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1 Introduction

There has been significant effort devoted to answer the question of whether pure three-

dimensional gravity with a negative cosmological constant (“pure AdS3 gravity”) is dual to

a unitary two-dimensional conformal field theory (CFT). Relatedly, is pure AdS3 gravity

a consistent quantum theory? Strong evidence suggests that the answer to both questions

is no. For example, consider the Euclidean partition function Z of pure gravity with torus

boundary. If pure AdS3 gravity has a CFT dual, then Z is the torus partition function of

the CFT, and it must satisfy all of the axioms of CFT. In particular, Z should admit a
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power series expansion at small q with positive integer coefficients which count the number

of states with a given energy and momentum.

To compute this partition function one must make an ansatz for the integration con-

tour of the path integral of three-dimensional quantum gravity. For a torus boundary of

complex structure τ , Maloney and Witten made a reasonable proposal [1], which amounts

to summing over fluctuations around real, non-singular, Euclidean saddles with bound-

ary complex structure τ . This prescription includes a sum over “topologies”: in order to

specify a Euclidean AdS3 geometry with torus boundary one must choose a cycle of the

boundary torus which is contractible in the bulk, and one sums over this choice. By a

suitable modular transformation τ → τ ′ one may always take this contractible circle to be

the spatial one. Within that convention the sum over “topologies” in the Maloney-Witten

prescription becomes a modular sum.

There is a Euclidean BTZ geometry for any such τ ′. Its contribution to the bulk

partition function (including the saddle and fluctuations around it) is the Virasoro character

of the vacuum module at complex structure τ ′ [1, 2],

Zvac(τ
′, τ̄ ′) =

∣∣∣∣∣q
′−k

∞∏

n=2

1

1− q′n

∣∣∣∣∣

2

, q′ = e2πiτ
′
, k =

c

24
. (1.1)

The states counted are the boundary gravitons and multiparticle states thereof. Here c

is the Brown-Henneaux central charge [3]. So the “Maloney-Witten” partition function

roughly takes the form

ZMW(τ, τ̄) =
∑

g∈PSL(2;Z)
Zvac(gτ, gτ̄) , (1.2)

i.e., it is a sum of modular images of the vacuum character. This sum is divergent and

one must regulate it. After employing a modular invariant regularization the resulting

partition function no longer has a well-behaved small q expansion: there are logarithmic

terms in the expansion, in addition to coefficients which are neither positive nor integer.

This cannot be the partition function of a unitary 2d CFT.

There are some loopholes to this argument. For instance, the modular sum is sensible

for extremely small values of the central charge [4]. If one considers quantized k = 1, 2, . . .

and includes complex saddles, then the regularized sum is sensible as a CFT partition

function and in fact is equal [5] to the “extremal CFT” partition function conjectured by

Witten [6]. For k = 1 there is a known CFT with this partition function, the “Monster

CFT” of Frenkel, Lepowsky, and Meurman [7], but there are no known examples of extremal

CFT with k ≥ 2 (and in fact there are good reasons to believe that they do not exist [8, 9]).

However, these complex BTZ solutions do not have a good physical interpretation and it

seems incorrect to include them.

Sometimes there is a rather different answer given to the question of whether AdS3

gravity has a CFT dual. Namely, there is a dual, and that dual is Liouville theory. See [10],

where a boundary Liouville theory was directly obtained from pure AdS3 gravity on a

Lorentzian cylinder. Of course this answer cannot be correct quantum mechanically —
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Liouville theory has no SL(2,R) × SL(2,R)-invariant state, while AdS3 gravity has a nor-

malizable vacuum. Moreover, there does not seem to be a clear relation between Liouville

theory and the Euclidean results outlined above.

In this manuscript we show that, perhaps surprisingly, these two approaches to AdS3

gravity are intimately related, and along the way clarify a number of extant puzzles.

Let us first recall the results of [10]. Those authors begin with the Chern-Simons for-

mulation of pure AdS3 gravity on a cylinder, i.e.on global AdS3. Crucially, the bulk Chern-

Simons gauge fields are constrained by the boundary condition that the bulk spacetime is

asymptotically AdS3. Thus, rather than obtaining an ordinary chiral Wess-Zumino-Witten

(WZW) model, one finds that the Chern-Simons theory is equivalent to a constrained

SO(2, 1) × SO(2, 1) chiral WZW model on the boundary. The first factor is left-moving

and the second right-moving. After a suitable field redefinition this theory can be written

as an ordinary, albeit constrained SO(2, 1) WZW model, and this in turn can be rewritten

as a Liouville theory.

However, in this derivation there is an important step which, while familiar from

the canonical quantization of Chern-Simons theory [11], seems to have gone unnoticed

in the AdS3 literature. In the quantization of Chern-Simons theory with gauge group

G on a cylinder, one often separates the time direction from the spatial directions, A =

A0dt+ Ãidx
i, gauge-fixes A0 = 0, and then the Chern-Simons path integral reduces to an

integral over flat spatial connections Ã(~x, t). These may be parameterized in terms of a

gauge transformation parameter g(~x, t) as

Ãi = g−1∂ig , (1.3)

and the Chern-Simons action becomes a boundary chiral WZW action where the boundary

value of g is the WZW field. However, this is not the end of the story, as the decomposi-

tion (1.3) is redundant: both g(~x, t) and h(t)g(~x, t) give the same bulk field for any h ∈ G,

and so we must identify these two field configurations in the path integral. In this way the

boundary field g is subject to a quasi-local quotient. This quotient is in some ways like a

gauge symmetry, although without an accompanying gauge field.

We have performed the corresponding analysis for AdS3 gravity. This analysis is

slightly trickier on account of the asymptotically AdS3 boundary conditions, which among

other things forbid gauge-fixing A0 to vanish. Nevertheless, we find that the boundary

model is subject to a quasi-local SO(2, 1)× SO(2, 1) quotient.

After solving the constraints, the boundary model breaks apart into chiral halves, and

we can discuss each separately. The left-moving part is an unconventional theory of a single

scalar field φ with an action

S = − C

24π

∫
d2x

(
(∂+φ

′)φ′′

φ′2
− (∂+φ)φ

′
)
, ∂+ =

1

2
(∂θ + ∂t) , (1.4)

where θ is an angular coordinate, the prime ′ denotes an angular derivative, and C =

24k is the bare central charge. The field φ obeys an unconventional boundary condition
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φ(θ+2π, t) = φ(θ, t)+2π, and is subject to the quasi-local SO(2, 1) = PSL(2;R) redundancy

tan

(
φ(θ, t)

2

)
∼
a(t) tan

(
φ(θ,t)

2

)
+ b(t)

c(t) tan
(
φ(θ,t)

2

)
+ d(t)

,

(
a(t) b(t)

c(t) d(t)

)
∈ PSL(2;R) . (1.5)

The boundary condition is a consequence of the spatial circle being contractible in the bulk.

Taken together, the boundary condition and quotient on φ imply that at any fixed time, φ

is an element of the quotient space Diff(S1)/PSL(2;R). The right-moving half has a second

scalar field φ̃ whose action takes the same form with ∂+ → ∂−. The left- and right-moving

halves are tied together only by virtue of sharing the same boundary conditions — namely,

they both wind once around the spatial circle.

What is this boundary model? Eq. (1.4) is the quantum field theory of the (left-moving)

boundary gravitons of pure AdS3 gravity. Because the fundamental field φ is an element of

Diff(S1) (modulo the quotient) it may be understood as a theory of reparameterizations,

thereby justifying the title of this manuscript.

This theory has appeared in the literature before. It is the Alekseev-Shatashvili

path integral quantization of a certain coadjoint orbit, Diff(S1)/PSL(2;R), of the Vira-

soro group [12] (with a particular choice of Hamiltonian, as we explain later). In fact,

this boundary quantum field theory is commensurate with the work of Maloney and Wit-

ten. In the course of arguing for (1.1), they showed that the classical phase space of

smooth AdS3 metrics continuously connected to global AdS3 is precisely (two copies of)

Diff(S1)/PSL(2;R), which admits a geometric quantization described in [13]. Their work

establishes this geometric quantization as a boundary description of quantum gravity on

global AdS3. Our derivation of (1.4) is complementary. Whereas Maloney and Witten

relied on Hamiltonian methods and geometric quantization, we use path integral meth-

ods throughout.

We also note that other authors have recently stated in words that a more careful

version of the analysis of [10] leads to the boundary model (1.4) — see especially [14, 15].

However to our knowledge we are the first to give a path integral derivation of the boundary

theory (1.4) in toto from AdS3 gravity, including the quotient and boundary conditions. We

stress that these ingredients are crucial. As we discuss below, they render the boundary

theory well-defined as a quantum mechanical model, with a normalizable vacuum and

discrete spectrum.

For those readers unfamiliar with the quantization of coadjoint orbits, we refer them

to section 2 for a short review. The punchline is that coadjoint orbits of a Lie group lead

to elegant, geometric Hamiltonian systems. The orbits are symplectic spaces [16] and one

may associate a Hamiltonian to any element of the algebra. Under favorable circumstances

these systems may be quantized, either via geometric quantization as in e.g. [13] or via a

phase space path integral [17]. The Chern-Simons formulation of AdS3 gravity gives us

the latter.

While the model (1.4) has been in the literature for nearly thirty years, it seems that

relatively little has been computed with it using standard path integral techniques. Besides
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carefully obtaining the model from AdS3 gravity, a central focus of this manuscript is to

establish various computational results for this theory. Some of our findings are:

1. Eq. (1.4) is an ultraviolet-complete two-dimensional theory in its own right. It is a

perfectly sensible CFT in all respects except one: it is not modular invariant. In fact,

the Hilbert space of the model is just the vacuum module, which can be established

by computing the torus partition function. The latter is one-loop exact on account of

the localization formula, and is simply the vacuum character. (Maloney and Witten

obtained the same Hilbert space from their geometric quantization.)

2. The action (1.4) may be understood as a Wess-Zumino term for the Weyl and grav-

itational anomalies of a chiral theory with chiral central charge C. The field φ

also contributes 13 to the anomaly (rather than 1, due to the PSL(2; R) quotient,

which effectively removes the first oscillator), and we find a total chiral central charge

c = C + 13 as we explain in section 5. Moreover, 1/C plays the role of the coupling

constant of the model, so that it is weakly coupled at large central charge. Excitations

of the φ field correspond to boundary gravitons, and so the model computes loop-

level Witten diagrams with exchanges of the gravitational field. The shift c = C+13

may then be understood as a one-loop renormalization of the central charge, which

in fact is already visible in the direct gravitational computation of [2]. (There is

no contradiction with the statement that the cosmological constant of AdS3 gravity

is unnrenormalized in the Chern-Simons formulation [6]. The shift comes from the

boundary excitations rather than the renormalization of a bulk divergence.)

3. The only PSL(2;R)-invariant local operators of the model are built from products

and derivatives of the stress tensor. This is commensurate with the fact that the

Hilbert space only contains the vacuum and its Virasoro descendants.

4. There is also a path integral quantization of other coadjoint orbits of the Virasoro

group, which corresponds to the theory of boundary gravitons in the presence of a

massive particle. In these models the quasi-local PSL(2;R) redundancy is reduced to

a quasi-local U(1) redundancy φ(θ, t) ∼ φ(θ, t) + a(t). Many computational features

carry over. The Hilbert space remains a single Verma module, the torus partition

function may be computed exactly, and so on.

5. In addition to the stress tensor, the model contains bilocal operators invariant under

the PSL(2;R) redundancy, which may be understood as reparameterized two-point

functions of primary operators. The correlation functions of these bilocal operators

encode Virasoro blocks, and the diagrammatic expansion in 1/C computes the 1/c ex-

pansion for the blocks at large central charge. For example, we compute the so-called

“heavy-light” limit of the identity block to O(1/c) via a one-loop computation, re-

producing the result of [18] (see also [19]) which was computed by algebraic methods.

Our computation is much simpler.

6. The action (1.4) is Lorentz-invariant, although not manifestly so. This should not

be too alarming since the theory is chiral. However, the lack of manifest Lorentz-

– 5 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
9

invariance makes it tricky to couple the theory to a background gravitational field,

as one would need to do in order to study higher-genus observables. Using the bulk

Chern-Simons description we solve this problem and couple the theory (1.4) to a

background geometry. We then compute the sphere partition function of the model,

which gives us a consistency check: the sphere partition function encodes the central

charge c which we know by other methods.

7. Bulk spacetimes of different topology lead to different boundary graviton actions. We

deduce the boundary action for fluctuations around a two-sided eternal BTZ black

hole, which roughly speaking is two copies of the model (1.4) subject to a single

(rather than a doubled) PSL(2;R) quotient. This result paves the way for future

discussions [20] of traversable wormholes [21, 22] and perhaps even a semiclassical

“ramp” [23, 24] in AdS3 gravity using this boundary field theory.

Further comments in order. The Schwarzian model that arises in the Sachdev-Ye-

Kitaev model [25–27] and nearly AdS2 gravity [28–31] is also embedded within the the-

ory (1.4). The Euclidean version of the Schwarzian model is the theory of a single real

scalar φ ∈ Diff(S1)/PSL(2;R) and its Lagrangian is the Schwarzian derivative of tan
(
φ
2

)
.

It describes the boundary degree of freedom of Jackiw-Teitelboim gravity on Euclidean

AdS2 with a linear dilaton. The relation between (1.4) and the Schwarzian model is the

following. (Other work relating Liouville theory to the Schwarzian model can be found

in [15, 32, 33].) Projecting onto the left-moving sector (1.4),1 Wick-rotating to Euclidean

time t = −iy and taking the time circle to be very small, namely ∆y → 0 with C ′ = C∆y

fixed, the boundary graviton action reduces to that of the Schwarzian model

S → C ′

48π

∫ 2π

0
dθ

(
φ′′(θ)2

φ′(θ)2
− φ′(θ)2

)
= − C ′

24π

∫ 2π

0
dθ

{
tan

(
φ(θ)

2

)
, θ

}
, (1.6)

where {f(x), x} is the Schwarzian derivative. To complete the identification, we note that

the quasi-local quotient and boundary condition on φ(θ, y) imply that the field φ(θ) is now

an element of Diff(S1)/PSL(2;R). This embedding addresses various speculations that

AdS2 gravity is the chiral half of AdS3 gravity, e.g. [34].

In fact, Jackiw-Teitelboim gravity may be recast as a PSL(2;R) BF theory, and by using

nearly identical methods as our AdS3 analysis one can derive the boundary Schwarzian

model. The Lorentzian case is rather interesting. The bulk geometry in that case is a

non-traversable wormhole with two asymptotic boundaries. Using the usual rules of the

AdS/CFT correspondence one would expect gravity on that spacetime to be dual to two

copies of a single boundary theory in an entangled thermofield double state [35]. However,

this is not the case [36]. The boundary model has non-local constraints tying the two

boundaries together. This is the “non-factorization” property of Jackiw-Teitelboim gravity.

In section 4 we obtain the boundary description of the two-sided BTZ black hole. This

boundary description is not a doubling of the theory on the boundary of global AdS3. It

1Observe that, without the projection, a simple dimensional reduction of the Euclideanized theory would

result in two copies of the Schwarzian theory.
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is instead, roughly speaking, two copies of the theory on the boundary of global AdS3,

subject to non-local constraints between the degrees of freedom on the two asymptotic

boundaries. Therefore pure AdS3 gravity exhibits a similar non-factorization property, as

anticipated by [36].

Finally, we are able to make a precise connection with the findings of Maloney and

Witten. For Euclidean AdS3 geometries with torus boundary, the same logic that leads

to (1.4) leads to a boundary action where the field φ is periodic around the cycle which is

non-contractible in the bulk, but winds once around the other cycle. In this way one obtains

a different theory of boundary gravitons describing fluctuations around each bulk “topol-

ogy.” For instance, the theory appropriate for thermal global AdS3 has a partition function

given by the vacuum character at complex structure τ , while the theory appropriate for

the Euclidean BTZ black hole has a partition function given by its S-transformation. The

modular sum amounts to summing up the partition functions for these different CFTs.

From this point of view, the Maloney-Witten prescription is sensible as a path integral

instruction but has no Hamiltonian interpretation within the theory (1.4). (One might

think that summing over these different geometric models amounts to a sum over bound-

ary conditions for the Diff(S1) field φ, analogous to a sum over winding states or over spin

structures. However this is not the case.)

The remainder of this manuscript is organized as follows. In section 2 we review basic

properties of the coadjoint orbits of the Virasoro group along with their path integral quan-

tization. Our gravitational analysis is contained in sections 3 and 4. We compute the torus

partition function of the model (1.4) and show that it is one-loop exact in section 5, and the

identity Virasoro block in the so-called “light-light” and “heavy-light” limits in section 6.

We discuss the minimally supersymmetric generalization of the boundary graviton action

in section 7. We wrap up with a discussion and some future directions in section 8.

Note added. As this work was nearing completion we were made aware of [37] which has

some overlap with our manuscript. The action obtained by those authors is (two copies

of) the quadratic approximation to the quantization of Diff(S1)/PSL(2;R) discussed at

length below.

2 Review

Consider a Lie group G with algebra g, and let b be a coadjoint vector, b ∈ g∗. Coadjoint
vectors are linear maps b : g → R which take adjoint vectors v ∈ g to numbers. We denote

b evaluated on v by b(v). There is a natural G-action on both adjoint and coadjoint vectors

which leaves the pairing b(v) invariant. Specifically, we consider the adjoint action given by

g · v = gvg−1, and the coadjoint action given by g · b( · ) = b(g−1 · g). Under this G-action,
b sweeps out a coadjoint orbit, namely Mb = {g · b : g ∈ G}. The coadjoint orbit of b is

a symplectic manifold, equipped with the Kirillov-Kostant symplectic form ω which may

be simply written as follows. At the point b̃ ∈ Mb, any tangent vector X to the coadjoint

orbit can be associated with a vector v ∈ g which generates translation in the X-direction.

– 7 –
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Then the Kirillov-Kostant form [16] reads

ω(X1, X2) = −b̃([v1, v2]) , (2.1)

where [·, ·] is the commutator of adjoint vectors. It is straightforward to show that this two-

form is non-degenerate and closed, and so a symplectic form. Furthermore, ω is G-invariant

since b̃([v1, v2]) is invariant under the group action.

Recalling that the coadjoint orbitMb is swept out under the action of the group G, con-

sider any adjoint vector v. The vector v generates translation along the orbit via exp(tv),

which we take to be in the X-direction. This translation is enacted by a Hamiltonian

function on the orbit, HX : Mb → R, defined via HX(b̃) = −ib̃(v). In particular, the dif-

ferential of HX produces the constant Hamiltonian vector field v, with flows corresponding

to exp(tv).

With a symplectic space and Hamiltonian in hand, we have the necessary ingredients

for a Hamiltonian system whose phase space is given by the coadjoint orbit Mb . Quan-

tizing these orbits leads to elegant quantum mechanical models with a Hilbert space that

is typically a single irreducible representation of G. Correlation functions and partition

functions are simply group-theoretic functions (like characters) of this representation.

Historically, the quantization of coadjoint orbits has been performed using two differ-

ent methods which are not obviously equivalent: geometric quantization, and the phase

space path integral quantization first noted by Alekseev, Fadeev, and Shatashvili [17]. In

the following we will exclusively use path integrals. The starting point for path integral

quantization is to find a presymplectic potential α satisfying

ω = dα . (2.2)

Denoting coordinates on the coadjoint orbit Mb as x
i, one then promotes the coordinates

to functions of time and defines an action functional

SX = −
∫
dt
(
ẋiαi +HX

)
. (2.3)

Because this action is first-order in time derivatives, upon Legendre transformation we

recover the Hamiltonian system we started with, with phase space Mb, symplectic form ω,

and Hamiltonian HX . To see this, note that the canonical momenta πi = −αi(xj) depend
on the xjs and so are not independent coordinates, and thus the phase space is still Mb .

The Hamiltonian πiẋ
i − L is just HX . And finally, the canonical symplectic form is

ω0 = dxi ∧ dπi = −dxi ∧ dxj∂jαi =
1

2
(∂iαj − ∂jαi)dx

i ∧ dxj = ω . (2.4)

Quantizing, the relevant path integral is given by

∫
[dxi(t)]Pf(ω)eiSX , (2.5)

where Pf(ω) is the Pfaffian of the symplectic form, which provides a suitable measure on

the phase space Mb.
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This procedure is sensible only if a cousin of the Dirac quantization condition holds.

The presymplectic potential α is defined modulo a “gauge redundancy,” α → α + dΛ.

(These “gauge” transformations are “symplectomorphisms” — coordinate transformations

on phase space which leave the symplectic form invariant.) Thus the phase factor exp(iSX)

is well-defined only if the symplectic form ω has quantized periods,

∮
ω = 2πZ , (2.6)

i.e. if the presymplectic potential α is a connection on a complex line bundle.

In the remainder of this section we review the classification of coadjoint orbits of the

Virasoro group and their path integral quantization. We extensively cull the results of

Witten [13] and Alekseev and Shatashvili [12, 38]. See also e.g. [39–41] which we found

useful. Many results concerning the coadjoint orbits of the Virasoro group are also found

in [42, 43]. Lastly, there are several recent papers related to coadjoint orbits, the Schwarzian

quantum mechanics, and nearly AdS2 gravity [15, 44–46].

2.1 Coadjoint orbits of the Virasoro group

Diff(S1) is the diffeomorphism group of the circle. Elements of Diff(S1) are monotone,

single-valued functions φ : [0, 2π) → [0, 2π) satisfying φ(θ+2π) = φ(θ)+ 2π. The Virasoro

group is the central extension of Diff(S1), which we write as D̂iff(S1). Elements of D̂iff(S1)

are pairs (φ(θ), a) of a diffeomorphism φ(θ) ∈ Diff(S1) and a number a which multiplies

the central element c. Vectors of the algebra of D̂iff(S1) are pairs (f(θ), a) of a vector field

f(θ) ∂∂θ and a number a which multiplies the central element c. We also denote (f(θ), a)

by f(θ) ∂∂θ − iac. The algebra is given by

[
f1(θ)

∂

∂θ
− ia1c, f2(θ)

∂

∂θ
− ia2c

]
= (f1f

′
2 − f2f

′
1)
∂

∂θ
+

ic

48π

∫ 2π

0
dθ(f1f

′′′
2 − f2f

′′′
1 ) . (2.7)

The generator Ln corresponds to the vector field ieinθ ∂∂θ , and so this algebra leads to a

slightly unconventional parameterization of the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n3δn+m , (2.8)

which differs from the usual one by L0,usual = L0,here +
c
24 . The commutator in eq. (2.7)

may be understood as the action of the vector (f1(θ), a1) on the vector (f2(θ), a2),

δ(f1,a1)(f2, a2) =

[
f1
∂

∂θ
, f2

∂

∂θ

]
. (2.9)

We henceforth denote the action δ(f1,a1) simply as δ1.

A coadjoint vector is a pair (b(θ), t) of a quadratic differential b(θ)dθ2 and a number t

which multiplies c̃, the dual of c satisfying c̃(c) = 1. The pairing of (b, t) with (f, a) is

〈(b, t), (f, a)〉 =
∫ 2π

0
dθ bf + ta . (2.10)
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The pairing is Virasoro-invariant, which fixes the transformation law of (b, t). Using

the variation of the vector (f2, a2) under the transformation generated by another vec-

tor (f1, a1), we compute

δ1〈(b, t),(f2,a2)〉=
∫ 2π

0
dθ
(
f2δ1b+(f1f

′
2−f2f ′1)b

)
+aδ1t+t

(
− 1

48π

∫ 2π

0
dθ(f1f

′′′
2 −f2f ′′′1 )

)

= a2δ1t+

∫ 2π

0
dθf2

(
δ1b−

(
f1b

′+2bf ′1−
tf ′′′1
24π

))
(2.11)

= 0 ,

from which we deduce

δ1b = f1b
′ + 2bf ′1 −

tf ′′′1
24π

,

δ1t = 0 .

(2.12)

Orbits of the Virasoro group can be divided into two types: those which coincide

with the orbit of a constant coadjoint vector (b0, C) for some b0, and those which do

not. The orbits of a constant vector may be labeled by b0 and C. The finite form of the

transformation (2.12) by (φ(θ), a) ∈ D̂iff(S1) reads

(b0, C) → (b(φ), C) =

(
b0φ

′2 − C{φ, θ}
24π

,C

)
, (2.13)

where

{f, θ} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

, (2.14)

is the Schwarzian derivative of f with respect to θ. So points on the coadjoint orbit may

be parameterized in terms of φ(θ), modulo identifications depending on the stabilizer S of

the transformation. The coadjoint orbit is then isomorphic to Diff(S1)/S. The stabilizer

depends on the value of b0, and there are three distinct cases:

1. b0 6= −Cn2

48π . These are the “ordinary” coadjoint orbits of the Virasoro group. The

transformation φ(θ) and φ(θ) + a lead to the same coadjoint vector for any a. Since

φ is itself an angular variable, so is a. Thus the stabilizer is U(1), generated by L0.

2. b0 = − C
48π . This is the “first exceptional orbit.” For this orbit the transforma-

tion (2.13) may be rewritten as

b(φ) = − C

24π

{
tan

(
φ

2

)
, θ

}
. (2.15)

Using the fact that φ is a Diff(S1) field, i.e. φ(θ + 2π) = φ(θ) + 2π, we see that the

stabilizer is PSL(2;R). The stabilizer acts on φ as

tan

(
φ

2

)
→

a tan
(
φ
2

)
+ b

c tan
(
φ
2

)
+ d

,

(
a b

c d

)
∈ PSL(2;R) , (2.16)
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under which the transformation (2.15) is invariant. These transformations are gen-

erated by the vectors f(θ) = a0 + a1e
iθ + a−1e

−iθ, i.e. by L0 and L±1. The orbit,

Diff(S1)/PSL(2;R), is also the Teichmüller space of the disk.

3. b0 = −Cn2

48π , n > 1. These are the “higher exceptional orbits.” Their respective stabi-

lizers are sometimes called PSL(n)(2;R). Here, PSL(n)(2;R) is the group generated

by L0 together with L±n. For the higher exceptional orbits the transformation (2.13)

may be written as

b(φ) = − C

24π

{
tan

(
nφ

2

)
, θ

}
, (2.17)

which is invariant under

tan

(
nφ

2

)
→

a tan
(
nφ
2

)
+ b

c tan
(
nφ
2

)
+ d

. (2.18)

There are also orbits which are not generated by the group action on a constant coad-

joint vector. These are, in a sense, perturbations of the exceptional orbits. See Witten [13]

for further discussion. We do not consider such orbits further.

While all coadjoint orbits are symplectic, the first exceptional orbit and the normal

orbits for b0 > − C
48π and C > 0 are special since they are Kähler, and furthermore possess

a Virasoro-invariant Kähler form which is in fact the Kirillov-Kostant form. Let us review

the argument for this structure given by Witten.

The first step in the argument is to determine whether an orbit G/H admits a G-

invariant complex structure. G-invariant complex structures on G/H are in one-to-one

correspondence with H-invariant complex structures at [1] with 1 the origin of G. The

idea is that one uses the G-action to transport the complex structure at the origin to the

rest of the orbit, and H-invariance at the origin guarantees that the resulting complex

structure is well-defined everywhere on the quotient space G/H. At the origin, one may

classify such complex structures at the level of Lie algebras rather than Lie groups. Let g

be the algebra of G, h the algebra of H, and q the complement of h in g satisfying g = h⊕q.

Here q is isomorphic to the tangent space of G/H at [1]. An almost complex structure at

[1] is a decomposition of q into holomorphic and anti-holomorphic directions,

q = q+ ⊕ q− . (2.19)

The almost complex structure is H-invariant on G if the decomposition at [1] is h-closed,

meaning that

[h, q+] ∈ h⊕ q+ , ∀h ∈ h , q+ ∈ q+ . (2.20)

The almost complex structure is a complex structure if the holomorphic tangent vectors

are also closed under commutation,

[q+, q
′
+] ∈ h⊕ q+ , ∀q+, q′+ ∈ q+ . (2.21)

For the normal orbits of the Virasoro group, we have G = D̂iff(S1), and H = U(1) is

the one-parameter subgroup generated by L0. So q is generated by {Ln 6=0} and the natural
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guess for an almost complex structure is to designate the Ln>0 as holomorphic vectors and

the Ln<0 as anti-holomorphic. This guess works, and leads to a Virasoro-invariant complex

structure. The argument is essentially the same for the first exceptional orbit, for which

H = PSL(2;R) and then q is generated by the {Ln>1} and {Ln<−1}. Again, this separation
leads to an invariant complex structure, on account of the Virasoro algebra (2.8). However

for the higher exceptional orbits, where H = PSL(n)(2;R) is generated by L0 and L±n, a
separation into positive and negative Lm’s is not H-closed, e.g. [L−n, L1] ∝ L−n+1, and so

does not lead to an invariant complex structure.

The second part of the argument is to show that not only are the orbits with b0 ≥
− C

48π complex manifolds, but further that they possess an invariant Kähler form. On

a complex manifold a Kähler form is a symplectic form of type (1, 1) (meaning one leg

is in the holomorphic direction and one in the anti-holomorphic direction). As we will

see momentarily, the Kirillov-Kostant symplectic form gives exactly such a (1, 1) form on

these orbits.

2.2 Phase space path integrals

To construct a path integral quantization of a coadjoint orbit we require two ingredients:

(i) a presymplectic potential α corresponding to the Kirillov-Kostant symplectic form, and

(ii) a suitable Hamiltonian.

Let us now compute the Kirillov-Kostant symplectic form (2.1) on the coadjoint orbits.

Evaluated on a pair of vectors F1 = (f1(θ), a1) and F2 = (f2(θ), a2), it is

ω(X1,X2)=−〈(b,C), [F1,F2]〉=−
∫ 2π

0
dθ

(
b(f1f

′
2−f2f ′1)−

C

48π
(f1f

′′′
2 −f2f ′′′1 )

)

=−
∫ 2π

0
dθ

{
C

48π
(f ′1f

′′
2 −f ′2f ′′1 )+

(
b0φ

′2− C

24π
{φ,θ}

)
(f1f

′
2−f2f ′1)

}
,

(2.22)

where we have used (2.13) to write b = b(φ) = b0φ
′2 − C

24π{φ, θ}. Under an infinitesimal

transformation F = (f, a), the variation of φ is δFφ = fφ′. Then writing the symplectic

form in terms of a formal one-form dφ such that dφ(F ) = δFφ
′ = fφ′, the symplectic

form becomes

ω = −
∫ 2π

0
dθ

{
C

48π

(
dφ

φ′

)′
∧
(
dφ

φ′

)′′
+

(
b0 −

C{φ, θ}
24πφ′2

)
dφ ∧ dφ′

}

= −
∫ 2π

0
dθ

{
C

48π

dφ′ ∧ dφ′′
φ′2

+ b0dφ ∧ dφ′
}
.

(2.23)

In going from the first line to the second we have integrated by parts and used identities like

(dφ)′ = dφ′ and dφ′ ∧ dφ′ = 0. The presymplectic potential corresponding to ω is simply

α =

∫ 2π

0
dθ

(
C

48π

φ′′dφ′

φ′2
+ b0φ

′dφ
)
. (2.24)

Let us briefly return to the question of Kähler structures for the normal orbits as

well as for the first exceptional orbit. At the origin, where φ(θ) = θ, we use the complex
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structure to separate vectors into holomorphic and anti-holomorphic parts, f = α0L0 +∑∞
n>0(αnLn + ᾱnL−n). The symplectic form at the origin is then

iω =
∑

n>0

C

12
n

(
n2 +

48πb0
C

)
dαn ∧ dᾱn , (2.25)

and the sum is taken over n > 0 for normal orbits and over n > 1 for the first exceptional

orbit b0 = − C
48π . Clearly iω is of type (1, 1) and moreover is positive-definite provided that

b0 ≥ − C
48π . We then conclude that normal orbits obeying this bound possess a Virasoro-

invariant Kähler form. This fact will be useful later in section 5 when we compute the

torus partition function of the quantization of Diff(S1)/U(1) and Diff(S1)/PSL(2;R).

There are two natural Hamiltonians to consider. The first is simply H = 0, which

was used extensively by Alekseev and Shatashvili. Promoting φ(θ) to a function of time,

φ(θ, t), the action functional (2.3) becomes the Alekseev-Shatashvili action

SAS = −
∫
d2x

(
C

48π

φ̇′φ′′

φ′2
+ b0φ̇φ

′
)
. (2.26)

Here φ is an element of the loop space L
(
Diff(S1)/S

)
, and so φ(θ, t) is monotone in θ at

fixed t and respects the boundary condition φ(θ + 2π, t) = φ(θ, t) + 2π. The field φ(θ, t)

is also subject to a redundancy that depends on the orbit, where now the parameters

appearing in the redundancy can have any dependence on time. For an ordinary orbit,

we identify

φ(θ, t) ∼ φ(θ, t) + a(t) , (2.27)

and for the first exceptional orbit, we identify

tan

(
φ(θ, t)

2

)
∼
a(t) tan

(
φ(θ,t)

2

)
+ b(t)

c(t) tan
(
φ(θ,t)

2

)
+ d(t)

,

(
a(t) b(t)

c(t) d(t)

)
∈ PSL(2;R) . (2.28)

The other natural choice for the Hamiltonian is for it to be the function associated

with L0. This choice is in fact mandated by Lorentz invariance as we presently explain.

The action SAS in (2.26) has a conserved momentum, given by

P = −
∫ 2π

0
dθ

(
C

24
{φ, θ} − b0φ

′2
)
, (2.29)

along with zero Hamiltonian. This momentum is in fact bounded below for b0 ≥ − C
48π , as we

will see below. To restore a chiral Lorentz invariance we need to deform by the Hamiltonian

H = P . Using L0 = i ∂∂θ and the pairing (2.10), we construct the corresponding finite

transformation and find that the Hamiltonian corresponding to L0 is the desired one,

H = −
∫ 2π

0
dθ

(
C

24π
{φ, θ} − b0φ

′2
)

= P . (2.30)

The corresponding action functional will be central in the remainder of this work, namely

S+ = − C

24π

∫
d2x

(
(∂+φ

′)φ′′

φ′2
+B(∂+φ)φ

′
)
, B =

b0
48πC

, (2.31)

with ∂+ = 1
2(∂θ + ∂t). This theory is entirely left-moving, with H = P .
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The construction above can also be used to obtain a right-moving theory. In (2.1)

we could have chosen the opposite sign for the symplectic form, flipping the sign of the

presymplectic potential α. This in turn would lead, for H = 0, to the same action in (2.26)

but with an overall + sign. That theory has a conserved momentum equal to minus the

expression in (2.29) with Phere = −Pthere. To restore Lorentz invariance one again deforms

by the Hamiltonian corresponding to L0 so that one has H = −Phere. The resulting theory

is right-moving and its action is given by

S− = − C

24π

∫
d2x

(
(∂−φ′)φ′′

φ′2
+B(∂−φ)φ′

)
, ∂− =

1

2
(∂θ − ∂t) . (2.32)

We henceforth restrict our attention to the left-moving theory in (2.31) with C > 0

and B ≥ −1, i.e. to b0 ≥ − C
48π . For these cases the Hamiltonian (2.30) is bounded below,

as argued by Witten. A variational argument shows us why the Hamiltonian is bounded

below. The variation of H is

δH

δφ(θ)
=

1

φ′

(
C

24π
{φ, θ} − b0φ

′2
)′

. (2.33)

For b0 > − C
48π , there is a unique critical point of H modulo the U(1) redundancy φ ∼ φ+a

which obeys the boundary conditions φ(θ + 2π) = φ(θ) + 2π and φ′(θ) ≥ 0, namely φ = θ.

For b0 = − C
48π , this is again the unique critical point modulo the redundancy. Expanding

H near the critical point we find

H[φ = θ +
∑

n

φne
inθ] = 2πb0 +

C

12

∑

n

n2(n2 +B)|φn|2 +O(φ3n) , (2.34)

where the sum runs over n 6= 0 for B > −1 and |n| > 1 for the first exceptional orbit

B = −1. Thus, in each case, φ = θ is a local minimum. That H has a unique critical

point with a positive Hessian strongly suggests that H is bounded below. To complete the

argument one needs that the orbits with B ≥ −1 are connected and contractible. It follows

that φ = θ is a global minimum and H is bounded below as

H ≥ 2πb0 . (2.35)

Wick-rotating to Euclidean time t = −iy, the Euclidean action corresponding

to (2.31) is

SE =
C

24π

∫
d2x

(
(∂̄φ′)φ′′

φ′2
+B(∂̄φ)φ′

)
, (2.36)

with ∂̄ = 1
2(∂θ + i∂y). Its real part is

Re(SE) =

∫
dy H(y) . (2.37)

So not only is H bounded below, but so is the real part of the Euclidean action. Thus

it is at least plausible that the functional integral corresponding to the theory (2.31) is

well-defined.
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A similar variational argument demonstrates that for the other orbits B < −1, H still

has a single critical point but its Hessian is not positive definite: the n = ±1 fluctuations

decrease the value of H. It is also easy to exhibit kink-like configurations for φ(θ) which

have arbitrarily large and negative values of H. Thus we expect the path integral to not

exist for orbits with B < −1, i.e. for b0 < − C
48π , for which the real part of the Euclidean

action is not bounded below.

The action (2.31) describes a two-dimensional chiral quantum field theory. It is nearly

a chiral CFT since it satisfies all of the CFT axioms except modular invariance. Indeed, we

will see later that the spectrum is a single Verma module. In order to avoid any ambiguity,

we will call the theory a QFT rather than a CFT.

The left-moving stress tensor is just the Hamiltonian density

T = 2πT−− = − C

12
{φ, θ}+ 2πb0φ

′2 , (2.38)

and in fact the field equation for φ is just the conservation of this stress tensor,

∂+T = 0 . (2.39)

In this sense, the theory (2.31) is just a theory of the stress tensor, and so is an unconven-

tional kind of hydrodynamics.2

The theory (2.31) is not manifestly Lorentz-invariant. However, this should not be sur-

prising: the theory (2.31) is chiral, and there is no manifestly Lorentz-invariant Lagrangian

for a single chiral boson. What is this chiral theory? The action (2.31) clearly admits a

weak coupling limit C ≫ 1, and in that limit the semiclassical Ln’s

Ln = −
∫ 2π

0
dθ

(
C

24π
{φ, θ} − b0φ

′2
)
einθ , (2.40)

have Poisson brackets

{Ln, Lm}P.B. = (n−m)Ln+m +
C

12
n3δn+m , (2.41)

indicating that C plays the role of the chiral central charge at large C. At finite C we

will see that C has a one-loop exact renormalization. Moreover at the origin of the orbit,

φ = θ, we have L0 = 2πb0. So at large C we expect that the Hilbert space of the quantized

theory is a single Verma module with lowest weight state |h〉 where h has the classical value

h = 2πb0+
C
24 , which may receive quantum corrections at finite C. For the first exceptional

orbit, the classical value of h is h = 0, and in this case we expect the Hilbert space to be

the vacuum Verma module. Roughly speaking, the Fourier modes of the field φ(θ) = θ+δφ

correspond to the Virasoro generators Ln, and the Virasoro descendant states are built up

by dressing the ground state with excitations of the φ field. Later in section 5 we will see

that these expectations are correct.

In the classical theory it is easy to enforce that at any fixed t, φ(θ, t) is a Diff(S1)/S

field, i.e. that it is monotone and obeys φ(θ + 2π, t) = φ(θ, t) + 2π. What about in the

2A näıve computation also gives a left-moving stress tensor [12]. However, as we will see in subsection 3.5,

this stress tensor is identically zero after the addition of a suitable improvement term.
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quantum theory? The boundary condition and quotient can be accounted for with standard

techniques, but a priori one might be concerned about enforcing that φ is monotone at

fixed t. It turns out that, at least for the Euclidean theory, we can extend the domain of

path integration from monotone φ to all φ: the real part of the action (2.36) diverges for

non-monotone φ, so that the region of field space with non-monotone φ contributes zero

to the Euclidean path integral.

In the Introduction we claimed that the theory (2.31) is ultraviolet-complete. We

presently justify this claim. In this theory one assigns φ dimension −1, so that φ′ and
φ̇ are dimensionless. For the first exceptional orbit, it is a straightforward exercise to

demonstrate that there are no candidate relevant local counterterms invariant under the

PSL(2;R) symmetry. Further, there is a unique dimension-2 operator consistent with the

PSL(2;R) and Lorentz symmetries that may be generated, namely the Lagrangian itself.

That is, quantum corrections may only renormalize the bare central charge C. In section 5

we demonstrate that this renormalization is one-loop exact and under it only C is shifted.

The argument for the normal orbits is similar, although the quotient is smaller and

so there are more invariant local operators. For example, any polynomial in φ′ is U(1)-

invariant and has mass dimension 0. However, Lorentz invariance forbids almost all relevant

and almost all marginal operators from being generated. Indeed the combination of the

Lorentz and U(1) symmetries only allow C and b0 to be renormalized, and as above their

renormalization is one-loop exact, shifting C.

The fact that the theory in eq. (2.31) has a single real field with a tunable central

charge is reminiscent of Liouville theory. Of course the two are not the same. The theory

in eq. (2.31) is chiral whereas Liouville is not. The chiral theory has a Hilbert space with

a single Verma module, while Liouville theory has a continuous spectrum. Nevertheless,

there is a precise relation [15, 47], namely that Liouville theory between so-called ZZ-branes

has been argued to reduce to the Alekseev-Shatashvili theory considered here.

At the beginning of this section we mentioned that the path integral quantization of

a coadjoint orbit only exists when the symplectic flux is quantized. This issue is slightly

more subtle when quantizing the orbits of the infinite-dimensional Virasoro group, as the

measure may be anomalous. One requires that [dφ]eiS is well-defined. However, this does

not appear to lead to a quantization condition on C.

3 From AdS3 gravity to coadjoint orbits

Pure AdS3 gravity is described by the action

S =
1

16πG

∫
d3x

√−g(R+ 2) , (3.1)

plus suitable boundary terms. (Here and throughout we set the AdS radius to unity.)

Famously, it may be rewritten as Chern-Simons theory at the classical level [48] (see [6,

49] for a discussion of quantum aspects thereof). One groups the dreibein eAM and spin

connection ωABM into one-forms

AA = ωA + eA , ĀA = ωA − eA , (3.2)
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where

ωA =
1

2
ǫABCωBC , (3.3)

and flat indices A,B,C are raised and lowered with the Minkowski metric ηAB. Taking JA
and J̄A to be generators in the fundamental representation of the so(2, 1) algebra,

[JA, JB] = ǫABCJ
C , tr(JAJB) = 2ηAB , (3.4)

we define the algebra-valued one-forms A = AAJA and Ā = ĀAJ̄A. The Einstein-Hilbert

action may be rewritten as a difference of Chern-Simons actions for A and Ā,

S =
1

64πG

∫ (
I[A]− I[Ā]

)
, I[A] = tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.5)

again up to a boundary term. On a classical solution, the one-forms A and Ā transform as

independent SO(2, 1) connections under the combination of infinitesimal diffeomorphisms

and local Lorentz transformations. In this way, classical pure AdS3 gravity can be mapped

to Chern-Simons theory.

As stressed in [6], the Chern-Simons fields are the natural variables in which to quan-

tize three-dimensional gravity in perturbation theory around a classical geometry. Indeed,

in the next subsection we carefully quantize around global AdS3, accounting for the asymp-

totically AdS3 boundary conditions. However, there are various non-perturbative puzzles

as discussed in detail in [6]. Most importantly, one expects a theory of quantum gravity

to include a sum over topologies, whereas the natural procedure in Chern-Simons theory

is to quantize on a constant-time slice of fixed topology. Also, while infinitesimal dif-

feomorphisms and local Lorentz rotations correspond to infinitesimal SO(2, 1) × SO(2, 1)

gauge transformations for A and Ā, the same is not necessarily true for globally non-trivial

transformations. Furthermore, this classical map only establishes the local form of the

gauge group of the Chern-Simons theory, but not its global topology. The minimal pos-

sibility is SO(2, 1) × SO(2, 1), but a priori perhaps one should instead consider a cover

thereof. (Although as we will discuss shortly, physical considerations fix that the group is

SO(2, 1)× SO(2, 1) [50].)

In the remainder of this section we work out various aspects of the Chern-Simons for-

mulation. In the next subsection we carefully derive the boundary graviton action (1.4)

advertised in the Introduction from the Chern-Simons theory on the cylinder. Related

computations give the appropriate theory when the bulk spacetime is a Euclidean BTZ ge-

ometry. We also couple the theory (1.4) to a background geometry, which allows us to work

toward a description of Chern-Simons theory on handlebody Euclidean AdS3 geometries

with higher-genus boundary.

3.1 Cylinder boundary

We begin with global AdS3, described by the metric

g = −(r2 + 1)dt2 + r2dθ2 +
dr2

r2 + 1
, (3.6)
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where θ is an angular variable with periodicity 2π. The conformal boundary is located

as r → ∞. Constant-time slices are disks, so that the total space is a solid cylinder.

Describing the bulk metric with the dreibein

e0 =
√
r2 + 1 dt , e1 = rdθ , er =

dr√
r2 + 1

, (3.7)

this geometry corresponds to

A =
√
r2 + 1 dx+ J0 + rdx+ J1 +

dr√
r2 + 1

J2 ,

Ā =
√
r2 + 1 dx− J̄0 + rdx− J̄1 −

dr√
r2 + 1

J̄2 ,

(3.8)

where x± = ±t+ θ.

In the AdS3 literature it is common to work in a different convention than the one we

used in the beginning of this section. In this more common convention one writes out the

Chern-Simons gauge fields as 2× 2 matrices, i.e. takes the JA and J̄A to be the generators

of the fundamental representation of sl(2;R). In this choice, we write out A and Ā as

A =




dr
2
√
r2+1

− (
√
r2+1−r)dx+

2
(
√
r2+1+r)dx+

2 − dr
2
√
r2+1


 , Ā =


 − dr

2
√
r2+1

− (
√
r2+1+r)dx−

2
(
√
r2+1−r)dx−

2
dr

2
√
r2+1


 . (3.9)

In the Chern-Simons formulation the Einstein’s equations and torsion-free constraint cor-

respond to A and Ā being flat. So locally we have

A = g−1dg , Ā = ḡ−1dḡ−1 , (3.10)

and one may find representatives for g and ḡ,

g =


ρ cos

(
x+

2

)
−ρ−1 sin

(
x+

2

)

ρ sin
(
x+

2

)
ρ−1 cos

(
x+

2

)

 , ḡ =


ρ

−1 cos
(
x−
2

)
−ρ sin

(
x−
2

)

ρ−1 sin
(
x−
2

)
ρ cos

(
x−
2

)

 , (3.11)

where

ρ =

√√
r2 + 1 + r . (3.12)

These representatives illustrate two facts which will be useful. First, these represen-

tatives are double-valued: going around the circle θ → θ + 2π takes us from g → −g and

ḡ → −ḡ. Relatedly, the holonomy in the fundamental representation around the spatial

circle is non-trivial:

Pe
∫ 2π
0 dθ Aθ = −I , Pe

∫ 2π
0 dθ Āθ = −I . (3.13)

It follows that A and Ā are singular as SL(2;R) connections.

This seems like an undesirable state of affairs. Global AdS3 ought to be a non-singular

configuration. Fortunately there is a simple remedy: rather than working with SL(2; R)

we quotient it by the Z2 subgroup {I,−I}, thereby identifying g ∈ SL(2;R) with −g. The
resulting group is SL(2;R)/Z2 = PSL(2;R) = SO(2, 1). It follows that A and Ā are perfectly
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non-singular as SO(2, 1) connections. What about other covers of SO(2, 1) × SO(2, 1)?

Similar arguments imply that A and Ā are singular as connections for any cover except

for the diagonal, SO(2, 2) =
(
SL(2;R)× SL(2;R)

)
�Z2

, where the Z2 acts as (g1, g2) ∼
(−g1,−g2).3

That is, if we demand that global AdS3 is a non-singular configuration, then the gauge

group of the Chern-Simons theory is fixed to be either SO(2, 1)× SO(2, 1) or SO(2, 2). To

our knowledge, the restriction to SO(2, 1)×SO(2, 1) was first pointed out in [50], although

we have not seen it noted that SO(2, 2) is a consistent choice.

In order to determine which choice is the right one we need more than global AdS3.

For example, we could couple to matter. We expect that upon coupling to matter one of

two things will be true. Either matter may only be consistently coupled to only an SO(2, 2)

Chern-Simons gauge theory, in which case the gauge group must be SO(2, 2), or both are

allowed, in which case we expect the minimal case SO(2, 1)× SO(2, 1) is the right one.

In what follows we assume that the global form of the gauge group to be SO(2, 1) ×
SO(2, 1). However, we note that we have performed a similar analysis for SO(2, 2) and

have found the same quantum mechanical system on the boundary.

The second fact is the following. SO(2, 1) is contractible to its maximum compact

subgroup SO(2). At fixed (t, r), g and ḡ are maps from the spatial circle θ into this

subgroup, winding the group circle exactly once. Because any classical configuration is

locally AdS3, this is an example of a more general lesson: given any solution to Einstein’s

equations with a contractible cycle C, writing the connections A and Ā as (3.10), the gauge

transformation parameters wind the group circle once around C.

We proceed to quantize on this space following [10, 11]. (For work related to [10] and

the WZW description of Chern-Simons theory on AdS3 see [51, 52].) We separate A and

Ā into temporal and spatial parts,

A = A0dt+ Ãidx
i , Ā = Ā0dt+

˜̄Aidx
i . (3.14)

The total action, including boundary terms is

Sgrav = S[A]− S[Ā] + Sbdy , (3.15)

with4

S[A] = − k

2π

∫

M
dt ∧ tr′

(
−1

2
Ã ∧ ˙̃A+A0F̃

)
,

Sbdy = − k

4π

∫

∂M
d2x

(
tr′(A2

θ) + tr′(Ā2
θ)
)
.

(3.16)

Here k = 1
4G , F̃ is the spatial field strength F̃ = d̃Ã + Ã ∧ Ã with d̃ the spatial exterior

derivative, and tr′ denotes the trace in the fundamental representation of SL(2; R). The

unconventional boundary term is required [10] in order to enforce a variational principle

3We would like to thank H. Maxfield for discussions on this point.
4We choose an orientation so that ǫtθr = 1√−g

. Also, in (3.16), we are using a different convention for k

than in the Introduction, with kthere = 4khere.
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consistent with the AdS3 boundary conditions,5 which are that A and Ā asymptote as

r → ∞ as [3, 10]

A =

(
dr
2r +O(r−2) O(r−1)

rdx+ +O(r−1) −dr
2r +O(r−2)

)
, Ā =

(
−dr

2r +O(r−2) −rdx− +O(r−1)

O(r−1) dr
2r +O(r−2)

)
,

(3.17)

and A and Ā are allowed to fluctuate at the indicated powers in 1/r. The connections

describing global AdS3 (3.9) clearly respect these boundary conditions. Consistent with

these boundary conditions, we only allow bulk gauge transformations Λ and Λ̄ which die

off near the AdS boundary.

The on-shell variation of the action, including the boundary term, is

δSgrav = −k
π

∫

∂M
d2x

{
tr′ (A−δAθ) + tr′

(
Ā+δĀθ

)}
, (3.18)

which vanishes by the boundary conditions (3.17) as advertised.

The fields A0 and Ā0 appear as Lagrange multiplier fields inside the action (3.15),

enforcing the constraint that the spatial field strength vanishes. We observe that although

A0 and Ā0 drop out of the action, they can be gauge-fixed in a way that is consistent with

the asymptotically AdS3 boundary conditions. Namely, we may fix them to their values

for global AdS3 in (3.9) as

A0 =

(
0 −

√
r2+1−r

2√
r2+1+r

2 0

)
, Ā0 =

(
0

√
r2+1+r

2

−
√
r2+1−r

2 0

)
. (3.19)

Before going on, some words are in order regarding gauge-fixing and ghosts. In the

usual equivalence between CS theory on a cylinder and a chiral WZW model on its bound-

ary, one allows for bulk gauge transformations that vanish at the boundary of the cylinder.

The details of the bulk gauge fixing are then immaterial from the point of view of the WZW

model, as any ghosts introduced by the gauge-fixing decouple on the boundary. Indeed,

in the natural gauge choice A0 = 0, the Fadeev-Popov determinant does not introduce a

coupling between the ghosts and the physical degrees of freedom. Similar considerations

hold for our gauge theory in AdS, as we require that all bulk gauge transformations fall off

near the AdS boundary.

The remaining functional integral is taken over the moduli space of flat connections

on the disk, which we parameterize as

Ã = g−1d̃g , ˜̄A = ḡ−1d̃ḡ . (3.20)

This decomposition is redundant: we get the same spatial connection A for g(~x, t) and

h(t)g(~x, t) for any h(t) ∈ PSL(2;R), and similarly for ˜̄A. We identify these configurations

in the residual integral over g, so that the field g is subject to a quasi-local SO(2, 1) quotient.

In terms of g the original action (3.15) becomes a difference of chiral WZW actions,

S = S−[g] + S+[ḡ] , (3.21)

5A similar boundary term appears in the treatment of ordinary Chern-Simons theory on AdS3 [53, 54].
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with

S±[g] =
k

2π

(∫

∂M
d2x tr′

(
(g−1)′∂±g

)
∓ 1

6

∫

M
tr′(g−1dg ∧ g−1dg ∧ g−1dg)

)
. (3.22)

Here ∂± = 1
2(∂θ ± ∂t) and ′ indicates an angular derivative. Now recall the topological

property of the map g we noted above for global AdS3. In the quantum theory we enforce

the same property: around the contractible θ-circle, we integrate over g and ḡ which wind

once around the circle in SO(2, 1). It remains to enforce this boundary condition as well

as to translate the AdS3 boundary conditions (3.17) into boundary conditions on g and ḡ.

To proceed we find it helpful to use a Gauss parameterization of SL(2; R) group ele-

ments as in [12],6

g =

(
1 0

F 1

)(
λ 0

0 λ−1

)(
1 Ψ

0 1

)
. (3.23)

The corresponding spatial connection is

Ã =

(
d̃ lnλ−Ψ(λ2d̃F ) 2Ψd̃ lnλ+ d̃Ψ−Ψ2(λ2d̃F )

λ2d̃F −d̃ lnλ+Ψ(λ2d̃F )

)
. (3.24)

Comparing with (3.17) we see that the fields λ and Ψ are fixed as r → ∞ in terms of F as

λ =

√
r

F ′ , Ψ = − F ′′

2rF ′ , (3.25)

with F finite. The constraint on λ comes from matching the bottom left components

of (3.17) and (3.24), and the constraint on Ψ comes from matching the diagonal com-

ponents. There are similar relations for the barred fields, for which it is convenient to

parameterize ḡ as

ḡ =

(
1 −F̄
0 1

)(
λ̄−1 0

0 λ̄

)(
1 0

Ψ̄ 1

)
. (3.26)

The asymptotically AdS boundary conditions enforce that as r → ∞

λ̄ =

√
r

F̄ ′ , Ψ̄ = − F̄ ′′

2rF̄ ′ . (3.27)

Parameterizing the boundary value of F as F |∂ = tan
(
φ
2

)
so that φ is an angular variable,

the single-valuedness of g implies that φ′ > 0 and the winding property amounts to the

boundary condition φ(θ + 2π, t) = φ(θ, t) + 2π. That is, at fixed time, φ is an element

of Diff(S1).

That is not the end of the story, as we have to account for the quasi-local SO(2, 1)

quotient. In terms of (λ,Ψ, F ), the action g(~x, t) → h(t)g(~x, t) is

λ→ (cF + d)λ , Ψ → Ψ+
cλ−2

cF + d
, F → aF + b

cF + d
, h =

(
d c

b a

)
. (3.28)

6The Gauss parameterization, with F,Ψ ∈ R and λ > 0, covers PSL(2;R) but not SL(2;R). This is

sufficient for our purposes.
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This action is consistent with the constraints (3.25). It then follows that in the residual

path integral over φ we identify

tan

(
φ(θ, t)

2

)
∼
a(t) tan

(
φ(θ,t)

2

)
+ b(t)

c(t) tan
(
φ(θ,t)

2

)
+ d(t)

. (3.29)

So the precise statement is that at any fixed time φ is an element of Diff(S1)/PSL(2;R).

In the Gauss parameterization (3.23) the kinetic and WZW terms in (3.22) evaluate to

∫

∂M
d2x tr′((g−1)′∂−g) = −

∫

∂M
d2x

(
2λ′∂−λ
λ2

+ λ2F ′Ψ′ − λ2

2
(Ψ̇F ′ +Ψ′Ḟ )

)
,

1

3

∫

M
tr′
(
(g−1dg)3

)
=

∫

M
dλ2 ∧ dΨ ∧ dF =

∫

∂M
λ2dΨ ∧ dF ,

(3.30)

with similar relations for the barred fields. The end result is that

S±[g] = −k
π

∫

∂M
d2x

(
λ′(∂±λ)
λ2

+ λ2F ′(∂±Ψ)

)
. (3.31)

Plugging in (3.25), which may be viewed as a constraint on the WZW model, and using

F |∂ = tan
(
φ
2

)
, we obtain the boundary action

S±[φ] = − C

24π

∫
d2x

(
φ′′∂±φ′

φ′2
− φ′∂±φ

)
, C = 6k =

3

2G
. (3.32)

Combined with the boundary condition on φ and the quasi-local quotient, we recognize the

left-moving half S+ as exactly the Alekseev-Shatashvili quantization of Diff(S1)/PSL(2;R)

in (2.31). The coupling constant C is fixed to the Brown-Henneaux central charge.

What is the path integral measure for φ? The bulk measure for A leads to the usual

Haar measure for the boundary degree of freedom g, which in terms of the Gauss parame-

terization (3.23) is

[dg] =
∏

θ,t

dλdΨdF λ . (3.33)

It is invariant under both the right-action (3.28) and a left-action g → gh−1. Now we

account for the constraints on λ and Ψ. Comparing (3.17) with (3.24), we see that the

bottom left entry reads λ2F ′ = r, and the diagonal entries lead to a linear constraint on

Ψ. The Haar measure after the constraints then reads

∏

θ,t

dF

∫
dλdΨλ δ(λ2F ′ − r)δ

(
Ψ+

F ′′

2rF ′

)
=
∏

θ,t

dF

F ′ =
∏

θ,t

dφ

φ′
, (3.34)

which is invariant under the quasi-local quotient (3.29). (We note that Alekseev and

Shatashvili obtained the same measure for the quantization of Diff(S1)/PSL(2;R) [12].) In

section 5.3 we discuss the measure for the quantization of Diff(S1)/PSL(2;R). At the end

of that subsection we note that the natural measure for the quantization, which we notate

as [dφ]Pf(ω), is equivalent to (3.34).
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In summary, we have shown that the Chern-Simons description of gravity on global

AdS3 is quantum mechanically equivalent to the path integral quantization of (two copies)

of Diff(S1)/PSL(2;R).

Recall that in the quantization of coadjoint orbits one may associate a Hamiltonian

with any element of the Virasoro algebra. We observe that AdS3 gravity hands us the

Lorentz-invariant quantization, with Hamiltonian corresponding to L0. This is a con-

sequence of the boundary term in (3.15). Had we neglected it, we would have instead

obtained an action

∓ C

48π

∫
d2x

(
φ̇′φ′′

φ′2
− φ̇φ′

)
, (3.35)

i.e. the appropriate action with H = 0 (2.26).

As we mentioned in the Introduction, our analysis here corrects that of [10]. The new

ingredients are: (i) finding the constraint that fixes the field Ψ, and more importantly (ii)

accounting for the quasi-local PSL(2;R) × PSL(2;R) quotient and deducing the winding

boundary condition. That is, the new work above demonstrates that the boundary fields

φ and φ̄ are, at fixed time, elements of Diff(S1)/PSL(2;R). Following similar arguments

as [12], we have also shown that the gravitational description leads to the correct measure.

Our analysis immediately extends to Euclidean global AdS3, i.e. to the quantization

of SO(2, 1)× SO(2, 1) Chern-Simons theory around the space

(r2 + 1)dy2 + r2dθ2 +
dr2

r2 + 1
, θ ∼ θ + 2π . (3.36)

To get to here from global AdS3 we have simply Wick-rotated t = −iy. Repeating our

analysis above leads to the Wick-rotation of (3.32), i.e. to the action

S+[φ] =
C

24π

∫
d2x

(
φ′′∂̄φ′

φ′2
− φ′∂̄φ

)
, ∂̄ =

1

2
(∂θ + i∂y) . (3.37)

We may also obtain the boundary action for fluctuations around Euclidean BTZ black

holes. In these geometries the bulk space asymptotes to a boundary torus, and a cycle of

the boundary torus is contractible in the bulk. When one speaks of a Euclidean black hole,

one refers to a geometry for which the Euclidean time circle is contractible, while “thermal

global AdS3” refers to another geometry where the spatial circle is contractible.

For fixed boundary complex structure τ there are infinitely many smooth solutions to

Einstein’s equations which asymptote to the same boundary torus. These geometries are

distinguished by which cycle is contractible in the bulk. There is a unique geometry for

which the spatial circle is contractible. The metric on this space is (3.36), subject to the

further identification

y ∼ y + 2π Im(τ) , θ ∼ θ + 2πRe(τ) . (3.38)

Following our algorithm above, the action which describes fluctuations around this space

is the same as for Euclidean global AdS3, (3.37). The only difference is that now the
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boundary conditions are modified to be

φ(θ + 2π, y) = φ(θ, y) + 2π ,

φ(θ + 2πRe(τ), y + 2πIm(τ)) = φ(θ, y) .
(3.39)

We further investigate the properties of these Euclidean black holes in the next subsection.

The derivation above for global AdS3 bears a striking similarity to the so-called

Drinfeld-Sokolov reduction of a chiral SL(2;R) WZW model to the quantization of

Diff(S1)/PSL(2;R) described by Alekseev and Shatashvili [12]. The two seem to be almost,

but not quite the same. In the Drinkfeld-Sokolov reduction one starts with a SL(2; R) model

and imposes the constraint on the SL(2;R) current

tr(U · g−1g′) = 1 , U =

(
0 1

0 0

)
. (3.40)

Parameterizing g using Gauss parameters as in (3.23), this constraint fixes λ = 1√
F ′ .

It is essentially the same as the AdS3 boundary condition that fixes λ in terms of F

in (3.25). However Ψ remains unfixed. Fortunately, Ψ only appears in the constrained

chiral WZW action (3.31) through the last term, which is a total derivative upon plugging

in the constrained value of λ. Ignoring that term, the action of the constrained model is

exactly the quantization with H = 0.

However, it is not enough to obtain the action of the quantization. The field φ must

also be an element of Diff(S1)/PSL(2;R). The quotient is accounted for in the same way

as in the derivation from gravity, but we have not seen an argument that the boundary

condition φ(θ + 2π, t) = φ(θ, t) + 2π arises in the reduction.

3.2 More on Euclidean black holes

In the last subsection we derived the boundary model appropriate for global AdS3 as well

as for Euclidean black holes. Our discussion of the Euclidean models was rather brief. Here

we expound on their physics.

Consider a Euclidean BTZ geometry with torus boundary of complex structure τ ,

whose spatial circle is contractible in the bulk. For pure imaginary τ , such a geometry is

often called “thermal global AdS,” since it is global AdS with compactified Euclidean time.

The relevant boundary action for the holomorphic half was given in (3.37) with a corre-

sponding action for the anti-holomorphic half, subject to the boundary conditions (3.39)

and a quasi-local quotient. This theory is weakly coupled as C ≫ 1. Let us consider the

holomorphic half. The field equation of the model is

∂̄T = 0 , T = − C

12

{
tan

(
φ

2

)
, θ

}
. (3.41)

Up to the time-dependent PSL(2;R) redundancy, there is a unique solution consistent with

the boundary conditions, given by

φ0 = θ − Re(τ)

Im(τ)
y . (3.42)
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The saddle point approximation to the stress tensor is then

〈T 〉 = − C

24
+O(C0) , (3.43)

i.e. the Casimir energy on the circle. Now accounting for the anti-holomorphic half, the

saddle point approximation to the torus partition function reads

− lnZ = S+[φ0] + S−[φ0] +O(C0) =
C

24
2πi(τ − τ̄) +O(C0) . (3.44)

This partition function is obviously not modular invariant. Among other things, it

does not exhibit Cardy-like behavior at high temperature, as τ → 0. As we will uncover in

section 5, the torus partition function may be computed exactly via localization. The result

is the vacuum character, of which (3.44) is its large C approximation. This is consistent

with the fact that the geometric model does not have infinitely many saddles, corresponding

to the infinite number of bulk saddles asymptoting to the same boundary torus. Instead,

the model accounts for fluctuations around a single saddle, without knowledge of the others.

For this reason the geometric model does not exhibit a Hawking-Page transition.

If the spatial circle is the A cycle of the torus, then what one usually means by a

Euclidean black hole is a space for which the B cycle is contractible in the bulk. The

holomorphic half of the action one obtains from such a background is (3.37), with an-

gular derivatives replaced by a normalized derivative along the B cycle. The boundary

conditions become

φ(θ + 2π, y) = φ(θ, y) ,

φ(θ + 2πRe(τ), y + 2πIm(τ)) = φ(θ, y) + 2π ,
(3.45)

and the PSL(2;R) quotient identifies

tan

(
φ(θ, y)

2

)
∼
a tan

(
φ(θ,y)

2

)
+ b

c tan
(
φ(θ,y)

2

)
+ d

, (3.46)

where a, b, c, d are functions of θ − Re(τ)
Im(τ)y satisfying ad − bc = 1. There is again a unique

solution to the equation of motion for φ modulo the quotient,

φ0 =
y

Im(τ)
. (3.47)

The saddle point approximation to the partition function is now given by

− lnZ = − C

24
2πi

τ − τ̄

|τ |2 +O(C0) . (3.48)

This is the semiclassical approximation to the Euclidean BTZ partition function (see

e.g. [53]), which exhibits the requisite Cardy-like growth at high temperature. It is also

the image of the partition function (3.44) under the modular S-transformation τ → − 1
τ ,

which swaps the A and B cycles.

– 25 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
9

3.3 PSL(2; R) currents

Let us go back to the boundary action describing the boundary gravitons of global AdS3,

and in particular its left-moving half. We identify field configurations under the quasi-local

PSL(2;R) redundancy in (3.29). It is implicit in this statement that the action for the

quantization, eq. (3.32), is invariant under

tan

(
φ(θ, t)

2

)
→

a(t) tan
(
φ(θ,t)

2

)
+ b(t)

c(t) tan
(
φ(θ,t)

2

)
+ d(t)

, (3.49)

although this is not manifest. It is straightforward to obtain the corresponding Noether

currents. An infinitesimal h ∈ PSL(2;R) transformation is parameterized by

h(t) = I2 + ε+O(ε2) , ε =

(
ǫ0(t)
2 ǫ+(t)

ǫ−(t) − ǫ0(t)
2

)
, (3.50)

under which F = tan
(
φ
2

)
varies as

δF = ǫ+ + ǫ0F − ǫ− F 2 . (3.51)

After the addition of a suitable improvement term, the corresponding conserved current is

J0 = 0 , Jθ =
C

12π

{
∂+F

F ′3
(
F ′′δF ′ − F ′δF ′′)+ ∂+F

′

F ′3 (F ′δF )′ − ∂+F
′′

F ′2 δF

}
. (3.52)

It follows that, at each time, Jθ is independent of θ

∂Jθ

∂θ
= 0 . (3.53)

From Jθ we define three families of “conserved charges” by

Q0 =
∂Jθ

∂ǫ0
, Q± =

∂Jθ

∂ǫ∓
, (3.54)

which we package into a matrix as

Q =

(
Q0 Q+

Q− −Q0

)
. (3.55)

Under constant PSL(2;R) transformations h this matrix of charges transforms by conjuga-

tion,

Q→ hQh−1 . (3.56)

The quadratic Casimir is

H =
6π

C
tr′(Q2) =

12π

C

(
Q2

0 +Q+Q−
)
. (3.57)
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However, under time-dependent transformations Q does not transform covariantly. Under

an infinitesimal transformation h = I2 + ε we have

δεQ = [ε,Q] +
C

12π
ε̇ . (3.58)

Consequently there are no “gauge-invariant” observables constructed from these charges.

This matrix of charges is nothing more than the current conjugate to the variation

δεḡ = εḡ of the group-valued field ḡ, where we now allow ε to be a function of t and θ.

Under the variation the chiral WZW action transforms as

δεS+ =
C

6π

∫
d2x tr′

(
ε((∂+ḡ)ḡ

−1)′
)
=

∫
d2x tr′

(
εQ′) , (3.59)

which gives

Q =
C

6π
(∂+ḡ)ḡ

−1 . (3.60)

Using either the expression (3.52) or the variation of S+ above, we find

Q− = − C

12π

(
∂+F

′′

F ′2 − F ′′∂+F ′

F ′3

)
,

Q0 =
C

12π

(
∂+F

′

F ′ − F

(
∂+F

′′

F ′2 − F ′′∂+F ′

F ′3

))
,

Q+ =
C

12π

(
2∂+F − 2F∂+F

′

F ′ + F 2

(
∂+F

′′

F ′2 − F ′′∂+F ′

F ′3

))
,

H =
C

12π

(
(∂+F

′)2

F ′2 − 2∂+F

(
∂+F

′′

F ′2 − F ′′∂+F ′

F ′3

))
.

(3.61)

For a Euclidean AdS3 geometry with torus boundary of complex structure τ as discussed in

the previous subsection, choosing the θ circle to be contractible, these charges evaluate to

Q+ = −Q− =
C

24π

iτ

Im(τ)
, Q0 = 0 . (3.62)

3.4 Conical defects and the Poincaré patch

Consider a conical defect, described by the Lorentzian metric

− (r2 + α2)dt2 + r2dθ2 +
dr2

r2 + α2
, (3.63)

with α ∈ (0, 1). This geometry is supported by a massive probe particle at r = 0, and the

total energy is − α2

8G = −Cα2

12 . Taking the dreibein to be

e0 =
√
r2 + α2 dt , e1 = rdθ , er =

dr√
r2 + α2

, (3.64)

the connection A may be written as A = g−1dg with

g =


ρ cos

(
αx+

2

)
−ρ−1 sin

(
αx+

2

)

ρ sin
(
αx+

2

)
ρ−1 cos

(
αx+

2

)

 , ρ =

√√
r2

α2
+ 1 +

r

α
. (3.65)

– 27 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
9

There are similar expressions for Ā. The holonomy around the θ-circle is now non-trivial.

As above, we proceed by gauge-fixing A0 and integrating over locally flat spatial connections

Ã with this holonomy. In terms of the Gauss parameterization, one finds that λ and Ψ

are constrained as in (3.25) with F finite near the boundary. However, on account of

the holonomy, F behaves on the boundary as F |∂ = tan
(
αφ
2

)
where φ is at fixed time a

Diff(S1) field obeying φ(θ + 2π, t) = φ(θ, t) + 2π. Further, only a U(1) subgroup of the

PSL(2;R) redundancy is consistent with this boundary condition, and so φ is in fact a

Diff(S1)/U(1) field at fixed time. The end result is that the boundary action is

S = S−[φ] + S+[φ̄] , S±[φ] = − C

24π

∫
d2x

(
φ′′∂±φ′

φ′2
− α2φ′∂±φ

)
. (3.66)

We recognize this as the quantization of the normal orbits of the Virasoro group, eq. (2.31),

with the identification α2 = − b0
48πC .

Near the conical deficit the metric is approximately

− α2dt2 +
1

α2
(dr2 + r2dθ̃2) , θ̃ ∼ θ̃ + 2πα . (3.67)

The periodicity of θ̃ is also the periodicity of αφ, which is 2πα. Effectively, the bulk deficit

leads to a deficit in the radius of the Diff(S1) field on the boundary.

For α2 < 0 we have the exterior of a BTZ black hole rather than a conical defect.

This geometry is geodesically incomplete and one should instead consider an extension. In

section 4 we adapt our analysis to the two-sided eternal BTZ black hole following a morally

similar derivation for nearly AdS2 gravity described in [30] and elaborated on in [36].

The Poincaré patch of AdS3 is described by the metric

r2(−dt2 + dx2) +
dr2

r2
, (3.68)

where x ∈ R and r > 0. The conformal boundary is at r → ∞ and it has the topology of

the plane, while constant-time slices are given by half-space. Running through the same

sort of argument as above one finds that the fields λ and Ψ are constrained as before but

now F behaves on the boundary as F |∂ = φ where at fixed time φ ∈ Diff(R)/PSL(2;R).

To be more explicit, φ is monotone and obeys the boundary condition

lim
x→±∞

φ(x, t)

x
= 1 , (3.69)

and moreover is subject to the quasi-local quotient

φ(x, t) ∼ a(t)φ(x, t) + b(t)

c(t)φ(x, t) + d(t)
. (3.70)

The chiral actions are now

S±[φ] = − C

24π

∫
d2x

φ′′∂±φ′

φ′2
. (3.71)
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Unsurprisingly, this action is merely the decompactification limit of the theory (3.32)

on the circle. To see this, we restore the radius of the circle, θ ∼ θ + 2πL. The boundary

theory (3.32) describing fluctuations around global AdS3 is then

S±[φ] = − C

24π

∫
dt

∫ 2πL

0
dθ

(
φ′′∂±φ′

φ′2
− L−2φ′∂±φ

)
, (3.72)

where φ(θ + 2πL, t) = φ(θ, t) + 2π and we identify

L tan

(
φ

2L

)
∼

a(t)L tan
(
φ
2L

)
+ b(t)

c(t)L tan
(
φ(t)
2L

)
+ d(t)

. (3.73)

Clearly the L→ ∞ limit gives (3.71).

3.5 Coupling to an external geometry

In the remainder of this section we put the boundary model (3.32) on a non-trivial curved

space. This is tricky because the theory is chiral, and so not manifestly Lorentz-invariant.

However, using the gravity dual and the AdS/CFT dictionary we can repeat the same steps

we used to arrive at the action (3.32), starting from bulk coordinates where the conformal

boundary is naturally equipped with a non-trivial zweibein.

We are not aware of a reference which develops the AdS/CFT dictionary for the Chern-

Simons description of AdS3 gravity with a non-trivial boundary geometry. In what follows

we simply follow our noses.

Our starting point is a bulk dreibein,

ea = rEa +O(r−1) , er =
dr

r
, (3.74)

where Ea is the zweibein on the boundary as r → ∞. The spin connection is

ωABM = (e−1)N[AηB]C

(
∂Ne

C
M − ΓPMNe

C
P

)
, T[AB] =

1

2
(TAB − TBA) , (3.75)

from which we find that the asymptotic behavior of A and Ā are

A =

(
1
2

(
Ω+ dr

r

)
O(r−1)

rE+ −1
2

(
Ω+ dr

r

)
)
, Ā =

(
1
2(Ω− dr

r ) −rE−

O(r−1) −1
2(Ω− dr

r )

)
, (3.76)

where Ω = 1
2η

abΩabµdx
µ is the spin-connection one form corresponding to the boundary

zweibein Ea and we have defined E± = E1 ± E0 .

Separating time and space as before, A = A0dt+ Ã, the action is given by (3.15) where

the boundary term is now modified to be

Sbdy = − k

4π

∫

∂M
d2x

(
E+
t

E+
θ

tr′
(
A2
θ

)
− E−

t

E−
θ

tr′
(
Ā2
θ

))
, (3.77)
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again to ensure a good variational principle with the asymptotic behavior (3.76). The

bulk functional integral reduces to one over flat spatial connections. Using a Gauss pa-

rameterization (3.23) the boundary conditions (3.76) fix the asymptotic form of λ and Ψ

to be

λ =

√
r

F , Ψ = − 1

2r

(
(lnF)′ − Ωθ

)
, F =

F ′

E+
θ

, (3.78)

with F finite on the boundary. The boundary action is now

S = S−[φ] + S+[φ̄] , S±[φ] = − C

6π

∫

∂M
d2x

(
λ′D±λ
λ2

+ λ2F ′D±Ψ
)
, (3.79)

where

D± ≡ ±1

2

(
∂t +

E±
t

E±
φ

∂θ

)
. (3.80)

Plugging in the constrained value of the fields (3.78) we obtain the curved space general-

ization of the right-moving half S− in (3.32). (To obtain the left-moving half we plug in the

same constraints (3.78), but with E+
θ → E−

θ and Ωθ → −Ωθ.) As before, the decomposition

A = g−1d̃g is redundant and we identify

F (θ, t) ∼ a(t)F (θ, t) + b(t)

c(t)F (θ, t) + d(t)
. (3.81)

Observe that, whereas in flat space the term involving Ψ in the action was a total

derivative and so dropped out, this term is present in curved space. From the point of view

of the flat space theory it improves the stress tensor as we now discuss.

Let us compute the stress tensor of the model, which we define by

Tµa =
1

det(e)

δS

δEaµ
. (3.82)

The usual stress tensor with two curved indices is Tµν = TµAη
AB(E−1)νB. A straightforward

but tedious computation shows that the flat space stress tensor is traceless with

T−− = − C

24π

{
tan

(
φ̄

2

)
, θ

}
, T++ = − C

24π

{
tan

(
φ

2

)
, θ

}
, (3.83)

where we have substituted F = tan
(
φ
2

)
and F̄ = tan

(
φ̄
2

)
. So the stress tensor is indeed

the Schwarzian derivative as advertised in the previous section.

The curved space action (3.79) is not invariant under infinitesimal Weyl rescalings or

local Lorentz rotations, which act on Eaµ as

δσE
a
µ = σEaµ , δvE

a
µ = −vǫabEbµ . (3.84)

This is ultimately due to the anomalies of the chiral theory (3.79), whose central charge at

large C is approximately C. Recall that in the AdS/CFT dictionary, Chern-Simons terms

in the bulk action correspond to anomalies for the global symmetries of the CFT dual,

essentially by the inflow mechanism. See e.g. [53] for a discussion in AdS3 gravity. (The
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Weyl anomaly usually arises from a different mechanism [55, 56].) In the present setting, the

Chern-Simons form of the bulk action, combined with the AdS/CFT dictionary, guarantee

that the classical limit of the boundary theory S+ has the anomalies of a left-moving CFT

with central charge C = 6k = 3
2G .

That is, the action S± may be viewed as a Wess-Zumino term for the anomalies of a

chiral CFT with central charge C.

However, we have been unable to ascertain the scheme in which the anomalies are

matched. In quantizing the bulk Chern-Simons theory we have separated time from space,

and in doing so we have broken manifest covariance under coordinate transformations. As

a result the curved space action (3.79) accounts for the anomalies in a non-standard way,

differing by a presently unknown, non-covariant, local counterterm from the usual textbook

presentation of the anomaly [57].

3.6 Sphere partition function

As an illustrative example we put our theory on a sphere of radius L. The partition function

of a non-chiral CFT with central charge c on a sphere of radius L is fixed by the Weyl

anomaly to be

ZS2 = (µL)
c
3Z0 , (3.85)

where µ is an energy scale which must be introduced. The constant Z0 is unphysical, since

it may be rescaled by a redefinition of µ. The coefficient of the logarithm, i.e. c, is physical.

A practical way to compute it is to evaluate

µ
∂FS2

∂µ
=
c

3
, FS2 = lnZS2 . (3.86)

The gravitational dual at large c is well-known. The bulk metric where the boundary

is a sphere of radius L is

g = L2

(
r2gS2 +

dr2

r2L2 + 1

)
, (3.87)

where gS2 = dψ2 + sin2 ψ dθ2 is the metric of a unit sphere. The classical bulk action

SEH =
1

16πG

∫
d3x

√
g(R+ 2) (3.88)

evaluated on this solution gives the sphere partition function at large C via

lnZS2 ≈ SEH . (3.89)

This classical action is logarithmically divergent: the integrand is

√
g(R+ 2) = −4L3r2 sinψ√

r2L2 + 1
= −4L2r sinψ + 2

sinψ

r
+O(r−3) , (3.90)

and so its integral divergence near the boundary. Regulating the divergence by integrating

up to r = Λ, one finds a logarithmic term in the action

SEH =
1

2G
ln Λ + · · · . (3.91)
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Using C = 3
2G we find

Λ
∂SEH
∂Λ

≈ Λ
∂FS2

∂Λ
=
C

3
, (3.92)

which by (3.86) gives c ≈ C.

In the last subsection we showed how to put the boundary graviton theory in curved

space. We will now show that the sphere partition function of that theory recovers this

logarithmic divergence, and we will use it to compute the one-loop correction to c.

Our starting point is the curved space action we derived in (3.79). Wick-rotating to

Euclidean signature and taking the zweibein to be

Eψ = dψ , Eθ = sinψ dθ , (3.93)

the action (3.79) evaluates to

S±[φ] =
C

24π

∫
d2x

(F ′D±F
F2

− 2 sinψD±

(
cscψ

F ′′

F ′ ± i cotψ

))
, (3.94)

with

F = cscψ F ′ , F = tan

(
φ

2

)
, D± =

1

2

(
±i ∂
∂ψ

+ cscψ
∂

∂θ

)
. (3.95)

The classical trajectory is

φ0 = θ , (3.96)

and the classical action is logarithmically divergent:

S±[φ0] = − C

12

∫ π

0
dψ cscψ . (3.97)

Introducing a position-space cutoff near the poles ψ = 0, π, i.e. integrating over ψ ∈
[Λ−1, π −Λ−1], we find that the classical action S0 = S+[φ0] + S−[φ0] diverges logarithmi-

cally as

Λ
∂S0
∂Λ

= −C
3
. (3.98)

The sphere partition function is at large C

lnZS2 ≈ −S0 , (3.99)

so that

Λ
∂FS2

∂Λ
≈ C

3
, (3.100)

as it should be.

We now compute the one-loop correction. The harmonic analysis for fluctuations

around the classical trajectory is a bit tricky for the choice of coordinates we used above.

Instead it is convenient to parameterize the sphere as

Ey = sech y dy , Eθ = sech y dθ , (3.101)
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where y = arcsech(sinψ). Here y ∈ R, with y → ±∞ corresponding to ψ → 0, π. Note

that we are effectively parameterizing the sphere as a cylinder.

We proceed by evaluating the action in this background and expanding around the

classical trajectory φ = θ + ǫ(θ, y). The quadratic part of S+ is, after an integration

by parts,

S2 =
C

24π

∫
d2x

(
ǫ′′∂̄ǫ′ − ǫ′∂̄ǫ

)
, ∂̄ =

1

2
(∂θ + i∂y) . (3.102)

This is the same quadratic action we find on a torus in section 5. Fourier transforming,

ǫ(θ, y) =

∫ ∞

−∞

dω

(2π)2

∑

n

ǫ̃(n, ω)einθ+iωy , ẽ(n, ω)∗ = ǫ̃(−n,−ω) , (3.103)

we use the quasi-local PSL(2;R) redundancy to set an infinite number of modes to vanish,

ǫ̃(n, ω) = 0 , ∀n = −1, 0,+1 . (3.104)

The quadratic part of S+ then reads

S2 =
iC

24π

∫ ∞

−∞

dω

(2π)2

∑

n 6=−1,0,1

n(n2 − 1)(ω − in)|ǫ̃(n, ω)|2 . (3.105)

Recalling the classical part of the computation, we introduce a UV cutoff by integrating

up to a positive-space cutoff near the poles of the sphere. Translated to the y-coordinates,

we take the y-direction to be compact with y ∈ [− ln Λ, ln Λ], which turns the integral

over ω into a sum. We also sum over modes which obey Dirichlet boundary conditions at

y = ± ln Λ, as well as modes which obey Neumann boundary conditions there. Equivalently,

we sum over modes which are periodic in y with a periodicity 4 lnΛ. Thus, the one-loop

determinant appearing here is that on a long torus of complex structure τ = 2i
π ln Λ. In

section 5 we compute that determinant and find that the chiral half is

q−
13
24

∞∏

n=2

1

1− qn
, q = e2πiτ . (3.106)

Multiplying by the contribution from the right-movers, inserting τ = 2i
π ln Λ, taking Λ →

∞, and including the classical contribution from S0 , we find

lnZS2,1−loop = −S0 +
13

3
lnΛ , (3.107)

so that

Λ
∂FS2

∂Λ
=
C + 13

3
. (3.108)

In other words, the one-loop approximation to the central charge is c = C + 13.
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4 Doubling and eternal BTZ black holes

Pure AdS3 gravity famously has black hole solutions, whose exterior region is described by

the metric

g = −(r2 − r2h)dt
2 + r2dθ2 +

dr2

r2 − r2h
, (4.1)

with a horizon located at r = rh and conformal boundary at r → ∞. This patch of space-

time is geodesically incomplete, and we instead consider its maximal Kruskal extension,

the two-sided eternal black hole described by the metric (see e.g. [58])

g =
−4dudv + r2h(1− uv)2dθ2

(1 + uv)2
. (4.2)

See figure 1. This geometry has two horizons located at u = 0 and v = 0, with the exteriors

located in the region uv < 0. There are two asymptotically AdS3 regions, with conformal

boundaries at uv → −1. The past and future singularities are at uv → 1. More useful

coordinates are Rindler-like coordinates in the two exterior regions,

− uv = z2 , arctanh

(
u+ v

v − u

)
= rhτ sgn(z) , (4.3)

in terms of which the metric is

g =
4r2h

(1− z2)2

(
−z2dτ2 + (1 + z2)2

4
dθ2
)
+

4dz2

(1− z2)2
. (4.4)

In this choice of coordinates the boundaries are at z → ±1, and the horizons at z = 0.

The right exterior region corresponds to τ, θ real with z ∈ (0, 1), and the left exterior

region has z ∈ (−1, 0). In both exteriors the time τ increases as one moves up in figure 1.

The coordinates (τ, θ) parameterize time and space on the two boundaries. The standard

interpretation of the two-sided black hole in the AdS/CFT correspondence is that it is dual

to the thermofield double state of the boundary CFT [35] at an inverse temperature β = 2π
rh
.

In this section we repeat the procedure of the previous section for these two-sided black

holes. A different approach to quantizing AdS3 gravity on single-sided BTZ backgrounds

was taken in [59, 60]. Our first step is to obtain the SO(2, 1)× SO(2, 1) gauge fields which

parameterize the background, and to write these in term in terms of gauge transformation

parameters g and ḡ. Taking the bulk dreibein in the two exterior regions to be

e0 = ± 2z

(1− z2)
rhdτ , e1 =

1 + z2

1− z2
rhdθ , ez =

4dz

1− z2
, (4.5)

we find

A =

(
dz

1−z2
1−z

2(1+z)rhdx
±

1+z
2(1−z)rhdx

± − dz
1−z2

)
, Ā =

(
− dz

1−z2 − 1+z
2(1−z)rhdx

∓

− 1−z
2(1+z)rhdx

∓ dz
1−z2

)
, (4.6)

where we have defined the boundary light-cone coordinates x± = θ± τ . Being flat connec-

tions they may be written locally as

A = g−1dg , Ā = ḡ−1dḡ . (4.7)
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Figure 1. A graphical representation of the Kruskal extended BTZ black hole (4.2). Here u and v

are the standard light-cone coordinates in the plane and θ is suppressed. The solid black lines are

the asymptotic AdS boundaries, the dashed grey lines are the horizons, and the dotted red lines

are the past and future singularities. The blue lines indicate curves of constant z.

We find the representatives

g =


ρ cosh

(
rhx

±

2

)
ρ−1 sinh

(
rhx

±

2

)

ρ sinh
(
rhx

±

2

)
ρ−1 cosh

(
rhx

±

2

)

 , ḡ =


 ρ−1 cosh

(
rhx

∓

2

)
−ρ sinh

(
rhx

∓

2

)

−ρ−1 sinh
(
rhx

∓

2

)
ρ cosh

(
rhx

∓

2

)

 ,

(4.8)

with

ρ =

√
1 + z

1− z
. (4.9)

The asymptotic behavior of A and Ā near the AdS boundaries z2 = 1−2ǫ is, as z → 1,

A =

(
−dǫ

2ǫ O(ǫ)
rhdx

+

ǫ
dǫ
2ǫ

)
, Ā =

(
dǫ
2ǫ − rhdx

−

ǫ

O(ǫ) −dǫ
2ǫ

)
, (4.10)

and as z → −1,

A =

(
dǫ
2ǫ

rhdx
−

ǫ

O(ǫ) −dǫ
2ǫ

)
, Ā =

(
−dǫ

2ǫ O(ǫ)

− rhdx
+

ǫ
dǫ
2ǫ

)
, (4.11)

which we then enforce as a boundary condition. We now quantize the bulk Chern-Simons

theory on this spacetime. We do so by again separating one direction from the others.

Rather than separating time from space, we elect to separate

A = Aθdθ + Ã , Ā = Āθdθ +
˜̄A . (4.12)

This is physically reasonable. The exterior of a BTZ geometry is the Wick-rotation of

thermal global AdS, in which we analytically continue the boundary spatial circle to real

time. In our quantization on thermal global AdS, we gauge-fixed the component of A and

Ā along the non-contractible circle, which after the Wick-rotation to BTZ becomes the

θ-direction. Then the bulk gravitational action is

Sgrav = S[A]− S[Ā] + Sbdy,+ + Sbdy,− , (4.13)
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where

S[A] = − k

2π

∫

M
dθ ∧ tr′

(
−1

2
Ã ∧ ∂θÃ+AθF̃

)
,

Sbdy,± =
k

4π

∫

∂M±
d2x

(
tr′
(
A2
τ

)
+ tr′

(
Ā2
τ

))
.

(4.14)

Here ∂M± refers to the two boundaries at z → ±1. We gauge-fix Aθ and Āθ to their

values for the BTZ solution. The residual integral is over flat connections Ã and ˜̄A, which

we parameterize as

Ã = g−1d̃g , ˜̄A = ḡ−1d̃ḡ . (4.15)

We use separate Gauss decompositions (3.23) for A near the two asymptotic boundaries.

Near the right exterior we find that the boundary conditions (4.10) fix the fields λ and Ψ

appearing there to be constrained near the boundary z → 1 as

λ2 =
1

1− z

rh

Ḟ+

, Ψ = −1− z

2

F̈+

rhḞ+

. (4.16)

In the other region we parameterize

g =

(
1 −F
0 1

)(
λ−1 0

0 λ

)(
1 0

Ψ 1

)
, (4.17)

and near the other boundary z → −1 the AdS boundary conditions constrain

λ2 =
1

1 + z

rh

Ḟ−
, Ψ =

1 + z

2

F̈−
rhḞ−

, (4.18)

where F± = limz→±1 F are the boundary values of the field F . We see that the boundary

dynamics are now doubled: the Chern-Simons theory may be rewritten as a boundary

model in which the F+ = tanh
(
rhφ+
2

)
and F− = − coth

(
rhφ−
2

)
are the dynamical fields.

For the two-sided black hole metric (4.4) we have

φ+ = φ− = τ , (4.19)

so that F− = −1/F+. More generally we expect that the φ± (and their barred cousins)

obey the boundary condition

lim
τ→∞

φ+
τ

= lim
τ→∞

φ−
τ
, lim

τ→−∞
φ+
τ

= lim
τ→−∞

φ−
τ
, (4.20)

and are monotone in τ , φ̇± > 0. Note that these boundary conditions do not fix the value

of the horizon radius rh. Up to a quotient, the φ± are Diff(R) fields at fixed θ. As in our

analysis of global AdS3, we have introduced a quasi-local PSL(2;R) redundancy in writing

out A = g−1d̃g. Namely, both g(τ, θ, z) and h(θ)g(τ, θ, z) lead to the same A for any

h(θ) ∈ PSL(2;R). Since the boundary fields φ± both come from the same g, the quotient

by PSL(2;R) acts on both φ± simultaneously. For

h =

(
d c

b a

)
, (4.21)
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we have

F+ → aF+ + b

cF+ + d
, F− → dF− − c

−bF− + a
, (4.22)

and we identify those configurations in the remaining integral over φ±. The second trans-

formation is equivalent to

F− → aF− + b

cF− + d
, F− = − 1

F−
. (4.23)

Similar statements apply for the barred fields.

The final result for the boundary action is the quadrupled theory

S = −S−[φ+] + S+[φ−] + S+[φ̄+]− S−[φ̄−] , (4.24)

where

S±[φ] = − C

24π

∫
dτdθ

(
φ̈∂±φ̇

φ̇2
+

(
2π

β

)2

φ̇∂±φ

)
. (4.25)

The fields φ± are, at fixed θ, elements of

Diff(R)×Diff(R)�PSL(2;R) , (4.26)

as are the φ̄±. The final result for the boundary theory is reminiscent of the doubled

Schwarzian theory described in [30] and [36]. Note that the fields φ− and φ̄− on the left

boundary have opposite chirality to the fields φ+ and φ̄+ on the right boundary.

However, this theory is not a doubled version of the boundary graviton action we

obtained for global AdS3 in section 3. The theory given above differs by a double Wick-

rotation (along with an analytic continuation in field space, whose combined effect sends

Diff(S1) → Diff(R)), but more importantly the constraints tie the fields on the left and

right boundaries together. Correspondingly, the Hilbert space of this model does not

factorize into a tensor product of left and right states, and the two-sided black hole does

not correspond to the thermofield double state of the “single-sided” model.

We expect that the path integral has an additional non-local constraint between the

fields on the two boundaries, distinct from the simultaneous PSL(2; R) quotient. Recall that

a single copy of the quantization of the coadjoint orbit has a PSL(2; R) Noether current.

See subsection 3.3 for details. The quadrupled theory (4.24) has four sets of PSL(2;R)

currents, which can all be defined so as to have zero angular component. Let us consider

the first two terms, −S−[φ+] and S+[φ−], coming from the first SO(2, 1) factor of the

Chern-Simons theory. There is a PSL(2;R) charge associated with −S−[φ+] living on the

right boundary, which we call QR , and a PSL(2;R) charge associated with S+[φ−] on the

left boundary, which we call QL . In terms of the asymptotic values g± = limz→±1 g of the

field g as z approaches the two boundaries, the charges QR and QL are given by

QR = − C

6π
(∂−g+)g

−1
+ , QL =

C

6π
(∂+g−)g

−1
− , (4.27)

each satisfying
∂QR
∂t

= 0 ,
∂QL
∂t

= 0 , (4.28)
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on-shell. The two-sided black hole (4.4) has F+ = tanh
(
πτ
β

)
= −1/F− = F+(−τ + iβ

2 ), so

that the charges evaluate to

QR = −QTL = − C

6πβ

(
0 1

1 0

)
. (4.29)

One might wonder whether this charge matching condition should hold more generally,

and if it should, how it is imposed in the path integral. Here we simply make two observa-

tions, leaving the complete resolution of this point to future study. First, the condition

QR = −QTL (4.30)

would be consistent with the simultaneous PSL(2;R) quotient. Both sides transform in

the same way under θ-dependent PSL(2;R) transformations. Indeed, the matching con-

dition (4.30) is nothing more than the statement that the simultaneous PSL(2; R) charge

vanishes. Second, the PSL(2;R) quotient does not require that this charge vanishes. In or-

dinary gauge theory, there is a quotient and additionally the time-component of the gauge

field A0 acts as a Lagrange multiplier which sets the total gauge charge to zero. However,

in our context, there is no gauge field. It is presently unclear whether, in the path inte-

gral, the classical condition (4.30) arises from (i) boundary conditions in the far past and

future, (ii) an additional Lagrange multiplier term in the action ∼ tr′[A0(QR + QTL)], or

(iii) a different mechanism entirely.

5 Torus partition function and 〈TT 〉

In this section we compute the exact chiral central charge and operator content of the path

integral quantization of Diff(S1)/PSL(2;R) and of Diff(S1)/U(1). We do so by calculating

the torus partition function and the two-point function of the stress tensor on the cylinder.

The partition function of a chiral CFT on a torus of complex structure τ may be

written as a sum over states,

Z(τ) = tr
(
qL0− c

24

)
, q = e2πiτ , (5.1)

where c is the exact central charge.7 The partition function may be decomposed into a

sum of Virasoro characters,

Z(τ) = q−
c
24

∞∏

n=2

1

1− qn
+
∑

h

qh−
c
24

∞∏

n=1

1

1− qn
, (5.2)

where the first term is the character of the vacuum module and the other terms represent

a sum over Virasoro primaries of dimension h. The quantizations under consideration are

weakly coupled as C → ∞ with 1/C playing the role of the weak coupling, and so we

expect to find c = C +O(C0).

7Here we work in the usual convention for L0, namely [Ln, Lm] = (n − m)Ln+m + c
12
(n3 − n)δn+m,

rather than that in (2.8).
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For the quantization of Diff(S1)/PSL(2;R) we find that its partition function is the

vacuum character with an exact central charge

c = C + 13 , (5.3)

which we establish by a localization argument.

The quantization of the normal orbits Diff(S1)/U(1) with b0 > − C
48π is secretly

quadratic. Its Hilbert space has a single Verma module with highest-weight state |h〉 and

h− c− 1

24
= 2πb0 . (5.4)

To solve for h and c, we compute the connected two-point function of the stress tensor on

the cylinder. In the state |h〉 it takes the form

〈〈T (w)T (0)〉〉 = c

32 sin4
(
w
2

) − h

2 sin2
(
w
2

) , w = θ + iy , (5.5)

from which we find

c = C + 1 , h = 2πb0 +
C

24
> 0 . (5.6)

We begin by computing the one-loop approximation to Z(τ), and then use a localization

argument to show that the partition function is one-loop exact. We also demonstrate that

the quantization of the normal orbits is a free theory in the appropriate variables, and

compute 〈〈T (w)T (0)〉〉.
These results match nicely with the literature. In the context of path integral methods,

there is an expectation that the torus partition functions of the geometric models are one-

loop exact, although we have not found a reference which explicitly demonstrates this.

Witten has also performed a Kähler quantization of the orbits Diff(S1)/PSL(2;R) and

Diff(S1)/U(1) in [13]. He showed from a variety of viewpoints that the Hilbert space of

the quantization of Diff(S1)/PSL(2;R) is the vacuum module, and that the Hilbert space

of the quantization of Diff(S1)/U(1) is a single Verma module. This first result was crucial

to Maloney and Witten in their argument for the partition function (1.1). Below we give a

direct path integral derivation of this result, which as far as we know is the first to compute

the exact relations for c and h mentioned above.

5.1 One-loop determinants

We begin with the action (2.31) appropriate for the path integral quantization of

Diff(S1)/PSL(2;R), which we reprise here:

S = − C

24π

∫
dt

∫ 2π

0
dθ

(
(∂+φ

′)φ′′

φ′2
− (∂+φ)φ

′
)
. (5.7)

Wick-rotating to imaginary time, t = −iy, and putting the theory on a torus of complex

structure τ , the Euclidean action is

SE =
C

24π

∫
d2x

(
(∂̄φ′)φ′′

φ′2
− (∂̄φ)φ′

)
, (5.8)
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where we have defined the complex coordinate z = θ + iy subject to the identifications

z ∼ z + 2π and z ∼ z + 2πτ . The field φ obeys the boundary conditions

φ(θ + 2π, y) = φ(θ, y) + 2π ,

φ(θ + 2πRe(τ), y + 2πIm(τ)) = φ(θ, y) ,
(5.9)

and is subject to the local PSL(2;R) redundancy

tan

(
φ(θ, y)

2

)
∼
a(y) tan

(
φ(θ,y)

2

)
+ b(y)

c(y) tan
(
φ(θ,y)

2

)
+ d(y)

,

(
a(y) b(y)

c(y) d(y)

)
∈ PSL(2;R) , (5.10)

which includes φ ∼ φ+ a as a subgroup.

As we mentioned in subsection 2.2, the real part of the Euclidean action is Re(SE) =∫
dy H(y) with

H = − C

24π

∫ 2π

0
dθ

(
{φ, θ}+ φ′2

2

)
, (5.11)

which we showed is bounded below as H ≥ − C
24π . It follows that

Re(SE) ≥ −πC
12

Im(τ) , (5.12)

and so we expect that the Euclidean functional integral is well-defined.

We now take C to be very large and compute the partition function to one-loop order

in the small coupling 1/C. We begin by classifying the saddle points of the Euclidean

action. The field equation of the model is

δSE
δφ

=
C

48πφ′
∂̄

(
{φ, θ}+ φ′2

2

)
= 0 , (5.13)

which modulo the redundancy (5.10) possesses a unique saddle consistent with the bound-

ary conditions, namely

φ0 = θ − Re(τ)

Im(τ)
y . (5.14)

The saddle point action is

S0 =
πC

12
iτ , (5.15)

whose real part saturates the bound (5.12). Expanding φ in fluctuations around the saddle,

φ = φ0 +
∑

m,n

ǫm,n
(2π)2

e
imy
Im(τ)

+in
(

θ−Re(τ)
Im(τ)

y
)

, ǫ∗m,n = ǫ−m,−n (5.16)

we may use the local redundancy (5.10) to set an infinite number of the modes to vanish:

ǫm,n=−1,0,+1 = 0 . (5.17)

The quadratic action is

SE = S0 +
iC

96π3

∞∑

m=−∞

∑

n 6=−1,0,1

n(n2 − 1)(m− nτ)|ǫm,n|2 +O(ǫ3m,n) , (5.18)
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so that the one-loop approximation to the torus partition function is

Z1−loop = Nq−
C
24

∏

m,n

(m− nτ)−
1
2 , q = e2πiτ . (5.19)

The infinite product is, excepting the modes n = −1, 0,+1, the determinant for a chiral

boson, det−
1
2 (∂̄). Differentiating lnZ1−loop with respect to τ and performing the sum over

m, we find

∂ lnZ1−loop

∂τ
= −πiC

12
− π

∞∑

n=2

n cot(πnτ) . (5.20)

This sum diverges, and we regularize it by writing

∞∑

n=2

n cot(πnτ) →
∞∑

n=2

n (cot(πnτ) + i)− i
∞∑

n=2

n . (5.21)

The first sum converges for Im(τ) > 0, and we evaluate the second sum via zeta-function

regularization. Integrating with respect to τ and exponentiating, we recover Z1−loop up to

an overall normalization constant. It is

b0 = − C

48π
: Z1−loop = q−

c
24

∞∏

n=2

1

1− qn
, c = C + 13 , (5.22)

which is the Virasoro character of the identity representation with central charge c. The

factor of 13 arises from the zeta-regularization,

∞∑

n=2

n→ ζ(−1)− 1 = −13

12
. (5.23)

It is a one-loop renormalization of the central charge, c = C + 13 +O(1/C).

Writing Z as a sum over states as in (5.1), we see that the Hilbert space of the model

is merely the vacuum and its Virasoro descendants, as advertised. Perturbation theory at

higher orders in 1/C cannot introduce new states, and so may only further renormalize the

central charge c. However, as we will soon see, the one-loop result c = C + 13 is exact.

The same arguments can be adapted to compute the partition function of the quanti-

zation of Diff(S1)/U(1) for b0 > − C
48π . We find

Z1−loop = qh−
c
24

∞∏

n=1

1

1− qn
, h− c− 1

24
= 2πb0 . (5.24)

So the Hilbert space is a single Verma module, and it remains to solve for h and c.

5.2 Revisiting the gravitational one-loop partition function

Before going on to discuss the one-loop exactness of the partition function, we pause to

revisit the direct gravitational computation of [2]. The authors of that paper used the

heat kernel to compute the one-loop determinant of pure gravity on both Euclidean AdS3

and on a Euclidean BTZ black hole, which may be understood as an orbifold H3/Z. They
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thereby obtained the one-loop approximation to the torus partition function of pure AdS3

gravity to be the character of the vacuum module,

Zgrav
1−loop(τ, τ̄) =

∣∣∣∣∣q
− c

24

∞∏

n=2

1

1− qn

∣∣∣∣∣

2

, (5.25)

where c is the one-loop renormalized central charge,

c =
3L

2G

(
1 +O

(
G

L

))
. (5.26)

In their paper, the authors of [2] focused on the infinite product in Z1−loop , and did

not focus on the renormalization of the central charge. However, it turns out that this

one-loop renormalization is implicitly contained in their calculation, and moreover they

find the same one-loop shift of 13 that we found above.

To see this we begin by parameterizing the partition function as

− lnZgravity
1−loop = S(0) − S(1) , (5.27)

where S(0) is the on-shell Euclidean action of pure AdS3 gravity, proportional to L
G ≫ 1,

and S(1) is the O(1) contribution which arises from fluctuation determinants. They (and

we) ignore further corrections to the right-hand-side with inverse powers of L
G . On a

Euclidean spacetime X = H3 or H3/Z, a standard computation gives

S(0) =
L

4πG
vol(X) . (5.28)

This expression is divergent, owing to the infinite volume near the conformal boundary of

hyperbolic space. We will come back to this shortly.

Evaluating S(1) for pure gravity on H3 via the heat kernel technique gives their eq. (3.8),

S(1) = vol(H3)

∫ ∞

0

dt

t

1

(4πt)3/2
(e−t(1 + 8t)− e−4t(1 + 2t)) . (5.29)

There are two divergences here. The first is the same infinite volume appearing above, and

the second is a divergence in the integral at small t. The latter is ubiquitous in the heat

kernel literature and can be treated by any of the standard techniques. One technique,

used in [2], is to analytically continue the integral in t (equivalently, to rewrite the integral

using the integral representation for the Gamma function). Another approach, familiar

from the computation of anomalies, is to integrate in t to a small cutoff ǫ and to take the

O(ǫ0) coefficient of the expansion. Either way one finds

S(1) = − 13

6π
vol(H3) , (5.30)

which still diverges, albeit in the same way as the saddle point action S(0).

The authors of [2] evaluated S(1) on the orbifold H3/Z using the heat kernel on H3 and

the method of images. The result is

S(1) = vol(H3/Z)

∫ ∞

0

dt

t

1

(4πt)3/2
(e−t(1 + 8t)− e−4t(1 + 2t))−

∞∑

n=2

ln |1− qn|2 . (5.31)
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Treating the first term (which was dropped in [2]) in the same way as on H3, the one-loop

approximation to the partition function on H3/Z then reads

Zgrav
1−loop = e−(

3L
2G

+13) 1
6π

vol(H3/Z)

∣∣∣∣∣
∞∏

n=2

1

1− qn

∣∣∣∣∣

2

. (5.32)

It remains to regularize the volume of H3/Z. This is a familiar problem in the AdS/CFT

correspondence, an example of what is often called holographic renormalization. One first

regularizes the infinite volume by integrating the volume form on the bulk spacetime up

to a “cutoff slice” near the conformal boundary, adds various covariant boundary terms to

the “cutoff slice,” and then takes the cutoff to the conformal boundary. In any case, the

holographically renormalized volume is

vol(H3/Z) = −Im(τ)π2 . (5.33)

Inserting into (5.32) gives

Zgrav
1−loop =

∣∣∣∣∣q
− c

24

∞∏

n=2

1

1− qn

∣∣∣∣∣

2

, c =
3L

2G
+ 13 , (5.34)

whose chiral half is the partition function of the geometric model that we found in the

previous subsection. The gravitational result displays the same one-loop shift of 13.

5.3 Localization

It is perhaps an underappreciated result that (up to boundary conditions) any phase space

path integral is invariant under a “hidden supersymmetry,” and that under modest con-

ditions this “supersymmetry” can be used to localize the path integral. See e.g. section 4

of [61]. When this is the case, the one-loop exactness of the path integral follows from

the localization formula of equivariant cohomology, and is in a sense the quantization of

the Duistermaat-Heckman theorem. Here we give a low-brow derivation of the result. Our

approach parallels that of Stanford and Witten [45] in their “physicist’s proof” of the

Duistermaat-Heckman theorem. It also shares several features with [61].

Consider a classical Hamiltonian system on a phase space M with Hamiltonian H and

symplectic form ω (keeping in mind the coadjoint orbits of a Lie group). Let xi denote

coordinates on the phase space, and α = αidx
i the presymplectic potential locally satisfying

ω = dα. Promoting the variables xi to functions of time xi(t), an action which leads to

the Hamiltonian H and symplectic form ω is (2.3),

S = −
∫
dt
(
ẋiαi +H

)
.

Consider the thermal partition function of the quantized system,

Z = tr
(
e−βH

)
, (5.35)
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which can be written as a path integral after Wick-rotating time as t = −iy,

Z =

∫
[dxi]Pf(ω)e−SE , SE =

∫ β

0
dy

(
i
∂xi

∂y
αi +H

)
, (5.36)

and the
∫
[dxi] integral is taken over closed loops xi(y) = xi(y + β). The factor of Pf(ω)

plays the role of the measure on the phase space at each time. It can be exponentiated by

introducing Grassmann-odd fields ψi which obey the same boundary conditions as the xi,

namely ψi(y) = ψi(y + β). The ψi are better thought of as ghosts rather than fermions.

In any case, we write

Z =

∫
[dxi][dψj ]e−S

′
E , S′

E =

∫ β

0
dy

(
i
∂xi

∂y
αi +H − 1

2
ωijψ

iψj
)
. (5.37)

This action is invariant under a “hidden supersymmetry” generated by a Grassmann-odd

supercharge Q (which does not carry a Lorentz index and so resembles a BRST super-

charge). Its action on (xi, ψj) is

Qxi = ψi ,

Qψi = vi − i
∂xi

∂y
≡ V i ,

(5.38)

where we have defined vi to be the flow generated by the Hamiltonian,

vi = ωij∂jH , (5.39)

and ωij is the inverse of the symplectic form satisfying ωikωjk = δij . The variation of ψi is

nothing but the classical equation of motion for xi in imaginary time,

V i = −ωij δSE
δxi

. (5.40)

It is straightforward to demonstrate that the action S′
E is invariant under Q, upon using

that ωij = ∂iαj − ∂jαi and that ∂[iωjk] = 0, i.e. dω = 0. Acting on xi, Q squares to the

equation of motion,

Q2xi = vi − i
∂xi

∂y
, (5.41)

and more generally

Q2 = δv − i
∂

∂y
, (5.42)

where δv is the flow generated by H. So Q2 = 0 is simply the classical equation of motion

of the model. It follows that the Ward identities of the “hidden supersymmetry” are

nothing more than the Schwinger-Dyson equations, and, in a sense, the invariance under

Q is content-free. It is then no surprise that Q can be used to localize the path integral

only under special conditions.

One such condition is if there is a metric gij on the phase space which is invariant

under the flow δv, that is if gij satisfies

δvgij = vk∂kgij + gik∂jv
k + gkj∂iv

k = 0 . (5.43)
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When that is the case, not only is

V =

∫ β

0
dy Q

(
gij(Qψ

i)ψj
)

=

∫ β

0
dy
(
gijV

iV j + ψk(∂kgij)V
iψj + gij(ψ

k∂kv
i − i∂yψ

i)ψj
) (5.44)

Q-exact, but it is also Q-closed. After some computation we find

QV =

∫ β

0
dy

{
(δvgij)V

iψj + i
∂

∂y
(gijV

iψj)

}
= 0 . (5.45)

Combined with the fact that its bosonic part is also positive-definite, V may then be used

as a localizing term. Adding it to the action with an arbitrary coefficient,

S′
E → S′

E + tV , (5.46)

and barring an anomaly in Q, the partition function is independent of t. Sending t → ∞,

the path integral localizes onto trajectories near the classical solutions V i = 0 and ψj = 0

and is rendered one-loop exact. A standard calculation demonstrates that there is a relative

cancellation between the ghost and bosonic determinants, so that the full partition function

equals the one-loop approximation of the original theory (5.36) without the ghosts, i.e.

Z =
∑

e−SE [xc] det−1/2

(
δ2SE
δx2

)
, (5.47)

with xc the classical trajectories satisfying V i[xc] = 0.

Now recall that the first exceptional orbit (and the normal orbits with b0 > − C
48π ) of

the Virasoro group are Kähler and additionally possess an invariant Kähler form. See (2.25)

and the surrounding discussion. This Kähler form gives a metric invariant under Hamil-

tonian flow on the orbit, which for our theory is the group action generated by L0. The

existence of an invariant metric on the phase space is precisely the criterion we need to

localize the partition function. We conclude that the thermal partition functions of the

quantizations of Diff(S1)/PSL(2;R) and Diff(S1)/U(1) (with b0 > − C
48π ) are one-loop ex-

act. Running through another version of the localization argument above with “twisted”

boundary conditions shows that the torus partition functions of these theories at general

τ are one-loop exact.

Before going on, we note that there is a natural guess for the measure of our path

integrals that appears to differ from [dφ]Pf(ω), namely [38]

∏

θ,y

dF

F ′ , F = tan
φ

2
. (5.48)

This guess is natural insofar as it is invariant under local PSL(2; R) transformations. By

[dφ]Pf(ω), we mean that the measure of the phase space path integral is

∏

t

(
Pf(ω(φ))

∏

θ

dφ

)
. (5.49)

Stanford and Witten [45] showed that the expression in parantheses is equivalent to
∏
θ
dF
F ′ ,

so that [dφ]Pf(ω) is in fact equivalent to the naive measure (5.48).
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5.4 〈TT 〉

The partition function for the normal orbits informs us that the corresponding Hilbert

space is a single Verma module with highest-weight state |h〉 satisfying

h− c− 1

24
= 2πb0 .

Here we compute the exact stress tensor two-point function on the cylinder and solve for

h and c.

The key step is that the action for the normal orbits is secretly quadratic. Using the

field redefinition

f = ln
(
e
√
Bφ
)′
, B =

48πb0
C

, (5.50)

the Euclidean action and stress tensor become

SE =
C

24π

∫
d2x(∂̄f)f ′ , T = − C

12

(
f ′′ − f ′2

2

)
. (5.51)

The redundancy φ(x, y) ∼ φ(x, y) + a(y) persists for the f -field,

f(θ, y) ∼ f(θ, y) +
√
Ba(y) , (5.52)

and the boundary conditions for φ on the Euclidean cylinder become

f(θ + 2π, y) = f(θ, y) + 2π
√
B . (5.53)

Moreover, in these variables the symplectic form becomes the canonical one corresponding

to the action (5.51),

ω =
C

48π

∫ 2π

0
df ∧ df ′ . (5.54)

Since both the action and measure are quadratic in the f -variable, this appears to be a

free theory. The only potential problem is the quotient. But for the normal orbits the

redundancy is linear in the field f , acting as (5.52), and so this theory is indeed free.

While a similar redefinition exists for the first exceptional orbit, rendering the action

quadratic, that theory is not free. The culprit is the PSL(2; R) quotient. Whereas the

U(1) redundancy acts linearly on f , the PSL(2;R) quotient acts in a non-trivial, non-linear

way. However it is easy to account for the quotient at one-loop level. The quotient simply

removes the n = −1, 0,+1 spatial Fourier modes, and the ensuing determinant immediately

yields the character of the vacuum module.

Moving on, the unique saddle (modulo the U(1) redundancy) is f =
√
Bθ. Expanding

around it,

f =
√
Bθ + ǫ , (5.55)

one finds that the ǫ-propagator is

〈ǫ(w)ǫ(0)〉 = −12

C
ln(1− u) , u = eisgn(y)w , w = θ + iy . (5.56)
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The stress tensor is T = 2πb0− C
12

(
ǫ′′ −

√
Bǫ′ − ǫ′2

2

)
, and its connected two-point function

is given by the sum of an exchange diagram and a one-loop diagram. It reads

〈〈T (w)T (0)〉〉 = C + 1

32 sin
(
w
2

)4 − 2π
(
b0 +

C
48π

)

2 sin2
(
w
2

) , (5.57)

from which we infer

c = C + 1 , h = 2πb0 +
C

24
. (5.58)

6 Virasoro blocks

The geometric actions considered in this paper also compute the atomic ingredients of cor-

relation functions of a 2d CFT, namely Virasoro blocks. Consider the four-point function of

local operators Oi . Suppressing the anti-holomorphic dependence, the four-point function

is a function of a single conformally invariant cross-ratio u and can be written as

〈O1(z1)O2(z2)O3(z3)O4(z4)〉 =
1

(z12)h1+h2(z34)h3+h4
C(u) , u =

z12z34
z13z24

, (6.1)

with zij = zi − zj . The function C(u) may be decomposed into a sum of conformal blocks.

These blocks are intimately related to the operator production expansion (OPE): a single

block corresponds to the exchange of a single primary operator Oh of dimension h along

with its descendants between the fusions O1O2 and O3O4. Equivalently, using the oper-

ator/state correspondence, consider the completeness relation for the CFT Hilbert space.

Associating Oh to the primary state |h〉 = Oh(0)|0〉, one may write the identity opera-

tor as a sum over irreducible representations of the conformal group as labeled by the

primary states,

1 =
∑

h

(
|h〉〈h|+ (descendants)

)
, (6.2)

where the “descendants” refers to the properly normalized descendant states of |h〉. The

global descendants of |h〉 are

|h;n〉 = Ln−1|h〉√
〈h|Ln1Ln−1|h〉

, (6.3)

while the Virasoro descendants include (these states are not all orthogonal and so give an

overcomplete basis for the space of descendant states)

|h; {ni}〉 =
(∏∞

i=1 L
ni
−i
)
|h〉√

〈h|
(∏∞

i=1 L
ni
−i
)† (∏∞

j=1 L
nj

−j
)
|h〉

. (6.4)

We then write

C(u) =
∑

h

c12hc34hF(hi;h;u) ,

F(hi;h;u) = lim
z→∞

z2h1uh3+h4

c12hc34h
〈0|O1(z)O2(1)

(
|h〉〈h|+ (descendants)

)
O3(u)O4(0)|0〉 ,

(6.5)
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where cijk is an OPE coefficient and F is the block. If the second line of (6.5) contains the

global descendants of |h〉, then F is a global conformal block. If the second line contains

Virasoro descendants, then it is a Virasoro block and we notate it as V. In either case, the

block is an eigenfunction of the corresponding conformal Casimir.

The global blocks are known in closed form and are given by [62, 63]

F(hi;h;u) = uh 2F1(h− h1 + h2, h+ h3 − h4; 2h;u) . (6.6)

The Virasoro blocks are not known in closed form. They are approximately known in

various limits, mostly at large central charge c≫ 1. See e.g. [64–70].

In this section we use the quantization of Diff(S1)/PSL(2;R) to compute the identity

Virasoro blocks at large central charge in two limits. The first is when the external dimen-

sions are “light” compared to c, with hi .
√
c. The second is in the “heavy-light” limit

of [69], in which one operator is “heavy” with hH = O(c) and the other is “light” with

hL = O(1). In both cases our computations have a simple diagrammatic interpretation.

Our results reproduce those of [68, 69], including the “quantum” corrections of [18, 19].

The identity block V0 appears in the four-point function of two identical operators

O1 = O2 = V , O3 = O4 =W . The contribution of V0 to the four-point function is

〈V (z1)V (z2)W (z3)W (z4)〉 =
1

(z12)2hV (z34)2hW

(
V0 + (other blocks)

)
, (6.7)

and from (6.5) it is given by

V0(hV , hW ;u) = 1 +O

(
1

c

)
, (6.8)

in the c → ∞ limit (with hi fixed). The “1” comes from the vacuum state |0〉 and the

corrections arise from the Virasoro descendant states of the vacuum ∝ · · ·Ln3
−3L

n2
−2|0〉.

We compute the identity block in the following way. In addition to the stress tensor T ∝
{φ, θ}, the path integral quantization of Diff(S1)/PSL(2;R) contains nonlocal operators

invariant under the local PSL(2;R) symmetry. These include bilocal operators, which can

be thought of as reparameterized two-point functions,8

B(h; z1, z2) =
(

φ′(z1)φ′(z2)
(φ(z1)− φ(z2))2

)h
, (6.9)

where z1 and z2 are at the same time and ′ denotes a spatial derivative. (We require

that z1 and z2 are at the same time so that the bilocal is invariant under time-dependent

PSL(2;R) transformations.) Our proposal is that the identity block is proportional to the

two-point function of bilocals,

V0(hV , hW ;u) =
〈B(hV ; z1, z2)B(hW ; z3, z4)〉
〈B(hV ; z1, z2)〉〈B(hW , z3, z4)〉

. (6.10)

Recalling that in our geometric theory the total central charge is c = C + 13 and that

the theory is weakly coupled as C → ∞, we immediately recover that the identity block

8These bilocal operators are familiar from the Schwarzian theory [15, 27, 29–31, 33].
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is 1 + O(1/c) in the large C limit. The various 1/c corrections are then obtained by

evaluating (6.10) in perturbation theory in 1/C. Roughly speaking, the Fourier modes of

the reparameterization field φ correspond to the Virasoro generators Ln , and we obtain

the full identity block by “dressing” the identity’s contribution 1
(z12)

2hV (z34)
2hW

to the four-

point function by the reparameterization field. Throughout we find it convenient to first

evaluate the block on the cylinder, and then to take the decompactification limit.

The quantization of Diff(S1)/U(1) may be used to compute the Virasoro blocks cor-

responding to the exchange of other operators Oh . However we do not pursue this fur-

ther here.

6.1 The light-light limit

We first work in the limit where we take C → ∞ and the operator dimensions are relatively

light, scaling no larger than h .
√
c. In this limit the identity block exponentiates and is

given by [68]

V0(hV , hW ;u) = exp

(
2hV hW

c
u2 2F1(2, 2; 4;u)

)(
1 +O

(
1√
c

))
. (6.11)

The argument of the exponential is just the global h = 2 block corresponding to the

exchange of the stress tensor.

We recover this result in steps. First, let us treat hV hW
c as a small expansion parameter

and work to first order in it. This is equivalent to evaluating the leading 1/c correction to

V0 in the limit that hV and hW are held fixed as c→ ∞.

Our starting point is the two-point function of a dimension-h operator on the cylinder

with the insertions at the same time. It is

〈O(θ1)O(θ2)〉 =
1

(
2 sin

(
θ12
2

))2h , (6.12)

which may be obtained from the two-point function in the plane at fixed time, 1/x2h12 ,

after conformally transforming from the plane to the cylinder. In our geometric theory

we consider the bilocal operator, which is a reparameterized two-point function. On the

cylinder it is given by

B(h; θ1, θ2) =


 φ′(θ1)φ′(θ2)

4 sin2
(
φ(θ1)−φ(θ2)

2

)2




h

, (6.13)

which is also related to the bilocal operator on the plane, (6.9), upon substituting φ →
tan

(
φ
2

)
into (6.9). Crucially, the two insertions in (6.13) must be at the same Euclidean

time in order for this operator to be PSL(2;R) invariant.

Expanding around the saddle, φ = θ + ǫ(θ, y), we find

B(h; θ1, θ2) =
1

(
2 sin

(
θ12
2

))2h
(
1 + hJ (1)

12 · ǫ+O(ǫ2)
)
, (6.14)
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Figure 2. The exchange diagram which computes the O(1/C) correction to the identity block. The

blobs refer to the bilocal operators, and the vertex factors J (1)
12 and J (1)

34 are the linear couplings

of the reparameterized two-point function to the ǫ field and are given in (6.15). The ǫ propagator

is given in (6.22).

where

J (1)
12 · ǫ = ǫ′1 + ǫ′2 − cot

(
θ12
2

)
ǫ12 , (6.15)

is the linear coupling of the bilocal to the reparamaterization field. By (6.10) our proposal

is that the identity block on the cylinder is given by

V0 =
〈B(hV ; θ1, θ2)B(hW ; θ3, θ4)〉
〈B(hV ; θ1, θ2)〉〈B(hW ; θ3, θ4)〉

, (6.16)

where the insertions (θ1, θ2) are at the same Euclidean time, as are (θ3, θ4). Without loss

of generality we take (θ1, θ2) to be inserted at Euclidean time y and (θ3, θ4) at Euclidean

time 0, with y > 0. That is, the four insertions are at

w1 = θ1 + iy , w2 = θ2 + iy , w3 = θ3 , w4 = θ4 . (6.17)

To evaluate the block at arbitrary times we simply compute it for these values of wi , and

then analytically continue the final result exploiting that the block is holomorphic in its

arguments. In any case, we have

V0 = 1 + hV hW 〈〈(J (1)
12 · ǫ)(J (1)

34 · ǫ)〉〉+O

(
1

C2

)
, (6.18)

whose O(1/C) part is a tree-level exchange diagram of the ǫ field between the two bilocals,

represented in figure 2. (Since in our proposal we divide by the expectation value of the

bilocals, the identity block is given by the sum of connected diagrams between the two

bilocals, and so at O(1/C) we do not include the one-loop renormalization of the bilocals.)

To proceed we require the ǫ propagator. The quadratic action on the cylinder is

S2 =
C

24π

∫
d2x
(
(∂̄ǫ′)ǫ′′ − (∂̄ǫ)ǫ′

)
. (6.19)

Fourier transforming as

ǫ(w) =

∫ ∞

−∞

dω

(2π)2

∞∑

n=−∞
einθ+iωy ǫ̃(p) , (6.20)
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Figure 3. The diagram with n exchanges of the ǫ field between two bilocals.

where p = (n, ω), the Fourier-space propagator is

〈ǫ̃(p1)ǫ̃(p2)〉 =
24π

C

1

in1(n21 − 1)(ω1 − in1)
(2π)2δ(2)(p1 + p2) . (6.21)

The zero modes n = −1, 0,+1 for all ω are pure “gauge,” and may be set to zero by a

suitable local PSL(2;R) transformation. Removing those modes and Fourier-transforming

back to position space, we find the position-space propagator

〈ǫ(w)ǫ(0)〉 =
∫ ∞

−∞

dω1dω2

(2π)4

∑

n1,n2 6=−1,0,+1

ein1θ+iω1y〈ǫ̃(p1)ǫ̃(p2)〉

=
6

C

(
−1 +

3ζ

2
− (1− ζ)2

ζ
ln(1− ζ)

)
, ζ = eisgn(y)w ,

(6.22)

where in going from the first line to the second we have used Cauchy’s theorem. Evaluating

the exchange diagram in (6.18), taking the decompactification limit by rescaling wi = αzi
and sending α → 0, and then putting the four insertions at z1 = ∞, z2 = 1, z3 = u, and

z4 = 0, we find

V0 = 1 +
12hV hW

C

(
−2 +

(
1− 2

u

)
ln(1− u)

)
+O

(
1

C2

)

= 1 +
2hV hW
C

u2 2F1(2, 2; 4, u) +O

(
1

C2

)
,

(6.23)

which matches (6.11) to O(1/C).

Now we wish to recover the exponentiation (6.11) in the limit where h/
√
c is held

fixed. To do so we rescale the ǫ field as ǫ → ǫ√
C

so that the ǫ-propagator is O(1) and

the interaction vertices with n reparameterization fields scale as O(C−n/2). We also write

hi =
√
C hi . In the large C limit with h fixed, the corrections to the bilocal in (6.14)

exponentiate as

(
2 sin

(
θ12
2

))2h

B(h;w1, w2) = exp

(
h

(
J (1)
12 · ǫ+ 1√

C
J (2)
12 · ǫ+O

(
1

C

)))
, (6.24)

where

J (2)
12 · ǫ = −1

2

(
ǫ′21 + ǫ′22 − 1

2 sin2
(
w12
2

)ǫ212

)
, (6.25)

is the quadratic coupling to the ǫ-field. The block is then approximately given by

V0 = 〈〈exp
(
hV J (1)

12 · ǫ
)
exp

(
hWJ (1)

12 · ǫ
)
〉〉
(
1 +O

(
1√
C

))
. (6.26)
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As C → ∞ we neglect self-interactions of the ǫ-field as well as the higher order couplings

J (n>1)
12 of the bilocal to the reparameterization field. The remaining terms in (6.26) that

contribute have n powers of J (1)
12 · ǫ which are contracted with n powers of J (1)

34 · ǫ, and are

represented in figure 3. There are n! such contractions and each is weighted by a factor of
hnV hnW
n!2

arising from the exponentials. Thus the contribution with n exchanges is 1
n! times

the single-exchange to the nth power. So the single exchange (6.18) exponentiates as

V0 =

( ∞∑

n=0

1

n!

(
hV hW 〈〈(J (1)

12 · ǫ)(J (1)
34 · ǫ)〉〉

)n
)(

1 +O

(
1√
C

))

= exp

(
2hV hW
C

u2 2F1(2, 2; 4, u)

)(
1 +O

(
1√
C

))
,

(6.27)

recovering (6.11) as we sought.

The subleading corrections in 1/C to the block are given by the sum over connected

diagrams. In the limit where hV and hW are held fixed, there are several diagrams which

contribute to the block at O(1/C2). These include the one-loop renormalization of the

ǫ-propagator, as well as tree-level diagrams. The latter also determine the O(1/
√
C) cor-

rection to (6.27).

6.2 The heavy-light limit

The identity block is also known in the “heavy-light” limit, in which one of the operators

is “heavy” with dimension hH = O(c), while the other is “light with dimension hL =

O(1). This block is most naturally written in a different kinematic limit than the one we

considered above, namely

〈OH(∞)OL(1)OL(u)OH(0)〉 . (6.28)

Conformally transforming to the cylinder, so that the heavy operators put us into the state

|hH〉, this limit is equivalent to the two-point function of the light operator in the heavy

state, which is known [69] to be

〈hH |OL(w)OL(0)|hH〉 =
(

α

2 sin
(
αw
2

)
)2h(

1 +O

(
1

c

))
, α =

√
1− 24hH

c
. (6.29)

The O(1/c) corrections were computed in [18, 19], and higher order corrections were com-

puted in [71].

There is quite a bit of physics already in the leading order result. As the dimension of

the heavy operator is increased from 0, there is a transition at hH = c
24 , which corresponds

to the mass of the lightest BTZ black hole. Below this threshold, α ∈ (0, 1), the leading

order result is periodic around the circle with a new periodicity θ ∼ θ + 2π
α . Above this

threshold it is periodic in imaginary time with y ∼ y + 2π
|α| , i.e. it obeys a KMS relation

with an effective inverse temperature β = |α|
2π . Of course the full correlator does not obey

the KMS condition, and indeed the 1/c corrections are not periodic in imaginary time. We

refer the reader to [69] for further discussions of the physics of this quasi-periodicity and

its relation to the Eigenstate Thermalization Hypothesis.
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In the notation of the previous subsection with O1 = O2 = OH , the leading order

result (6.29) corresponds to

V0(u) =

(
αu(1− u)

α−1
2

1− (1− u)α

)2hL (
1 +O

(
1

c

))
. (6.30)

(Recall that we normalize the identity block so that V0 → 1 as u → 0.) Conformally

transforming to the thermal cylinder at inverse temperature β and performing an analytic

continuation to the second sheet, this gives the identity’s contribution to the out-of-time-

ordered four-point function which has been used as a definition for quantum Lyapunov

growth [25, 72]. This contribution well-approximates the full answer for the four-point

function in the limit of large central charge and a large higher-spin gap, and when both

of those conditions hold true the four-point function grows with a maximal [73] Lyapunov

exponent 2πβ [74]

〈OH(t)OL(0)OH(t)OL(0)〉β
〈OHOH〉β〈OLOL〉β

=

(
1

1 + 6πhH e
2π
β
(t−t∗)

)2hL (
1 +O

(
1

c

))
, (6.31)

where t∗ = β
2π log(c) and we have written the denominator to first order in hH

c . (This

result is presented in a convention in which the heavy insertions are at imaginary times

0, β2 and the light insertions are at β
4 ,

3β
4 .)

In the remainder of this section we obtain the leading order result for the heavy-light

block (6.29) as well as its O(1/c) corrections. In principle we could compute it via the two-

point function of bilocal operators on the cylinder, with one bilocal corresponding to the

insertions of the heavy operator and the other to the light insertions. The heavy operator

strongly “backreacts” on the reparameterization field, and to proceed one must solve for

the latter in the presence of the heavy bilocal. To efficiently proceed we place the heavy

insertions in the infinite past and future. The classical trajectory is then modified to

φc = α0θ , α0 =

√
1− 24hH

C
. (6.32)

One way to obtain this is to use that the classical stress tensor on the cylinder is now

modified to be

Tc = − C

12

{
tan

(
φc
2

)
, θ

}
= hH − C

24
, (6.33)

which may be integrated to give (6.32). The field equation of the model is just the conser-

vation of the stress tensor, and so this configuration is indeed a saddle.

The modified saddle (6.32) no longer obeys φ(θ + 2π) = φ(θ) + 2π. The insertion of

the heavy operator has twisted the boundary conditions for the reparameterization field,

and in fact (6.32) is the unique saddle consistent with the new boundary conditions. This

twisting also breaks the local PSL(2;R) redundancy down to a local U(1) redundancy, so

that we identify φ(θ, y) ∼ φ(θ, y)+a(y). Both this, and the fact that we are now working in

a state |hH〉 rather than the vacuum |0〉, evoke the quantization of the normal orbits of the
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Virasoro group Diff(S1)/U(1). Indeed, if we redefine φold = α0φnew so that the redefined

φ is a standard Diff(S1) field obeying φ(θ + 2π) = φ(θ) + 2π, the action is redefined as

SE =
C

24π

∫
d2x

(
(∂̄φ′)φ′′

φ′2
− (∂̄φ)φ′

)
→ C

24π

∫
d2x

(
(∂̄φ′)φ′′

φ′2
− α2

0(∂̄φ)φ
′
)
. (6.34)

(Recall that precisely this mechanism — the radius of the Diff(S1) being modified by a

change in the energy — was at work in the description of conical defects in AdS3 presented

in subsection 3.4.) This is the action for the quantization of a normal orbit with b0 =

−Cα2
0

48π (2.36). Solving for hH gives

hH = 2πb0 +
C

24
, (6.35)

which matches our exact relation between the weight b0 of the primary state, and the C

that we found in eq. (5.58). It will be important later that in this setting the exact central

charge is

c = C + 1 , (6.36)

rather than c = C + 13 as it is for the quantization of Diff(S1)/PSL(2;R).

In this setting our proposal is that the four-point function (6.29) is given by an appro-

priately renormalized expectation value of a bilocal operator corresponding to the insertion

of the light operators in the state |hH〉,

〈hH |OL(w)OL(0)|hH〉 = 〈B(hL;w, 0)〉α . (6.37)

Evaluating the bilocal (6.13) in the reparameterized background (6.32) sourced by the

heavy operator gives the classical approximation as C → ∞,

〈B(hL; θ, 0)〉α =


 α0

2 sin
(
α0θ
2

)




2hL (
1 +O

(
1

C

))
. (6.38)

Analytically continuing θ → w, this matches the leading order result (6.29) using that α0

becomes α as C → ∞.

The O(1/C) corrections to the block are computed by the one-loop approximation

to (6.37). In the background (6.32), the coupling of the bilocal operator (6.13) to the

reparameterization field φ = α0θ +
ǫ√
C

is given by

B(h;θ1,θ2)=
(

α0

2sin
(

α0θ12
2

)

)2h(
1+

h√
C
J ′(1)
12 ·ǫ+ 1

C

(
h2

2
(J ′(1)

12 ·ǫ)2+hJ ′(2)
12 ·ǫ

)
+O

(
1

C3/2

))
,

(6.39)

where

J ′(1)
12 · ǫ = ǫ′1 + ǫ′2

α0
− cot

(
α0θ12
2

)
ǫ12 ,

J ′(2)
12 · ǫ = −1

2

(
ǫ′21 + ǫ′22
α2
0

− 1

2
csc2

(
α0θ12
2

)
ǫ212

)
.

(6.40)
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Figure 4. The one-loop diagram which gives the O(1/C) correction to the identity block in the

heavy-light limit. The coupling to the reparameterization field is given by
h2

L

2C (J ′1
12 · ǫ)2+hLJ ′(2)

12 · ǫ.

It then follows that

〈B(hL;w, 0)〉α =

(
α

2 sin
(
αw
2

)
)2hL (

1 +
hL
c
Vh/c(w) +

h2L
c
Vh2/c(w) +O

(
1

c2

))
, (6.41)

with

Vh2/c(w) =
1

2
〈(J ′(1)

12 · ǫ)2〉 ,

Vh/c(w) = 〈J ′(2)
12 · ǫ〉 − 1− α2

α2

(
1− αw

2
cot
(αw

2

))
.

(6.42)

The last term in Vh/c arises from expanding the tree-level result (6.38) to O(1/c),

(
α0

2sin
(
α0w
2

)
)2hL

=

(
α

2sin
(
αw
2

)
)2hL(

1−hL(1−α2)

cα2

(
1−αw

2
cot
(αw

2

))
+O

(
1

c2

))
,

(6.43)

using that α0 =
√

1− 24hH
C and C = c−1. The self-interactions of the ǫ field are suppressed

as O(1/
√
C), and so the O(1/C) approximation to the block is given by the one-loop bubble

diagram represented in figure 4.

We require the ǫ propagator. The Fourier space propagator is now

〈ǫ̃(p1)ǫ̃(p2)〉 =
24πα2

in1(n21 − α2)(ω − in1)
(2π)2δ(2)(p1 + p2) , (6.44)

which implies

〈ǫ(w)ǫ(0)〉 =
∫
dω1dω2

(2π)4

∑

n1,n2 6=0

ein1θ+iω1y〈ǫ̃(p1)ǫ̃(p2)〉

=
6

C
(2 ln(1− ζ) + Φ(ζ, 1, α) + Φ(ζ, 1,−α)) , ζ = eisgn(y)w ,

(6.45)

where Φ(w, s, a) is the Lerch transcendant

Φ(w, s, a) =
∞∑

n=0

wn

(n+ a)s
. (6.46)
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For s = 1 it is related to a certain incomplete Beta function as

B(w, a, 0) = waΦ(w, 1, a) . (6.47)

We are now in a position to evaluate the O(h2L/c) and O(hL/c) corrections in (6.41).

Both are logarithmically divergent, and so must be appropriately renormalized. We do so

via background subtraction, defining the renormalized expectation value of the bilocal by

〈B(hL;w1, w2)〉R = 〈B(hL;w1, w2)〉α − (〈B(hL;w1, w2)〉α→1)wi→αwi
. (6.48)

With this scheme, the expectation value of the bilocal is exactly the two-point function

of a dimension hL operator in the limit α → 1. In evaluating the coincident limits of the

propagator in (6.41) we also use a point-splitting procedure in which we take one of the

insertions to be slightly after the other in Euclidean time. This gives

〈ǫ21〉α → 〈ǫ(δ)ǫ(0)〉α = − 6

C
(Hα +H−α) +O(δ) ,

〈ǫ′21 〉α → 〈ǫ′(δ)ǫ′(0)〉α = −6α2

C
(Hα +H−α + 2 ln(−iδ)) +O(δ) ,

(6.49)

where Im(δ) 6= 0 and Hα is the harmonic number. We also perform a point-splitting

procedure even for the contributions at nonzero separation, taking the two insertions of

the bilocal to be at infinitesimally different Euclidean times. Putting the pieces together,

we find

Vh2/c=6
(
−csc

(αw
2

)2(B(eiw,α,0)+B(e−iw,α,0)+B(eiw,−α,0)+B(e−iw,−α,0)
2

+Hα+H−α+2ln
(
2sin

(w
2

)))
+2ln

(
αsin

(w
2

)
csc
(αw

2

))
+1
)
,

Vh/c=−1

2
csc2

(αw
2

)(
3(Φ(eiw,1,α)+Φ(e−iw,1,α)+Φ(eiw,1,−α)+Φ(e−iw,1,−α))

+cos(αw)(6(Hα+H−α+iπ)−5)+12ln
(
−2isin

(w
2

))
+5
)

− 1

α2
− 13α2−1

2α
w cot

(αw
2

)
+12ln

(
−2i

α
sin
(αw

2

))
, (6.50)

where we have used (6.47). This result precisely matches the O(1/c) correction computed

in [18], upon replacing t in eq. (1.4) of their manuscript with −iw.
We expect that further subleading corrections to the block in 1/c are computed by

higher loop corrections. In particular, the O(1/Cn) corrections should be computed by the

n-loop diagrams. It would be interesting to test if this is indeed the case using the known

O(1/c2) and O(1/c3) corrections computed in [71].

7 Supersymmetry

There are a number of obvious generalizations to the geometric models considered in this

work. One may consider the quantization of the coadjoint orbits of a Virasoro-Kac-Moody
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group, or of super-Virasoro groups with varying amounts of supersymmetry. In grav-

itational terms these quantizations respectively correspond to (the chiral half of) pure

gravity and Chern-Simons theory on AdS3, or to (the chiral half of) pure supergravity

on AdS3. Upon reduction, one expects these theories to respectively yield the version

of the Schwarzian theory enhanced with global symmetries obtained in [75, 76], or the

super-Schwarzian theory of [77].

In this section we consider the coadjoint orbits of the N = 1 super-Virasoro group and

set up their path integral quantization, focusing on the analogue of the exceptional orbit

Diff(S1)/PSL(2;R) with AdS3 supergravity in mind. Most of this section is not new, but

we have found the literature to be a bit scattered and misleading in places. Thus our goal

here is to summarize the main results, and to pave the way for future computations like

those considered in this work, e.g. of super-Virasoro blocks in the heavy-light limit.

We now turn our attention to the N = 1 super-Virasoro group. See e.g. [78–81]. We

have found [80] especially helpful. The quantum mechanical models we so obtain will be

2d chiral theories with N = 1 superconformal symmetry. The N = 1 generalization of

Diff(S1) is the diffeomorphism group of the supercircle Diff±(S1|1). The supercircle S1|1 is

parameterized by a bosonic periodic variable ϕ ∼ ϕ+2π and a Grassmann-odd coordinate

θ,9 which we sometimes group together into a supercoordinate X = (ϕ, θ). The ± subscript

refers to the spin structure. The supercircle is equipped with a superderivative

D =
∂

∂θ
+ θ

∂

∂ϕ
, D2 =

∂

∂ϕ
. (7.1)

A superreparametrization of the supercircle is a change of super-coordinates (ϕ̃, θ̃) con-

strained so that the superderivative rescales homogeneously,

D̃ =
∂

∂θ̃
+ θ̃

∂

∂ϕ̃
∝ D . (7.2)

Solving this constraint leads to the condition

Dϕ̃− θ̃Dθ̃ = 0 . (7.3)

Purely bosonic solutions are given by ϕ̃ = f(ϕ), θ̃ =
√
f ′(ϕ)θ. The most general solution

is [77] given in terms of a Grassmann-even function f and Grassmann-odd one η as

ϕ̃ = f(ϕ+ θη(ϕ)) , θ̃ =
√
f ′(ϕ)

(
θ + η(ϕ) +

1

2
θη(ϕ)η′(ϕ)

)
. (7.4)

The bosonic function f is a standard Diff(S1) field obeying f(ϕ+ 2π) = f(ϕ) + 2π, while

η(ϕ + 2π) = ±η(ϕ) depending on the spin structure. In any case, under superreparame-

terizations, the superderivative, super-one-form dϕ + θdθ, and super-measure dX = dϕdθ

rescale homogeneously as

D̃ = (Dθ̃)−1D , dϕ̃+ θ̃dθ̃ = (Dθ̃)2(dϕ+ θdθ) , dX̃ = (Dθ̃)dX , (7.5)

9Beware that we are switching notation in this subsection relative to the rest of the manuscript: θ is

now the fermionic coordinate, rather than the coordinate along the S
1.
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so that Dθ̃ plays the role of the Jacobian of the transformation. More generally, one defines

h-superdifferentials, which are superfields A that transform as

Ã(X̃) = (Dθ̃)−2hA(X) . (7.6)

An infinitesimal superreparameterization

φ̃ = φ+ δφ , θ̃ = θ + δθ , (7.7)

may be packaged into a superfield as

V = δφ+ θδθ . (7.8)

Here V is a supervector field, an adjoint vector of the algebra of Diff±(S1|1). In terms of

V we have δθ = 1
2DV and δDθ̃ = 1

2∂V . A straightforward computation demonstrates that

V transforms as a −1 differential. The infinitesimal form of this transformation gives the

supercommutator of supervector fields,

δV1V2 = [V1, V2] = V1∂V2 − V2∂V1 +
1

2
DV1DV2 , (7.9)

which defines the commutator of the algebra of Diff±(S1|1). In more detail, an infinitesimal

superreparameterization,

δφ = ξ2(ϕ) + θη2(ϕ) , δθ = η2(ϕ) +
θ

2
ξ′2(ϕ) , (7.10)

corresponds to a supervector

V2 = ξ2(ϕ) + 2θη2(ϕ) , (7.11)

whose components transform under another infinitesimal superreparamterization V1 as

δ1ξ2 = ξ1ξ
′
2 − ξ2ξ

′
1 + 2η1η2 , δ1η2 = ξ1η

′
2 − ξ2η

′
1 −

1

2

(
η2ξ

′
1 − η1ξ

′
2

)
. (7.12)

The N = 1 super-Virasoro group D̂iff±(S1|1) is the central extension of the diffeo-

morphism group of the supercircle. Introducing a central element c, vectors are now the

combination of a supervector field V and a number a and we group them as (V, a), or

equivalently V − iac. The commutator is now deformed by

[(V1, a1), (V2, a2)] =

(
V1∂V2 − V2∂V1 +

1

2
DV1DV2,−

1

48π

∫
dX(V1∂

2DV2 − V2∂
2DV1)

)
.

(7.13)

From this we recover the standard presentation of the N = 1 super-Virasoro algebra. We

define the generators Ln to correspond to the bosonic transformation ξ = ieinϕ and the

Grassmann-odd generators Gµ correspond to the Grassmann-odd ones η =
√
iγeiµϕ, with

γ2 = 1 and µ ∈ Z or Z + 1
2 depending on the spin structure. With this identification

eq. (7.13) then implies

[Ln, Lm] = (n−m)Ln+m +
c

12
n3δn+m ,

[Ln, Gµ] =
(n
2
− µ

)
Gµ+n ,

{Gµ, Gν} = 2Lµ+ν +
c

3
µ2δµ+ν ,

(7.14)

which differs from the usual algebra by L0,usual = L0,here +
c
24 .
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Coadjoint vectors of Diff±(S1|1) are Grassmann-odd, 3
2 -differentials B. Coadjoint vec-

tors of its central extension are the combination of a Grassmann-odd superfield B and an

ordinary number t, which we denote as (B, t). The pairing between (B, t) and an adjoint

vector (V, a) is

〈(B, t), (V, a)〉 =
∫
dX BV + ta . (7.15)

This pairing must be super-Virasoro-invariant, which fixes the variation of the coadjoint

vector under a transformation generated by (V, a) to be

δB = V ∂B +
3

2
B∂V +

1

2
DVDB − t∂2DV

24π
,

δa = 0 .

(7.16)

Consider the orbit of a constant coadjoint vector (B0 = θb0, C). The finite form of the

transformation (7.16) under a superreparameterization is

(B0, C) → (B(X), C) =

(
θ̃b0(Dθ̃)

3 − C

24π
S(X̃,X), C

)
, (7.17)

where

S(X̃,X) = 2

(
D4θ̃

Dθ̃
− 2

D3θ̃D2θ̃

Dθ̃2

)
(7.18)

is the N = 1 super-Schwarzian derivative. (We use a slightly different normalization for

the super-Schwarzian than is common in the literature. Ours reduces to the ordinary

Schwarzian {f(ϕ), ϕ} under a bosonic transformation ϕ̃ = f(ϕ), θ̃ =
√
f ′(ϕ)θ.) These

orbits are isomorphic to D̂iff±(S1|1)/S, where S is the stabilizer of the orbit. To gain some

intuition about the orbits, note that at a point (B(X), C) on the orbit, the generator L0

corresponds to the function

L0 = −
∫
dX

(
C

24π
S(X̃,X)− θ̃b0(Dθ̃)

3

)
(7.19)

so that at the origin (B0, C) one has L0 = 2πb0. The quantization of the orbit leads to

a quantum mechanical model whose Hilbert space is composed of a single super-Verma

module with a highest weight state |h〉 satisfying h = 2πb0 +
C
24 , where C plays the role of

the central charge up to an O(C0) one-loop exact correction.

Calling the periodic spin structure “Ramond” and the anti-periodic structure “Neveu-

Schwarz,” the analogues of the first exceptional orbit of the Virasoro group are

1. Ramond: b0 = 0. For this value the quantization leads to h = C
24 , which is the

dimension of the Ramond vacuum at large C. This orbit is exceptional in that the

superreparameterizations (f(ϕ), η(ϕ)) and (f(ϕ) + α, η(ϕ) + β) lead to the same

coadjoint vector for any (α, β). The stabilizer is generated by L0 and G0, i.e. by a

constant supervector V .
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2. Neveu-Schwarz: b0 = − C
48π . At this value one has h = 0, which is the correct

dimension of the Neveu-Schwarz vacuum. For this value the stabilizer is OSp(1|2),
which is generated by the supervector V = α0 + α1e

iϕ + α−1e
−iϕ + 2θ(β1/2e

iϕ/2 +

β−1/2e
−iϕ/2), i.e. by (L−1, L0, L1, G−1/2, G1/2).

In each case the quantization leads to the vacuum module, as we will demonstrate shortly.

Orbits with larger b0 are “normal,” and are stabilized by L0 alone.

The Kirillov-Kostant supersymplectic form at a point (B,C), evaluated on two super-

vectors (V1, a1) and (V2, a2) is given by

ω((V1, a1), (V2, a2)) = −〈(B,C), [(V1, a1), (V2, a2)]〉 (7.20)

= −
∫
dX

{
B

(
V1∂V2 − V2∂V1 +

1

2
DV1DV2

)

− C

48π
(V1∂

2DV2 − V2∂
2DV1)

}
.

We would like to write this as a two-form. To do so we need to write the infinitesimal

variation of a superreparameterization X̃ generated by a vector V as a formal one-form.

That variation is nicely packaged into the super one-form Ũ = dφ̃+ θ̃dθ̃ with

Ũ(V ) = δV φ̃+ θ̃δV θ̃ = (Dθ̃)2V , (7.21)

where δV φ̃ and δV θ̃ denote the variations of φ̃ and θ̃ generated by V . (In our review

of the coadjoint orbits of the Virasoro group, the analogue of Ũ was dφ, which satisfied

dφ(F ) = δFφ = fφ′. However note that unlike dφ, Ũ is not closed: dŨ = dθ̃ ∧ dθ̃.) Using

this relation to eliminate V1 and V2 in (7.20), and substituting (7.17), we then perform the

superspace integral using

Ũ | = df + f ′ηdη ,

DŨ | = η
(
df ′ + f ′η′dη

)
+ 2f ′dη ,

(7.22)

allowing us to write ω in terms of the fields f and η. We find after a suitable integration

by parts

ω = −
∫ 2π

0
dϕ

{
C

48π

(
df ′ ∧ df ′′
f ′2

+ 4dη′ ∧ dη′ − d(ηη′η′′dη + 2{f, ϕ}ηdη)
)

+ b0(df ∧ df ′ + 2f ′ηdf ′ ∧ dη + f ′2dη ∧ dη)
}
,

(7.23)

which is clearly closed. The bosonic part is just the symplectic form on the Virasoro orbits

in (2.23). In this presentation we also read off the presymplectic potential ω = dα as

α = −
∫ 2π

0
dϕ

{
C

48π

(
−f

′′df ′

f ′2
+ 4η′dη′ − ηη′η′′dη − 2{f, ϕ}ηdη

)
− b0(f

′df − f ′2ηdη)
}
.

(7.24)
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This last expression can be recast as a superspace integral

α =

∫
dX

{
C

24π

D3θ̃

(Dθ̃)3
DŨ + b0θ̃(Dθ̃)Ũ

}
. (7.25)

To perform a path integral quantization we must do two things. First, we promote

the superreparameterization to be a function of time. Second, we are interested in the

Hamiltonian corresponding to L0 (7.19), which may be written as

L0 = −
∫ 2π

0
dϕ

{
C

24π

(
{f, ϕ}(1− ηη′) + ηη′′′ + 3η′η′′

)
− b0f

′2(1− ηη′)
}

=

∫ 2π

0
dϕ

{
C

48π

(
f ′′2

f ′2
+ 2{f, ϕ}ηη′ − 4η′η′′

)
− b0f

′2(1− ηη′)
} (7.26)

following superspace integration. The action −
∫
dt(αidx

i +H) is then

SN=1 = −
∫
dϕdt

{
C

24π

(
f ′′∂+f ′

f ′2
+ 2{f, ϕ}η∂+η − 4η′∂+η′ + ηη′η′′∂+η

)

+ 2b0(f
′∂+f − f ′2η∂+η)

}
. (7.27)

Its bosonic part coincides with (2.31). Its Euclidean continuation t = −iy is

SN=1
E =

∫
d2x

{
C

24π

(
f ′′∂̄f ′

f ′2
+2{f,ϕ}η∂̄η−4η′∂̄η′+ηη′η′′∂̄η

)
+2b0(f

′∂̄f−f ′2η∂̄η)
}
.

(7.28)

Let us briefly consider these models on a torus of complex structure τ , as in our analysis

in section 5. We have four choices of spin structure, depending on whether the fermion

η is (anti-)periodic around each of the two cycles. In all cases the unique saddle point

consistent with the boundary conditions is

f0 = ϕ− Re(τ)

Im(τ)
y , η0 = 0 . (7.29)

Expanding around this saddle,

f = f0 + ǫ , η = χ , (7.30)

the quadratic action is

S2 =

∫
d2x

{
C

24π

(
ǫ′′∂̄ǫ′ − 4χ′∂̄χ′)+ 2b0(ǫ

′∂̄ǫ− χ∂̄χ)

}
. (7.31)

Following our discussion above eq. (7.20), consider the special case of the Ramond

model with b0 = 0. In this setting the “gauge” redundancies identify

ǫ(ϕ, y) ∼ ǫ(ϕ, y) + a(y) , χ(ϕ, y) ∼ χ(ϕ, y) + α(y) , (7.32)
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so that the n = 0 spatial Fourier modes of ǫ and η are “pure gauge” and may be consistently

set to zero. The saddle point action vanishes, and the Fourier space quadratic action is then

SR =
Cπ

6


i

∞∑

m=−∞

∑

n 6=0

n3(m− nτ)|ǫm,n|2 + 4
∑

ν

∑

n 6=0

n2(ν − nτ)χ∗
n,mχn,m


 , (7.33)

where ν ∈ Z if χ is periodic around the “time” circle and ν ∈ Z + 1
2 if χ is anti-periodic.

Let us call the former case R-R and the latter NS-R. The one-loop approximation to the

partition function is

Z1−loop(τ) =

√ ∏
ν,n(ν − nτ)∏
m,p(m− pτ)

. (7.34)

Evaluating the determinant gives

Z1−loop(τ) =
∞∏

n=1

1∓ qn

1− qn
, (7.35)

where ± refers to the fermion boundary condition around the “time” circle. These are of

course the vacuum characters

ZR−R(τ) = trR

(
(−1)F qL0− c

24

)
, ZNS−R(τ) = trR

(
qL0− c

24

)
, (7.36)

with the usual convention for L0, using that L0 = c
24 in the (non-degenerate) Ramond

vacuum. This computation does not give the central charge directly, but a computation of

the two-point function of the stress tensor on the cylinder reveals that the chiral central

charge is not renormalized,

cR = C . (7.37)

Here, the “R” in cR is short for “Ramond.”

It might be surprising that the R-R partition function is nonzero as the fermion χ has

a zero mode. However, for this orbit the zero mode is pure “gauge.” For more general

Ramond orbits, this zero mode persists but is no longer pure gauge, leading to the usual

result that the non-vacuum R-R character vanishes.

Now consider the Neveu-Schwarz model at b0 = − C
48π , which we expect to produce the

Neveu-Schwarz vacuum module. In this case the “gauge redundancy” identifies

ǫ(ϕ, y) ∼ ǫ(ϕ, y) + a0(y) + a−1(y)e
−iϕ + a1(y)e

iϕ ,

χ(ϕ, y) ∼ χ(ϕ, y) + b− 1
2
(y)e−iϕ/2 + b 1

2
(y)eiϕ/2 ,

(7.38)

and so removes the n = −1, 0,+1 spatial Fourier modes of ǫ and the ν = −1
2 ,+

1
2 modes

of χ. The quadratic action is modified to

SNS =
πC

12
iτ +

Cπ

6


i

∞∑

m=−∞

∑

n 6=−1,0,+1

in(n2 − 1)(m− nτ)|ǫm,n|2

+ 4
∑

ν

∑

n 6=± 1
2

(
n2 − 1

4

)
(ν − nτ)χ∗

n,mχn,m


 ,

(7.39)
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where ν ∈ Z if we impose periodic boundary conditions around the “time” circle and Z+ 1
2

with antiperiodic boundary conditions. The one-loop approximation to the torus partition

function gives

Z1−loop = q−
C
24

√ ∏
ν,n(ν − nτ)∏
m,p(m− pτ)

, (7.40)

which leads to

Z1−loop = q−
cNS
24

∞∏

n=2

1∓ qn−
1
2

1− qn
, cNS = C +

15

2
, (7.41)

where ± refers to the fermion boundary condition around the “time” circle. These are the

characters of the Neveu-Schwarz vacuum with a renormalized central charge cNS,

ZR−NS = trNS

(
(−1)F qL0− c

24

)
, ZNS−NS = trNS

(
qL0− c

24

)
. (7.42)

Recall that an important observable in the quantization of the orbits of the Virasoro

group was the bilocal operator, which we viewed as a reparameterized two-point function.

In section 6 we gave significant evidence that correlation functions of these bilocals are

Virasoro blocks. The natural guess for bilocal probes of the supersymmetric theory studied

here is, on the infinite plane,

B(h; zi, θi) =
( V1V2

(φ̃1 − φ̃2 − θ̃1θ̃2)2

)h
, V = φ̃′ + θ̃θ̃′ , (7.43)

although we do not know for sure if this guess is correct.

There is some literature on the quantization of coadjoint orbits of super-Virasoro

groups with extended SUSY, e.g. [82–84]. The quantization of the orbits of the N = 2

super-Virasoro group in particular is related to the N = 2 supersymmetric version of

the SYK model presented in [77]. Although it is rather interesting we do not pursue it

further here.

8 Discussion

There is common lore that the dual to pure AdS3 gravity is Liouville theory. This lore

can be traced back to [10]. The claim cannot be correct as stated, as we discussed in the

Introduction. We have revisited the matter, and after careful treatment have shown that

pure gravity on global AdS3 can be rewritten as a cousin of Liouville theory, as anticipated

by various authors [14, 15]. This cousin is two copies of the path integral quantization

of a certain coadjoint orbit of the Virasoro group. This path integral quantization has

appeared in the literature before, going back nearly 30 years to a paper of Alekseev and

Shatashvili [12]. However, relatively little has been computed with it using standard path

integral techniques.

In this manuscript we have carefully obtained this theory from gravity, paying close

attention to the quotient and boundary conditions. Our analysis complements that of

Maloney and Witten, who arrived at a theory of boundary gravitons which is a geometric

quantization of the same coadjoint orbit. We derived related models for gravity on other

– 63 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
9

spacetimes, including conical deficits and two-sided BTZ geometries. These models are all

weakly coupled at large central charge, and one virtue of our reformulation is that it may

be used to compute loop-level physics in the dual quantum gravity. We have developed

in detail the technology to compute observables in perturbation theory in 1/c, namely the

sphere and torus partition functions and Virasoro blocks. Along the way we computed

several effects that are one-loop in the bulk, including the “heavy-light” block to O(1/c).

Our calculations appear to be substantially simpler than those of previous approaches, like

the heat kernel computation of the one-loop torus partition function in [2] or the algebraic

approach to the heavy-light block in [18].

In the remainder of this discussion we comment on some of the curious aspects of our

results, and outline some speculations and directions for future research.

It has long been known that the quantization of the coadjoint orbits of a group pro-

vides a computational engine for calculating group-theoretic quantities. Since the defining

data of two-dimensional CFT, like blocks or characters, is determined by representation

theory, it is not surprising that the technology of quantized coadjoint orbits computes

them. What is surprising to us is that the geometric actions in this paper allow for much

easier calculations of CFT data, such as Virasoro blocks at large central charge, than those

in the existing literature. This diagrammatic approach to computing CFT data begs fur-

ther exploration. Concretely, in section 6 we computed the “heavy-light” block to O(1/c)

from a one-loop computation. We expect that higher loops compute higher-order terms

in the 1/c expansion. Besides verifying this explicitly, by comparing with known results

for the blocks [71], there must be “non-perturbative” contributions to the blocks that are

suppressed as exp(−c). Are there instanton configurations in our theory which account

for these?

Relatedly, our theory should prove useful for computing the large c limits of Virasoro

blocks for higher-point functions, about which relatively little is known. For example,

the three-point function of bilocal operators should compute the Virasoro six-point iden-

tity block.

The rewriting of AdS3 gravity as a boundary field theory is analogous to the rewriting

of Jackiw-Teitelboim theory on nearly-AdS2 spacetimes as the Schwarzian theory. In both

cases, the natural way to parameterize the boundary excitations is as reparameterization

fields, and there are bilocal probes which, at least in nearly-AdS2, correspond to matter

fields in the gravity dual. Furthermore, certain partition functions of the geometric actions

considered here as well as that of the Schwarzian theory are one-loop exact [45]. As

emphasized in [36], Jackiw-Teitelboim theory on nearly-AdS2 spacetime is a self-consistent

theory of quantum gravity which is capable of supporting wormholes but is devoid of black

hole microstates. Our geometric actions behave analogously for AdS3 gravity, and indeed

our analysis seems to verify the conjectures of [36] regarding non-factorization in pure

AdS3 gravity.

Another shared feature of nearly-AdS2 and AdS3 gravity is the following. The

Lorentzian version of the Schwarzian quantum mechanics has exponentially growing modes

which are pure “gauge”: they are removed by the PSL(2;R) quotient of the model. These

modes do not appear in time-ordered correlation functions, but they do appear in out-of-

– 64 –



J
H
E
P
0
2
(
2
0
1
9
)
0
7
9

time-ordered correlation functions and are responsible for the maximal Lyapunov exponent

2π/β. Similar exponentially growing modes are also present in our geometric actions —

these modes are likewise pure “gauge,” but are unleashed by out-of-time-ordered correla-

tors, leading to the maximal Lyapunov exponent one finds from the identity block [74].

The PSL(2;R)-invariant bilocal operators were crucial in this manuscript. For example,

we presented significant evidence that the connected two-point function of bilocals is the

Virasoro identity block. What is the gravity dual of a bilocal probe? The bilocal operators

in the Schwarzian theory are well-understood in nearly-AdS2 gravity: they correspond to

boundary insertions of sources for operators dual to bulk matter fields. Our intuition is

that, in our geometric model, the probe is dual to a bulk Wilson line which ends on the AdS

boundary at the two points of the bilocal. However we do not yet have a firm argument

that this is the case. If this proposal is correct, then perhaps the machinery we developed

in section 6 can be used to clarify previous speculations (e.g. [85]) regarding bulk Wilson

lines and blocks. We expect the analysis of the recent work [86] to be especially useful.

Using the AdS/CFT dictionary we obtained the curved space version of the quantiza-

tion of Diff(S1)/PSL(2;R), which we then used to compute the one-loop approximation to

the sphere partition function of AdS3 gravity. It would be interesting to use this curved

space version to study higher-genus Euclidean observables and quantum corrections thereof.

One such observable is the position-space Rényi entropy, interpreted as the partition func-

tion on a branched cover of a Riemann surface.

In a sense, the quantization of Diff(S1)/PSL(2;R) considered in this text is an exotic

sort of hydrodynamics, at least according to a particle-physics-oriented definition of hydro-

dynamics as a theory of conserved quantities. The only local operators of the model are

built from its stress tensor, and the field equation is merely its conservation. So the action of

the model is, in that precise sense, an action for (non-dissipative) hydrodynamics. However

this action has little obvious relation to other effective actions for fluids recently developed

in e.g. [87–89]. Those systems are also theories of reparameterizations, however the sym-

metry principles underlying them are rather different. In those theories the analogue of the

φ-space has a fixed thermal vector. There is no such geometric interpretation for our model.

However, it may still be possible to arrive at the actions in this manuscript by some

other effective field theory-like arguments. After all, our theory is minimal: it is just

a Wess-Zumino term for the anomalies of a chiral CFT, and the quantum theory has

the minimum possible spectrum consistent with conformal (but not modular) invariance.

Indeed, the authors of [90] have recently proposed effective actions for energy fluctuations

beyond the gradient expansion which seem capable of hosting the quasi-local PSL(2; R)

symmetry so crucial in this manuscript. Can our theory be understood as an example

of the “hydrodynamics” considered there? More generally, since our theory describes the

dynamics of pure AdS3 gravity, one expects on physical grounds that our theory serves as

an effective description of two-dimensional CFTs satisfying all of the requisite properties

required for a semiclassical gravity dual, namely large central charge, a sparse spectrum,

and a large higher-spin gap. This is the outlook taken by the authors of [37]. From that

point of view it would be useful to quantify the applicability of our geometric model as an

effective description.
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The BMS3 asymptotic symmetry of flat-space gravity has been successfully obtained

from a suitable flat-space limit of AdS3 gravity [91–93]. This raises the question: what is

the flat space limit of our construction, and what does it have to do with soft limits in

three dimensional Minkowski space? Or for that matter with coadjoint orbits of BMS3?

We expect that the quantization of Diff(S1)/PSL(2;R) suitably encodes the dressing of

matter S-matrix elements by soft quanta, reminiscent of the dressing of bilocal probes that

gave us Virasoro blocks in section 6. We note that there has already been significant effort

devoted toward this end, including [14, 94, 95].

There has been a recent explosion of activity on the so-called T T̄ deformation of

Zamolodchikov and Smirnov [96, 97], including the question of its holographic dual (see

e.g. [98]). Here we simply note that, as far as pure Einstein gravity is concerned, one can

study the T T̄ deformation directly by a suitable deformation of the theory of boundary

gravitons obtained in this manuscript, just as one can study the Lorentz-breaking JT̄

deformation [99] of Einstein gravity with a U(1) Chern-Simons theory.

One loose end left by our work is a puzzle regarding the quantization of parameters.

In the path integral quantization of coadjoint orbits, well-definedness of the path integral

requires quantized periods of the symplectic flux. For the quantization of affine Lie groups,

which leads to chiral WZW models, this condition is the usual one that the level must

be integer. We did not find such a quantization condition when treating the orbits of

the Virasoro group. We are not sure if this should be surprising. After all, we find the

quantization of Diff(S1)/PSL(2;R) directly from the Chern-Simons formulation of AdS3
gravity. The latter has gauge group SO(2, 1) × SO(2, 1) (and not a cover thereof, as we

discussed in section 3). The bare central charge C characterizing the coadjoint orbit is

related to the SO(2, 1) Chern-Simons level as C = 24k, and one expects the latter to be

integral [6]. Here we note that if C is indeed a multiple of 24, then the exact chiral central

charge c = C + 13 is not.

Another loose end concerns an analogy with nearly AdS2 gravity. Kitaev [100] (see

also [22]) has shown that one way to arrive at the Schwarzian theory is to consider the

problem of a charged particle on the hyperbolic disc in the presence of a magnetic field, in

a limit were the mass is tuned so that the particle remains near the boundary of the disc.

The näıve computation of the particle’s action gives a Liouville quantum mechanics, rather

than the Schwarzian theory. However, after appropriately quotienting out by the PSL(2; R)

isometry of the disc, one may use a field redefinition to rewrite the quantum mechanics

as the Schwarzian theory. Is there a similar way to arrive at our geometric model from a

string propagating on AdS3 in the presence of a uniform NS flux? A näıve computation

leads to Liouville theory, rather than our action. Perhaps, after passing to Hamiltonian

form and quotienting out by the PSL(2;R)×PSL(2;R) isometry of AdS3, one lands on the

geometric model instead.
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[94] G. Barnich, A. Gomberoff and H.A. González, Three-dimensional Bondi-Metzner-Sachs

invariant two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D

87 (2013) 124032 [arXiv:1210.0731] [INSPIRE].

[95] B. Oblak, BMS Particles in Three Dimensions, Ph.D. thesis, Brussels U., 2016.

arXiv:1610.08526. 10.1007/978-3-319-61878-4 [INSPIRE].

[96] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two-dimensional quantum

field theory, hep-th/0401146 [INSPIRE].

[97] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.

Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

[98] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT , JHEP 04

(2018) 010 [arXiv:1611.03470] [INSPIRE].

[99] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost

Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].

[100] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,

JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].

– 72 –

https://doi.org/10.1103/PhysRevD.87.124032
https://doi.org/10.1103/PhysRevD.87.124032
https://arxiv.org/abs/1210.0731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0731
https://arxiv.org/abs/1610.08526
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08526
https://arxiv.org/abs/hep-th/0401146
https://inspirehep.net/search?p=find+EPRINT+hep-th/0401146
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05499
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03470
https://doi.org/10.21468/SciPostPhys.5.5.048
https://doi.org/10.21468/SciPostPhys.5.5.048
https://arxiv.org/abs/1710.08415
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.08415
https://doi.org/10.1007/JHEP05(2018)183
https://arxiv.org/abs/1711.08467
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.08467

	Introduction
	Review
	Coadjoint orbits of the Virasoro group
	Phase space path integrals

	From AdS(3) gravity to coadjoint orbits
	Cylinder boundary
	More on Euclidean black holes
	PSL(2;R) currents
	Conical defects and the Poincaré patch
	Coupling to an external geometry
	Sphere partition function

	Doubling and eternal BTZ black holes
	Torus partition function and < TT >
	One-loop determinants
	Revisiting the gravitational one-loop partition function
	Localization
	< TT >

	Virasoro blocks
	The light-light limit
	The heavy-light limit

	Supersymmetry
	Discussion

