
explains logical, physical, and physiological redo recovery tech-
niques, and how these techniques maintain the recovery invariant.
We go farther, in fact, and show how focusing on maintaining the
recovery invariant allows us to generalize physiological operations
to log the split of a B-tree node more efficiently than can be done
with conventional physiological operations.

Making the preceding ideas mathematically precise requires some
technical machinery. First, theory is traditionally a bit informal
about the relationship between operation sequences and conflict
graphs, and we find it helpful to nail down this relationship. Sec-
ond, theory is also somewhat informal about the relationship be-
tween between a conflict graph and the changes made to the state
by operations in the graph, so we define a state graph to help us
talk about state changes. To some extent, this machinery simply
lets us prove intuition many already have about recovery. More
significant, however, is our formulation of an abstract redo recov-
ery procedure. Recovery actually involves many subtle issues that
we have ignored in this introduction, such as interactions among
logs, checkpoints, log scans prior to recovery, and the the method
of choosing the set of operations to redo during recovery. Finally,
we define the notion of a write graph, a kind of state graph derived
from an installation graph, and use this write graph to model how
real systems accumulate the effects of multiple operations before
changing the stable state and installing these operations.

1.3 Prior Work
We have written on recovery theory in the past [12, 13]. Our

prior formulations focused primarily on characterizing states from
which it is possible to recover. In this work, we focus on the inter-
action between changing the state and recovery. In particular, our
recovery invariant is a precise statement of the contract between
the state update process (both during normal operation and during
recovery) and the recovery process (and its selection of operations
to replay after a crash) in order for these two processes to interact
seamlessly. In addition, our work has several other properties:

1. Simpler: Our definition of the installation graph is now a
simple weakening of the conflict graph. Our prior defini-
tion [12] removed write-write edges in addition to write-read
edges, but identifying which write-write edges to remove in-
volved an elaborate construction. It turns out that the two
definitions are equivalent, in the sense that a state is explain-
able by a prefix of one iff it is explainable by a prefix of the
other.

2. More precise: Our definition of the state graph lets us cap-
ture precisely our intuitive understanding of the relationships
among the state, the cache, and the conflict and installation
graphs. State graphs unify how we treat stable state and
volatile state, and permit us to consider regimes that main-
tain multiple versions of variables.

3. More abstract: We focus on recovering state without assum-
ing any particular structure for the database implementation,
such as how the state is stored on stable or volatile storage,



in contrast to [12]. This abstract characterization can be ap-
plied in a number of ways to real systems, as demonstrated
in Section 6.

4. More complete: We consider general redo tests, instead of
restricting attention to redo tests satisfying a particular spec-
ification [12]. We also model redo tests and their interaction
with the state update process more realistically. Prior for-
mulations [12] modeled the interface between state update
and recovery in terms of a particular explanation of the sta-
ble state, but we know that real recovery procedures do not
explicitly refer to such an explanation at the start of recovery.
Real systems fix a redo procedure, and engineer the rest of
the system to enforce the recovery invariant with that specific
procedure in mind.

The remainder of this paper is organized as follows. In Sec-
tion 2, we define our model of a database and the notions conflict
and state graphs. In Section 3, we define the installation graph and
exposed variables, and we prove that an explainable state can be
recovered. In Section 4, we define the abstract recovery protocol,
describe when it will lead to successful recovery, and state the re-
covery invariant. In Section 5, we define the write graph and show
how the write graph can be used to manage the state so that recov-
ery is possible. Section 6 describes how real systems maintain the
recovery invariant, and thus successfully provide recovery. Finally,
in Section 7 we discuss some future directions for this work.

2. PRELIMINARIES
We begin with a model of a recoverable system, the definitions

of conflict and state graphs, and the notion of an exposed variable.

2.1 System Model
Our system model is quite simple. A full model of a database

would require distinguishing between stable state and volatile state,
and providing cache managers and log managers to coordinate the
movement of information from the volatile state to the stable state.
Our notions of a state and changes to this state are indifferent to
whether these changes are physically recorded on a disk or in a
cache. We study the problem of changing state in a way that al-
lows us to recover the remaining changes if the systems should
crash before they are all installed. This model can be extended to
a model that more faithfully represents pragmatic implementations
of database systems, as we have done [12] and as we intend to do
in the future. This model, however, has enough detail to allow us
to explain how state changes and recovery are coordinated.

A recoverable system has a set of variables and a set of values
they can assume. A system state describes the values of the vari-
ables at a given point in time. A program accesses or changes
the state by invoking system operations, and these changes are
recorded in the log with logged operations. These two sets of oper-
ations can be quite different, and the only operations of interest to
us are the logged operations. Each operation atomically reads a set
of variables and then writes a set of variables. These ideas can be
modeled mathematically as follows.

Fix a set of variables and a set of values. A state is a func-
tion that maps each variable to a value. An operation is a func-
tion with a fixed set of input variables and a fixed set of output
variables. We call these sets of input and output variables the
read set and write set, respectively. An operation sequence is a
sequence O1O2 . . . Ok of operations. A state sequence is a se-
quence S0S1S2 . . . Sk of states generated by an operation sequence
O1O2 . . . Ok, where S0 is an initial state and each Si is the result

of applying Oi to Si−1. The state sequence generated by an op-
eration sequence obviously depends on the initial state S0, but the
value of S0 is usually clear from context or unimportant, and we
usually omit reference to it.

In the next two sections, we define directed graphs to model op-
eration sequences and state sequences. Given a directed graph, the
predecessors of a node n is the set of all nodes m such that there
is a path from m to n in the graph. A prefix of a directed graph
is a subgraph induced by a set of nodes having the following prop-
erty: If a node is in the prefix, then all of its predecessors are in the
prefix.

2.2 Conflict Graph
An operation sequence generates a conflict graph defined as fol-

lows. For an operation O, the preceding write to x is the preceding
operation W that writes x such that there is no operation writing x
between W and O. Similarly, the following write to x is the fol-
lowing operation W that writes x such that there is no operation
writing x between O and W . The conflict graph generated by an
operation sequence is a directed, acyclic graph with each node la-
beled with an operation. There is an edge from O to P if they
conflict in one of the following ways:

• write-write conflict: O writes x and P writes x and O is P ’s
preceding write.

• write-read conflict: O writes x and P reads x and O is P ’s
preceding write.

• read-write conflict: O reads x and P writes x and P is O’s
following write.

We assume that operations labeling nodes are distinct, so we can
refer to a node by the operation labeling it.

Conversely, a conflict graph generates a set of operation sequences
obtained by totally ordering the operations labeling the graph. The
following result states that each of these operation sequences can
be used to generate the conflict graph.

Lemma 1: If σ is any total ordering of the operations labeling a
conflict graph C, then C is the conflict graph generated by σ.

One consequence of this lemma is that we can model a log as a
set of operations ordered only by the conflict graph. It is not nec-
essary to have a totally ordered log reflecting the exact execution
order of the operations. Only conflicting logged operations need to
be ordered.

2.3 Exposed Variables
Conflict graphs help specify what values variables should have

during recovery. The recovery process replays a subset of the op-
erations in conflict graph order, bypassing others which are consid-
ered installed. If x contains the wrong value at the start of recovery,
then an operation replayed during recovery must write to x to give
it an appropriate value before any other operation replayed during
recovery reads x. Then the current value of x will never be ob-
served and can be considered unexposed. Otherwise the current
value of x is exposed because an operation reads it during recovery
or it is needed following recovery. Notice that, given a subset of
the operations in a conflict graph that read or write x, the conflict
graph induces a partial order on these operations, so the notion of a
minimal such operation is well-defined.

Let C be a conflict graph and let I be a subset of the operations
labeling C. For example, I might be the operations labeling a prefix
of C, representing the set of installed operations. A variable x is
exposed by I if

• no operation outside of I accesses x, or



• some operation outside of I accesses x, and a minimal such
operation reads x,

and x is unexposed otherwise. In particular, a variable x is unex-
posed by I if some operation outside of I accesses x, and a minimal
such operation writes x without reading x.

The conflict graph C grows as operations are performed during
normal execution. The set I of installed operation grows as updates
made by these operations are written into the state. If the conflict
graph C grows and the installed set I does not, then the status of a
variable x may flip from exposed to unexposed, but once it becomes
unexposed by I , it remains unexposed. On the other hand, if the
installed set I grows and the conflict graph C does not, then the
status of a variable x can flip back and forth between exposed and
unexposed.

2.4 State Graphs
A state graph is an abstract representation of a state sequence,

just as a conflict graph is an abstraction of an operation sequence.
The conflict graph tells us how the changes made by operations in
the graph interact, but it does not tell us what these changes are. A
state graph models the evolution of the state over time. We show
that two operation sequences that have the same conflict graph also
have the same conflict state graph.

A state graph is a directed, acyclic graph satisfying the following
properties:

• Each node n is labeled with

– a set ops(n) of operations, and
– a set writes(n) of variable-value pairs 〈x, v〉, at most

one pair 〈x, v〉 for each variable x, and only pairs 〈x, v〉
for variables x written by operations in ops(n).

• For each pair of nodes m and n, if writes(m) and writes(n)
both contain a variable-value pair for variable x, then there
is a path from m to n or from n to m.

We assume that the sets of operations labeling the nodes are dis-
joint. We say that node n writes v to x if the set writes(n) label-
ing n contains the pair 〈x, v〉. We define vars(n) to be the set of
variables x such that 〈x, v〉 ∈ writes(n) for some value v.

An operation sequence generates a state graph as follows. Given
an initial state S0, the state graph S generated by O1 · · ·On is
obtained by relabeling each node n of the conflict graph generated
by O1 · · ·On as follows:

• the set ops(n) is the singleton set {Oi} where Oi is the op-
eration labeling n in the conflict graph, and

• the set writes(n) is the set of all variable-value pairs 〈x, v〉
such that x is in Oi’s write set and v is the value of x in Si,
where S0S1 · · ·Sn is the state sequence generated by
O1 · · ·On.

Notice that the value of x in Si is the value that Oi writes when it is
performed in state Si−1. Since the operations labeling the conflict
graph are distinct, the same is true of the state graph, so we can
again refer to nodes by the operations that label them.

In the preceding definition, an operation sequence O1 · · ·On

was used to generate a state sequence S0S1 · · ·Sn, and the state
sequence was used to generate a state graph S . We can also use
the state graph S to recover the states in the sequence S0S1 · · ·Sn.
The natural state defined by a state graph S maps each variable x to
the last value written to x by any node in the graph. Since the def-
inition of a state graph requires that the nodes writing x are totally
ordered, the last value written to x is well-defined. Of course, there
may be variables that are never written by any node in S or by any

x=1,y=0

x=3, y=2

x=0,y=0

x=1, y=2

O: readset{x}

writeset{<x,1>}

Q: readset{x}

writeset{<x,3>}

P: readset{x}

writeset{<y,2>}

Figure 4: Conflict state graph

operation in the sequence O1 · · ·On used to generate S . Values for
these variables must come from the initial state S0 in the sequence
S0S1 · · ·Sn used to generate S . Formally, given an initial state S0,
the state determined by a state graph S maps a variable x to

• a value v, where 〈x, v〉 ∈ writes(n) and n is the last node
in S with x ∈ vars(n), or

• to the value of x in S0 if there is no node n with x ∈ vars(n).

Since a prefix of a state graph is a state graph, every prefix of
the state graph S determines a state, and the next lemma shows
that we can reconstruct the state Si in the sequence S0S1 · · ·Sn

used to generate S by considering the subgraph of S induced by
the operations O1, . . . , Oi.

Lemma 2: If the operation sequence O1 · · ·On generates a state
sequence S0S1 · · ·Sn and a state graph S , then Si is the state de-
termined by the prefix of S induced by the operations O1, . . . , Oi.

In fact, we can prove that any state determined by any prefix of
this state graph is reachable by any total ordering of the operations
labeling that prefix.

Finally, the state graph generated by an operation sequence de-
pends only on the conflict graph of the operation sequence. The
crucial observation is that the state graph depends only on the order
of conflicting operations. Since the conflict graph characterizes the
order of conflicting operations, the conflict graph uniquely deter-
mines a state graph. In light of this, we say that the conflict state
graph for a conflict graph C is the state graph generated by any op-
eration sequence generating C, since they are all the same. We call
the state determined by the entire conflict graph the final state. Our
goal will be to recover the final state.

Figure 4 illustrates the conflict graph and its state graph produced
by the sequence of operations O (reading x and writing x), P (read-
ing x and writing y) and Q (also reading x and writing x). The
solid lines separating the operations indicate the system states de-
termined by the prefixes that the lines identify. The values of the
variables of these states are given in the rectangles associated with
the lines.

Most of the results in this section are intuitively clear or are
things that one might expect to be true, but we have established
them from first principles. Recovery is essentially the problem of
reconstructing state without knowing much about the way the state
was originally constructed, and state graphs tell us how much flex-
ibility we have when reconstructing the state.



3. POTENTIAL RECOVERABILITY
In this section, we identify the states that can be recovered by

replaying operations. Given a conflict graph, we say that a state is
potentially recoverable if we can replay some subset of the opera-
tions in the conflict graph from this state in conflict graph order and
end up with the final state determined by the conflict graph.

3.1 Installation Graph
What sets of operations can appear as installed in a potentially

recoverable state? One trivial answer: if a state contains the opera-
tions labeling a prefix of the conflict graph, then we can replay the
remaining operations in conflict graph order and recover the state.
However, this is not the only answer. In Scenario 2 in the intro-
duction, we saw a conflict graph with a write-read edge from B
to A, yet we can take a state with A installed and recover the final
state by replaying B. The state “containing” A is potentially recov-
erable, yet the set {A} does not determine a prefix of the conflict
graph. However, {A} does determine a prefix of a graph we call
the installation graph. Prefixes of the installation graph include the
prefixes of the conflict graph. Their sets are the sets of operations
that can appear in potentially recoverable states.

The installation graph is the subgraph of the conflict graph ob-
tained by removing the edges resulting solely from write-read con-
flicts. In the example of Figure 4, the conflict graph contains an
edge from O to P that denotes a write-read conflict. Hence, the
installation graph for the example in Figure 4, which is shown in
Figure 5, does not have an edge from O to P . Only the edges
from O to Q (a write-write and read-write conflict) and from P
to Q (a read-write conflict) remain. The removed conflict graph
edge is shown by a dotted arrow in Figure 5. It is easy to see that
the operations labeling a prefix of the conflict graph induce a prefix
of the installation graph, but not vice versa.

Every prefix of the installation graph induces a prefix of the in-
stallation state graph labeled with the same operations. The state
determined by a prefix of the installation graph is the state deter-
mined by the corresponding installation state graph prefix. This
state contains the final values for all variables written by the oper-
ations in that prefix (when the operations are executed in conflict
graph order). In Figure 5, the conflict graph edge from O to P
does not appear in the installation graph and there is an additional
recoverable state that can be identified, denoted by the dashed line
separating operation nodes P from nodes O from Q.

3.2 Explainable States
Does a potentially recoverable state need to contain values for

all of the variables written by the operations in a prefix? Not nec-
essarily. In particular, values of unexposed variables are irrelevant.
We say that a variable x is exposed by a prefix of the installation
graph if x is exposed by the set of operations labeling the prefix,
and x is unexposed otherwise. We say that a prefix σ of the in-
stallation graph explains a state S if the exposed variables have the
same value in S and the state determined by σ. We call states that
are explained by a prefix of the installation graph explainable. An
unexposed variable need not contain any specific value. We will
show that explainable states are potentially recoverable.

3.3 Replaying Operations
Consider just the first step of recovering a state, namely replay-

ing the first operation whose effects do not appear in the state. We
say that an operation O is applicable to a state S if the values of
variables in O’s read set are the same in S and the state determined
by O’s predecessors in the conflict graph. This means that O will
read the same values in S as it did in any execution represented by

O: readset{x}

writeset{<x,1>}

Q: readset{x}

writeset{<x,3>}

P: readset{x}

writeset{<y,2>}

x=1,y=0

x=3, y=2

x=0,y=0

x=1, y=2
x=0,y=2

Figure 5: Installation state graph illustrating the removal of
write-read edges.

the conflict graph, so it will write the same values. An operation O
is said to be installed in a state S relative to a particular prefix σ
that explains S if O is in σ, and is uninstalled otherwise. A minimal
uninstalled operation after σ is a minimal operation in the conflict
graph that is not in σ. For example, in Figure 5, the minimal unin-
stalled operation after O is P , while the minimal uninstalled opera-
tion after P , a prefix permitted by the installation graph, is O. Note
that in all cases, the minimal uninstalled operation sees exactly the
same values for its read set, e.g. operation O sees x = 0 even
when operation P is installed before it, as it does when operations
are executed in conflict graph order.

We denote by σ; O the extension of a prefix σ by a minimal
uninstalled operation O, and we denote by S; O the state obtained
by applying O to S. We can show that if S is a state explained
by σ and if O is a minimal uninstalled operation after σ, then O is
applicable to S and S; O is a state explained by σ; O.

3.4 Potentially Recoverable States
It should be clear that an explainable state is potentially recover-

able. If we can identify an installation graph prefix explaining the
state, then we can recover the final state by replaying uninstalled
operations in conflict graph order.

Theorem 3 (Potential Recoverability Theorem): If S is a state
explained by a prefix σ of the installation graph, then S is poten-
tially recoverable.

PROOF. We proceed by induction on m ≥ 0, the number of
uninstalled operations.

Suppose m = 0. Since there are no uninstalled operations, σ
contains every operation in the conflict graph. Since σ explains S
and since every variable is exposed, each variable x in S has the
value written by the last operation writing x in σ and hence in the
conflict graph, so each variable x has the same value in S and the
state determined by the conflict graph, so S is the state determined
by the conflict graph.

Suppose m ≥ 0 and the induction hypothesis holds for m − 1.
Since O is a minimal uninstalled operation, O is applicable to S.
Further, σ; O is a prefix of the installation graph that explains S; O.
Since the number of uninstalled operations after σ; O is m− 1, the
induction hypothesis implies that replaying these uninstalled oper-
ations against S; O in any order consistent with the conflict graph
yields the state determined by the conflict graph. Since replaying O



and then replaying these operations amounts to replaying the oper-
ations uninstalled after σ in an order consistent with the conflict
graph, we are done.

4. RECOVERY
So far we have characterized the states from which we can re-

cover. Now we focus on the recovery process itself. We describe
an abstract recovery procedure and what is required for this proce-
dure to work. A recovery procedure begins with the state and the
log as of the time of the crash. The recovery procedure scans the
log and examines each log record in turn. It determines whether the
operation mentioned in this record should be replayed, and replays
the operation if the answer is yes. When the recovery procedure
reaches the end of the log, it has rebuilt the system state, and it ter-
minates. The heart of this procedure is the redo test that recovery
uses to determine whether a logged operation should be replayed.

During normal operation, the system may take a checkpoint. A
checkpoint procedure updates the state and the log so as to identify
a point in the log prior to which the effects of logged operations
are reflected in the state. If the system crashes at a later point, the
recovery procedure need only examine the part of the log following
this checkpointed log prefix instead of starting at the beginning of
the log.

Some recovery procedures have an analysis phase in which they
scan the log to find information needed by the redo test to determine
whether an operation should be replayed. An analysis phase usually
happens at most once, at the start of recovery.

We model each of these aspects of recovery as follows.

4.1 The Log
In practice, a log is a linear sequence of records, each record con-

taining information about the invocation of an operation, together
with additional information about this operation and its invocation,
with log records maintained in invocation order. Given a conflict
graph C, we define a log for C to be any directed, acyclic graph with
the following properties:

• Logged operations are from the conflict graph: Each node
(record) is labeled with an operation and possibly some other
labels, and the set of operations labeling the conflict graph
and the log are the same.

• Log order is consistent with the conflict order: If there is a
path from O to P in the conflict graph, then there is a path
from O to P in the log.

4.2 The Checkpoint
There are many ways that systems implement a checkpoint. It

might be as simple as flushing the log to disk and writing a spe-
cial checkpoint record to the end of the log, indicating where the
recovery procedure should begin, or it could be much more compli-
cated. No matter how the checkpoint is implemented, its function
is to identify a set of operations (or log records) that the recovery
procedure can ignore. We assume that the recovery procedure is
called with a set of operations that have been checkpointed. The
checkpointed log records usually constitute a prefix of the log, but
that is not required. What is required is that the “checkpointed” log
records denote operations that do not need to be replayed during
recovery (because these operations are installed).

4.3 The Analysis
We permit the analysis phase of recovery to be arbitrary. We as-

sume the recovery procedure has a function analyze that performs
the analysis phase and returns some value called the analysis. This

procedure recover(state, log, checkpoint)
unrecovered = operations(log) - checkpoint
analysis = null
while unrecovered is not empty

O = minimal operation in unrecovered
analysis = analyze(state,log,unrecovered,analysis)
state = if redo(O,state,log,analysis)

then O(state)
else state

unrecovered = unrecovered - {O}
end while

Figure 6: A redo recovery procedure.

value might be a simple log position or a complicated data struc-
ture. In the simple case, the analysis function might map the state
and the log at the start of recovery to a position in the log for the
start of recovery (the position of the last checkpoint record, for ex-
ample). In a more complex case, an analysis phase might be per-
formed once for each operation before invoking the redo test on this
operation, e.g. to determine the set of currently unrecovered oper-
ations and even the result of the previous analysis phase. To cover
this range of options, our model permits the analyze function to
map a state, a log, a set of operations (the unrecovered operations),
and an earlier analysis to another analysis.

4.4 The Recovery Procedure
The heart of the recovery procedure is a redo test that returns true

or false, given an operation, a state, a log, and an analysis. For a
redo test redo and an analysis function analyze, we define the redo
recovery procedure to be the algorithm recover given in Figure 6.
The recovery procedure is called with a state, a log, and a check-
point at the time of the crash. It begins by setting the unrecovered
operations to the logged operations not appearing in the checkpoint
and then considers the unrecovered operations in log order. For
each operation O, the procedure goes through an analysis phase,
then it invokes the redo test to determine whether the state should
be updated by replaying O. This procedure has an analysis phase
at the start of every iteration of the loop. The typical case where
there is a single analysis phase at the start of recovery is captured
when the analysis phase is invoked with the initial null value and is
the identity function otherwise.

Given a state, a log, and a checkpoint, the recovery procedure
replays some subset of the operations

operations(log)

in the log. Let U be the set of (uninstalled) operations for which
the redo test returned true. Then the set I of remaining operations
are the installed operations. For every variable v appearing in the
recovery procedure, let vi be the value of v at the end of the ith
iteration of the main loop, and let v0 be the initial value of v at the
start of the first iteration. Let

redo set = {Oi : redo(Oi, statei−1, logi−1, analysisi)}
be the set of operations replayed during the execution; that is, the
set of operations Oi such that on the ith iteration of the main loop
the redo test returned true when applied to Oi. Let

installed i = operations(log) − (redo set ∩ unrecovered i).

be the set of all logged operations that will not be redone after
the ith iteration of the loop, and hence can be considered installed.

We can now prove the procedure recover is correct:



Corollary 4 (Recovery Corollary): Given a state, a log, a check-
point, and an execution of the procedure recover, if the set of in-
stalled operations operations(log) − redo set induces a prefix of
the installation graph that explains state , then recover terminates
with the state determined by the conflict graph.

PROOF SKETCH. It follows by a simple inductive argument that
installed � is a prefix that explains state� at the end of each itera-
tion �. In particular, the recovery procedure terminates with a state
explained by the entire installation graph. This means that the ex-
posed variables in this final state have the same value in this state
and the state determined by the entire installation graph. Since all
variables are left exposed by the entire installation graph, and since
the state determined by the installation graph and the conflict graph
are equal, the recovery procedure terminates in the state determined
by the conflict graph.

4.5 Keeping Systems Recoverable
We have just shown that the recovery procedure will recover the

system state as long as the following is true:

Recovery Invariant
The set operations(log) − redo set induces a prefix of the

installation graph that explains the state.

Supporting recovery is difficult because the truth of this invari-
ant depends on every system component. The state is what needs
to be explained. The log is where the operations are recorded. The
checkpoint and the log initialize the set of unrecovered operations
in the recovery procedure. The redo test determines which of these
unrecovered operations are replayed, and hence what prefix of the
installation graph must explain the state. Maintaining this invariant
requires that every change to the state be accompanied by a corre-
sponding change to the set of operations that the redo test choses to
redo.

5. MANAGING SYSTEM STATE
If a system updates the stable state in installation graph order,

then the stable state can always be recovered. However, real sys-
tems don’t update the state with changes made by operations just
one operation at a time. When they move pages from the cache to
the disk, a page frequently contains changes made by a number of
operations. This can make installing operations a bit tricky.

Consider the operations

E : x ← y + 1 then F : y ← x + 1 then G : x ← x + 1

After executing these operations, suppose the system updates the
stable state with the value of x in an attempt to install E and G.
Such an update violates a read-write installation graph edge be-
tween F and G. Similarly, we cannot update the stable state with
the value of y, as that update would violate a read-write installation
graph edge from E to F . Stable state is unrecoverable if either x
or y is updated singly, since we can’t recover the other value by
replaying any combination of the operations. The system has to
update the stable state with the values of both x and y atomically,
hence installing the operations E, F , and G atomically. Accumu-
lating the changes from multiple operations can require the system
to update sets of variables atomically. Multi-variable write sets can
also require this. However, we can take advantage of unexposed
variables to keep these sets of variables from getting too large.

Consider the operations

H : 〈x ← x + 1; y ← y + 1〉 then J : y ← 0

The fact that H writes both x and y appears to force us to up-
date x and y atomically to install H . Further, if we accumulate
the changes in y, it would appear that we need to install H and J
atomically. However, we notice that J’s blind write to y makes y
unexposed after H . It follows that we need only update the stable
state with the value of x, for us to consider H installed, since y’s
value is unexposed and does not need to be explained.

As these examples illustrate, a system has a great deal of flex-
ibility in how to update the stable state. We now define a write
graph and operations on this graph that capture this flexibility. The
write graph tells the system what sets of operations must be in-
stalled atomically, and what updates to the stable state are required
in order to install them. We prove that if the system respects the
write graph, then the stable state can always be explained by a pre-
fix of the installation graph, and hence that the stable state can al-
ways be recovered.

5.1 Write Graph
A write graph is a state graph where each node is labeled with

a boolean variable installed such that the nodes with installed set
to true form a prefix of the write graph, and where the underlying
state graph is obtained from an installation state graph by applying
the following operations:

• Install a node: Set the boolean variable installed labeling a
node n to true. Every predecessor of n must have installed
set to true.

• Add an edge: Add a directed edge from a node n to a node m.
The node m must have installed set to false, and the resulting
graph must be acyclic.

• Collapse nodes: Replace a set S of nodes with a single node n.
The resulting graph must be acyclic. For node n, ops(n)
is the union of ops(s) for all s ∈ S and writes(n) is the
set 〈x, v〉 for which there is an s ∈ S satisfying: (i) 〈x, v〉 ∈
writes(s) and (ii) if 〈x, v′〉 ∈ writes(t) for some t ∈ S then t
is ordered before s in the old graph. There is an edge from m
to n in the new graph if there is an edge from m to some
s ∈ S in the old graph, and an edge from n to m in the new
graph if there is an edge from some s ∈ S to m in the old
graph. The value of installed at n is true iff any node in S
has installed set to true.

• Remove a write: Remove a pair 〈x, v〉 from the set writes(n)
labeling a node n. For every node m reading x, either m
has installed set to true, or m is ordered before n and a node
following n writes x without reading it. (For example, m
could be ordered before n due to an edge resulting from the
Add an edge operation).

The simplest write graph is the installation state graph where
each node corresponds to an installation graph node. If the instal-
lation graph node is labeled with operation O, then the write graph
node is labeled with the variable-value pairs that O writes. A sys-
tem can keep the state potentially recoverable by installing opera-
tions in installation graph order. This corresponds to updating the
state by choosing nodes of the write graph in write graph order, and
atomically updating the state with the values labeling the node.

A system might choose to constrain the order of updates more
than they are constrained by an installation graph state graph by
adding an edge to the state graph with the Add an edge operation.
Further, most systems do not maintain multiple versions of a page
in cache, but keep a single copy that reflects the effects of all recent
operations on the page. The system can enforce a single copy of a
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Figure 7: Write graph showing the collapse of nodes writing
to x.

page by merging the cache nodes of the write graph that write to the
page with the Collapse nodes operation. Collapsing an uninstalled
node with an installed node is frequently the way in which systems
update the stable system state. If operations can write to multi-
ple variables (pages), then merging write graph nodes that write a
common variable can lead to a single write graph node writing a
larger number of variables than any operation does on its own [12],
requiring atomic writes to large portions of the state. We can some-
times avoid writing a variable (page) x updated by an operation of
the write graph by removing the update to x from a node with the
Remove a write operation. This is possible exactly when there is no
uninstalled node that reads the value of x being removed.

The operations on write graphs guarantee that a prefix of the
write graph corresponds to a prefix of the installation graph from
which it is derived, and the state determined by a prefix of a write
graph is explained by the corresponding prefix of the installation
graph. Thus, if we update the state in write graph order, then the
state remains potentially recoverable:

Corollary 5: The state determined by a prefix of a write graph is
potentially recoverable.

The identification of the states of write graph prefixes as states of
installation state graph prefixes makes it obviously true that cache
managers exploiting write graphs keep the system state explain-
able, and hence potentially recoverable.

Figure 7 illustrates a write graph derived from our running exam-
ple of Figure 4 in which all operations writing to a common set of
variables are collapsed. That results in operations O and Q being
collapsed, making some recoverable states “inaccessible”. Note in
particular, that the edges of this write graph make it clear that the
cache manager needs to write y into the state prior to writing x,
since operation P needs to be installed prior to the collapsed oper-
ations O and Q.

6. REAL RECOVERY METHODS
We now turn our attention to how actual recovery methods main-

tain the recovery invariant. To demonstrate the generality of our
work, we consider three generic log-based recovery technologies
— logical, physical, and physiological recovery [6] — and note
that every log-based redo recovery method used today that we are

aware of fits into one of these categories. These methods all up-
date the state and make other changes that have the effect of up-
dating redo set, and they make these changes in a way that updates
the state and redo set atomically. Since these changes are made
atomically, the recovery invariant is maintained, and the recover
procedure can always recover the state after a crash.

In all recovery methods described below, stable state is repre-
sented by a single write graph node, the initial or minimum node of
the write graph. This node is the result of collapsing into a single
node all of nodes of the state graph labeled with operations that are
installed in the stable state.

6.1 Logical Recovery
A logical operation may be thought of as a mapping from one

database state to the next. At least in concept, the entire database
(all its pages) may be read, and the entire database may be writ-
ten. Hence, we need to atomically transform one database state,
in its entirety, to a successor database state. This appears diffi-
cult, but in fact this kind of transformation was done previously
by System R [5], though its operations were not actually “logical”
operations.

In System R, system stable state on disk is unchanged between
checkpoints. Pages updated since the last checkpoint are main-
tained partially in a main memory cache and partially in a disk stag-
ing area. Pages in the cache contain the most recent updates to the
pages, more recent than the updates in the staging area. The system
periodically stops normal execution (quiesces). Prior to quiescing,
the staging area pages do not constitute a write graph node. During
the quiesce, the more recently updated cached pages are written
to the staging area, either as new pages or as updates to existing
pages. At this point, the staging area becomes the second node of a
two node write graph, the other node being the stable state. (Alter-
natively, during normal system operation, the updates labeling this
second write graph node are split between the cache and the staging
area, and it is only after quiescence, after the cached updates have
been flushed to the staging area, that the staging area itself contains
all of the updates labeling this second node.)

A checkpoint record is then appended to the log, indicating that
the staging area pages now replace prior versions of these pages in
the installed system state. Writing this checkpoint record “swings
a pointer” that atomically installs into stable state all operations
logged since the previous checkpoint. This collapses the two write
graph nodes into a single node.

After a crash, the recovery procedure starts with the stable sys-
tem state identified in the last checkpoint record. It replays all sub-
sequent log operations against that version. Writing the checkpoint
record, therefore, simultaneously installs operations (collapses write
graph nodes) and removes these operations from redo set by mov-
ing them to the checkpoint set. Since the change to state and the
change to redo set are done atomically, the recovery invariant is
preserved.

6.2 Physical Recovery
Early recovery techniques frequently exploited physical recov-

ery, logging the exact bytes of data and the exact locations written
by the logged operations. Physical operations do not read data,
they only write. So there are no write-read or read-write conflicts
in the installation graph, only write-write conflicts. Both whole
and partial page logging have been used [1]. Like logical recovery,
all operations logged since a last checkpoint record on the log are
replayed during recovery

Stable system state is represented by the minimum write graph
node. The write graph suffix represents the main memory cache



holding the accumulated changes not yet reflected in the stable
state. In this write graph suffix, there is at most one node writing to
any variable, since updates to a page are accumulated in the cache
on a page-by-page basis. The installation graph and correspond-
ing state graph consist of chains of nodes, one chain for each page
consisting of all operations that access that page. The write graph,
which is formed by collapsing all nodes with operations writing the
same page, is an initial node followed by a single write graph node
for each page.

As with logical logging, checkpointing has the effect of installing
operations. But now this is much simpler. The checkpoint process
shifts log operations from redo set to the checkpoint set. While
these operations are in redo set, the variables they update are un-
exposed, since physical operations do not read variables. Hence,
values of these variables are irrelevant to recovery, so we can set
them to whatever values are convenient. Prior to writing the check-
point record, therefore, we set them to the values they possess in the
cache (which includes the effects of the moved operations). Writ-
ing the checkpoint record therefore has the effect of atomically re-
moving these operations from redo set and, since their effects are
already present in the stable state, installing the operations. This
atomic installation preserves the recovery invariant.

6.3 Physiological Recovery
A physiological operation reads and writes exactly one page. It

identifies the page by a “physical” page identifier, but performs a
“logical” operation on that page. The operation’s log record po-
sition is called its log sequence number (LSN). Each page of the
system state is tagged with the LSN of the last operation that up-
dated it. The LSN is usually on the page, but there are other ways
of tagging pages [13]. LSNs increase monotonically with each new
operation. Each update operation on the page sets the page LSN to
its LSN.

Stable state is again represented by the minimum write graph
node. The write graph suffix is the same as for physical recovery.
Since operations read and write at most one page, there are edges
from the initial node to the subsequent write graph nodes, but there
are no edges among these subsequent nodes. Consequently, all of
these subsequent nodes are uninstalled minimal nodes, and the sys-
tem is free to install their operation sets in any order.

All the operations of the write graph node are installed into the
state atomically when its page is written to disk. This atomic instal-
lation is modeled by collapsing a minimal node of the write graph
into the initial node. This has the effect of updating the LSN of the
page in the initial node with the LSN of the last operation writing
to the page.

After a crash, the recovery procedure scans the log. For each
operation, it compares the LSN tagging the page with LSN of the
operation. If the page LSN is at least as high the operation’s LSN,
then the operation is already installed and is bypassed during recov-
ery. It follows that the LSN updating that occurs when write graph
nodes are collapsed also has the effect of updating the set redo set
of operations replayed during recovery. Since the change to the
state and redo set is atomic, the recovery invariant is maintained.

6.4 Generalized LSN Based Recovery
While the restriction of physiological operations to read and write

exactly one page simplifies cache management, it is possible to ex-
ploit LSNs to deal with a broader class of operations. As with
physiological operations, we associate the LSN of an updating op-
eration with each variable (page) in its write set when the operation
is executed. Thus, as before, the page LSN denotes the last oper-
ation that updated it. Since we are writing the updates of a write

x=0,y=0x=0,y=0

PP: : readset{readset{xx}}
writes{<writes{<y,2>y,2>}}

x=3, y=2x=3, y=2

x=0,y=2x=0,y=2

OO: : readset{readset{xx}}
writes{<writes{<x,1>x,1>}}

QQ: : readset{readset{xx}}
writes{<writes{<x,3>x,3>}}

Collapsed    Collapsed    
NodeNode

Ops(nOps(n) = {O,P}) = {O,P}
Writes(nWrites(n) = {<x,3>}) = {<x,3>}

X: Old Page Y: New Page

Update old node Update old node 
remove recordsremove records

Node split op          Node split op          
Read old X, write new YRead old X, write new Y

Write Write YY before before XX

Figure 8: Write graph showing the effect of using log opera-
tions that read and write different variables to produce a B-tree
split.

graph node atomically, all variables in an installed operation’s write
set must be tagged with an LSN that is at least as large as the LSN
of the operation. If an operation is uninstalled, all variables of its
write set will have LSNs that are less than the operation’s LSN.

Exploiting log operations that can read and write different vari-
ables is potentially very useful for database recovery [11]. A log
operation might deal with node splitting in a B-tree by reading the
old full B-tree page and writing a new page with half the contents
of the old node. Such an operation avoids “physically” logging the
half of a splitting B-tree node that is used to initialize the value of
a new node, which is required when physiological operations are
used. A subsequent operation then removes the “moved” half of
the contents from the old node. The cache manager must be sure to
enforce that the new B-tree node is written before the old node is
over-written by the operation that removes the moved contents and
completes the split. The write graph of Figure 8 illustrates exactly
this. Operation P has the form of the operation that reads the old
page x and writes the new page y, while operation Q has the form
of the operation writing the old page x to remove the half of its con-
tents that were moved to new page y. This results in the write graph
edge from the node for P to the collapsed node for O and Q. This
edge provides for exactly the enforcement of installation graph or-
der of a non-trivial sort by the cache manager. This requirement for
“careful” write order flows directly from our recovery theory.

7. DISCUSSION AND DIRECTIONS
Our theory allows us to talk about the system state and accu-

mulated changes to the state, and to talk about installing some of
these changes and recovering the remaining changes after a crash.
With this, we can precisely state and prove the contract that must
exist between normal execution when state is updated and recovery
when operations are replayed. This contract is our recovery invari-
ant. We have shown how most common recoverable systems are
describable in our model and how they enforce this recovery in-
variant. Using this understanding, one future direction is to define
new classes of logged operations having recovery methods with po-
tential advantages over current methods, especially when extending
recovery to new areas [10, 13].

Another direction is to make explicit more of the detail and struc-
ture present in real database systems. One example is the existence



of the volatile and stable versions of the state and log, and how
the cache manager and log manager coordinate advancing stable
database state with the movement of volatile log records to the sta-
ble log:

• A problem arises when operations write multiple variables,
requiring the system to make atomic changes to multiple
variables in the state. How to manage or avoid large atomic
transitions is challenging.

• The write-ahead log protocol requires an operation’s log record
be forced to disk before the operation’s effects are written to
disk. Exploiting unexposed variables to reduce writes to sys-
tem state can require the log manager to be more conservative
and flush log records even earlier [12].

There are recovery possibilities not covered by our theory. Our
theory says that if we begin with a state explained by a prefix of the
installation graph and replay the uninstalled operations in conflict
graph order, then each operation is applicable when replayed, i.e.,
recovery reads the same values as read during normal operation, so
the values written are also the same. There have been interesting
examples in which operations can be replayed even then they are
not applicable and write different values during recovery. The key
is that these writes are to the unexposed portion of the state, and
hence the values written are irrelevant [13].

The current theory, even without these elaborations, demonstrates
fundamental principles of recovery. Most important, it captures the
need to make sense of the values in the stable state in terms of what
operations are considered installed, and the need to keep this expla-
nation consistent with the set of operations the recovery procedure
will consider uninstalled during recovery.
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